平面向量及其应用试题及答案doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、多选题
1.已知非零平面向量a ,b ,c ,则( )
A .存在唯一的实数对,m n ,使c ma nb =+
B .若0⋅=⋅=a b a c ,则//b c
C .若////a b c ,则a b c a b c =++++
D .若0a b ⋅=,则a b a b +=-
2.已知在平面直角坐标系中,点()10,1P ,()24,4P .当P 是线段12PP 的一个三等分点
时,点P 的坐标为( ) A .4,23⎛⎫
⎪⎝⎭
B .4,33⎛⎫
⎪⎝⎭
C .()2,3
D .8
,33⎛⎫ ⎪⎝⎭
3.设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( )
A .()
a c
b
c a b c ⋅-⋅=-⋅ B .()
()
b c a c a b ⋅⋅-⋅⋅与c 不垂直 C .a b a b -<-
D .(
)()
22
323294a b a b a b +⋅-=-
4.ABC 中,2AB =,30ACB ∠=︒,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4.
B .若4A
C =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC =
D .若满足条件的ABC 有两个,则24AC << 5.下列各式中,结果为零向量的是( ) A .AB MB BO OM +++ B .AB BC CA ++ C .OA OC BO CO +++ D .AB AC BD CD -+-
6.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列结论中正确的是
( )
A .若a b >,则sin sin A
B >
B .若sin 2sin 2A B =,则AB
C 是等腰三角形 C .若cos cos a B b A c -=,则ABC 是直角三角形
D .若2220a b c +->,则ABC 是锐角三角形
7.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1
()2
AD AB AC =+ C .8BA BC ⋅=
D .AB AC AB AC +=-
8.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是( ) A .a b =
B .a b =
C .a 与b 的方向相反
D .a 与b 都是单位向量
9.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λa b
B .若a b ⊥,则a b a b +=-
C .若a b a b +=+,则a 在b 方向上的投影向量为a
D .若存在实数λ使得λa
b ,则a b a b +=-
10.如图,46⨯的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )
A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个
B .满足10OA OB -=B 共有3个
C .存在格点B ,C ,使得OA OB OC =+
D .满足1OA OB ⋅=的格点B 共有4个 11.已知ABC ∆的面积为3
2
,且2,3b c ==,则A =( ) A .30°
B .60°
C .150°
D .120°
12.下列命题中正确的是( ) A .单位向量的模都相等
B .长度不等且方向相反的两个向量不一定是共线向量
C .若a 与b 满足a b >,且a 与b 同向,则a b >
D .两个有共同起点而且相等的向量,其终点必相同 13.下列说法中错误的是( )
A .向量A
B 与CD 是共线向量,则A ,B ,
C ,
D 四点必在一条直线上 B .零向量与零向量共线 C .若,a b b c ==,则a c =
D .温度含零上温度和零下温度,所以温度是向量
14.化简以下各式,结果为0的有( ) A .AB BC CA ++ B .AB AC BD CD -+-
C .OA O
D AD -+
D .NQ QP MN MP ++-15.题目文件丢
失!
二、平面向量及其应用选择题
16.ABC 中,5AB AC ==,6BC =,则此三角形的外接圆半径是( ) A .4
B .
72
C .
258
D .
259
17.已知非零向量AB 与AC 满足
0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪
⎝⎭
且1
2AB AC AB AC ⋅=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形
D .以上均有可能
18.若O 为ABC 所在平面内任意一点,且满足()
20BC OB OC OA ⋅+-=,则
ABC 一定为( )
A .锐角三角形
B .直角三角形
C .等腰三角形
D .钝角三角形
19.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a
B b A c +=.若
2a =,ABC 的面积为1)
,则b c +=( )
A .5
B .
C .4
D .16
20.已知,a b 是两个单位向量,则下列等式一定成立的是( ) A .0a b -=
B .1a b ⋅=
C .a b =
D .0a b ⋅=
21.已知在四边形ABCD 中, 2, 4,53AB a b BC a b CD a b =--=+=+,则四边形
ABCD 的形状是( )
A .矩形
B .梯形
C .平行四边形
D .以上都不对
22.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为
S ,且222()S a b c =+-,则tan C =( )
A .4
3
-
B .34
-
C .
34
D .
43
23.已知点O 是ABC 内部一点,并且满足2350OA OB OC ++=,OAC 的面积为
1S ,ABC 的面积为2S ,则
1
2
S S = A .
310
B .38