多维随机变量及其分布,随机变量的相互独立性,条件概率
多维随机变量及其概率分布
![多维随机变量及其概率分布](https://img.taocdn.com/s3/m/567a142f0a1c59eef8c75fbfc77da26925c596f5.png)
独立性在概率论中的重要性
简化计算
01
独立随机变量的概率计算更加简单,因为可以利用概率的乘法
法则进行计算。
概率模型建立
02
在建立概率模型时,独立性假设可以帮助我们简化模型,并更
好地理解随机现象之间的相互关系。
统计学基础
03
在统计学中,独立性是许多统计方法的基础,如卡方检验、相
关性检验等。
05
多维随机变量的变换与函数
01 02 03
多元统计分析
多维随机变量在多元统计分析中有着广泛的应用,如多元 正态分布、多元t分布和多元卡方分布等。这些分布可以用 来描述和分析多维数据的统计性质,如协方差矩阵、主成 分分析和聚类分析等。
回归分析
在回归分析中,多维随机变量可以用来描述多个自变量和 因变量之间的关系。例如,在多元线性回归模型中,多个 自变量可以作为预测因变量的依据,而因变量则是一个多 维随机变量。
将多维随机变量作为自变量,通过线性函 数关系得到新的多维随机变量。
随机变量的非线性变换与函数
非线性变换
对多维随机变量进行非线性变换,如指数函 数、对数函数等,得到新的多维随机变量。
非线性函数
将多维随机变量作为自变量,通过非线性函 数关系得到新的多维随机变量。
06
多维随机变量的应用实例
在统计学中的应用
02
一维随机变量及其概率分布
离散型随机变量
离散型随机变量的定义
离散型随机变量是在一定范围内取有限个值的随机变量, 通常用大写字母表示,如X。
离散型随机变量的概率分布
离散型随机变量的概率分布可以用概率质量函数(PMF) 表示,它描述了随机变量取每个可能值的概率。
离散型随机变量的期望值和方差
第三章相互独立的随机变量(多维随机变量及其分布)
![第三章相互独立的随机变量(多维随机变量及其分布)](https://img.taocdn.com/s3/m/b5411039866fb84ae45c8d66.png)
f X ( x) fY ( y), x, y R,
10:42:20
即 1 , 2 , 1 , 2 ; ), 且已知X与Y
2 2
相互独立, 由于 f ( x , y ),f X ( x ),fY ( y )都是连续函数,
故对于所有的 x , y , f ( x , y ) f X ( x ) fY ( y )成立, 特别地,取 x 1 , y 2 , 则 f ( 1 , 2 ) f X ( 1 ) fY ( 2 ),
求X与 Y的边缘分布函数,并判断X与Y是否相互 独立?
x
y
10:42:20
2
(1 e x )(1 e y ), x 0, y 0, F ( x, y) 解 其它. 0, 1 e x , x 0, F X ( x ) F ( x , ) 其它. 0, 同理 y 1 e , y 0, FY ( y ) F ( , y ) 其它. 0,
则X , Y独立的充分必要条件是 随机向量 ( X ,Y ) 有联合密度 f ( x , y ),且 f ( x , y ) f X ( x ) fY ( y )
在平面上几乎处处成立 .
这里“几乎处处成立”的含义是:在平面上 除去面积为0的集合外,处处成立.
10:42:20
9
下面考察二维正态随机变量的两个分量的 独立性. 由第二节的讨论可知,
10
f ( x, y)
1 2σ1σ 2 1 ρ
2
( X , Y ) ~ N ( 1 , 2 , 1 , 2 ; ),
2 2
1 ( x μ1 ) 2 ( x μ1 )( y μ2 ) ( y μ2 ) 2 exp 2ρ 2 2 2 σ1 σ 2 σ2 2(1 ρ ) σ1
概率论第三章 多维随机变量及其分布
![概率论第三章 多维随机变量及其分布](https://img.taocdn.com/s3/m/1341bac3f111f18582d05ae9.png)
1 3
概率论
y
y x
o
x
概率论
四、课堂练习
设随机变量(X,Y)的概率密度是
f
x,
y
k
6
x
y,
0,
0 x 2,2 y 4, 其它.
(1) 确定常数 k;
(2) 求概率 PX 1,Y 3 .
解 (1) 1 f x, ydxdy
R2
k
2 dx
46
0
2
x
y dy
k
2 dx
46
概率论
同理, Y的分布律为:
P{Y y j} pij ˆ p•j , j 1,2,, i1
分别称pi• (i 1, 2,), 和p• j , (j 1, 2,)为(X, Y)关于 X和关于Y的边缘分布律.
概率论
例1 把一枚均匀硬币抛掷三次,设X为三次 抛掷中正面出现的次数 ,而 Y 为正面出现次数与 反面出现次数之差的绝对值 , 求 (X ,Y) 的分布律 和边缘分布律.
也就是说,对于给定的
不同的 对应
不同的二维正态分布,但它们的边缘分布却都是一样的.
此例表明 由边缘分布一般不能确定联合分布.
概率论
五、小结
1. 在这一讲中,我们与一维情形相对照,介 绍了二维随机变量的边缘分布. 2. 请注意联合分布和边缘分布的关系: 由联合分布可以确定边缘分布; 但由边缘分布一般不能确定联合分布.
随机变量维(X,Y )的概率密度 , 或 称为随机变量 X 和 Y 的联合概 率密度.
概率论
一维随机变量X
连续型
F x x
f tdt
x
X的概率密度函数
f x x R
多维随机变量
![多维随机变量](https://img.taocdn.com/s3/m/9533a386f524ccbff1218449.png)
x1 M xi
M
p11 M pi1 M
L
L L
L
p1 j M pij M
L
L L
L
定义:设(X,Y)为离散型随机向量, 则称X或Y的概率函数为(X,Y)关于 X,Y的边缘分布律。
由联合分布可确定边缘分布, 由联合分布可确定边缘分布,其逆不真. 其逆不真.
P ( X = xi ) = ∑ pij , i = 1, 2, L
对于多维随机变量, 对于多维随机变量,我们当然可以分别 研究它们, 研究它们,一个一个的处理, 一个一个的处理,然而这些 随机变数之间可能有联系, 随机变数之间可能有联系,把它们作为 一个整体来考虑, 一个整体来考虑,还可以考虑它们之间 的联系。 的联系。
一、随机向量及其分布函数
为随机试验的基本空间 定义 设Ω为随机试验的基本空间, X 1 (ω ), X 2 (ω ), L , X n (ω ) 是定义在样本空间Ω 上的随机变量, 上的随机变量,则称(X 1 (ω ), X 2 (ω ),L , X n (ω )) 为n维随机变量或随机向量; 称
即满足:单调不降性、左连续性以及
x → −∞ x → +∞
lim F ( x y ) = 0 lim F ( x y ) = 1
y → −∞
y → +∞
例设
8xy, 0 ≤ x ≤ y,0 ≤ y ≤ 1 p(x, y) = 其他 0,
求 p( x y) , p( y x) 解
∫ 8 xydy, 0 ≤ x ≤ 1 p X ( x) = x 其他 0,
为二维随机向量( X ,Y ) 的联合概率函数 或联合分布律, 也简称概率分布 也简称概率分布或 概率分布或分布律
概率论与数理统计课件第三章
![概率论与数理统计课件第三章](https://img.taocdn.com/s3/m/ac767b182b160b4e767fcf7a.png)
f
(x,
y)
1
21 2
1
2
exp
1
2(1 2 )
(x
1)2
2 1
2
(x
1)( y 1 2
2 )
(y
2)2
2 2
其中1、2、1、 2、都是常数,且1 0, 2 0,1 1.
则称(X,Y)服从参数为1、2、1、的二2、维 正态分布,
记为
(X
,Y)
~
N (1,
2
,
2 1
,
2 2
2F(x, y) f (x, y) xy
(5)若(X,Y)为二维连续型随机向量,联合概率密度为f(x,y),则
F(x,y) P{X x,Y y}
返回
X
18
第
页
例5 设二维随机变量(X,Y)的概率密度为
Ae2(x y) , x 0, y 0
f (x, y)
0, 其他
(1)确定常数A;
分别为(X,Y)关于X和Y的边缘分布函数.
返回
X
25
第
页
例1 设二维随机向量(X,Y)的联合分布函数为
(1 e2x )(1 e3y ), x 0, y 0,
F(x, y)
0, 其他.
求边缘分布 FX (x), FY ( y)
当x
0时,FX
(x)
lim (1
y
e2 x
)(1
e3 y
)
1
e2 x
返回
X
14
第
例3 设随机变量Y~N(0,1),令
0, X 1 1,
| Y | 1
0,
|Y
|
3.3多维随机变量函数的分布x
![3.3多维随机变量函数的分布x](https://img.taocdn.com/s3/m/143e012ea45177232f60a259.png)
k
i0
1i
i!
e 1
ki
e 2
2
(k i)!
k
k
e 1
2
(12 )
k!
i0
i
k! !(k
i)!
1 1 2
i
2 1 2
ki
1 2
k!
k
e(1 2 )
1 1 2
2 1 2
k
1 2
k
e(1 2 ) , k 0,1, 2,L .
y x yz
O
x
z
f (u y, y)d y d u.
由此可得概率密度函数为
fZ (z) f (z y, y)d y.
由于 X 与 Y 对称,
fZ (z) f ( x, z x)d x.
当 X, Y 独立时, fZ (z)也可表示为
fZ (z) fX (z y) fY ( y)d y,
2 12
12 2 12 12 12
(X ,Y )
(1,2)
(1,1) (1,0)
1 2
,2
1 2
,1
(3,2)
(3,0)
1
概率 12
1
32
1 22
12 12 12 12 12 12
( X ,Y ) (1,2)
(1,1) (1,0)
1 2
,2
1 2
,1
(3,2)
(3,0)
X Y 3
证 Z X Y的取值为0,1,2,L 非负整数,而事件Z k
是k 1个互不相容事件X i,Y k i, i 0,1,L , k
的并,则对于任意非负整数k,有
k
P(Z k) P( X i)P(Y k i) i0
第3章多维随机变量及其分布
![第3章多维随机变量及其分布](https://img.taocdn.com/s3/m/26323b7d011ca300a6c39010.png)
f(x, y)
1
e ,
1 2(12
[ )
(
x1 12
)2
2
(
x1 )(y 12
2
)
(
y
2 22
)2
]
212 1 2
其中,1、2为实数,1>0,2>0, | |<1,则称(X, Y) 服从参数1,2, 1, 2, 的二维正态分布,可记为
元函数f(Dx1,x2,x.1.,...x. nx)n使 :得a对1 任x意的bn1元,...立a方n 体x bn
有
PX1...X n D
...
D
f (x1, x2 ,...xn )dx1...dxn
则称(X1,X2,...Xn)为n维连续型随机变量,称f(x1,x2,...xn) 为(X1,X2,...Xn)的概率密度。
A6
1
(2)F (1,1) 16e(2x3y)dxdy (1 e2 )(1 e3) 0 0
(3) (X, Y)落在三角形区域D:x0, y0, 2X+3y6 内的概率。
解 P{(X ,Y ) D} 6e(2x3y)dxdy
D
3 22x3
dx 6e(2x3y)dy
F ( x,) lim F ( x, y) 0 y
(2)单调不减 对任意y R, 当x1<x2时, F(x1, y) F(x2 , y); 对任意x R, 当y1<y2时, F(x, y1) F(x , y2).
(3)右连续 对任意xR, yR,
F(x,
y0
0)
... ... ... ... ... ...
多维随机变量及其分布,随机变量相互独立性,条件概率
![多维随机变量及其分布,随机变量相互独立性,条件概率](https://img.taocdn.com/s3/m/51379a41f61fb7360a4c65a0.png)
P {Y1X1 }P {X1 ,Y1 } 0.010 , P {X1 } 0.045
P {Y2X1 }P {X1 ,Y2} 0.005 , P {X1 } 0.045
三、连续型随机变量的条件分
布
定义 设二维随机变量(X,Y)的概率密度为
xp 0(,xy,y ) 0p X(x)p Y(y) 其它 故X,Y 独立
问X和Y是否独立?
解:pX(x)
xe(xy)dy
0
xex
x>0
pY(y)0x e(xy)dx e y
y >0
即:
xex, x0
pX(x)0, 其它
ey,
pY
(
y)
0,
y0 其它
例3 设随机X变 和Y量 相互独 ,并立 且 X服从 N(a,σ2)Y , 在[b,b]上服从均,求 匀 (X分 ,Y)布 的联合概. 率密度
对(X,Y)的所有可能取值(xi, yj),有
P ( X x i,Y y j) P ( X x i) P ( Y y j)
则称X和Y相互独立.
例1 已知(X,Y)的分布律为
(X,Y) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3)
1
1
1
1
p ij
6
9 18
3
(1)求 与 应满足;的条件
(1)求在 X1的条件 ,Y的 下条件分 ; 布律
(2)求在 Y0的条件 ,X的 下条件分 . 布律
解 Y X 0 1 2 3P{Yj}
0 0 .84 0 .0 03 0 .0 02 0 .0 0100 .900 1 0 .06 0 .0 01 0 .0 00 0 .0 8002 .080 2 0 .01 0 .0 00 0 .0 50 0 .0 4001 .020 P{Xi} 0 .91 0 .0 04 0 .0 53 0 .0 2113 .000
考研概率统计--多维随机变量及其分布笔记
![考研概率统计--多维随机变量及其分布笔记](https://img.taocdn.com/s3/m/8e77fec0763231126fdb1187.png)
若G为矩形,服从均匀;推:X服从均匀,Y服从均匀,X,Y独立立
2)二二维正态分布(the special one)
1.定义;
Note:1.淡化公式,强调性质
2.规律律:e的-x2,e的-y2,e的-xy
2.性质:
(1)联合可以推边缘;边缘不不能推联合
(2)(aX+bY,cX+dY)服从二二维正态分布(利利用用卷积公式证明)(只要求 5个参数即可)(联合的线性仍然正态)
(3)aX+bY服从正态(只要求2个参数)(二二维推一一维线性依然是正态的)
(4)X和Y相互独立立互推p=0(独立立性仅有数字特征决定)
四 二二维随机变量量函数的分布
1.二二维离散型:已知联合概率分布律律,求Z=g(X,Y)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 ห้องสมุดไป่ตู้二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
2.二二维随机变量量的联合分布函数
1)X,Y取积;
2)在离散型上的体现(1.出现0,一一定不不独立立;2.行行行或列列成比比例例)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
方方法:枚举,合并(相同量量合并)
Note:当然还有二二维
概率论与数理统计课件:多维随机变量及其分布
![概率论与数理统计课件:多维随机变量及其分布](https://img.taocdn.com/s3/m/7148c6b2185f312b3169a45177232f60ddcce7e9.png)
多维随机变量及其分布
首页 返回 退出2
在实际问题中, 试验结果有时需要同时用两个或两
个以上的随机变量来描述.
如, 炮弹的弹着点的位置, (X, Y)是一个二维随
机变量.
又如,研究天气变化状况,令X, Y, Z分别表示
温度、湿度、风速,则(X, Y, Z)是一个三维随机变量.
研究多维随机变量有必要将多个变量作为一个整
二元函数
F ( x , y ) P{( X x ) (Y y )} P ( X x , Y y )
称为随机变量(X,Y)的联合分布函数。
一维随机变量X的联合分布
函数F ( x ) P ( X x ).
多维随机变量及其分布
首页 返回 退出
F(x,y)=P(X≤x,Y≤y)
y
F ( , y ) 0,
o
F ( x , ) 0,
F ( , ) 0, F ( , ) 1;
4 F ( x , y )关于x和y分别右连续;
x1
F ( x1 , y ) F ( x2 , y )
5 对于任意x1 x2 , y1 y2 , 有矩形公式
…
…
…
…
X
性质: 1 pij 0, i , j 1, 2, ;
2
p
i 1 j 1
多维随机变量及其分布
ij
1.
首页 返回 退出
例1 从1,2,3,4中任取一个数记为X、再从1,2, ⋯ ,
中任取一个数记为Y,求 ( X, Y ) 的联合分布律及P
( X=2Y ).
解:
可以证明,f(x,y)满足联合密度的性质。
西北工业大学《概率论与数理统计》课件-第3章多维随机变量及其分布
![西北工业大学《概率论与数理统计》课件-第3章多维随机变量及其分布](https://img.taocdn.com/s3/m/f38585e89fc3d5bbfd0a79563c1ec5da50e2d6ff.png)
第三章多维随机变量及其分布关键词:二维随机变量分布函数分布律概率密度边缘分布函数边缘分布律边缘概率密度条件分布函数条件分布律条件概率密度随机变量的独立性Z=X+Y的概率密度Z=Y/X及Z=XY的概率密度M=max(X,Y)及N=min(X,Y)的概率密度例:研究某一地区学龄儿童的发育情况。
仅研究身高H 的分布或仅研究体重W 的分布是不够的。
需要同时考察每个儿童的身高和体重值,研究身高和体重之间的关系,这就要引入定义在同一样本空间(即某地区全部学龄前儿童)的两个随机变量。
问题的提出实际中,某些随机试验的结果需要同时用两个或两个以上的随机变量描述例:研究某种型号炮弹的弹着点分布。
每枚炮弹的弹着点位置需要由横坐标和纵坐标来确定,而它们是定义在同一样本空间的两个随机变量。
一、二维随机变量的定义设E是一个随机试验,样本空间S={e};设X=X(e)和Y=Y(e)是定义在S上的随机变量,由它们构成的向量(X,Y)叫做二维随机向量或二维随机变量。
S ey()()(),X e Y ex(X,Y)的性质不仅与X及Y有关,还依赖于X,Y间的相互关系,需将(X,Y)作为整体研究二、二维随机变量的分布函数设(X ,Y )是二维随机变量,对于任意实数x , y ,二元函数称为二维随机变量(X ,Y )的分布函数,或称为随机变量X 和Y 的联合分布函数。
{}(,)()()(,)F x y P X x Y y P X x Y y =≤≤==≤≤ 记成1、定义:若将(X ,Y )看成平面上随机点的坐标,则F (x ,y )在(x ,y )处的函数值即为随机点落在(x ,y )左下方无穷域内的概率2、几何意义:(X ,Y )落在矩形区域[x 1<x ≤x 2, y 1<y ≤y 2]上的概率为x 1x 2yy 1y 20xy(x,y )1212(,)P x x x y y y <≤<≤()()()()22211211,,,,F x y F x y F x y F x y --+=3、性质:1212,(,)(,)y x x F x y F x y <⇒≤任意固定当x 1x 2(x 1,y )(x 2,y )yy 2xy 1(x ,y 1)(x ,y 2)1212,(,)(,)x y y F x y F x y <⇒≤任意固定0(,)1F x y ≤≤ (,)0 (,)0(,)0,(,)1y F y x F x F F -∞=-∞=-∞-∞=+∞+∞=对任意固定,对任意固定,(1) 不减性:F (x , y )关于x , y 单调不减,即(2) 有界性:且(3) 右连续性0(,)(,)lim F x y F x y εε+→+=0(,)(,)lim F x y F x y εε+→+=(),,F x y x y 关于右连续,即:()222112111212(,)(,)(,)(,),0F x y F x y F x y F x y P x X x y Y y --+=<≤<≤≥ 1x 2x 1y 2y 01212,,x x y y <<若则22211211(,)(,)(,)(,)0F x y F x y F x y F x y --+≥(4)三、二维离散型随机变量及其分布律1、定义:,,,,21m x x x X 的可能值为设,,,,21n y y y Y 的可能值为中心问题:(X ,Y )取这些可能值的概率分别为多少?若二维随机变量(X ,Y )所有可能的取值是有限对或可列无限对,则称(X ,Y )是二维离散型随机变量。
概率论与数理统计讲义第三章 多维随机变量及其分布
![概率论与数理统计讲义第三章 多维随机变量及其分布](https://img.taocdn.com/s3/m/82beb042cf84b9d528ea7aaa.png)
第三章多维随机变量及其分布随机向量的定义:随机试验的样本空间为S={ω},若随机变量X1(ω),X2(ω),…,X n(ω)定义在S上,则称(X1(ω),X2(ω),…,X n(ω))为n维随机变量(向量)。
简记为(X1,X2,…,X n)。
二维随机向量(X,Y),它可看作平面上的随机点。
对(X,Y)研究的问题:1.(X,Y)视为平面上的随机点。
研究其概率分布——联合分布率、联合分布函数、联合概率密度;Joint2.分别研究各个分量X,Y的概率分布——边缘(际)分布律、边缘分布函数、边缘概率密度;marginal3.X与Y的相互关系;4.(X,Y)函数的分布。
§ 3.1 二维随机变量的分布一.离散型随机变量1.联合分布律定义3.1 若二维随机变量(X,Y)可能取的值(向量)是有限多个或可列无穷多个,则称(X,Y) 为二维离散型随机变量。
设二维离散型随机变量(X,Y)可能取的值(x i,y j), i,j=1,2…,取这些值的概率为p ij=P{(X,Y)=(x i,y i)}=p{X=x i,Y=y i}i, j=1,2,…——(3.1)称 (3.1)式为(X,Y)的联合分布律。
(X,Y)的联合分布律可以用表格的形式表示如下:性质:(1) p ij ≥ 0,i, j=1,2,… (2) ∑ji ij p ,=12.边缘分布律设二维离散型随机变量(X,Y) 的联合分布律为p ij = P{X=x i ,Y=y i } i, j=1,2,…分量X 和Y 的分布律分别为 p i.=P{X=x i } i=1,2,… 满足①p i.≥0②∑ p i.=1p .j = p{Y=y i }j=1,2,… ①p .j ≥0②∑ p .j =1我们称p i.和p .j 分别为(X,Y)关于X 和Y 的边缘分布律,简称为(X,Y)的边缘分布律。
二维离散型随机变量(X,Y) 的联合分布律与边缘分布率有如下关系: p i.=P{X=x i }=P{X=x i , S}=P{X=x i ,∑(Y=y j )}=j∑P{X=x i ,Y=y j }=j∑p ij (3.4) 同理可得 p .j =i∑p ij(3.5)例1:一整数X 随机地在1,2,3三个整数中任取一值,另一个整数Y随机地在1到X中取一值。
多维随机变量及其分布
![多维随机变量及其分布](https://img.taocdn.com/s3/m/4c48c4fe2af90242a995e51f.png)
x−
µ1 )( y− σ1σ 2
µ2
)
+
(
y−µ2 σ 22
)2
− ∞ < x < +∞,−∞ < y < +∞
则称( X ,Y ) 服从参数为µ1,σ12,µ2,σ22,ρ 的 正态分布, 记作( X ,Y ) ~ N(µ1,σ12;µ2,σ22;ρ )
其中σ1,σ2>0, -1< ρ < 1 .
一 . 离散型随机变量的条件分布律
设 ( X ,Y ) 是离散型随机变量,其分布律为
( ) 例 设二维随机变量 (X, Y )~ N µ1, µ2, σ12, σ 22, ρ
试求 X 及Y 的边缘密度函数.
解:(X, Y )的联合密度函数为
f (x, y) =
1
2πσ1σ 2 1− ρ 2
( ) ⋅
exp−
2
1 1−
ρ
2
(x
− µ1 )2
σ
2 1
−
2ρ(x
− µ1)(y
σ1σ 2
5.3 条件分布
• 条件分布律 • 条件分布函数 • 条件概率密度
在第一章中,我们介绍了条件概率的概念 . 在事件B发生的条件下事件A发生的概率
P(A | B) = P(AB) P(B) 推广到随机变量
设有两个随机变量 X, Y , 在给定 Y 取 某个值的条件下,求 X 的概率分布.
这个分布就是条件分布.
F(x, y) = P(X ≤ x,Y ≤ y)
分布函数的几何意义
如果用平面上的点 (x, y) 表示二维r.v. (X , Y )的一组可能的取值,则 F (x, y) 表示 (X , Y ) 的取值落入图所示角形区域的概率.
多维随机变量及其分布
![多维随机变量及其分布](https://img.taocdn.com/s3/m/d294ce1876232f60ddccda38376baf1ffd4fe316.png)
多维随机变量的期望和方差
总结词
期望和方差是多维随机变量的重要统计量,用于描述随机变量的中心趋势和离散程度。
详细描述
期望值是随机变量所有可能取值的加权平均,反映了随机变量的中心趋势。方差则是描 述随机变量取值分散程度的量,即离散程度。在多维随机变量中,期望值是一个向量,
方差是一个矩阵。
多维随机变量的协方差和相关系数
定义
连续型随机变量是在一定范围内 可以取任何值的随机变量,通常 用X表示。
例子
人的身高、体重、时间等。
概率分布
连续型随机变量的概率分布可以 用概率密度函数(PDF)表示, 即f(x)表示随机变量取某个值的概 率密度。
随机变量的期望和方差
期望
期望是随机变量取值的平均值,用E(X)表示。对于离散型随机变量,E(X)=∑xp(x); 对于连续型随机变量,E(X)=∫xf(x)dx。
复杂度并提高模型的泛化能力。
Part
07
总结与展望
总结多维随机变量及其分布的主要内容
定义与性质
多维随机变量是多个随机变量的组合,具有多维度的特性 。其定义基于概率空间,每个维度都有独立的概率分布。
联合概率分布
多维随机变量的联合概率分布描述了所有维度同时发生的 概率。通过联合概率分布,可以计算各种联合事件的概率 。
总结词
独立性是多维随机变量的一个重要性质,表示多个随机变量之间没有相互依赖关系。
详细描述
在多维随机变量中,如果多个随机变量之间相互独立,那么一个随机变量的取值不会影响到另一个随 机变量的取值。独立性的判断对于概率论和统计学中的许多问题至关重要,如联合概率分布、条件概 率和贝叶斯推断等。
Part
06
边缘概率分布
《概率论与数理统计》第三章
![《概率论与数理统计》第三章](https://img.taocdn.com/s3/m/63a9f1d97e21af45b207a8a5.png)
§1 二维随机变量
定义:设E是一个随机试验,样本空间S={e}; 设X=X(e)和Y=Y(e)是定义
y
X e,Y e
在S上的随机变量,由它们构成的
向量(X,Y)叫做二维随机向量 或二维随机变量。
e S
x
定义:设(X,Y)是二维随机变量对于任意实数x,y,
二元函数
ቤተ መጻሕፍቲ ባይዱ
y
F(x, y) P(X x) (Y y)
1 4
1 i
,
ji
0, j i
(X,Y)的联合分布律为:
YX
1
1
1/4
23 4 1/8 1/12 1/16
2
0 1/8 1/12 1/16
3
0
0 1/12 1/16
4
0
0 0 1/16
例3:设有10件产品,其中7件正品,3件次品。现从中
任取一件产品,取后不放回,令
1 X 0
第一次取到的产品是次品 1
z f (x, y)为顶面的柱体体积。
所以 X,Y 落在面积为零的区域的概率为零。
例3:设二维随机变量(X,Y)具有概率密度:
2e(2x y) , x 0,y 0
y f (x, y) 0,
其他
1 求分布函数F(x, y);2求P{X 2,Y 3};
3求P(Y X )的概率
解: (1)当x>0,y>0时
f (x, y)xy
————————
概率微分
(4) f ( x, y)的作用 : 求二维随机变量(X,Y)取值
落在区域G内的事件的概率
P((X ,Y ) G) f ( x, y)dxdy
G
G
注:1在几何上,z f (x, y)表示空间一个曲面,
多维随机变量及其分布,随机变量的相互独立性,条件概率
![多维随机变量及其分布,随机变量的相互独立性,条件概率](https://img.taocdn.com/s3/m/de19d1e63186bceb18e8bb08.png)
2 0.020 0.008 0.004 0.032
3 0.010 0.002 0.001 0.013
P{Y j}
0.900 0.080 0.020 1.000
P{Y 0 X 1} P{ X 1,Y 0} 0.030 , P{ X 1} 0.045
P{Y 1 X 1} P{ X 1,Y 1} 0.010 ,
d y. pX (x)
请同学们思考
为什么不能用条件概率的定义来直接定义条
件分布函数 FX Y ( x y)? 答 条件分布是指在一个随机变量取某个确定值
的条件下,另一个随机变量的分布, 即 FX Y ( x y) P{ X x Y y} . 由于P{Y y}可能为零(连续型时一定为零).故直接 用条件概率来定义时, 会出现分母为零. 因此,在条件分布中,作为条件的随机变量的取值是 确定的数.
现在如果限制Y 取值从1.5米到1.6米, 在这个限制下求X 的 分布.
定义 设 ( X ,Y ) 是二维离散型随机变量,对于固定
的 j, 若 P{Y y j } 0, 则称
P{ X
xi Y
yj}
P{X xi ,Y P{Y y j }
yj}
pij , p j
为在Y y j条件下随机变量 X 的条件分布律. 对于固定的 i, 若 P{ X xi } 0, 则称
若 (X,Y)是连续型r.v ,则上述独立性的 定义等价于:
若对任意的 x, y, 有
p(x, y) pX (x) pY ( y)
成立,则称X,Y相互独立 .
其中 p(x, y) 是X,Y的联合密度, pX (x), pY ( y)分别是X的
《概率论与数理统计》三
![《概率论与数理统计》三](https://img.taocdn.com/s3/m/f8ab7d74b207e87101f69e3143323968011cf4ed.png)
y (x,y)
y y2
y1
O
x
O x1
x2
x
P{x1 X x2, y1 Y y2} F(x2, y2 ) F(x1, y2 ) F(x2, y1) F(x1, y1)
➢ 分布函数F(x,y)的性质
设(X,Y)的所有可能取值:(xi, yj), i,j=1,2…,
P{X xi ,Y y j } ˆ pij ,( i, j 1,2,)
性
1 0 pij 1,
质
2
pij 1.
j1 i1
分
布
函 F ( x, y) pij
数
xi x yjy
Y X
x1 x2 xi
y1
p1 1 p21
记为
(X
,Y)
~
N (1,
2
,
2 1
,
22,
)
四、多维随机变量
(1)设E是一随机试验, 是其样本空间,X1,X2,...Xn 是定义在上的n个随机变量,则称n维向量(X1,X2,...Xn ) 为定义在 上的n维随机向量或n维随机变量.
(2)对n个任意实数,令
F(x1, x2 ,, xn ) P{X1 x1, X2 x2 ,Xn xn}
标 (X,Y)表示, 也就是 中每一元素都可用一对数来
表示, 把X, Y看成变量, X 与Y 都是随机变量, (X,Y) 共同刻化试验的结果, 这就是二维随机变量.
例2 考察某地一天的天气情况, 即同时考虑最高气温、 最低气温、气压、风力、降雨量,这就需要5个变量 来表示可能的试验结果,这就是五维随机变量.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P{ X 1}
0.045
P{Y 2 X 1} P{ X 1,Y 2} 0.005 , P{ X 1} 0.045
即在 X 1的条件下,Y 的条件分布律为
Y k
012
P{Y k X 1} 6 2 1 999
同理可得在 Y 0 的条件下, X 的条件分布律为
因此 X 和 Y 的联合概率密度为
p(x, y) pY X ( y x) pX (x)
1
1
x
,
0,
0 x y 1, 其它.
故得 Y 的边缘概率密度
pY ( y)
p(x, y) d x
y1 0 1
d x
x
ln(1
y),0
y
1,
第二节 多维随机变量 及其分布(3)
一、随机变量的相互独立性
二、离散型随机变量的条件分布
三、连续型随机变量的条件分布
四、小结
一、随机变量的相互独立性
联合分布
边缘分布
随机变量的独立性是概率论中的一 个重要概念.两随机变量独立的定义是:
1.定义2.6 设 X,Y是两个r.v,若对任意的x,y,有
P(X x,Y y) P(X x)P(Y y)
P{X 3,Y 4} P{X 3}P{Y 4} 0.7 0.4 0.28.
因此 ( X ,Y ) 的联合分布律为
Y X
2
4
1 0.18 0.12
3 0.42 0.28
二、离散型随机变量的条件分布
问题
考虑一大群人,从其中随机挑选一个人,分别 用 X 和 Y 记此人的体重和身高,则X 和 Y 都是随 机变量,他们都有自己的分布.
2 0.020 0.008 0.004 0.032
3 0.010 0.002 0.001 0.013
P{Y j}
0.900 0.080 0.020 1.000
P{Y 0 X 1} P{ X 1,Y 0} 0.030 , P{ X 1} 0.045
P{Y 1 X 1} P{ X 1,Y 1} 0.010 ,
(2,3)
解 将 ( X ,Y ) 的分布律改写为
Y X
1
1
1
6
1
2
3
p j P{Y yj } 1 2
2 1 9
1
9
3 pi P{ X xi }
1
1
18
3
1
3
1
18
2
3
(1)由分布律的性质知
0,
0,
2 3
1,
故与应满足的条件是 : 0, 0 且 1 .
例4 设两个独立的随机变量 X 与Y 的分布律为
X1
3
PX 0.3 0.7
Y2
4
PY 0.6 0.4
求随机变量 (X,Y) 的分布律.
解 因为X与Y 相互独立, 所以
P{X xi ,Y yj } P{X xi } P{Y yj } 于是
P{X 1,Y 2} P{X 1} P{Y 2}
则称X,Y相互独立 .
两事件A,B独立的定义是: 若P(AB)=P(A)P(B) 则称事件A,B独立 .
用分布函数表示,即 设 X,Y是两个r.v,若对任意的x,y,有
F(x, y) FX (x)FY ( y)
则称X,Y相互独立 .
它表明,两个r.v相互独立时,它们的联合 分布函数等于两个边缘分布函数的乘积 .
P{Y j}
0.900 0.080 0.020 1.000
(1) 求在 X 1的条件下,Y 的条件分布律; (2) 求在 Y 0 的条件下, X 的条件分布律.
解Y X 0
0 0.840
1 0.060
2 0.010 P{X i} 0.910
1 0.030 0.010 0.005 0.045
又 pX (x)
1
e ,
(
xa)2 2σ 2
x ;
2 σ
pY
(
y)
1 2b
,
b y b,
0, 其它.
得
p(x, y) 1
1
e , Leabharlann (xa)2 2σ2
2b 2 σ
其中 x , b y b.
当 y b 时, p( x, y) 0.
p(x, y),边缘概率密度分别为pX (x), pY ( y),则有
X 和 Y 相互独立 p(x, y) pX (x) pY ( y)
3. X 和 Y 相互独立, 则 f ( X ) 和 g(Y )也相互独立.
条件分布
1. 设 ( X ,Y ) 是二维离散型随机变量, pij (i, j 1,2) 为其联合分布律,在给定Y y j 条件下随机变量 X 的条件分布律为
值.求 Y 的概率密度 pY ( y). 解 由题意知 X 具有概率密度
1, 0 x 1, pX (x) 0, 其它.
对于任意给定的值 x(0 x 1), 在X x的条件下,
Y 的条件概率密度为
pY
X
(
y
x)
1 1
x
,
0,
0 x y 1, 其它.
现在如果限制Y 取值从1.5米到1.6米, 在这个限制下求X 的 分布.
定义 设 ( X ,Y ) 是二维离散型随机变量,对于固定
的 j, 若 P{Y y j } 0, 则称
P{ X
xi Y
yj}
P{X xi ,Y P{Y y j }
yj}
pij , p j
为在Y y j条件下随机变量 X 的条件分布律. 对于固定的 i, 若 P{ X xi } 0, 则称
若 (X,Y)是连续型r.v ,则上述独立性的 定义等价于:
若对任意的 x, y, 有
p(x, y) pX (x) pY ( y)
成立,则称X,Y相互独立 .
其中 p(x, y) 是X,Y的联合密度, pX (x), pY ( y)分别是X的
边缘密度和Y 的边缘密度 .
若 (X,Y)是离散型r.v ,则上述独立性的 定义等价于:
P{Y
yj
X
xi }
P{X xi ,Y P{X xi }
yj}
pij , pi
为在X xi条件下随机变量Y 的条件分布律. 其中i, j 1,2,.
例1 在一汽车工厂中,一辆汽车有两道工序是由机
器人完成的. 其一是紧固3 只螺栓 , 其二是焊接2 处
焊点.以X表示由机器人紧固的螺栓紧固得不良的数
0,
其它.
于是当 1 y 1时,有
1
pX
Y
(x
y)
(2
)
1 y2
2
1 , 1 y2
1 y2 x
1 y2 ,
0,
其 它.
例4 设数 X 在区间(0,1) 上随机地取值,当观察到
X x (0 x 1) 时,数 Y 在区间( x, 1) 上随机地取
3
(2) 因为 X 与 Y 相互独立, 所以有
pij pi p j , (i 1,2; j 1,2,3)
特别有
p12
p1
p2
1 9
1 3
1 9
2, 9
又 1, 得 1.
3
9
例2 设(X,Y)的概率密度为
xe(x y) , p(x, y)
pX
(
x)
0,
其它
e y ,
pY
(
y)
0,
y0 其它
例3 设随机变量X 和Y 相互独立,并且 X 服从 N (a,σ 2 ),Y 在 [b,b] 上服从均匀分布,求 ( X ,Y ) 的联合概率密度.
解 由于X 与Y 相互独立,
所以 p(x, y) pX (x) pY ( y)
X k
01 2 3
P{ X k Y 0} 84 3
2
1
90 90 90 90
三、连续型随机变量的条件分布
定义 设 二 维 随 机 变 量( X ,Y ) 的 概 率 密 度 为
p( x, y),( X ,Y ) 关 于Y 的 边 缘 概 率 密 度 为pY ( y).若
对 于 固 定 的y,
目,以Y表示由机器人焊接的不良焊点的数目.据积累 的资料知( X ,Y )具有分布律 :
YX 0
0 0.840
1 0.060
2 0.010
P{X i} 0.910
1
0.030 0.010 0.005 0.045
2
0.020 0.008 0.004 0.032
3
0.010 0.002 0.001 0.013
P{X x Y y} 或 FX Y ( x y),
即
x p(x, y)
FX Y ( x y) P{X x Y y}
d x. pY ( y)
同理定义在 X x 的条件下Y 的条件概率密度为
y p( x, y)
FY X ( y x) P{ X x Y y}