人教版七年级数学上册第一章 有理数 综合过关测试题【含答案】

合集下载

人教版数学七年级上册 第一章 有理数 全章综合训练题及答案

人教版数学七年级上册 第一章 有理数 全章综合训练题及答案

人教版数学七年级上册 第一章 有理数 全章综合训练题1. 数轴上点A 表示的数为-1,点B 到点A 距离为3,则点B 表示的数为( )A .2B .-4C .2或-4D .3或-32. -(+5)的相反数是( )A .-5B .5C .-15 D.153. 已知|a|=|-6|,则a =( )A .-6B .6C .6或-6 D.16或-164. 下列说法:①负分数一定是负有理数;②自然数一定是正数;③3.2不是整数;④-2是负分数;⑤0是整数.其中正确的有( )A .1个B .2个C .3个D .4个5.下列说法错误的是( )A .存在着最小的自然数B .存在着最小的正有理数C .不存在最大的正有理数D .不存在最大的负有理数6. 在数轴上到原点的距离等于5的点表示的数为__________.7. 数轴上点P 表示的数为5,当点P 沿数轴移动5个单位长度,那么终点所表示的数为__________.8. 已知|a|=(-2)×(-12),则a = 9. |a +3|=4,则a =___________.10. 在有理数中,最小的非负数是____,最大的负整数是____.11. 已知数0.2,-0.01,-12,π,-3.14,0.101001…,其中有理数有____个.12. 下列说法:①一个有理数不是正数就是负数;②一个有理数不是整数就是分数;③整数是正整数和负整数的统称;④有理数是正整数、零、负整数、正分数、负分数的统称.其中正确的有____.(填序号)13. 计算:(-21)+(+9).14. 计算:-17-(-9).15. 计算:-213×(-1.5)×(-37).16. 计算:(-130)÷(23-110+16-25).17. 求下列各数或式子的相反数.(1)-(-8);(2)a -b ;(3)x +y.18. 已知|x|=3,|y|=7,且xy>0,求x +y xy的值.19. 已知在数轴上,点A到原点的距离为3,点B到原点的距离为7,则A,B 两点间的距离为多少?参考答案:1. C2. B3. C4. C5. B6. 5或-57. 0或108. ±19. 1或-710. 0 -111. 412. ②④13. 解:原式=-(21-9)=-1214. 解:原式=-17+(+9)=-815. 解:原式=-(73×32×37)=-3216. 解:原式=(-130)÷[(23+16)+(-110-25)]=(-130)÷(56-12)=(-130)÷13=-130×3=-11017. 解:(1)-8(2)-(a -b),即b -a(3)-(x +y),即-x -y18. 解:由题意得x =±3,y =±7,又∵xy>0,∴x ,y 同号,①当x =3,y=7时,x +y xy =3+73×7=1021;②当x =-3,y =-7时,x +y xy =(-3)+(-7)(-3)×(-7)=-102119. 解:因为点A 到原点的距离为3,所以点A 表示的数为3或-3,同样,点B 表示的数为7或-7,所以A ,B 两点间的距离为4或10。

人教版数学七年级上册第一章有理数综合测试(含答案)

人教版数学七年级上册第一章有理数综合测试(含答案)

人教版数学七年级上学期 第一章有理数测试一、选择题(每小题3分,共30分)1.若a+b <0,ab <0,则( ) A. a >0,b >0 B. a <0,b <0C. a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D. a ,b 两数一正一负,且负数的绝对值大于正数的绝对值 2.a,b,c 在数轴上的位置如图所示,则( )A. abc<0B. ab-ac>0C. (a-b)c>0D. (a-c)b>03.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( ) A. 0.1636×B. 1.636×C. 16.36×D. 163.6×104.-23+(-2×3)的结果是( ) A. 0B. -12C. -14D. -25.的相反数是( ) AB. 2C.12D. 12-6. 某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是( ) A. ﹣10℃B. 10℃C. 14℃D. ﹣14℃7.下列说法正确的是( ) A. 零是正数不是负数 B. 零既不是正数也不是负数 C. 零既是正数也是负数D. 不是正数的数一定是负数,不是负数的数一定是正数 8.既是分数又是正数的是( ) A. 2+B. 143- C.D. 2.39.观察下图,寻找规律,在“?”处填上的数字是( ).A. 128B. 136C. 162D. 188二、填空题10. 若x=4,则|x﹣5|=_________.11.设a是最小正整数,b是最大的负整数,c是绝对值最小的有理数,则a + b + c等于____________.12.一组按规律排列数:2,0,4,0,6,0,…,其中第7个数是,第n个数是(n为正整数).13.数轴上到原点的距离等于4的数是.14.绝对值不大于2的所有整数为__________.15.-3倒数是,-3的绝对值是.三、解答题(共66分)16.用计算器计算并填空:152=________;252=________;352=________;452=________.(1)你发现了什么?(2)不用计算器你能直接算出852,952吗?17.手工拉面是我国的传统面食.制作时,拉面师傅取一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条截成了许多细细的面条,如下图所示.请问这样第几次捏合后可拉出128根面条18. 某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元)星期一二三四五(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5%的手续费,卖出股票时需付卖出成交额1.5%的手续费和卖出成交额1%的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?19.阅读下列材料,解答问题.饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏、秋、冬季各60天.原来,学生饮水一般都是购纯净水(其他碳酸饮料或果汁价格更高),纯净水零售价为1.5元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,夏季平均每天要买2瓶纯净水,学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机,经调查,购买一台功率为500 W的冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季,平均每1.5天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,饮水机每天开10小时,当地民用电价为0.50元/度.问题:(1)在未购买饮水机之前,全年平均每个学生要花费多少钱来购买纯净水饮用?(2)在购买饮水机解决学生饮水问题后,每班当年共要花费多少元?(3)这项便利学生的措施实施后,东坡中学当年全体学生共节约多少钱?20.在求1+2+22+23+24+25+26值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.答案与解析一、选择题(每小题3分,共30分)1.若a+b<0,ab<0,则( )A a>0,b>0B. a<0,b<0C. a,b两数一正一负,且正数的绝对值大于负数的绝对值D. a,b两数一正一负,且负数的绝对值大于正数的绝对值【答案】D【解析】【详解】解:∵ab<0,∴a、b必定是异号,∵a+b<0,∴a,b两数一正一负,且负数的绝对值大于正数的绝对值.故选D.2.a,b,c在数轴上的位置如图所示,则( )A. abc<0B. ab-ac>0C. (a-b)c>0D. (a-c)b>0【答案】C【解析】【分析】由图可知a<c<0<b,据此可判断【详解】解:由图可知a<c<0<b,则abc>0,A错误;ab-ac=a(b-c)<0,B错误;(a-b)c>0,C正确;(a-c)b<0,D 错误;故选择C.【点睛】本题考查了数轴的概念,熟记数轴上右边的数大于左边的数是关键.3.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( )A. 0.1636×B. 1.636×C. 16.36×D. 163.6×10【答案】B【解析】试题分析:科学计数法是指a×,且,n为原数的整数位数减一.考点:科学计数法4.-23+(-2×3)的结果是( )A. 0B. -12C. -14D. -2 【答案】C【解析】【分析】按照有理数的运算法则计算即可.【详解】解:原式=-8-6=-14,故选择C.【点睛】本题考查了有理数的混合运算.5.的相反数是( )A. B. 2 C. 12D.12【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .6. 某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是( )A. ﹣10℃B. 10℃C. 14℃D. ﹣14℃【答案】B【解析】【详解】12-2=10℃.故选B.7.下列说法正确的是( )A. 零是正数不是负数B. 零既不是正数也不是负数C. 零既是正数也是负数D. 不是正数的数一定是负数,不是负数的数一定是正数【答案】B【解析】本题考查的是正、负数的意义根据正、负数的定义即可解答,零既不是正数也不是负数,故A、C错误,B正确,而不是正数的数是0和负数,不是负数的数是0和正数,故D错误,故选B.8.既是分数又是正数的是()A. 2+B.143- C. D. 2.3【答案】D【解析】本题考查的是有理数的分类大于0的数是正数.小数是分数的一种形式,所以既是分数、又是正数的数是,故选D.9.观察下图,寻找规律,在“?”处填上的数字是( ).A. 128B. 136C. 162D. 188【答案】C【解析】分析:由图中看出,从2开始,每相邻3个数的和等于第4个数,那么所求的数是26+48+88=162.详解:26+48+88=162.故选C.点睛:解决本题的关键的根据所给的数得到四个数之间的规律(从2开始,每相邻3个数的和等于第4个数).二、填空题10. 若x=4,则|x﹣5|=_________.【答案】1.【解析】试题分析:∵x=4,∴x ﹣5=﹣1<0,故|x ﹣5|=|﹣1|=1. 考点:绝对值.11.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a + b + c 等于____________. 【答案】0 【解析】 【分析】根据a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,得出a ,b ,c 的值,代入即可得出结论. 【详解】依题意得:a =1,b =﹣1,c =0,∴a +b +c =1+(﹣1)+0=0. 故答案为0.【点睛】本题考查了正整数、负整数的概念和绝对值的性质.熟练掌握有关概念是解答本题的关键. 12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是 ,第n 个数是 (n 为正整数).【答案】8,11(1)(1)2n n ++-+【解析】试题分析:观察数据可得:偶数项为0;奇数项为(n+1);故其中第7个数是(7+1)=8;第n 个数是11(1)(1)2n n ++-+. 考点:规律型:数字的变化类13.数轴上到原点的距离等于4的数是 . 【答案】±4. 【解析】试题分析:数轴上到原点的距离等于4的数有两个,是±4. 考点:1.相反数;2.绝对值.14.绝对值不大于2的所有整数为__________. 【答案】0,±1,±2 【解析】试题分析:绝对值等于2的整数是2,-2;在数轴上位于2和-2之间的整数有1,0,-1三个,它们都符合要求,所以绝对值不大于2的所有的整数是-2,-1,0,1,2. 考点:绝对值.15.-3的倒数是 ,-3的绝对值是 .【答案】-13,3.【解析】试题分析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据负数的绝对值是它的相反数,可得答案.试题解析:-3的倒数是-13,-3的绝对值是3.考点:1.倒数;2.绝对值.三、解答题(共66分)16.用计算器计算并填空:152=________;252=________;352=________;452=________.(1)你发现了什么?(2)不用计算器你能直接算出852,952吗?【答案】225 625 1 225 2 025(1)发现后两位均为25,前面的数等于原数中十位数乘比它大1的数.(2) 7 225, 9 025.【解析】试题分析:(1)通过用计算器进行计算可以发现:后两位均为25,前面的数等于原数中十位数乘比它大1的数.(2)根据(1)发现的规律可求出结果.试题解析:152=225;252=625;352=1225;452=2025(1)通过用计算器进行计算可以发现:后两位均为25,前面的数等于原数中十位数乘比它大1的数.(2)852=7225,952=9025.17.手工拉面是我国的传统面食.制作时,拉面师傅取一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条截成了许多细细的面条,如下图所示.请问这样第几次捏合后可拉出128根面条?【答案】第七次捏合后可拉出128根面条.【解析】【分析】第一次捏合后得到2根面条,第二次捏合后得到4根,第三次捏合后得到8根,据此寻找规律即可.【详解】第一次……2根面条;第二次……22根面条;第三次……23根面条;…第x次……2x根面条.于是由2x=128=27,得x=7.答:第七次捏合后可拉出128根面条.【点睛】本题考查了规律的探索.18.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元)(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5%的手续费,卖出股票时需付卖出成交额1.5%的手续费和卖出成交额1%的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?【答案】(1)9.9元;(2)亏了497.5元.【解析】试题分析:(1)用上周买入股票每股的金额加上本周股票五天的涨跌额,即可得本周星期五收盘时每股股票的金额;(2)用本周五卖出股票金额减去上周买入股票金额,减去买入成交额的手续费,减去卖出成交额的手续费,再减去卖出成交额的交易费可得收益情况.试题解析:解:(1)10+0.3+0.1﹣0.2﹣0.5+0.2=9.9(元).答:本周星期五收盘时,每股是9.9元,(2)1000×9.9﹣1000×10﹣1000×10×1.5%﹣1000×9.9×1.5%﹣1000×9.9×1%=9900﹣150﹣148.5﹣99﹣10000=﹣497.5(元).答:该股民的收益情况是亏了497.5元.考点:正负数的意义;有理数的混合运算.19.阅读下列材料,解答问题.饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏、秋、冬季各60天.原来,学生饮水一般都是购纯净水(其他碳酸饮料或果汁价格更高),纯净水零售价为1.5元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,夏季平均每天要买2瓶纯净水,学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机,经调查,购买一台功率为500 W的冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季,平均每1.5天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,饮水机每天开10小时,当地民用电价为0.50元/度.问题:(1)在未购买饮水机之前,全年平均每个学生要花费多少钱来购买纯净水饮用?(2)在购买饮水机解决学生饮水问题后,每班当年共要花费多少元?(3)这项便利学生的措施实施后,东坡中学当年全体学生共节约多少钱?【答案】(1)450元;(2)4830元;(3)424080元.【解析】【分析】(1)通过每个学生每天的用水量计算出每个季节的用水量,从而计算出全年用水量;(2)购买饮水机解决学生饮水问题后,每班学生全年的花费为“水费+电费+饮水机费用”;(3)原水费-现在水费=能节约的水费.【详解】(1)因为每个学生春、秋、冬季每天购买1瓶矿泉水,夏季每天购买2瓶,所以一个学生在春、秋、冬季共要购买180瓶矿泉水,夏季要购买120瓶矿泉水,所以一年中一个学生共要购买300瓶矿泉水,所以一个学生全年共花费1.5×300=450(元).(2)购买饮水机后,一年每个班所需纯净水的桶数为:春秋两季,每1.5天4桶,则120天共要4×2 1203⎛⎫⨯⎪⎝⎭=320(桶).夏季每天5桶,共要60×5=300(桶),冬季每天1桶,共60桶,所以全年共要纯净水(320+300+60)=680(桶), 故购买矿泉水费用为680×6=4 080(元),使用电费为240×10×5001000×0.5=600(元),故每班学生全年共花费为4 080+600+150=4 830(元).(3)因为一个学生节省450-=353.4(元),所以全体学生共节省353.4×24×50=424 080(元).【点睛】本题一道实际问题,考查了通过阅读来分析题目条件,进而答题.20.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.【答案】(1)1093.5(2)2014a1 a1--【解析】【分析】(1)将1+3+32+33+34+35+36乘3,减去1+3+32+33+34+35+36,把它们的结果除以3﹣1=2即可求解;(2)将1+a+a2+a3+…+a2013乘a,减去1+a+a2+a3+…+a2013,把它们的结果除以a﹣1即可求解.【详解】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2187÷2=1093.5;(2)1+a+a2+a3+…+a2013(a≠0且a≠1)═[(1+a+a2+a3+…+a2013)×a﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=[(a+a2+a3+…+a2013+a2014)﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=(a2014﹣1)÷(a﹣1)=2014a1a1--.【点睛】本题考查数字类的规律探索,有理数的混合运算,分式的运算,正确理解题意正确计算是本题的解题关键.。

人教版七年级数学上册第一章《有理数》综合测试卷(含答案)

人教版七年级数学上册第一章《有理数》综合测试卷(含答案)

人教版七年级数学上册第一章《有理数》综合测试卷(含答案)一、选择题(共11小题;共55分)1. 5的倒数是( )A. 5B. 15C. −5 D. −152. 如图所示,体育课上,小丽的铅球成绩为6.4m,她投出的铅球落在( )A. 区域①B. 区域②C. 区域③D. 区域④3. 一个数的平方一定是( )A. 正数B. 负数C. 非正数D. 非负数4. 在数轴上,原点及原点右边的点表示( )A. 正数B. 整数C. 非负数D. 有理数5. 去年11月份我市某一天的最高气温是10∘C,最低气温是−1∘C,那么这一天的最高气温比最低气温高( )A. −9∘CB. −11∘CC. 9∘CD. 11∘C6. 绝对值小于3的整数有( )A. 2个B. 3个C. 5个D. 6个7. −3的相反数是( )A. −3B. 13C. −13D. 38. 下列说法:①−14是相反数;②−a一定是负数;③互为相反数的两个数的符号必相反;④0.5与2互为相反数;⑤任何一个有理数都有相反数.其中正确的有( )A. 1个B. 2个C. 3个D. 4个9. 某仓库有粮500吨,某天上午运出30吨,下午又运进20吨,则仓库现有粮( )A. 490吨B. 510吨C. 450吨D. 550吨10. 若数轴上点A,B表示的数分别为8和−15,则点A,B之间的距离可以表示为( )A. 8+(−15)B. 8−(−15)C. (−8)+15D. (−8)−1511. 如果两个有理数的积为零,即ab=0,那么下列说法中必定正确的是( )A. a一定是零B. b一定是零C. a和b一定都是零D. a和b中至少有一个是零二、填空题(共5小题;共25分)12. 如果∣−x∣=412,那么x=.13. −423的绝对值是,相反数是,倒数是.14. 比较大小:−2−312.(填“<”或“>”)15. 计算:−2×3=,(−2)÷(−4)=,(−4)2=.16. 若有理数a的倒数等于它本身,则a2020=.三、解答题(共5小题;共70分)17. 若a、b互为相反数,c、d互为倒数,m是最大的负整数,求a+b−cd−m的值.18. 计算:(1)45×12÷13;(2)1516÷32−14;(3)2.5×(25−13)+2.1;(4)215÷(1.1−34)+15×35.19. 如图所示,在数轴上有三个点A,B,C,请回答下列问题.(1)将点B向左移动3个单位长度后,三个点所表示的数谁最小?是多少?(2)将点A向右移动4个单位长度后,三个点所表示的数谁最小?是多少?(3)将点C向左移动6个单位长度后,点B与点C表示的数谁大?(4)要使三个点表示相同的数,如何移动其中两点?有几种移法?20. 观察下列各式的规律:①1×3−22=3−4=−1;②2×4−32=8−9=−1;③3×5−42=15−16=−1.请按以上规律写了出第4个算式,用含有字母的式子表示第n个算式为,并证明21. 某检修小组乘汽车自A地出发,检修南北走向的供电线路.南记为正,北记为负.一天所走路程(单位:千米)为:+10,−3,+4,−2,−8,+16,−2,+12,+8,−5.问:(1)最后他们是否回到A地?若没有,则在A地的什么方向?距离A地多远?(2)若每千米耗油0.08升,则今天共耗油多少升?参考答案1. B【解析】根据倒数的概念.答案B . 2. D3. D4. C5. D6. C 【解析】绝对值小于 3 的整数有 ±1,±2,0,一共 5 个.7. D 【解析】−3 的相反数是 3.8. A9. A10. B11. D12. ±41213. 423,423,−31414. >【解析】因为 ∣−2∣<∣∣−312∣∣,所以 −2>−312.故答案为:>.15. −6,12,16【解析】−2×3=−6;(−2)÷(−4)=12;(−4)2=16.16. 1【解析】由题意,得 a =1 或 a =−1.当 a =1 时,a 2020=1;当 a =−1 时,a 2020=1.综上所述,a 2020=1.17. 根据题意得: a +b =0 , cd =1 , m =−1 ,则原式 =0−1+1=0 .18. (1) 115.(2) 38.(3) 2415.(4)263525.19. (1)从数轴上可以看出,将点B向左移动3个单位长度后,至−5处,此时点B表示的数为−5,因为点A表示的数为−4,点C表示的数为3,所以点B表示的数最小,是−5.(2)从数轴上可以看出,将点A向右移动4个单位长度后,至0处,此时点A表示的数为0,因为点B表示的数为−2,点C表示的数为3,所以点B表示的数最小,是−2.(3)从数轴上可以看出,将点C向左移动6个单位长度后,至−3处,此时点C表示的数为−3,因为点B表示的数为−2,所以点B表示的数大.(4)把点A向右移动2个单位长度,点C向左移动5个单位长度;或把点B、点C分别向左移动2个单位长度、7个单位长度;或把点A、点B分别向右移动7个单位长度、5个单位长度,都可以使三个点表示的数相同,因此共有三种移法.20. 4×6−52=24−25=−1;n(n+2)−(n+1)2=−1.证明如下:左边=n(n+2)−(n+1)2=n2+2n−n2−2n−1=−1,右边=−1.∴左边=右边21. (1)(+10)+(−3)+(+4)+(−2)+(−8)+(+16)+(−2)+(+12)+(+8)+(−5) =10−3+4−2−8+16−2+12+8−5=10+4+16+12+8−3−2−8−2−5=50−20=30.所以没有回到A地,在A地南方30千米处.(2)∣+10∣+∣−3∣+∣+4∣+∣−2∣+∣−8∣+∣+16∣+∣−2∣+∣+12∣+∣+8∣+∣−5∣=10+3+4+2+8+16+2+12+8+5=70(千米).70×0.08=5.6升.所以今天共耗油5.6升.。

七年级数学上册第一章《有理数》综合测试卷-人教版(含答案)

七年级数学上册第一章《有理数》综合测试卷-人教版(含答案)

七年级数学上册第一章《有理数》综合测试卷-人教版(含答案)时间:90分钟,满分:120分一、选择题(本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在相应位置上)1.(本题3分)点A在数轴上表示的数为-3,若一个点从点A向左移动4个单位长度,此时终点所表示的数是()A.-7B.1C.7D.-12.(本题3分)一个两位小数精确到十分位是5.0,这个数最小是()A.4.99B.5.1C.4.94D.4.953.(本题3分)下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的正数C.一个有理数不是整数就是分数D.0的绝对值是04.(本题3分)2021年4月底,印度爆发式的疫情冲击,全球面临新冠病毒变异危机,我国将再出手拯救全球疫情.据卫生局4月26日公布,在过去的一天内,印度新增确诊病例超过353000例,至此,印度已经连续五天新增病例超过30万例,并多次突破全球每日新增病例的最高记录.数据353000用科学记数法表示为()A.3.53×104B.3.53×105C.0.353×106D.353×1035.(本题3分)2021年4月底,印度爆发式的疫情冲击,全球面临新冠病毒变异危机,我国将再出手拯救全球疫情.据卫生局4月26日公布,在过去的一天内,印度新增确诊病例超过353000例,至此,印度已经连续五天新增病例超过30万例,并多次突破全球每日新增病例的最高记录.数据353000用科学记数法表示为()A.3.53×104B.3.53×105C.0.353×106D.353×1036.(本题3分)下列各对数中,互为相反数的是()A.﹣(+4)与+(﹣4)B.﹣(﹣4)与|﹣4|C.﹣22与(﹣2)2D.﹣23与(﹣2)37.(本题3分)如图,在数轴上有A、B、C、D四个点,分别表示不同的四个数,使得其余三点表示的数中有两个负数和一个正数,则这个点是()A.点A B.点B C.点C D.点D8.(本题3分)实数a在数轴上的对应点的位置如图所示,若实数b满足0+>,则b的值可以是()a bA .1-B .0C .1D .29.(本题3分)实数a ,b 在数轴上对应的点的位置如图所示,下列结论正确的是( )A .a b >B .a b -<C .a b >-D .a b >10.(本题3分)在423(4),|2|,1,(,3)(2)------这五个数中,正数的个数是( )A .1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在相应位置上)11.(本题3分)如果水库的水位高于正常水位2m 时,记作+2m ,那么低于正常水位3m 时,应记作____m 12.(本题3分)已知|a |=6,|b |=4,且ab <0,则a +b 的值为 ___.13.(本题3分)数轴上到表示数-413点距离为312的点所表示的数为_________ 14.(本题3分)绝对值小于2021的所有的整数的和是___.15.(本题3分)计算:()()291223⎛⎫-⨯-+-÷= ⎪⎝⎭__________. 16.(本题3分)如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是___.17.(本题3分)母亲节来临之际,小凡同学打算用自己平时节省出来的50元钱给母亲买束鲜花,已知花店里鲜花价格如表:小凡想用妈妈喜欢的百合、玫瑰、康乃馨这三种花组成一个花束,若三种花都要购买且50元全部花净,请给出一种你喜欢的组成方式,百合、玫瑰、康乃馨的支数分别为_______.18.(本题3分)如图,每个图形中的三个数之间均具有相同的规律.根据此规律,若图形中11m =,12n =,则M的值为________.19.(本题3分)小云计划户外徒步锻炼,每天有“低强度”“高强度”“休息”三种方案,下表对应了每天不同方案的徒步距离(单位:km).若选择“高强度”要求前一天必须“休息”(第一天可选择“高强度”).则小云5天户外徒步锻炼的最远距离为_______km.20.(本题3分)小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是8时,输出的数据是_______;当输入数据是n时,输出的数据是_____三、解答题(本大题共8小题,共60分,请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)21.(本题12分)计算:(1)185(0.25)4⎛⎫+----⎪⎝⎭(2)554(10)845⎛⎫⎛⎫-⨯-+-⨯⎪ ⎪⎝⎭⎝⎭(3)2313369412⎛⎫-⨯-+⎪⎝⎭(4)1|3 4.5|9342-+-+--22.(本题4分)在数轴上点A表示的数为﹣1,点B和点A的距离为3,点B、C表示的两数和为0,求点C在数轴上表示的数.23.(本题8分)如图,(1)写出各点表示的数:A________,B________,C________,D________,E________;(2)用“<”将A.B、C、D、E表示的数连接起来.24.(本题10分)把下列各数填在相应的括号内:-16,26,-12,-0.92,35,0,314,0.100 8,-4.9正数集合:{ ⋯};负数集合:{ ⋯};整数集合:{ ⋯};正分数集合:{ ⋯};负分数集合:{ ⋯};25.(本题9分)国庆放假时,小明一家三口开车去探望爷爷、奶奶和外公、外婆,早上从家里出发,向东行了5千米到超市买东西,然后又向东行了2千米到爷爷家,下午从爷爷家出发向西行了10千米到外公家,晚上开车返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和外公家的位置在下面数轴上分别用点A、B、C表示出来;(2)超市和外公家相距多少千米?(3)若该汽车每千米耗油0.08升,求小明一家从出发到返回家,汽车的耗油量.26.(本题9分)出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:-4,+9,-10,+10,-5,-12.问:(1)将最后一位乘客送到目的地时,小李在什么位置?(2)若汽车耗油量为0.08L/km,这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为10元,起步里程为3km(包括3km),超过部分每千米1.5元,则小李这天上午共得车费多少元?27.(本题8分)阅读下列材料:计算:1111 243412⎛⎫÷-+⎪⎝⎭解法一:原式= 111111111113412 243244241224242424÷-÷+÷=⨯-⨯+⨯=解法二:原式= 111112116 2434122412244⎛⎫÷-+=÷=⨯=⎪⎝⎭解法三:原式的倒数=1111111111242424244 34122434123412⎛⎫⎛⎫-+÷=-+⨯=⨯-⨯+⨯= ⎪ ⎪⎝⎭⎝⎭所以,原式= 14.(1)上述得到的结果不同,你认为解法是错误的;(2)请你选择合适的解法计算:113224261437⎛⎫⎛⎫-÷--+⎪ ⎪⎝⎭⎝⎭参考答案1.A【解析】解:根据题意得:-3-4=-7,此时终点所表示的数是-7,故选:A .2.D【解析】解:一个两位小数精确到十分位是5.0,这个数最小是4.95.故选:D .3.B【解析】解:A 、0既不是正数,也不是负数,正确,不符合题意;B 、1是绝对值最小的正数,错误,符合题意;C 、一个有理数不是整数就是分数,正确,不符合题意;D 、0的绝对值是0,正确,不符合题意.故选:B .4.B【解析】解析:353000=3.53×105.故选:B5.B【解析】解析:353000=3.53×105.故选:B6.C【解析】解:A 、﹣(+4)=﹣4,+(﹣4)=﹣4,故A 选项不符合题意;B 、﹣(﹣4)=4,|﹣4|=4,故B 选项不符合题意;C 、﹣22=﹣4,(﹣2)2=4,故C 选项符合题意;D 、﹣23=﹣8,(﹣2)3=﹣8,故D 选项不符合题意,故选:C .7.C【解析】解:A .当A 为原点,则剩余三个点表示的数均是正数,故A 不合题意. B .当B 为原点,则A 表示负数,C 与D 表示正数,故B 不符合题意.C .当C 为原点,则A 与B 表示负数,D 表示正数,故C 符合题意.D .当D 为原点,A 、B 与C 表示负数,故D 不符合题意.故选:C .8.D【解析】解:⋯0a b +>,21a -<<-,⋯0b >,而且1b a >>,⋯1>->,b a符合条件是D,b=2.故选:D.9.D【解析】解:如图所示,⋯数a在原点的左边,数b在原点的右边,⋯a<-1,1>b>0,且|a|>1,|b|<1,>,a<b,⋯a b⋯A不符合题意;⋯D符合题意;⋯|a|>1,⋯-a>1,⋯-a>b,⋯B不符合题意;⋯1>b>0,⋯-1<b<0,⋯a<-b,⋯C不符合题意;故选D.10.C--=,是正数;【解析】()44-=,是正数;224-=-,是负数;11()239-=,是正数;()328-=-,是负数;⋯正数又3个;故选C.11.3-【解析】解:根据题意可得,高于正常水位记作“+”,则低于正常水位记作“-”,-m,则低于正常水位3m时,应记作3-故答案为:312.2-或2【解析】解:⋯64a b ==,⋯6,4a b =±=±又⋯0ab <⋯64a b =⎧⎨=-⎩或64a b =-⎧⎨=⎩ ⋯2a b +=或2a b +=-故答案为2-或213.−476或−56 【解析】解:距离点数−413为312个单位长度的点有两个,它们分别是−413+312=−56,−413−312=−476, 故答案为−476或−56. 14.0 【解析】绝对值小于2021是所有正数为0,1,22020±±⋯±,, ∴()()202010120200-+⋯+-+++⋯+= 故答案为:015.0 【解析】解:()()291223⎛⎫-⨯-+-÷ ⎪⎝⎭=66-=0.故答案为:0.16.-1、0、1、2【解析】解:由数轴可知:被污染的部分的数为-1.3<x <2.9的整数,⋯被污染的整数为:-1、0、1、2,故答案为:-1、0、1、2.17.1,4,6(答案不唯一)【解析】⋯12×1+5×4+3×6=50,⋯可买百合1支、玫瑰4支、康乃馨6支,故答案为:1,4,6.(本题答案不唯一,符合要求即可)18.143【解析】解:⋯1×(2+1)=3,3×(4+1)=15,5×(6+1)=35,⋯右下圆圈内的数=上方圆圈内的数×(左下圆圈内的数+1),⋯M =m (n +1),⋯M =11×(12+1)=143.故答案为:143.19.36【解析】解:如果第二天和第三天选择低强度,则距离为6+6=12(km ),如果第三天选择高强度,则第二天休息,则距离为15km ,⋯12<15,⋯第二天休息,第三天选择高强度,如果第四天和第五天选择低强度,则距离为5+4=9(km ),如果第五天选择高强度,则第四天休息,则距离为8km ,⋯9>8,⋯第四天和第五天选择低强度,为保持最远距离,则第一天为高强度,⋯最远距离为12+0+15+5+4=36(km )故答案为36.20.256 ()2n -【解析】解:设输入数据为a ,输出数据为b ,则由题意可得:()2a b =-,所以:当输入数据是8时,输出的数据是()82256-=;当输入数据是n时,输出的数据是 ()2n-. 故答案为256;()2n -. 21.(1)3;(2)154;(3)19;(4)0;(5)18-;(6)-198 【解析】解:(1)原式()3750.254=---()320.254=-- 3=;(2)原式2554=445⎛⎫+-⨯ ⎪⎝⎭ ()2514=+- 154=; (3)原式8271336363612⎛⎫=-⨯-+⎪⎝⎭ 1913363612-⎛⎫=-⨯+ ⎪⎝⎭ 1933363636-⎛⎫=-⨯+ ⎪⎝⎭ 1633636-=-⨯ ()316=--19;(4)原式=1.5-9+7.5=0;22.4或-2【解析】解:⋯点A在数轴上表示的数为﹣1,且点B和点A的距离为3,⋯点B在数轴上表示的数为-4或2,又点B、C表示的两数和为0⋯点C在数轴上表示的数为4或-223.(1)5,﹣2.5,1,2.5,﹣4;(2)﹣4<﹣2.5<1<2.5<5【解析】解:(1)点A.B、C、D、E表示的数分别为5,-2.5,1,2.5,﹣4;故答案为5,-2.5,1,2.5,﹣4;(2)﹣4<﹣2.5<1<2.5<5.24.正数集合:{ 26,35,134,0.1008};负数集合:{-16,-12,-0.92,-4.9};整数集合:{-16,26,-12,0};正分数集合:{35,134,0.1008};负分数集合:{-0.92,-4.9}.【解析】解:根据有理数分为:正数、0、负数;有理数也可以分为:整数和分数.⋯正数有:26,35,134,0.1008;负数有:-16,-12,-0.92,-4.9;整数有:-16,26,-12,0;正分数有:3 5,134,0.1008;负分数有:-0.92,-4.9.⋯正数集合:{26,35,134,0.1008⋯};负数集合:{-16,-12,-0.92,-4.9⋯};整数集合:{-16,26,-12,0⋯};正分数集合:{35,134,0.1008⋯};负分数集合:{-0.92,-4.9 ⋯};25.(1)见解析;(2)8(千米);(3)1.6(升)【解析】解:(1)A、B、C的位置如图所示:(2)因为5−(−3)=8(千米)故答案为:8;(3)小明一家走的路程:5+2+10+3=20(千米),共耗油:0.08×20=1.6(升)答:小明一家从出发到返回家所经历路程小车的耗油量为1.6升.26.(1)西12km;(2)4L;(3)108元【解析】(1)491010512+-+---, 410512910=----++,3119=-+,12=-,答:小李在西12km 处.(2)491010512-+++-+++-+-, 491010512=+++++,50=,500.084)L ⨯=(,答:共耗油4L .(3)第一次车费:()1043 1.511.5+-⨯=(元), 第二次车费:()1093 1.519+-⨯=(元), 第三次车费:()10103 1.520.5+-⨯=(元), 第四次车费:()10103 1.520.5+-⨯=(元), 第五次车费:()1053 1.513+-⨯=(元), 第六次车费:()10123 1.523.5+-⨯=(元), 11.51920.520.51323.5108+++++=, 答:小李这天上午共得车费108元. 27.(1)一;(2)118【解析】解:(1)⋯除法无分配律⋯解法一是错误的故答案为:一;(2)方法一:原式1143442661414⎛⎫⎛⎫=-÷--+ ⎪ ⎪⎝⎭⎝⎭ 11142214⎛⎫⎛⎫=-÷-+ ⎪ ⎪⎝⎭⎝⎭ 13427⎛⎫⎛⎫=-÷- ⎪ ⎪⎝⎭⎝⎭ 118= 方法二:原式的倒数= 132216143742⎛⎫⎛⎫=--+÷- ⎪ ⎪⎝⎭⎝⎭ ()132********⎛⎫=--+⨯- ⎪⎝⎭()()()()13224242424261437=⨯--⨯--⨯-+⨯- 792812=-++-18=⋯原式=118。

人教版七年级数学上册第一章《有理数》综合测试卷(含答 案)

人教版七年级数学上册第一章《有理数》综合测试卷(含答 案)

人教版七年级数学上册第一章《有理数》综合测试卷(含答案)一、单选题(每小题5 分,共50 分)1 .如果某商场盈利3 万元,记作万元,那么亏损万元,应记作( )A .-1.8B .万元C .万元D .+1.82 .|-2|的倒数是( )A .2B .-2C .D .3 .在实数,0,,3.1415926 ,,4.21 ,3π中,有理数的个数为( )A .3B .4C .5D .64 .有下列四个算式①;②;③;④. 其中,正确的有( ) .A .0 个B .1 个C .2 个D .3 个5 .长江是我国第一大河,它的全长约为6300 千米,6300 这个数用科学记数法表示为( ).A .3x1B .C .63xd03D .6.3x10*6 .如图,已知数轴上两点表示的数分别是,则计算正确的是( )A .b-aB .C .a+D .7 .下面的说法中,正确的个数是( )①0 是整数;②是负分数;不是正数;自然数一定是非负数;负数一定是负有理数.A .1 个B .2 个C .3 个D .4 个8 .下列说法错误的是( )A .数轴上表示的点与表示的点的距离是2B .数轴上原点表示的数是0C .所有的有理数都可以用数轴上的点表示出来D .最大的负整数是-19 .如图,数轴上有,,,四个整数点(即各点均表示整数),且2AB=8C=3CD .若,两点所表示的数分别是和6,则线段的中点所表示的数是( ) .A .2B .3C .5D .610 .一个机器人从数轴原点出发,沿数轴正方向,以每前进3 步后退2 步的程序运动.设该机器人每秒钟前进或后退1 步,并且每步的距离是1 个单位长,表示第n 秒时机器人在数轴上的位置所对应的数.给出下列结论:①1;②;③;④,⑤,其中正确的结论有( )A .1 个B .2 个C .3 个D .4 个二、填空题(每空4 分,共20 分)11 .计算:=12 .计算(−1.5)3 ×(− )2−1 ×0.62= .13 .的相反数是.14 .若,则.15 .、在数轴上得位置如图所示,化简: .________三、解答题(16 题6 分, 17 题8 分, 18 题8 分, 19 题8 分)16 .计算.(1)(2)-10+8+(-23-(-4)x-3(3)17 .已知,两点在数轴上表示的数分别是和12,现,两点分别以1 个单位/ 秒,3 个单位秒的速度向左运动,比早1 秒出发,问出发后几秒原点恰好在两点正中间?18 .如果有理数满足,试求的值.19 .探索规律:(1)计算并观察下列每组算式:,,;(2)已知25×25=625,那么24×26=──;(3)请用代数式把你从以上的过程中发现的规律表示出来.∴t=2,1 .B2 .D3 .D4 .C5 .C6 .C7 .C8 .A9 .A 10 .C 11 .9 . 12 .-2.1 13 .14 .1 15 .-3a+ 16 .(1)(2)-20 (3)参考答案(1)解:原式(2)原式(3)原式17 .B 出发后 2 秒原点恰好在两点正中间.解:设 B 出发 t 秒时原点在它们的正中间, 由题意得 ,∴-(-3-1-t)=12-3t , ...答:B 出发2t 秒时原点在它们的正中间.18.解:∵|ab-3|+|1-b|=0,∴ab-3=0 ,1-b=0,解得a=3 ,b=1,∴===== .19 .(1),,;(2)624;(3)n2=(n+1)(n﹣1)+1解:(1),,;(2)已知25×25=625,那么24×26=624;(3)根据题意得:n2=(n+1)(n﹣1)+1 .【点睛】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.。

人教版初中数学七年级上册第一章《有理数》综合测试题含答案

人教版初中数学七年级上册第一章《有理数》综合测试题含答案

人教版初中数学七年级上册第一章《有理数》综合测试题一、正本清源,做出选择(每题3分,共30分)1.检测下列4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数. 从轻重的角度看,最接近标准的是( ).2.德润楼的高度为28米,地下室的高度为-3米,那么该楼的最高点比最低点(包括地下)高( ).A .25米B .-25米C .-31米D .31米3.据CCTV 新闻报道,今年5月我国新能源汽车销量达到104400辆,该销量用科学记数法表示为( )A .0.1044×106辆B .1.044×106辆C .1.044×105辆D .10.44×104辆4.若两个有理数在数轴上的对应点分别位于原点的两侧,那么这两个数的( ).A .和是正数B .积是正数C .商是正数D .平方和是正数5.若a ,b 互为相反数,则下列各组中,不互为相反数的是( ).A .-a 和-bB .2a 和2bC .a 2和b 2D .a 3和b 36.若a=3,∣b ∣=4,且在数轴上表示有理数b 的点在原点的左边,则a -b 的值为( ).A .1B .-1C .7D .-1或77.若a +b >0,且b <0,则a 、b 、―a 、―b 的大小关系为( ).A .―a <b <―b <aB .―a <―b <b <aC .―a <b <a <―bD .b <―a <―b <a8.下列计算正确的是( ).A .17÷4÷4=17÷4×14=17÷1=17 B .-22+(-1)2=-3 C . 2×32=(2×3)2= 62=36 D .6-6÷(2×3)=0÷2×3=09.如果x 是最大的负整数,y 是最小的正整数,那么x 16-y 13+3xy 的值是( ).A .-3B .3C .-5D .510.计算:21-1=1,22-1=3,23-1=7,24-1=15,25-1=31,26-1=63,…,归纳各计算结果中的个位数字规律,猜测22020-1的个位数字是( ).A .1B .3C .5D .7二、有的放矢,圆满填空(每题3分,共24分) 11.某方便面厂生产的100g 袋装方便面外包装印有(100±5) g 的字样.小芳购买了一袋这 样的方便面后,称了一下发现只有96g ,你认为该厂在重量上______欺诈行为.(填“有”或“没有”)12.数轴上A 、B 、C 三点所对应的有理数分别为23-、45-、34,则此三点到原点的距离最近的点为___________.13.在-(-2)、∣-1∣、-∣0∣、-(+2)、-23、(-3)4中,非负数有__________个.14.敏敏手中的纸条上写着a 2,慧慧手中的纸条上写着(-2)2,若这两个数相等,那么a 的值为__________.15.两个数的积为-20,其中一个数比15-的倒数大3,则另一个数为________. 16.定义新运算“⊗”,规定:a ⊗b =13a -4b 2,则12⊗(-1)=_________. 17.下图是一个数值转换机,若输入数为3,则输出数是_________.18.根据指令机器人在数轴上能完成以下动作,(+,a )表示向右移a 个单位,(-,a )表示向左移a 个单位,现在机器人在-5处,接到指令(+,7)机器人应到_________处,此时请你接着给它一个指令___________,使其移到-2处.三、细心解答,运用自如(共66分)19.(每小题3分,共9分)计算下列各题:(1)13311(0.05)244-÷⨯÷- (2)-2×32-(-2×3)2(3)-19-5×(-2)+(-4)2÷(-8)20.(6分)已知A 为-4的相反数与-12的绝对值的差,B 是比-6大5的数.(1)求A -B 的值;(2)求B -A 的值;(3)从(1)和(2)的计算结果,你能知道A -B 与B -A 之间有什么关系吗?21.(6分)数学老师从马小虎的作业中找到两道错题,马小虎不明白错误的原因,聪明的你能帮他找到错误的原因,并帮助他改正吗?(1)-52+(-5)×(-2)=25+(-5)×(-2)=25-10=15.(2)(-3)-10÷5×15=(-3)-10÷1=(-3)-10=-13.22.(8分)在一条东西走向的大街上,一辆出租车第一次从A 地出发向东行驶4km 至B 地,第二次从B 地出发向西行驶8km 至C 地,第三次从C 地出发向东行驶3km 至D 地.(1)记向东为正,点A 为原点,把该出租车先后到达的地点A ,B ,C ,D 四地用数轴直观地描绘出来.(2)试说出C 地位于A 地的什么方向?距离A 地多远?23.(8分)利用计算器计算下列各式,并将结果填在横线上:(1)10 101×11=___________;10 101×22=___________;10 101×33=___________;(2)你发现了什么规律?(3)请你利用这个规律直接写出10 101×99的结果.24.(9分)环宇自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的实际生产情况(超产为正、减产为负,单位:辆)(1)根据记录可知前三天共生产自行车多少辆?(2)生产量最多的一天比生产量最少的一天多生产自行车多少辆?(3)该厂实行计件工资制,每生产一辆车60元,超额完成任务每辆车奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?25.(10分)我们约定将16=24,写成f (16)=4,例如:根据这个约定,可把64=26写成f (64)=6;将25=52写成g(25)=2,例如:根据这个约定,可把125=53写成g(125)=3.解答下列问题:(1)f (32)=_________,g(______)=1.(2)计算f (128)-g(625)的结果为多少?26.(10分)数学课上,老师随手在黑板上写下了7个有理数.4--,0,12⎛⎫--⎪⎝⎭,3,23-,-2020,-1.(1)请你指出哪些是整数?哪些是负整数?哪些是负分数?(2)若选择其中的四个整数,将这四个整数经过有理数的混合运算后,能否得出结果为-1?若能,写出算式,并写出计算过程;若不能,请说明理由.参考答案:一、正本清源,做出选择1.C;2.D;3.C;4.D;5.C;6.B;7.A.点拨:利用特殊值法,可令a=5,b=-2,所以有-a=-5,-b=2.8.B.点拨:选项A的结果为1716,选项C的结果为18,选项D的结果为5.9.A.点拨:根据题意,得x=-1,y=1,所以(-1)16-113+3×(-1)×1=1-1-3=-3. 10.C.点拨:由于2020=4×505,探究规律知,22020-1与24-1的个位数字相同. 二、有的放矢,圆满填空11.没有;12.23-;13.4;14.2或-2. 点拨:根据题意得,a2= (-2)2 = 4,又(±2)2 = 4,故a =±2. 15.10. 点拨:可列式为(-20)÷(-5+3)=10.16.0.点拨:根据题意,得12⊗(-1)= 13×12-4×(-1)2=4-4=0.17.65.点拨:根据题意,得32-1=8,所以82+1=65.18.2,(-,4). 点拨:可画出数轴,在数轴上操作.三、细心解答,运用自如19.(1)70;(2)-54;(3)7.20.由题意知,A=(4)128----=-,B=(-6)+5=-1;(1)A-B=(-8)-(-1)=-7;(2)B-A=(-1)-(-8)=7;(3)A-B与B-A互为相反数.21.(1)误认为-52的底数是-5;另外同号相乘得正,而不是取相同的符号.正解:原式=-25+(-5)×(-2)=-25+10=-15.(2)错在没有遵循同级运算应按从左到右的顺序进行计算.正解:原式=(-3)-2×15==(-3)-25=175-.22.(1)A,B,C,D四地用数轴表示如下图所示:(2)C地位于A地的西面,距离A地4km..23.(1)111 111;222 222;333 333.(2)10 101与某个个位与十位数字相同的两位数相乘,等于一个六位数,且这个六位数的每个数字都与这个两位数的每位数字相同.(3)10 101×99=999 999.24.(1)根据题意,得[(+5)+(-2)+(-4)]+200×3=599(辆).答:根据记录可知前三天共生产自行车599辆.(2)根据题意,得(+16)-(-10)=26(辆).答:生产量最多的一天比生产量最少的一天多生产自行车26辆.(3)由于(+5)+(-2)+(-4)+(+13)+(-10)+(+16)+(―9)=9(辆),所以(7×200+9)×60+9×15=84675(元).答:该厂工人这一周的工资总额是84675元.25.(1)5,5;(2)因为27=128,所以f (128)=7;因为54=625,所以g(625)=4;故f (128)-g(625)=7-4=3.26.(1)整数:-︱-4︱,0,3,-2020,-1;负整数:-︱-4︱,-2020,-1;负分数:2 3 .(2)能!算式为:0×(-2020)+(-︱-4︱)+3=0-4+3=-1.。

人教版七年级数学上册第一章 有理数 综合过关测试题【含答案】

人教版七年级数学上册第一章 有理数 综合过关测试题【含答案】

人教版七年级数学上册第一章有理数综合过关测试题一、选择题1.下列说法:①−a一定是负数;②|−a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个2.若,,则x−y为()A. ±2B. ±16C. −2和−16D. ±2和±163.若数轴上表示−1和3的两点分别是点A和点B,则点A和点B之间的距离是()A. −4B. −2C. 2D. 44.下列说法错误的有()①最大的负整数是−1;②绝对值是本身的数是正数;③有理数分为正有理数和负有理数;④数轴上表示−a的点一定在原点的左边;⑤在数轴上7与9之间的有理数是8.A. 1个B. 2个C. 3个D. 4个5.某地一天的最高气温是8℃,最低气温是−2℃,则该地这天的温差是()A. 10℃B. −10℃C. 6℃D. −6℃6.下列不是具有相反意义的量是()A. 前进5米和后退5米B. 收入30元和支出10元C. 向东走10米和向北走10米D. 超过5克和不足2克7.已知|a|=3,|b|=4,且ab<0,则a−b的值为()A. 1或7B. 1或−7C. ±1D. ±78.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A. B.C. D.9.大米包装袋上(10±0.1)kg的标识表示此袋大米重()A. (9.9~10.1)kgB. 10.1kgC. 9.9kgD. 10kg10.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于()A. −1B. 0C. 1D. 211.下列说法正确的个数有()(1)有理数的绝对值一定比0大;(2)有理数的相反数一定比0小;(3)如果两个数的绝对值相等,那么这两个数相等;(4)所有的有理数都能用数轴上的点来表示;(5)两数相减,差一定小于被减数.A. 1个B. 2个C. 3个D. 4个12.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A. 0.8kgB. 0.6kgC. 0.5kgD. 0.4kg13.点M为数轴上表示−2的点,将点M沿数轴向右平移5个单位到点N,则点N表示的数是()A. 3B. 5C. −7D. 3或−714.计算(−2)−5的结果等于()A. −7B. −3C. 3D. 715.四个数−3,0,1,2,其中负数是()A. −3B. 0C. 1D. 216.−123的倒数是()A. −53B. −35C. −132D. −3217.−114的倒数与4的相反数的商是()A. −5B. 5C. 15D. −1518.如果a与3互为倒数,那么a是()A. −3B. 3C. −13D. 1319.计算(−20)+16的结果是( )A. −4B. 4C. −2016D. 201620.若a 2=4,|b|=3,且a ,b 异号,则a −b 的值为( )A. −2B. ±5C. 5D. −5二、计算题21.计算: (1)(−112)+(+56)−(−3112);(2)(7−223+45)×(−15)−(−2.95)×6+1.45×(−6) (3)1−113×[4−(−3)3÷(−34)2] (4)−24×(13−12)+(−2)3÷(1−0.8×58)三、解答题22.某检修小组从A 地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如表(单位:km)(1)求收工时距A 地多远?(2)在第______次记录时距A 地最远.(3)若每千米耗油0.3升,问共耗油多少升?答案1.A2.D3.D4.D5.A6.C7.D8.B9.A10.B11.A12.B13.A14.A15.A16.B17.C18.D19.A20.B21.(1)原式=−112+56+3112=−1812+1012+3712=2912;(2)原式=(−105+40−12)+6×(2.95−1.45)=−77+9=−68;(3)原式=1−113×(4+27×169)=1−113×52=1−4=−3;(4)原式=−16×(−16)−8÷12=223−16=−1313.22.(1)根据题意列式−3+8−9+10+4−6−2=2,答:收工时距A地2km.(2)由题意得,第一次距A地|−3|=3千米;第二次距A地−3+8=5千米;第三次距A地|−3+8−9|=4千米;第四次距A地|−3+8−9+10|=6千米;第五次距A地|−3+8−9+10+4|=10千米;而第六次、第七次是向相反的方向又行驶了共8千米,所以在第五次记录时距A地最远.故答案为五;(3)根据题意得检修小组走的路程为:|−3|+|+8|+|−9|+|+10|+|+4|+|−6|+|−2|=42(km),42×0.3=12.6(升).答:共耗油12.6升.。

人教版2020年七年级上册数学第一章有理数综合过关测试题【含答案】

人教版2020年七年级上册数学第一章有理数综合过关测试题【含答案】
2
18.(1)3 3 4 (2)|x+1| 1 或-3 (3)-1≤x≤2
解法三:原式的倒数为 23-110+16-25 ÷ -310 = 23-110+16-25 ×(-30)=-20+3-5+12=-10,
故原式=-110.
(1)上述得出的结果不同,肯定有错误的解法,则解法 (2)请你运用合适的方法计算:
是错误的;
-412 ÷ 16-134+23-27 .
17.求若干个相同的不为零的有理数的除法运算叫做除方,如 2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比 有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3 次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3
13.我们常用的数是十进制数,如 4657=4×103+6×102+5×101+7,表示十进制的数要用到 10 个数 码(又叫数字):0,1,2,3,4,5,6,7,8,9.在电子计算机中用的二进制,只要两个数码:0 和 1.如二进制中 110=1×22+1×21+0 等于十进制中的数 6,110101=1×25+1×24+0×23+1×22+0×21+1 等于十进制 中的数 53.那么二进制中的数 101011 等于十进制中的哪个数?
到达地点
起点 A B C D E F G H I J
前进方向
北南北北南北南北南北
所走路程(km)
0 10 4 6 2 5 12 3 9 10 7
(1)J 地与起点之间的距离有多少?
(2)若汽车每行驶 1 km 耗油 0.12 L,这天检修班从起点开始,最后到达 J 地,汽车一共耗油多少升 (精确到 0.1 L)?

人教版数学七年级上册第一章有理数综合检测题(附答案)

人教版数学七年级上册第一章有理数综合检测题(附答案)

人教版数学七年级上学期 第一章有理数测试时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作( ) A. 7℃ B. -7℃C. 2℃D. -12℃2.-12017的相反数的倒数是( ) A 1B. -1C. 2017D. -20173.下列各式中,正确的是( ) A -|-4|>0B. |0.08|>|-0.08|C. |-23|<0 D. -13>-124.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是( ) A. 0.1(精确到0.1) B. 0.05(精确到百分位) C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)5.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b.对于以下结论:甲:b−a<0;乙:a+b>0;丙:|a|<|b|;丁:ba>0;其中正确的是( ) A. 甲乙B. 丙丁C. 甲丙D. 乙丁6.下列各式计算正确的是( ) A. 7-2×(-15)=5×(-15)=-1 B. -3÷7×17=-3÷1=-3 C -32-(-3)2=-9-9=-18D. 3×23-2×9=3×6-18=0 7.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点的位置应该在( )A. 点的左边B. 点与点之间C. 点与点之间D. 点的右边8.地球平均半径约为6371000米,该数字用科学记数法可表示为( ) A. 0.6371×107B. 6.371×106C. 6.371×107D. 6.371×1039.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律,5小时后,细胞存活的个数是( )A. 31B. 33C. 35D. 3710.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则10098!!的值为( )A. 5049B. 99!C. 9900D. 2!二、填空题(每小题3分,共24分)11.化简:-|-2|=____,-(-3)=____.12近似数2.30万精确到_____位.13.绝对值不大于3.14的所有有理数之和等于____;不小于-4而不大于3的所有整数之和等于____.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是____.15.若|a-4|+|b+1|=0,则b a=____.16.根据下图所示的流程图计算,若输入x的值为1,则输出y的值为__________.17.现有4个有理数3,4,-6,10(每个数用且只用一次)进行加、减、乘、除运算,使其结果等于24,算式为____.18.观察下面一列数:-12 -3 4-5 6 -7 8 -910 -11 12 -13 14 -15 16……按照上述规律排下去,那么第10行从左边数第9个数是____.三、解答题(共66分)19.把下列各数分别填入相应的大括号里:-3.1, 3.14159, -3, +31, -0.5, 0.618, -227, 0, -0.2020, |-1.56|.正数集合{}; 非负数集合{};整数集合{ }; 负分数集合{ }.20.把下列各数表示在数轴上,再按从大到小的顺序用“>”号把这些数连接起来.|-3|, -5, 412, -212, -22, -(-1), 0.21.计算:(1)-21+(-14)-(-18)-15; (2)-3.5÷78×|-34|;(3)-14-(23-16)×13×[2-(-3)2]2.22.已知|x|=3,(y+1)2=4,且xy<0,求x+y的值.23.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动6个单位后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在点B左侧找一点E,使点E到点A的距离是到点B的距离的2倍,并写出点E表示的数.24.某服装店老板以32元的价格购进30件衣服,针对不同的的顾客,30件衣服的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的记为负,记录结果如下表:售出件数7 6 3 5 4 5售价(元) +3 +2 +1 0 -1 -2请问该服装店售完这30件衣服后,赚了多少钱?25.观察下列三行数:2 6 18 54 162…①-1 3 15 51 159…②-1 -3 -9 -27 -81…③(1)第①行数按什么规律排列?(2)第②③行数与第①行数有什么关系?(3)每行取第6个数计算它们的和.26.某检修小组乘一辆汽车沿东西方向检修路,约定向东走为正,某天从A地出发到收工时行走记录(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6,求:(1)收工时检修小组在A地的哪一边,距A地多远?(2)若汽车耗油3升/每千米,开工时储存180升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?答案与解析时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作( ) A. 7℃ B. -7℃C. 2℃D. -12℃【答案】B 【解析】试题分析:∵冰箱冷藏室的温度零上5℃,记作+5℃, ∴保鲜室的温度零下7℃,记作-7℃. 故选B .【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 2.-12017的相反数的倒数是( ) A. 1 B. -1C. 2017D. -2017【答案】C 【解析】12017-的相反数是12017, 12017的倒数是2017. 所以有理数12017-的相反数的倒数是2017.故选B.3.下列各式中,正确的是( ) A. -|-4|>0 B. |0.08|>|-0.08|C. |-23|<0 D. -13>-12【答案】D 【解析】分析:根据有理数的大小的方法是:负数<0<正数;两个负数,绝对值大的反而小,即可得出答案. 详解:A 、-|-4|=-4<0,故本选项错误;B 、∵|008|=0.08,|-0.08|=0.08,∴|0.08|=|-0.08|,故本选项错误;C 、|-23|=23>0,故本选项错误;D、∵13<12,∴-13>-12,故本选项正确.故选D.点睛:此题考查了有理数的大小比较,比较有理数的大小的方法是:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.4.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A 0.1(精确到0.1) B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A:0.05019精确到0.1是0.1,正确;B:0.05019精确到百分位是0.05,正确;C:0.05019精确到千分位是0.050,错误;D:0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.5.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b−a<0;乙:a+b>0;丙:|a|<|b|;丁:ba>0;其中正确的是( )A. 甲乙B. 丙丁C. 甲丙D. 乙丁【答案】C【解析】【分析】根据有理数的加法法则判断两数的和、差及积的符号,用两个负数比较大小的方法判断.详解】甲:由数轴有,0<a<3,b<−3,∴b−a<0,甲的说法正确, 乙:∵0<a<3,b<−3, ∴a+b<0 乙的说法错误, 丙:∵0<a<3,b<−3, ∴|a|<|b|, 丙的说法正确, 丁:∵0<a<3,b<−3, ∴ba<0, 丁的说法错误; 故选C.【点睛】此题考查绝对值,数轴,解题关键在于结合数轴进行解答. 6.下列各式计算正确的是( ) A. 7-2×(-15)=5×(-15)=-1 B. -3÷7×17=-3÷1=-3 C. -32-(-3)2=-9-9=-18 D. 3×23-2×9=3×6-18=0【答案】C 【解析】分析:A 、原式先计算乘法运算,再计算减法运算得到结果,即可作出判断; B 、原式先计算除法,再计算乘法算得到结果,即可作出判断; C 、原式先算乘方,再算减法得到结果,即可作出判断;D 、原式先计算乘方,再计算乘法运算,最后计算加减运算得到结果,即可作出判断.详解:A. 7-2×(-15)=227+=755,故该选项错误; B 、-3÷7×17=11337749-⨯⨯=-,故该选项错误;C 、-32-(-3)2=-9-9=-18,故该选项正确;D 、3×23-2×9=3×8-18=24-18=6,故该选项错误. 故选C .点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.7.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点的位置应该在( )A. 点的左边B. 点与点之间C. 点与点之间D. 点的右边【答案】C【解析】【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【详解】∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选:C.【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键.8.地球的平均半径约为6371000米,该数字用科学记数法可表示为()A. 0.6371×107B. 6.371×106C. 6.371×107D. 6.371×103【答案】B【解析】根据科学记数法的表示形式可得,6371000=6.371×106.故选B.9.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律,5小时后,细胞存活的个数是( )A. 31B. 33C. 35D. 37【答案】B【解析】试题解析:根据题意可知,1小时后分裂成4个并死去1个,剩3个,3=2+1;2小时后分裂成6个并死去1个,剩5个,5=22+1;3小时后分裂成10个并死去1个,剩9个,9=23+1;…故5小时后细胞存活的个数是25+1=33个.故选B.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则10098!!的值为( )A. 5049B. 99!C. 9900D. 2!【答案】C【解析】【详解】根据题意可得:100!=100×99×98×97×...×1,98!=98×97× (1)∴100!1009998198!98971⨯⨯⨯⨯=⨯⨯⨯=100×99=9900,故选C.二、填空题(每小题3分,共24分)11.化简:-|-2|=____,-(-3)=____.【答案】(1). -2,(2). 3【解析】分析:由绝对值的性质及相反数的性质解答即可.详解:-|-2|=2;-(-3)=3点睛:主要考查了绝对值的概念及性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0;12.近似数2.30万精确到_____位.【答案】百【解析】根据近似数的精确度,近似数2.30万精确到百位,故答案为百13.绝对值不大于3.14的所有有理数之和等于____;不小于-4而不大于3的所有整数之和等于____.【答案】(1). 0,(2). -4【解析】【分析】根据绝对值不大于3.14的有理数互为相反数,根据互为相反数的和为零,可得答案;根据不小于-4而不大于3的所有整数,可得加数,根据有理数的加法,可得答案.【详解】绝对值不大于3.14的所有有理数之和等于0;不小于-4而不大于3的所有整数之和(-4)+(-3)+(-2)+(-1)+0+1+2+3=-4,故答案为0,-4.【点睛】本题考查了有理数大小比较,有理数的加法,利用不小于-5而不大于4的所有整数得出加数是解题关键,注意互为相反数的和为零.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是____.【答案】-1或5【解析】【详解】试题分析:2-3=-1,2+3=5,所以到点A的距离等于3个单位长度的点所表示的数是-1或5.考点:1.数轴;2.有理数的加法;3.两点间的距离.15.若|a-4|+|b+1|=0,则b a=____.【答案】1【解析】分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.详解:由题意得,a-4=0,b+1=0,解得a=4,b=-1,所以,b a=(-1)4=1.故答案为1.点睛:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.根据下图所示的流程图计算,若输入x的值为1,则输出y的值为__________.【答案】7【解析】【分析】观察图形我们可以得出x和y的关系式为:y=3x2-5,因此将x的值代入就可以计算出y的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y的值.【详解】解:依据题中的计算程序列出算式:12×3-5.由于12×3-5=-2,-2<0,∴应该按照计算程序继续计算,(-2)2×3-5=7,∴y=7.故本题答案为:7.17.现有4个有理数3,4,-6,10(每个数用且只用一次)进行加、减、乘、除运算,使其结果等于24,算式为____.【答案】10-(-6)×3-4=24(答案不唯一)【解析】分析:利用“24点”游戏规则列出算式,使其结果为24即可.详解:根据题意得:10-(-6)×3-4=24;(10-4)-3×(-6)=24;4-(-6)÷3×10=24;3×[4+10+(-6)]=24等.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.观察下面一列数:按照上述规律排下去,那么第10行从左边数第9个数是____.【答案】90【解析】分析:先从排列中总结规律,再利用规律代入求解.详解:根据题意,每一行最末的数字的绝对值是行数的平方,且奇数前带有负号,偶数前是正号;如第四行最末的数字是42=16,第9行最后的数字是-81,∴第10行从左边数第9个数是81+9=90.故答案为90.点睛:主要考查了学生的综合数学素质,要求能从所给数据中找到规律并总结规律,会利用所找到的规律进行解题三、解答题(共66分)19.把下列各数分别填入相应的大括号里:-3.1, 3.14159, -3, +31, -0.5, 0.618, -227, 0, -0.2020, |-1.56|.正数集合{}; 非负数集合{};整数集合{ }; 负分数集合{ }.【答案】见解析【解析】分析:根据整数,正数,非负数,负分数的定义可得出答案.详解:正数集合{3.14159,+31,0.618,|-1.56|};非负数集合{3.14159,+31,0.618,|-1.56|,0};整数集合{-3,+31,0};负分数集合{-3.1,-0.5,-227,-0.2020}.点睛:本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.20.把下列各数表示在数轴上,再按从大到小的顺序用“>”号把这些数连接起来.|-3|, -5, 412, -212, -22, -(-1), 0.【答案】见解析【解析】【分析】数轴上的点与实数是一一对应的关系,画数轴要注意正方向,单位长度和原点,要注意数轴上的点比较大小的方法是左边的数总是小于右边的数.【详解】∵|-3|=3,-22=-4,-(-1)=1,∴以上各数在数轴上的位置如图所示:故412>|-3|>-(-1)>0>-2.12>-22>-5.【点睛】主要考查了数轴,数轴上的点与实数是一一对应的关系,要注意数轴上的点比较大小的方法是左边的数总是小于右边的数.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.21.计算:(1)-21+(-14)-(-18)-15; (2)-3.5÷78×|-34|;(3)-14-(23-16)×13×[2-(-3)2]2.【答案】(1)-32;(2)-3;(3)556 -.【解析】分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算绝对值运算,再从左到右依次计算即可得到结果;(3)先乘方,再算括号里面的,最后得结果.详解:(1)原式=-21-14+18-15=-32;(2)原式=783274-⨯⨯=-3;(3)原式=-1-114923⨯⨯=-556.点睛:此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.22.已知|x|=3,(y+1)2=4,且xy<0,求x+y的值.【答案】0或-2【解析】分析:利用绝对值及平方根定义求出x与y的值,代入计算即可求出x+y的值.详解:根据题意得:x=±3,y+1=±2,即y=1或-3,∵xy<0,∴x=3,y=-3;x=-3,y=1,则x+y=0或-2.点睛:此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.23.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动6个单位后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在点B左侧找一点E,使点E到点A的距离是到点B的距离的2倍,并写出点E表示的数.【答案】(1)-1; (2)0.5 ;(3)-9【解析】分析:(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D是线段AC的中点;(3)在点B左侧找一点E,点E到点A的距离是到点B的距离的2倍,依此即可求解.详解:(1)点B表示的数为-5+6=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D表示的数为(-1+2)÷2=1÷2=0.5;(3)点E在点B的左侧时,根据题意可知点B是AE的中点,则点E表示的数是-5-(-1+5)=-9.点睛:本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.24.某服装店老板以32元的价格购进30件衣服,针对不同的的顾客,30件衣服的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的记为负,记录结果如下表:请问该服装店售完这30件衣服后,赚了多少钱?【答案】472【解析】试题分析:首先由进货量和进货单价计算出进货的成本,然后再根据售价计算出赚了多少钱.试题解析:解:售价=7×3+6×2+3×1+5×0+4×(-1)+5×(-2)=21+12+3+0-4-10=22;所以总售价=22+47×30=1432元;赚的钱=1432-30×32=1432-960=472元;点睛:本题主要考查有理数的混合运算,关键在于根据表格计算出一共卖了多少钱.25观察下列三行数:(1)第①行数按什么规律排列?(2)第②③行数与第①行数有什么关系?(3)每行取第6个数计算它们的和.【答案】(1)每个数都等于它前面相邻的数的3倍(2)见解析;(3)726.【解析】分析:(1)观察不难发现,后一个数是前一个数字的3倍解答即可;(2)观察不难发现,第②行为第①行对应的数小3,第③行为第②行相应的数字除以-2;(3)根据各行的第n个数的表达式找出第6个数然后计算它们的和即可.详解:(1)每个数都等于它前面相邻的数的3倍(2)第②行数比第①行对应的数小3,第③行数是由第①行对应的数除以-2得到的.(3)第一行第6个数为:5;23=486第二行第6个数为:486-3=483;第三行第6个数为:486÷(-2)=-243;故每行第6个数的和为:486+483+(-243)=726.点睛:本题是对数字变化规律的考查,比较简单,观察出第①行后一个数字是前一个数字的3倍是解题的关键,也是本题的突破口.26.某检修小组乘一辆汽车沿东西方向检修路,约定向东走为正,某天从A地出发到收工时行走记录(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6,求:(1)收工时检修小组在A地的哪一边,距A地多远?(2)若汽车耗油3升/每千米,开工时储存180升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?【答案】(1)收工时在A地的正东方向,距A地39km;(2)需加15升.【解析】【分析】(1)首先审清题意,明确“正”和“负”所表示的意义,计算结果是正数,说明收工时该检修小组位于A地向东多少千米,计算结果为负数,说明收工时该检修小组位于A地向西多少千米;(2)关键是计算出实际行走的路程所耗的油量,而耗油量应该是记录的所有数字的绝对值之和乘以3,相信你一定可以得到正确答案.【详解】(1)根据题意可得:向东走为“+”,向西走为“−”;则收工时距离等于(+15)+(−2)+(+5)+(−1)+(+10)+(−3)+(−2)+(+12)+(+4)+(−5)+(+6)=+39.故收工时在A地的正东方向,距A地39km.(2)从A地出发到收工时,汽车共走了|+15|+|−2|+|+5|+|−1|+|+10|+|−3|+|−2|+|+12|+|+4|+|−5|+|+6|=65km;从A地出发到收工时耗油量为65×3=195(升).故到收工时中途需要加油,加油量为195−180=15升.【点睛】此题考查正数和负数,有理数的加法,解题关键在于掌握其定义和运算法则.。

人教版数学七年级上册第一章有理数综合检测(附答案)

人教版数学七年级上册第一章有理数综合检测(附答案)

人教版数学七年级上学期第一章有理数测试一.选择题1.下列各组数中,互为相反数的是( )A. +2与|﹣2|B. +(+2)与﹣(﹣2)C. +(﹣2)与﹣|+2|D. ﹣|﹣2|与﹣(﹣2)2.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是( )A 0 B. 2 C. l D. ﹣13.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是( )A. a+b<0B. a+b>0C. a﹣b<0D. a•b>04.下列计算正确的是( )A. 2×32=36B. ﹣0.5÷14=2C. ﹣3÷14×4=﹣3 D. (﹣34)×(﹣8)=65.下列说法正确的个数有( )①负分数一定是负有理数②自然数一定是正数③﹣π是负分数④a一定是正数⑤0是整数A. 1个B. 2个C. 3个D. 4个6.15的绝对值是( )A. 5B. -15C. ﹣5D.157.计算:|–5+3|的结果是( )A. –8B. 8C. –2D. 28.下列式子中正确的是( ) A ﹣24=﹣16B. ﹣24=16C. (﹣2)4=8D. (﹣2)4=﹣169.在有理数(﹣1)2、-(﹣32)、﹣|﹣2|、(﹣2)3、﹣22中负数有( )个. A. 4B. 3C. 2D. 110.如图,数轴上每两个相邻的点之间距离均为1个单位长度,数轴上的点Q,R 所表示数的绝对值相等,则点P 表示的数为( )A. 0B. 3C. 5D. 7二.填空题11.若x 2=4,则x=_____;若|a ﹣2|=3,则a=_____.12.升降机运行时,如果下降13米记作“﹣13米”,那么当它上升25米时,记作_____.13.点A 在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B ,则点B 表示的数是_____.14.化简:(1)﹣(﹣2005)=_____ (2)﹣|﹣2018|=_____15.绝对值是4数是_____.平方得36的数是_____. 16.计算:﹣8÷(﹣2)×12=_____. 三.解答题17.计算:43116(2)31-+÷-⨯--. 18.把下列各数填入相应的大括号里: -7 ,-0.5 ,-13,0 ,-98% ,8.7 ,2018 . 负整数集合:{ …}; 非负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …}.19.若a,b 互为相反数,c,d 互为倒数,m 到原点的距离为2,求2(a+b)+3cd-|-m|的值. 20.有理数, ,在数轴上的位置如图所示,试化简:a c a b b a b c +-+--++21.一只小虫从某点A出发,在一条直线上来回爬行,假定把向右爬行路程记为正数,向左爬行的路程记为负数,则爬行各段路程单位:(厘米)依次为:+6,﹣4,+10,﹣7,﹣6,+12,﹣10.(1)小虫爬完最后一段路程时距离出发点A多远?(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间?22.出租车司机李叔叔从公司出发,在南北方向人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km 2km ﹣4km ﹣3km 6km(1)接送完第5批客人后,李叔叔在公司什么方向?距离公司多少千米?(2)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米1.5元收费,在这过程中李叔叔共收到车费多少元?23.定义☆运算观察下列运算:(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,0☆(﹣15)=+15(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号_____,异号______.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.(2)计算:(+11)☆[0☆(﹣12)]=_____.(3)若2×(2☆a)﹣1=3a,求a的值.答案与解析一.选择题1.下列各组数中,互为相反数的是( )A. +2与|﹣2|B. +(+2)与﹣(﹣2)C. +(﹣2)与﹣|+2|D. ﹣|﹣2|与﹣(﹣2)【答案】D【分析】由相反数的定义对四个选项一一判断即可.【详解】A.+2=2,|﹣2|=2,+2=|﹣2|,此选项错误;B.+(+2)=2,﹣(﹣2)=2,+(+2)=﹣(﹣2),此选项错误;C.+(﹣2)=﹣2,﹣|+2|=﹣2,+(﹣2)=﹣|+2|,此选项错误;D.﹣|﹣2|=﹣2,﹣(﹣2)=2,﹣|﹣2|+[﹣(﹣2)]=0,﹣|﹣2|与﹣(﹣2)互为相反数,此选线正确.故选D.【点睛】本题主要考查相反数的概念:a与b互为相反数⇔a+b=0.2.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是( )A. 0B. 2C. lD. ﹣1【答案】C【解析】向右移动个单位长度,向右移动个单位长度为,故选.3.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是( )A a+b<0 B. a+b>0 C. a﹣b<0 D. a•b>0【答案】A【解析】【分析】首先由数轴上表示的数的规律及绝对值的定义,得出b<0<a,且|b|>|a|,然后根据有理数的加法、减法及乘法法则对各选项进行判断.【详解】由图可知,b<0<a,且|b|>|a|.A、根据有理数的加法法则,可知b+a<0,正确;B、错误;C、∵a>b,∴a-b>0,错误;D、∵a>0,b<0,∴ab<0,错误.【点睛】此题考查了有理数的加法、减法及乘法法则.结合数轴解题,体现了数形结合的优点,给学生渗透了数形结合的思想.4.下列计算正确的是( )A. 2×32=36B. ﹣0.5÷14=2C. ﹣3÷14×4=﹣3 D. (﹣34)×(﹣8)=6【答案】D【解析】分析】各项计算得到结果,即可作出判断.【详解】A、原式=2×9=18,不符合题意;B、原式=-12×4=-2,不符合题意;C、原式=-3×4×4=-48,不符合题意;D、原式=34×8=6,符合题意,故选D.【点睛】此题考查了有理数的乘方,有理数的乘除法,熟练掌握运算法则是解本题的关键.5.下列说法正确的个数有( )①负分数一定是负有理数②自然数一定是正数③﹣π是负分数④a一定是正数⑤0是整数A. 1个B. 2个C. 3个D. 4个【答案】B【解析】分析:根据有理数的分类,可得答案.详解:①负分数一定是负有理数,故①正确;②自然数一定是非负数,故②错误;③-π是负无理数,故③错误④a可能是正数、零、负数,故④错误;⑤0是整数,故⑤正确;故选B.点睛:本题考查了有理数的分类,利用有理数的分类是解题关键,注意a可能是正数、零、负数.6.15的绝对值是( )A. 5B. -15C. ﹣5D.15【答案】D【解析】【分析】根据一个正数的绝对值是本身即可求解.【详解】15的绝对值是15.故选D.【点睛】本题考查了绝对值的知识,掌握绝对值的意义是解答本题的关键,解题时要细心.7.计算:|–5+3|的结果是( )A. –8B. 8C. –2D. 2【答案】D【解析】分析:原式绝对值里边利用异号两数相加的法则计算,再利用绝对值的代数意义化简即可得到结果.详解:原式=|-2|=2,故选D.点睛:此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.8.下列式子中正确的是( )A. ﹣24=﹣16B. ﹣24=16C. (﹣2)4=8D. (﹣2)4=﹣16 【答案】A【解析】【分析】根据乘方的定义计算可得.【详解】A.﹣24=﹣16,故A正确;B.﹣24=-16,故B错误;C.(﹣2)4=16,故C错误;D.(﹣2)4=16,故D错误.故选A.【点睛】本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的定义及-a n与(-a)n的区别.9.在有理数(﹣1)2、-(﹣32)、﹣|﹣2|、(﹣2)3、﹣22中负数有( )个.A. 4B. 3C. 2D. 1 【答案】B【解析】【分析】各式利用乘方的意义,绝对值的代数意义计算,找出负数即可.【详解】有理数(-1)2=1,-(-32)=32、-|-2|=-2、(-2)3=-8、-22=-4,其中负数有3个,故选B.【点睛】此题考查了有理数的乘方,以及正数与负数,熟练掌握运算法则是解本题的关键.10.如图,数轴上每两个相邻的点之间距离均为1个单位长度,数轴上的点Q,R所表示数的绝对值相等,则点P 表示的数为( )A. 0B. 3C. 5D. 7【答案】C【解析】【分析】根据绝对值的意义推出原点的位置,再得出P表示的数.【详解】设数轴的原点为O,依图可知,RQ=4,又∵数轴上的点Q,R所表示数的绝对值相等,∴OR=OQ=RQ=2,∴OP=OQ+OR=2+3=5,故选C【点睛】本题考核知识点:绝对值.解题关键点:理解绝对值的意义,找出原点.二.填空题11.若x2=4,则x=_____;若|a﹣2|=3,则a=_____.【答案】(1). ±2(2). 5 或﹣1【解析】【分析】根据题目中的方程和绝对值,可以求得相应的x的值和a的值.【详解】解:∵x2=4,∴x=±2,∵|a-2|=3,∴a-2=3或a-2=-3,解得,a=5或a=-1,故答案为±2,5或-1.【点睛】本题考查有理数的乘方、绝对值,解答本题的关键是明确有理数乘方和绝对值的意义.12.升降机运行时,如果下降13米记作“﹣13米”,那么当它上升25米时,记作_____.【答案】+25米.【解析】【分析】在表示具有相反意义的量时,先规定的量为正,则与之相反意义的量为负,在表示相反意义量时,要注意加单位.【详解】因为升降机运行时,如果下降13米记作“﹣13米”,所以当它上升25米时,记作+25米,故答案为+25米.【点睛】本题主要考查正数和负数的意义,解决本题的关键时要熟练掌握用正数和负数表示具有相反意义的量.13.点A在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B,则点B表示的数是_____.【答案】1或5【解析】【分析】此题借助数轴用数形结合的方法求解.由于点A与原点0的距离为2,那么A应有两个点,分别位于原点两侧,且到原点的距离为2,这两个点对应的数分别是-2和2.A向右移动3个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【详解】点A在数轴上距离原点2个单位长度,当点A在原点左边时,点A表示的数是-2,将A向右移动3个单位长度,此时点A表示的数是-2+3=1;当点A在原点右边时,点A表示的数是2,将A向右移动3个单位,得2+3=5.故答案为1或5.【点睛】此题考查数轴问题,根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.14.化简:(1)﹣(﹣2005)=_____(2)﹣|﹣2018|=_____【答案】(1). 2005(2). ﹣2018【解析】【分析】利用相反数和绝对值的意义,化简即可.【详解】(1)因为-2005的相反数是2005,所以-(-2005)=2005;(2)因为|-2018|=2018,所以-|-2018|=-2018.故答案为(1)2005,(2)-2018.【点睛】本题考查了相反数的意义和绝对值的化简,掌握相反数、绝对值的意义是解决本题的关键.15.绝对值是4的数是_____.平方得36的数是_____.【答案】(1). 4,﹣4(2). 6,﹣6【解析】【分析】利用绝对值,以及平方根定义计算即可求出值.【详解】绝对值是4的数是4,-4;平方得36的数是6,-6,故答案为4,-4;6,-6【点睛】此题考查了有理数的乘方,以及绝对值,熟练掌握乘方的意义是解本题的关键.16.计算:﹣8÷(﹣2)×12=_____.【答案】2 【解析】 【分析】原式从左到右依次计算即可得到结果. 【详解】原式=118=222⨯⨯. 故答案为2.【点睛】此题考查了有理数的乘除法混合运算,熟练掌握运算法则是解本题的关键.三.解答题17.计算:43116(2)31-+÷-⨯--. 【答案】-9. 【解析】 【分析】原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果. 【详解】原式()11684189=-+÷-⨯=--=-.【点睛】此题考查了有理数混合运算,熟练掌握运算法则是解本题的关键. 18.把下列各数填入相应的大括号里: -7 ,-0.5 ,-13,0 ,-98% ,8.7 ,2018 . 负整数集合:{ …}; 非负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …}. 【答案】-7;0,2018; 8.7; -0.5, - 13,-98%. 【解析】 【分析】根据实数的分类和性质进行判断即可. 【详解】解:负整数集合: { -7, …}; 非负整数集合:{ 0,2018, …};正分数集合: { 8.7, …};负分数集合:{ -0.5, - 13 ,-98% , …}. 【点睛】本题考查的是实数的分类和性质,解答此题应熟知以下概念:实数包括有理数和无理数;实数可分为正数、负数和0.19.若a,b 互为相反数,c,d 互为倒数,m 到原点的距离为2,求2(a+b)+3cd-|-m|的值.【答案】1【解析】【分析】首先求得m 的值,利用相反数,倒数的定义求出a+b 与cd 的值,代入原式计算即可得到结果 【详解】解:∵有理数m 所表示的点到原点距离2个单位,∴m=2或-2;根据题意得:a+b=0,cd=1,当m=2时,原式=1;当m=-2时,原式=1,则原式的值为1.【点睛】此题考查了代数式求值,数轴,相反数,以及倒数,熟练掌握各自的定义是解本题的关键. 20.有理数, ,在数轴上的位置如图所示,试化简:a c a b b a b c +-+--++【答案】3a c b --+【解析】解:根据数轴可得0a >,0b <,0c <且a b c <<,∴0a c +<,0a b c -->,0b a -<,0b c +<,∴a c a b c b a b c +-----++ ()()()a c a b c b a b c =-----+--+a c abc b a b c =---+++---3a c b =--+.故答案为3a c b --+.点睛:本题考查了数轴,绝对值的性质,以及合并同类项,根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小是解题的关键.21.一只小虫从某点A 出发,在一条直线上来回爬行,假定把向右爬行路程记为正数,向左爬行的路程记为负数,则爬行各段路程单位:(厘米)依次为:+6,﹣4,+10,﹣7,﹣6,+12,﹣10.(1)小虫爬完最后一段路程时距离出发点A多远?(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间?【答案】(1)1厘米;(2)110秒.【解析】【分析】(1)把记录到所有数字相加,即可求解;(2)记录到的所有的数字的绝对值的和,除以0.5即可.【详解】(1)∵+6﹣4+10﹣7﹣6+12﹣10=1,∴小虫爬完最后一段路程时距离出发点A1厘米远;(2)(6+4+10+7+6+12+10)÷0.5=55÷0.5=110(秒).答:小虫共爬行了110秒.【点睛】此题主要考查正负数在实际生活中的应用,掌握有理数的加减运算是解答此题的关键.22.出租车司机李叔叔从公司出发,在南北方向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):(1)接送完第5批客人后,李叔叔在公司什么方向?距离公司多少千米?(2)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米1.5元收费,在这过程中李叔叔共收到车费多少元?【答案】(1)6千米处;(2)49元.【解析】【分析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.【详解】(1)5+2+(﹣4)+(﹣3)+6=6(km)答:接送完第五批客人后,该驾驶员在公司的南边6千米处;(2)[8+(5﹣3)×1.5]+8+[8+(4﹣3)×1.5]+8+[8+(6﹣3)×1.5]=11+8+9.5+8+12.5=49(元)答:在这个过程中李叔叔共收到车费49元.【点睛】本题考查了正负数的意义,解题的关键是熟练运用正负数的意义.23.定义☆运算观察下列运算:(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,0☆(﹣15)=+15(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号_____,异号______.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.(2)计算:(+11)☆[0☆(﹣12)]=_____.(3)若2×(2☆a)﹣1=3a,求a的值.【答案】(1)两数运算取正号,并把绝对值相加;两数运算取负号,并把绝对值相加;等于这个数的绝对值;(2)23 ;(3)a为3或-1.【解析】【分析】(1)观察运算,即可得出运算法则;(2)根据法则计算即可;(3)分三种情况讨论:①a=0,②a>0,③a<0.【详解】(1)同号两数运算取正号,并把绝对值相加;异号两数运算取负号,并把绝对值相加等于这个数的绝对值;(2)原式=(+11) ☆(+12) =23 ;(3)①当a=0时,左边=2×2-1=3,右边=0,左边≠右边,所以a≠0;②当a﹥0时,2×(2+a)-1=3a,解得:a=3;③当a﹤0时,2×[-(2+a) ]-1=3a,解得:a=-1.综上所述:a为3或-1.【点睛】本题主要考查了有理数的混合运算,解题的关键是根据新定义列出关于x的一元一次方程.。

人教版七年级数学上册 第1章有理数 综合测试卷(含答案)

人教版七年级数学上册 第1章有理数  综合测试卷(含答案)

人教版七年级数学上册第一章有理数 综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.有下列关于“0”的说法:①0是正数和负数的分界;②0只表示“什么也没有”;③0可以表示特定的意义;④0是正数;⑤0是自然数;⑥0是非负数;⑦某地海拔为0 m 表示没有海拔.其中正确的有( ) A .3个B .4个C .5个D .6个2.若│a│=-a ,则a 的值是( ) A .正数B .负数C .非正数D .非负数3.下列说法正确的是( )A .有理数是指整数、分数、正有理数、零、负有理数这五类数B .有理数不是正数就是负数C .有理数不是整数就是分数D .有理数不是正数就是分数4.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是( )5.下列说法中,正确的是( )A .近似数3.58精确到十分位B .近似数1000万精确到个位C .近似数20.16万精确到0.01D .近似数2.77×104精确到百位 6. 下列运算正确的是( )A .-57+27=-⎝⎛⎭⎫57+27=-1 B .(-7-2)×5=-9×5=-45 C .3÷54×45=3÷1=3 D .-(-3)2=97.下列计算正确的有( )①(-3)×(-4)=-12;②(-2)×5=-10;③(-41)×(-1)=41;④0×(-5)=-5. A .1个 B .2个 C .3个 D .4个8.按如图所示的程序运算:当输入的数据为1时,则输出的数据是( )A .2B .4C .6D .89.若用科学记数法表示的数为3.61×108,则它的原数是( ) A .36 100 000 B .361 000 000 C .3 610 000 000D .36 100 000 00010.已知a >0,b <0,|a|<|b|<1,那么下列判断正确的是( ) A .1-b >-b >1+a >a B .1+a >a >1-b >-b C .1+a >1-b >a >-b D .1-b >1+a >-b >a 二.填空题(共8小题,3*8=24)11.如果某蓄水池的水位比标准水位高2 m ,记作+2 m ,那么比标准水位低0.8 m 应记作________,恰好在标准水位应记作________.12. 已知点A 为数轴上表示-2的点,当将点A 沿数轴移动4个单位长度到点B 时,点B 表示的数是____________.13.在-1,23,0.618,0,-5%,2 021,0.5中,整数有________个,分数有________个.14.化简下列各数:(1)-⎝⎛⎭⎫-12=________;(2)-(+3.5)=________;(3)+(-4)=________. 15.计算:(1)(-7)+(-3)=________; (2)(+4)+(-6)=________;(3)⎝⎛⎭⎫-213+213=________. 16.计算:(1)(-5)4=________;(2)-54=________;(3)⎝⎛⎭⎫-233=________.17.如果|a|a=-1,那么|a|+a =________.18. 若|x|=4,|y|=0.5,且xy<0,则xy 的值为________.三.解答题(共7小题, 66分) 19.(8分) 比较-78,-87,-89的大小.20.(8分) 计算:(1)(+9)-(+10)+(-2)-(-8)+3;(2)-5.13+4.62+(-8.47)-(-2.3).21.(8分) 一条直线流水线上依次有5个机器人,它们站的位置在数轴上依次用点A1,A2,A3,A4,A5表示,如图所示.(1)怎样移动点A3,使它先到达点A2,再到达点A5?请用文字语言说明.(2)若原点是零件供应点,则5个机器人分别到达供应点取零件的总路程是多少?(3)将零件供应点设在何处,才能使5个机器人分别到达供应点取零件的总路程最短?最短总路程是多少?22.(10分) 某班6名同学的身高(单位:cm)情况如下表:(1)完成表中空白的部分;(2)他们的最高身高与最矮身高相差多少?(3)他们6人的平均身高是多少?23.(10分) 已知a ,b ,c 满足│a -1│+2│b -3│+│c +4│=0,求2a -3b +4c 的值.24.(10分) 计算:(1)5-3÷2×12-│-2│3÷⎝⎛⎭⎫-12; (2)(-3)3-34×⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫-232-23-⎝⎛⎭⎫-123; (3)(-3)3÷214×⎝⎛⎭⎫-232+23+(-2)2×⎝⎛⎭⎫-23 .25.(12分) 点P ,Q 分别从A ,B 两点同时出发,在数轴上运动,它们的速度分别是2个单位长度/s 、4个单位长度/s ,它们运动的时间为t s.(1)如果点P ,Q 在点A ,B 之间相向运动,当它们相遇时,点P 表示的数是________; (2)如果点P ,Q 都向左运动,当点Q 追上点P 时,求点P 表示的数; (3)如果点P ,Q 在点A ,B 之间相向运动,当PQ =8时,求点P 表示的数.参考答案1-5BCCCD 6-10BBBBD 11. -0.8 m ,0 m 12. 2或-6 13. 3,414. 12;-3.5 ;-415. -10;-2;0 16. 625;-625;-82717. 0 18.-819. 解:因为⎪⎪⎪⎪-78=78,⎪⎪⎪⎪-87=87,⎪⎪⎪⎪-89=89, 而78<89<87,所以-78>-89>-87. 20. 解:(1)原式=(+9)+(-10)+(-2)+8+3=[(+9)+8+3]+ [(-10)+(-2)]=20+(-12)=8. (2)原式=-5.13+4.62+(-8.47)+2.3=[-5.13+(-8.47)]+(4.62+2.3)=-13.6+6.92=-6.68. 21. 解:(1)先向左移动2个单位长度,再向右移动6个单位长度.(2)5个机器人分别到达供应点取零件的总路程是4+3+1+1+3=12(个)单位长度.(3)分析可得,将零件供应点设在A 3处总路程最短,最短总路程是3+2+2+4=11(个)单位长度. 22. 解:(1)168,0,163,169,+5(2)根据表格知道最高为171cm ,最矮为163cm , 所以他们的最高与最矮相差171-163=8(cm). (3)166+-1+2+0-3+3+56=166+1=167(cm).所以他们6人的平均身高是167cm. 23. 解:因为|a -1|+2|b -3|+|c +4|=0, 所以a -1=0,b -3=0,c +4=0, 解得a =1,b =3,c =-4.所以2a -3b +4c =2-9-16=2+(-9)+(-16)=2+(-25)=-23. 24. 解:(1)原式=5-3×12×12-8×(-2)=5-34+16=2014.(2)原式=-27-34×⎝⎛⎭⎫49-8-⎝⎛⎭⎫-18=-27-34×49+34×8+18=-27-13+6+18=-21-524=-21524. (3)原式=-27×49×49+8+4×⎝⎛⎭⎫-23=-163+8-83=-8+8=0.25. 解:(1)-83(2)易得t =16-(-12)4-2=282=14.此时-12-2×14=-40, 即点P 表示的数是-40.(3)当PQ =8时,有以下两种情况: ①P ,Q 相遇前,t =28-82+4=103,此时点P 表示的数是-12+2t =-163;②P ,Q 相遇后,t =28+82+4=6,此时点P 表示的数是-12+2t =0. 综上所述,点P 表示的数是-163或0.。

人教版数学七年级上册第一章有理数综合测试卷含答案

人教版数学七年级上册第一章有理数综合测试卷含答案

A. a<bB. ab>0C.b-a>0D. a+b>03•下列计算正确的是()B. -12 - 51=3 D. ( -2 ) 3=-64•股民小王上周五买进某公司的股票,每股25元,下表为本周内该股票的涨跌情况,则本周五收盘时,该股票每股价格是( )星期一三 四 五每股涨跌(与前一天相比)-2.1+2 -12 +05 +0.3A.27」元B. 24.5 元C. 29.5 元5•如Mlal=7, lbl=5, a+b>0.试求 a-b 值为( )D. 25.8 元C. 2 和 12D. 2: 12; - 12; -26•-根】米长的小木棒,第-次截去它的!第二次截去剩余部分的第三次再截剩余部分的如此截下去,第五次后剩余的小木棒的长度是()人教版数学七年级上册第一章有理数测试及答案一.选择题1 •据相关报道,开展精准扶贫户工作五年来,我国约有5500万人摆脱贫困,国家发放扶贫资金共375亿元•将375亿用科学记数法表示为()A. 375x107B. 3.75x10®C. 3.75x109D. 37.5x10s2•已知花b 两数在数轴上的位置如图所示,下列结论正确的是()B.1- D. 1-二. 填空题2 ? 11.- k 的绝对值的相反数与-2 丁的相反数的差是 ______ 3312•如果两个数的绝对值相等,那么这两个数 ______ ・ 13•已知m 为最大的负整数,x 与y 互为相反数,则(x+y ) 2OIS+m 2= _______ ・14.在(-1) 20", (-1) 2 0叫一22, ______________________ (-3) 2中,最大的数与最小的数的和等于3 1 1 15•计算(--)x (-1-) - (-2-)的值为 _____ ・42416•有理数a, b, c 在数轴上的位置如图所示,化简lb - cl - Icl+lc - al= ・三. 解答题17 •汁算(1) - (3-5) +32x (1 -3)7•下列表述中,正确的是( )A. 有理数有最大的数,也有最小的数B. 有理数有最大的数,但没有最小的数C. 有理数有最小的数,但没有最大的数D. 有理数既没有最大的数,也没有最小的数 8•下列说法正确的是()A. 绝对值等于3的数是・3B. 绝对值不大于2的数有±2, ±1, 0D. 一个数的绝对值一宦大于这个数的相反数9 •现规左一种运算: 1 !=11 2!=2xl=2, 3!=3x2xl=6, 4!=4x3x2xl=24, A. 200B. 199200C.——199200*,则凹的值为( 199!D ・l10•当2<a<3时,代数式13 - al - 12 - al 的结果是( ) A. - 1B. 1C. 2a - 5D. 5 - 2ai8・(1)当a乂时.求邑的值.(写出解答过程)⑵若屈M),且性討,则兽的值为(3)若ab>0,则 + + H 的值为 ^a卩| ab19.某公司的线路检修小组在一条东西方向的马路上工作,从甲地出发,如果规泄向东行驶为正,向西行驶为负,下表记录的是检修小组从甲地岀发后连续七次行驶情况.(单位:km,每次行驶终点为下次行驶的起点)解答下列问题:(1)检修小组在第几次纪录时距甲地最远?(2)检修小组收工时,位于出发点甲地哪一侧,距甲地多远?20.股民李叔叔在上周星期五以每股11.2元买了一批股票,共购进5000股,下表为本周星期一到星期五该股票的涨跌情况:(1)求本周星期三收盘时每股的价格:(2)本周内每股最高是多少元?最低是多少元?(3)已知李叔叔买进股票时支付了0.15%的手续费,卖出时还需支付成交额的0.15%手续费和0.1%的交易税,如果李叔叔在星期五收盘时将全部的股票卖出,你对他的收益情况如何评价?21.—只小虫从某点O岀发在一条直线上来回爬行,假左向右爬行的路程记为正数,向左记为负数,爬行的各段路程依次为+5, -3, +11, -8, -6, +12, - 10.(单位:厘米)(1)小虫离开O点最远是 _____ 厘米.(2)小虫最后是否回到岀发点O的位巻?为什么?(3)在爬行过程中,每爬行1厘米被奖励两粒芝麻,则小虫可得多少粒芝麻?4 22 22.把下列各数填入相应的大括号内:・13.5, 0, +27, - y ,(1)正数集合:{ ______ }(2)负数集合:{ ______ }(3)整数集合:{ ______ }(4)分数集合:{ ______ }(5)非负整数集合:{ ______ }23.请观察下列疋义新运算的各式:103=1x4+3=7;30 (・ 1) =3x4 - 1 = 11;504=5x4+4=24:40 (・3) =4x4-3=13.(1)请你归纳:a0b= _______ :(2)若aMb,那么aOb ______ b0a (填“=“或¥'):(3)先化简,再求值:(a-b) O (2a+b),苴中a是最大的负整数,-10, 3.14b是绝对值最小的整数.答案与解析一. 选择题1.据相关报道,开展精准扶贫户工作五年来,我国约有5500万人摆脱贫困,国家发放扶贫资金共375亿元.将375亿用科学记数法表示为()A.375x107B. 3.75x10®C. 3.75x109D. 37.5x10s【答案】B【解析】【分析】科学记数法的表示形式为axion的形式,其中l<|a|<10, n为整数•确左n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数:当原数的绝对值VI时,n是负数.【详解】解:将375亿用科学记数法表示为3.75x10'°.故选B.【点睛】本题考查科学记数法一表示较大的数,解题关键是小数点移动了多少位,n的绝对值与小数点移动的位数相同2.已知a、b两数在数轴上的位置如图所示,下列结论正确的是()---- 1-- 1 ---- • -- >b a 0A.a<bB. ab>0C. b - a>0D. a+b>0【答案】B【解析】【分析】1、本题借助数轴,考查实数的正负性、有理数的运算法则的知识点,认识数轴是本题的突破口:2、基本数学思想是:数形结合的数学思想;3、做本题时注意:数轴上,距离原点越远的点所表示的数的绝对值越大越大,原点右边的数大于0,左边的数小于0,反之越小;4、根据数轴得到a、b的正确信息后,运用排除法进行刈断.【详解】解:由图知:b<a<0,所以aVb, a+b<0, b - a<0.所以选项A、C、D错误,因为同号得正,所以ab>0,选项B正确.故选B.-------- ------------- 1 ---- >b a 0【点睛】本题考査在数轴上比较两个有理数大小,有理数的加法,有理数的乘法,解题关键是从数轴上两个点的位置分析岀两个数大小:.3.下列计算正确的是( )A、( - 16) -r ( - 4) = -4 B. - 12 - 51=3C. ( - 3) 2=9D. ( -2) 3=-6【答案】C【解析】【分析】原式利用有理数的乘方,乘法,以及除法法则汁算得到结果,即可做出判断.【详解】解:A、( - 16) - ( -4) =4,故A错误:B、-12-51=-3,故B 错误;C、( -3 ) 2=9,故C 正确:D、( -2) 3=-8,故D 错误:故选C.【点睹】本题考査有理数的除法,绝对值的化简,有理数的减法,有理数的乘方,解题关键是熟练掌握法则.4.股民小王上周五买进某公司的股票,每股25元,下表为本周内该股票的涨跌情况,则本周五收盘时,该股票每股价格是( )【答案】B【解析】【分析】本题是一逍较为基础的题型,考查的是对正数和负数的实际意义的熟练程度,对于本题而言,星期五收盘时,该股票每股是:25 - 2.1+2 - 1.2+0.5+0.3=24.5 (元)•【详解】解:25 - 2.1+2 - 1.2+0.5+0.3=24.5 (元),故选B.【点睛】本题考査正数和负数的实际意义,解题关键是掌握本题中正数和负数的意义,这样可以提髙解题的速度和准确率.5.如果lal=7, lbl=5, a+b>0.试求a-b 的值为( )A.2B.12C.2 和12D. 2: 12; - 12: -2【答案】C【解析】【详解】绝对值等于7的数有正负7,绝对值等于5的数有正负5.Va+b>0,a=71b=±5 >.\a-b=2 或12.故选C.6•—根1米长的小木棒,第一次截去它的1,第二次截去剩余部分的丄,第三次再截剩余部分的1,如此截3 3 3下去,第五次后剩余的小木棒的长度是( )A. (-) 5B.2・(-)5C・(1 ) 5 D. 1 - (1 ) 53 3 3 3【答案】A【解析】【分析】根据题意可以得到第五次后剩下的小棒的长度,从而可以解答本题.【详解】解:由题意可得,第五次后乘9下的小棒的长度是:(1--)(1--)(1--)(1--)(1--)=( 2)5米,3 3 3 3 3 3故选A.【点睛】本题考査有理数的乘方,解答本题的关键是明确题意,求出第五次后剩下的小棒的长度.7.下列表述中,正确的是()A.有理数有最大的数,也有最小的数B.有理数有最大的数,但没有最小的数C.有理数有最小的数,但没有最大的数D.有理数既没有最大的数,也没有最小的数【答案】D【解析】【分析】根据有理数的分类,可得答案.【详解】解:有理数既没有最大的数,也没有最小的数.故选D.【点睹】本题考査了有理数,解决本题的关键是熟记没有最大的有理数,也没有最小的有理数.&下列说法正确的是()A.绝对值等于3的数是-3B.绝对值不大于2的数有±2, ±1, 0C.若lal= - a,则丄0D.一个数的绝对值一泄大于这个数的相反数【答案】C【解析】【分析】根据绝对值的性质进行解答,即一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【详解】解:A、绝对值等于3的数是3和-3,故错误;B、绝对值不大于2的整数有±2, ±1, 0,故错误;C、若lal= - a,则疋0,正确,D、负数的绝对值等于这个数的相反数,故错误,故选C.【点睛】本题考査的是绝对值的性质及相反数的定义,解答关键是熟知以下知识:(1)绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0;(2)相反数:只有符号不同的两个数叫互为相反数.200f9•现规泄一种运算:1!=1, 21=2x1=2, 31=3x2x1=6, 41=4x3x2x1=24,……,则’的值为( )200A. 200B. 199C.——D. 1199【答案】A【解析】【分析】首先观察已知条件,不难找到规律n!=nx(n-l)x(n-2)x...x2xi,注意不要找错对应关系:然后根据新运算法则将待求式转化为一般的算式,再进行化简、计算即可求出所要求的结果.200 x 199 x • • • x 1【详解】解:根据题中的新左义得:原式----------- ----- =200,199xl98x …xl故选A.【点睛】本题考査立义新运算,有理数的除法,有理数的乘法,解题关键是要根据题目所给的已知条件得到新运算的法则.20.当2<a<3时,代数式13 - al - 12 - al的结果是( )A. - 1B. 1C. 2a - 5D. 5 - 2a【答案】D【解析】【分析】根据绝对值的性质进行解答,即一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【详解】解:・・・2<&<3,.*.3 -a>0, 2 - a<0,.\13 - al - 12 - al=3 - a - a+2=5 - 2a,故选D.【点睛】本题考査的是绝对值的性质,解答关键是熟练掌握绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.二. 填空题2?11.-幺的绝对值的相反数与-2-的相反数的差是________ ・3 3【答案】-3-.3【解析】【分析】27根据绝对值的性质和相反数的泄义分别求岀-土的绝对值的相反数与-2二3 3的相反数,再相减即可得出.2 2 2 2【详解】解:■丁的绝对值的相反数为--> -2-的相反数为2-,3 3 3 33 3 3故答案为-3丄3【点睹】本题考査有理数的减法,相反数,绝对值,解题关键是熟练掌握绝对值、相反数的意义.12.___________________________________ 如果两个数的绝对值相等,那么这两个数•【答案】相等或互为相反数.【解析】【分析】根据绝对值的定义及性质可知,一对相反数的绝对值相等,故如果两个数的绝对值相等,那么这两个数可能相等,也可能互为相反数.【详解】解:如果两个数绝对值相等,那么这两个数可能相等,也可能互为相反数.故答案为相等或互为相反数.【点睛】本题考查绝对值、相反数的意义,解题关键是熟练、准确掌握意义.13.____________________________________________________ 已知m为最大的负整数,x与y互为相反数,则(x+y) 2。

人教版七年级数学上册第一章有理数综合测试题(含答案)

人教版七年级数学上册第一章有理数综合测试题(含答案)

第一章有理数综合测试卷第Ⅰ卷 (选择题 共30分)一、选择题(每题3分,共30分) 1.6.0009精确到千分位是( ) A .6.0 B .6.00 C .6.000 D .6.0012.某商场购进某品牌上衣30件,下列与购进某品牌上衣30件具有相反意义的量是( )A .发给员工这种上衣10件B .售出这种上衣10件C .这种上衣剩余10件D .穿着这种上衣10件3.在-0.4217中用数字3替换其中的一个非零数字后,使所得的数最小,则被替换的数字是( )A .4B .2C .1D .74.对下列各式计算结果的符号判断正确的是( ) A .(-2)×(-213)×(-3)<0 B .(-5)-5+1>0C .(-1)+(-13)+12>0 D .(-1)×(-2)<05.两数相减,如果差等于减数的相反数,那么下列结论中正确的是( ) A .减数一定是零 B .被减数一定是零C .原来两数互为相反数D .原来两数的和等于1 6.下面是小卢做的数学作业,其中正确的是( )①0-(+47)=47;②0-(-714)=714;③(+15)-0=-15;④(-15)+0=-15.A .①②B .①③C .①④D .②④7.某工厂为了完成一项任务,第一天工作15分钟,以后的五天中,后一天的工作时间都是前一天的2倍,则第六天的工作时间是( )A .1.5小时B .3小时C .4.8小时D .8小时8.计算12÷(-3)-2×(-3)的结果是( )A.-18 B.-10 C.2 D.189.如图1,数轴上的点P,O,Q,R,S表示某城市一条大街上的五个公交车站点,有一辆公交车距P站点3 km,距Q站点0.7 km,则这辆公交车的位置在( )图1A.R站点与S站点之间 B.P站点与O站点之间C.O站点与Q站点之间 D.Q站点与R站点之间10.计算机中常用的十六进制是逢16进1的记数制,采用数字0~9和字母A~F共16个记数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=( )A.16 B.1C C.1A D.22请将选择题答案填入下表:第Ⅱ卷(非选择题共70分)二、填空题(每题3分,共18分)11.倒数为3的数是________.12.已知a-3与b+4互为相反数,则a+b=________.13.每袋大米以50 kg 为标准,其中超过标准的千克数记为正数,不足标准的千克数记为负数,则图2中自左向右数第3袋大米的实际重量是________kg .图214.若|x +2|+|y -3|=0,则x -y 的值为________.15.2016年春节期间,在网络上搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为__________.16.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是________(填“一类、二类、三类”中的一个).三、解答题(共52分)17.(本小题满分6分)把下列各数分别填在相应的括号里: -7,3.01,2018,-0.142,0.1,0,99,-75.整数集合:{ …}; 分数集合:{ …}; 负有理数集合:{ …}.18.(本小题满分6分)一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?图319.(本小题满分6分)规定“*”是一种新的运算法则:a*b=a2-b2,其中a,b为有理数.(1)求2*6的值;(2)求3*[(-2)*3]的值.20.(本小题满分6分)计算: (1)-14-(1-0.5)÷3×[2-(-3)2];(2)0.7×1949+234×(-14)+0.7×59+14×(-14).21.(本小题满分6分)小宇在做分数的乘除法练习时,把一个数乘-213错写成除以-213,得到的结果是1835,这道题的正确结果应该是多少?22.(本小题满分7分)小明有5张写着不同数的卡片,请你分别按要求抽出卡片,写出符合要求的算式:-3 -5 0 +3 +4(1)从中取出2张卡片,使这2张卡片上的数的乘积最大; (2)从中取出2张卡片,使这2张卡片上的数相除的商最小;(3)从中取出2张卡片,使这2张卡片上的数通过有理数的运算后得到的结果最大;(4)从中取出4张卡片,使这4张卡片通过有理数的运算后得到的结果为24.(写出一种即可)23.(本小题满分7分)某检修小组乘车从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶路程记录如下(单位:千米):(1)在第________次记录时距A地最远;(2)求收工时距A地多远;(3)若每千米耗油0.1升,每升汽油需7.2元,则检修小组工作一天需汽油费多少元?24.(本小题满分8分)股民吉姆上星期买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(上涨记为正,下跌记为负,星期六、星期日股市休市)(单位:元):(1)星期三收盘时,每股是多少元?(2)本周内每股最高价是多少元?最低价是多少元?(3)已知吉姆买进股票时付了1.5‰的手续费,卖出时还需付成交额的1.5‰的手续费和1‰的交易税,如果吉姆在星期五收盘前将股票全部卖出,他的收益情况如何?1.D 2.B 3.B 4.A 5.B 6.D 7.D 8.C 9.D 10.A 11.1312.-1 13.49.3 14.-5 15.4.51×10716.二类 17.解:整数集合:{-7,2018,0,99,…};分数集合:⎩⎨⎧⎭⎬⎫3.01,-0.142,0.1,-75,…;负有理数集合:⎩⎨⎧⎭⎬⎫-7,-0.142,-75,….18.解:(1)如图:(2)根据(1)可得小明家与小刚家相距4-(-5)=9(千米). 19.解:(1)根据题意,得2*6=22-62=4-36=-32. (2)根据题意,得(-2)*3=4-9=-5, 则3*[(-2)*3]=3*(-5)=9-25=-16.20.解:(1)原式=-1-0.5×13×(2-9)=-1-16×(-7)=-1+76=16.(2)原式=0.7×(1949+59)+(-14)×(234+14)=0.7×20-14×3=14-14×3=14×(1-3)=14×(-2)=-28.21.解:根据题意,得1835×(-73)×(-73)=145.22.解:(1)(-3)×(-5)=15. (2)-5÷(+3)=-53.(3)(-5)4=625.(4)答案不唯一,如[(-3)-(-5)]×(+3)×(+4)=2×12=24. 23.解:(1)由题意,得第一次距A 地|-3|=3(千米);第二次距A地|-3+8|=5(千米);第三次距A地|-3+8-9|=4(千米);第四次距A地|-3+8-9+10|=6(千米);第五次距A地|-3+8-9+10+4|=10(千米);而第六次、第七次是向相反的方向又行驶了8千米,所以在第五次记录时距A地最远.故答案为五.(2)根据题意,得-3+8-9+10+4-6-2=2(千米).答:收工时距A地2千米.(3)根据题意,得检修小组工作一天行驶的路程为|-3|+|+8|+|-9|+|+10|+|+4|+|-6|+|-2|=42(千米),42×0.1×7.2=30.24(元).答:检修小组工作一天需汽油费30.24元.24.解:(1)星期三收盘时,每股是27+4+4.5-1=34.5(元).(2)本周内每股最高价为27+4+4.5=35.5(元),最低价为27+4+4.5-1-2.5-6=26(元).(3)买入成本:1000×27×(1+1.5‰)=27040.5(元),卖出所得:1000×26×(1-1.5‰-1‰)=25935(元).收益:25935-27040.5=-1105.5(元).答:如果吉姆在星期五收盘前将股票全部卖出,他将亏损1105.5元.。

人教版七年级数学上册第一章《有理数》综合测试卷(含答案)

人教版七年级数学上册第一章《有理数》综合测试卷(含答案)

人教版七年级数学上册第一章《有理数》综合测试卷(含答案)时间90分钟 满分120分 班级 姓名一.选择(每题4分,共计40分)1.在有理数1,-1,0,- 13中最小的数是( ).A.1B.-1C.0D. - 132.若有理数a 满足a-︱a ︱=2a,则( ).A.a ﹥0B. a ﹤0C. a ≥0D.a ≤03.下列各组数中互为相反数的是( ).A.-︱-2 ︱与-︱+2︱B.+(-14 )与-(+0.25)C. (-4)2与-42D.-7与-174.下列各数:+(-5.2),+1,-( - 32),0,-∣-2︱,-1.732中,非正数的个数是( ).A. 1个B. 2个C. 3个D. 4个5.某种面粉的袋子上保存的温度是(-8 ±2)℃,以下几个温度中,不适合储存这种食品的是( ).A.-5℃B. -6 ℃C. -7℃D.-8℃6.若a 的相反数是-1.5,则1a 的值是( ).A.23B. 32C.−23D.−327.计算(-2)2021+(-2)2022的结果是( ).A.- 22021B.22021C.-22022D.220228.下列说法正确的个数是( ).(1)任何数都不等于它的相反数.(2)互为相反数的两个数的的同一偶数次方相等.(3)如果a 大于b ,那么a 的倒数小于b 的倒数.(4)0的任何次幂都是0.A.1个B. 2个C. 3个D.4个9.把a 精确到百分位的近似数是3.27,则a 的取值范围是( ).A.3.265﹤a ﹤3.275B.3.265≤a ﹤3.275C.3.265﹤ a ≤3.275D.3.265≤a ≤3.27510.已知a,b 是有理数,若a 在数轴上的对应点的位置如图所示,且a+b ﹤0,有以下结论,①b ﹤0;②a-b ﹤0;③b ﹤-a ﹤a ﹤-b;④∣a ︱﹤∣b ∣.其中正确结论的个数是( ).A. 1个B. 2个C. 3个D.4个二.填空(每题5分,共计30分)11.我国倡导的“一带一路”建设促进我国与世界一些国家的互利合作,根据规划,“一带一路”地区覆盖总人口约为 4 400 000 000 ,用科学计数法表示为______________..12.绝对值不大于4.5的整数有_____________个.13.定义“¤”的运算法则为a ¤b=ab-b,如3¤2=3×2-2=4,那么(-4)¤(-7)=__________.14..若x,y 互为相反数,a,b 互为倒数,c 的绝对值等于1,则(x+y 3)2021 -(-ab )2022 +c 2021 =_____________.15.在数轴上,若点A 与表示-2的点相距7.5个单位,则A 表示的数是______________.16. 观察下面一列数,按规律在横线上填上适当的数12,-36,512,-720,____,_____. 三.解答题(每题10分,共计50分)17.计算:(1)︱-2︱×(-5)-(-1)5÷(−13)2(2)-0.54÷(-14)2+(334-1.375-213)÷(−124)˙˙0 a18.根据某地实验测得的数据表明,高度每增加1KM,气温大约下降6℃,已知该地面气温为21℃.(1)高空某处高度为8KM,求此处的温度是多少;(2 )高空某处温度为-24℃,求此处的高度.19.已知︱x︱=7,︱y︱=4.(1)若x﹥y,求x+y的值.(2)若︱x+y︱=︱x︱-︱y︱,求x,y的值.20.如图所示,在一条不完整的数轴上从左到右有点A,B,C.其中AB=2,BC=1,设点A,B,C 所对应的数之和是m,所对应数之积是n.(1)若以B 为原点,写出点A,C 所对应的数,并计算m 值;若以C 为原点,m 又是多少?(2)若原点O 在图中数轴上点C 的右边,且CO=4,求的值.21. 阅读例题,解决问题:例题:求1+2+22+23+24+···+2100的值.如何求它的值呢?解:设S=1+2+22+23+24+ (2100)则2S=2+22+23+24+···+2100+2101;两式相减得S=2101-1.请解决下面两个问题:(1)试求1+5+52+53+54+···+52021的值.(2)远望巍巍塔七层,红光点点倍加增,共灯三百八十一,试问尖头几盏灯?(注:红灯,指每层都挂着大红灯笼的灯光;倍加增,指每层灯盏数都是上一层的2倍,尖头,指塔顶层.问尖头有几盏灯.A B C参考答案一.选择:1-5. B D C D A 6-10.A B A B C二.填空:11. 4.4×10912. 9个 13.3514. 0或-2 15.-9.5或5.5 16.930 ;-114217.(1)-1; (2)-218.(1)-27℃; (2)7.5KM.19. (1)11或3; (2)x=7,y=-4或x=-7,y=4.20.(1)A,C 对应的数分别是-2,1,m=-1; A,B 对应的数分别为: -3,-1,m=-4.(2)n=-14021.(1)52022−14;(2)3盏.。

人教版七年级上册数学第一章 有理数含答案(综合考察)

人教版七年级上册数学第一章 有理数含答案(综合考察)

人教版七年级上册数学第一章有理数含答案一、单选题(共15题,共计45分)1、计算下列各式,结果为负数的是()A. B. C. D.2、数轴上表示整数的点称为整点.某数轴的单位长度是1 ,若在这个数轴上随意画出一条长为2020 的线段,则线段盖住的整点个数是()A.2018或2019B.2019或2020C.2020或2021D.2021或20223、若与互为相反数,则的值为()A.-bB.C.-8D.84、,两数在数轴上的位置如图所示,下列结论中,正确的是()A. ,B. ,C.D.5、一个物体作上下方向的运动,规定向上运动5m记作+5m,那么向下运动5m 记作()A.﹣5 mB.5 mC.10 mD.﹣10 m6、-6×0×(-10)=()A.0B.4C.-6D.6或07、据调查:仅我国大学食堂中,每天就倒掉了大约人的一天所需食物,其浪费程度令人震惊!将用科学记数法表示为( )A. B. C. D.8、|﹣3|=()A.﹣3B.﹣2C.3D.29、4的相反数等于()A.4B.C.﹣4D.﹣10、下列各组数中,相等的一组是()A.(﹣2)3和﹣(﹣2 3)B.﹣(﹣2)和﹣|﹣2|C.(﹣2)2和﹣(﹣2 2)D.|﹣2| 3和﹣|2| 311、太阳半径约696000千米,则696000千米用科学记数法可表示为()A.0.696×10 6B.6.96×10 8C.0.696×10 7D.6.96×10 512、若每人每天浪费水0.32升,那么100万人每天浪费的水,用科学记数法表示为()A. 升B. 升C. 升D. 升13、如果a=a³成立,则a可能的取值有().A.1个B.2个C.3个D.无数个14、已知地球上海洋面积约为316 000 000km2, 316 000 000这个数用科学记数法可表示为()A.3.16×10 9B.3.16×10 8C.3.16×10 7D.3.16×10 615、两个数的和是负数,面积是正数,那么这两个数()A.都是正数B.都是负数C.一正一负D.同号二、填空题(共10题,共计30分)16、的绝对值等于________;﹣的倒数是________.17、绝对值最小的整数是________18、的倒数是________ ,的相反数是________ .19、比较下列每组数的大小:(1)0________-2;(2)-13________-21.20、五峰山长江大桥是连淮扬镇铁路的关键控制性工程,位于连镇高铁扬州东至大港南站间,是世界上首座运行荷载量最大的高速公铁两用悬索桥.五峰山长江大桥全长6.409千米,精确到0.01千米,其近似值为________千米.21、某整数用科学记数法表示为-7.8×104,则此整数是________22、两个有理数的和为5,其中一个加数是–7,那么另一个加数是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A. 1 个 B. 2 个 C. 3 个
D. 4 个
12.某粮店出售的三种品牌的面粉袋上,分别标有质量为
.1 、
. 的字样,从中任意拿出两袋,它们的质量最多相差
.、
A. .
B. .体
C. .
D. .4
13.点 M 为数轴上表示 的数是
的点,将点 M 沿数轴向右平移 5 个单位到点 N,则点 N 表示
人教版七年级数学上册第一章 有理数 综合过关测试题
一、选择题
1.下列说法:① − 一定是负数;②| − |一定是正数;③倒数等于它本身的数是± 1; ④绝对值等于它本身的数是 1;⑤平方等于它本身的数是 1.其中正确的个数是
A. 1 个 B. 2 个 C. 3 个 D. 4 个
2.若

,则

A. ±
A. 1 个 B. 2 个 C. 3 个 D. 4 个
5.某地一天的最高气温是 ,最低气温是 ,则该地这天的温差是
A. 1
B. 1
C. 体
D. 体
6.下列不是具有相反意义的量是
A. 前进 5 米和后退 5 米 B. 收入 30 元和支出 10 元 C. 向东走 10 米和向北走 10 米 D. 超过 5 克和不足 2 克
7.已知| | = ,| | = 4,且 ab < ,则 − 的值为 ()
A. 1 或 7
B. 1 或−
C. ± 1 D. ±
8.A,B 是数轴上两点,线段 AB 上的点表示的数中,有互为相反数的是
A.
B.
C.
D.
9.大米包装袋上 1
.1 的标识表示此袋大米重
第 1页,共 4页
A. . ~1 .1
൅ t ൅ | = t 千米;
而第六次、第七次是向相反的方向又行驶了共 8 千米,
所以在第五次记录时距 A 地最远.
故答案为五;
根据题意得检修小组走的路程为:
| | ൅ | ൅ | ൅ | | ൅ | ൅ t | ൅ | ൅ | ൅ | | ൅ | | = 记ā ,
. =t . 升 .
答:共耗油 t . 升.
t t
=t = ;
原式= t
t
t=
t = t t.
22. t 根据题意列式 ൅
൅t ൅
=,
答:收工时距 A 地 2km. 由题意得,第一次距 A 地| | = 千米;
第二次距 A 地 ൅ = 千米;
第三次距 A 地| ൅
| = 千米;
第四次距 A 地| ൅
൅ t | = 千米;
第五次距 A 地| ൅
B. 1 .1
C. .
D. 10kg
10.已知 a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,那么 ൅ ൅ |൅| 等于
A. 1 B. 0
C. 1 D. 2
11.下列说法正确的个数有 1 有理数的绝对值一定比 0 大;
有理数的相反数一定比 0 小; 如果两个数的绝对值相等,那么这两个数相等; 4 所有的有理数都能用数轴上的点来表示; 两数相减,差一定小于被减数.
D. D. 1 D. 1
第 页,共 4页
19.计算
൅ 1体 的结果是
A. 4
B. 4
C. 1体
20.若 = 4,| | = ,且 a,b 异号,则 − 的值为
A. −
B. ±
C. 5
二、计算题
21.计算:
D. 2016 D. −
1
11 ൅ ൅体
1;
1
4

1
.
体 ൅ 1.4

1 11 4
4
4
11 ൅
第 页,共 4页
答案
1.A2.D3.D4.D5.A6.C7.D8.B9.A10.B 11.A12.B13.A14.A15.A16.B17.C18.D19.A20.B
21. t 原式=
tt൅

t t
=
t t

t t

t t
=
t

原式= t ൅
t൅
. t. = tt ൅ = ;
原式= t
t t
൅t
t
=t
第 4页,共 4页
B. ± 1体 C. − 和− 1体 D. ± 和± 1体
3.若数轴上表示− 1 和 3 的两点分别是点 A 和点 B,则点 A 和点 B 之间的距离是
A. − 4 B. −
C. 2 D. 4
4.下列说法错误的有 最大的负整数是 1; 绝对值是本身的数是正数; 有理数分为正有理数和负有理数; 数轴上表示 的点一定在原点的左边; 在数轴上 7 与 9 之间的有理数是 8.
A. 3 B. 5 C.
D. 3 或
14.计算
的结果等于
A.
B.
C. 3
D. 7
15.四个数 ,0,1,2,其中负数是
A.
B. 0
C. 1
D. 2
1体. 1 的倒数是
A.
B.
1.
1
1的倒数与
4
4
的相反数的商是
A.
B. 5
18.如果 a 与 3 互为倒数,那么 a 是
A.
B. 3
C. 1 C. 1 C. 1
4 1.
三、解答题
22.某检修小组从 A 地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向 西行驶为负,一天中七次行驶记录如表 单位:
第一次 第二次 第三次 第四次 第五次 第六次 第七次൅Leabharlann ൅1൅4体
1 求收工时距 A 地多远? 在第______次记录时距 A 地最远. 若每千米耗油 . 升,问共耗油多少升?
相关文档
最新文档