高中数学独立重复试验与二项分布精品优质课教案

合集下载

独立重复试验与二项分布教案

独立重复试验与二项分布教案

课题 独立重复试验与二项分布教学目标 知识与能力 理解n 次独立重复试验的模型及二项分布,会判断一个具体问题是否服从二项分布,并能解答一些简单的实际问题。

过程与方法 启发引导、主动探究,从具体事例中归纳出数学概念,体现从特殊到一般,从具体到抽象的数学思想方法。

情感,态度与价值观 培养学生学习数学的兴趣、锲而不舍的钻研精神;初步认识数学的应用价值、科学价值重点 理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题难点 理解并会运用二项分布模型求概率 教师 王冰 教具 多媒体课件教 学 过 程一 复习回顾:引言:前面我们学习互斥事件,条件概率,相互独立事件的意义,这些都是我们在具体求概率时需要考虑的一些模型,请同学们回顾概率公式概率公式:P (A+B)=P(A)+P(B)(A,B 为互斥事件)推广:如果事件12,,,n A A A 彼此互斥,1212()()()()n n P A A A P A P A P A ++⋅⋅=++⋅+ P(B/A)=P(AB)/P(A)P(AB)=P(A)P(B)(A,B 为相互独立事件)推广:如果事件12,,,n A A A 相互独立,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅二 新课引入:1.吻合模型求概率会非常方便, 那么求概率还有什么模型呢?首先我们来分析下面的试验,它们有什么共同特点?课件(1)(由学生回答)独立重复试验的特征:(1)每次试验是在同样条件下进行的.(2)各次试验中的事件是相互独立的.(3)每次试验都只有两种结果,即某事件要么发生要么不发生.(4)每次试验,某事件发生的概率是相同的.3.给出n 次独立重复试验定义:一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验4下面我们以独立重复试验为背景,探究新的概率模型:教科书56探究:投掷一枚图钉,连续掷3次,出现k 次针尖向上概率问题的讨论5定义:随机变量X 的二项分布:一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为P,则k n k k n p p C k X P --==)1()(,(k =0,1,2,…,n ).此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率。

独立重复试验与二项分布精品教案

独立重复试验与二项分布精品教案

独立重复试验与二项分布【教学目标】1.正确理解n次独立重复试验的定义2.掌握二次分布模型3.会利用二项分布模型解决实际问题【教学重难点】重点:独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。

难点:二项分布模型的构建。

【教学用具】不透明袋子,白、黄乒乓球各一个【教学过程】一、创设情境,导入新课:取球游戏:不透明袋子内有一白一黄2个乒乓球,同学有放回地从袋中取球6次,取出的球至少三次为黄色,学生胜,否则老师胜。

问题:在这一个实验中,前一次取出的结果是否影响后一次的结果?既每次取出的结果是否相互独立?归纳这一实验特点:①在相同条件下②重复做同一实验③实验结果只有对立的两个例1:“重复抛一枚硬币 8 次,其有5次正面向上”例2:重复掷一粒骰子3次,其中有2次出现 1 点的概率。

学生归纳:各次实验结果不会受其它次试验结果影响。

定义:在相同条件重复做的n次试验称为n次独立重复试验。

二、提出问题,探究新知:游戏中,每次取球时,取到黄球的概率为p,则没取到黄球的概率 1-p连续取球3次,就是做了3次独立重复试验,用A i(i=1,2,3)表示事件“第i次取到黄球”,用{X=k}(k=0,1,2,3)表示事件“仅出现k次黄球”(组织学生讨论、交流解决问题)事件情况:321321321321321321321321}3{)()()(}2{)()()(}1{}0{A A A X A A A A A A A A A X A A A A A A A A A X A A A X ======== 概率的计算:3321232132132123213213213321321)()3()1(3)()()()2()1(3)()()()1()1()()()()()0(P A A A P X P P P A A A P A A A P A A A P X P P P A A A P A A A P A A A P X P P A P A P A P A A A P X P ===-=++==-=++==-=++===观察归纳 )3,2,1,0()1()(33=-==-k P P C k X P k k k 归纳总结(二项分布定义)在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为P ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为:),...2,1,0()1()(n k P P C k X P k n k k n =-==-则称随机变量X 服从二项分布记作 ~ B (n ,p )。

高中数学《独立重复试验与二项分布》精品公开课教案设计

高中数学《独立重复试验与二项分布》精品公开课教案设计

独立重复试验与二项分布
一、教学内容解析
本节内容是高中数学人民教育出版社B版《选修2-3》中的2.2.3节独立重复试验与二项分布.在自然现象和社会现象中,大量的随机变量都服从或近似服从二项分布,它的实际应用广泛,理论上也非常重要.本节课是从生活实际入手,了解独立重复试验,推导概率公式,掌握二项分布,实现建立数学模型,认知数学理论,进而应用于实际,本节课的重点是独立重复试验,以及对伯努利概型和有关二项分布问题的理解.
二、教学目标设置
(1)理解n次独立重复试验及二项分布模型,会判断一个具体问题是否服从二项分布.
(2)通过主动探究、自主合作、相互交流,从具体事例中归纳出数学概念,学生充分体会知识的发现过程,并体会由特殊到一般,由具体到抽象的数学思想方法.学生感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,养成实事求是的科学态度和锲而不舍的钻研精神.
三、学生学情分析
通过前面的学习,高二学生已经掌握了如下概率和统计的基础知识:等可能事件概率、互斥事件概率、离散型随机变量的分布列、条件概率、相互独立事件概率的求法等有关内容.高中学生虽然具有一定的抽象思维能力,但是从实际中抽象出数学模型对于学生来说还是比较困难的,需要老师的启发引导,在启发引导下学生能够概括n次独立重复试验的特点,能够总结出n次独立重复试验中事件A发生k次的概率公式.难点是二项分布模型的构建.
四、教学策略分析
从掷硬币和掷骰子的试验入手,引导学生总结归纳独立重复试验的概念,深刻理解独立重复试验的内涵.遵循特殊到一般的认识规律,学生由浅入深地探索伯努利概型的概率公式并引入二项分布.学生利用所学知识解决他们熟悉的生活实例中的概率问题,体会“数学来源于生活,并服务于生活”的理念,进而产生成就感.
五、教学过程设计
1。

独立重复试验与二项分布精品教案

独立重复试验与二项分布精品教案

二项分布。
(2)在 10 次射击中,至少有 2 次击中目标的概率为
P( X 8) P( X 8) P( X 9) P( X 10)
= C180 ×0.88×(1-0.8)10-8
2
+ C190 ×0.89×(1-0.8)10-9
+
C10 10
×0.810×(1-0.8)10-10
2.2.3 独立重复试验与二项分布
【学情分析】:
教学对象是高二理科学生,已具有一定的归纳、抽象的能力 ,研究了两点分
布、超几何分布,初步掌握概率与统计的知识,学习了离散型随机变量的分布,
但比较畏惧有实际背景的数学应用问题,分析问题、解决问题的能力比较薄
弱 ;数学建模能力不足。
【教学目标】:
1、 知识与技能
(4)要保证击中目标概率大于 0.99,至少应射击多少次?(结果保 2.计算借助计算器;
留两个有效数字)
3.计算结果的解释;
解:设 X 为击中目标的次数,则 XB(10,0.8). (1) 在 10 次射击中,恰有 8 次击中目标的概率为
4.第(3)、(4)问有 助学生更深刻理解
P( X 8) C180 ×0.88×(1-0.8)10-8≈0.30
2 定义:在 n 次独立重复试验中,事件 A 发生的次数为 X,在每次
试验中事件 A 发生的概率为 P,那么在在 n 次独立重复试验中事件 A
恰好发生 k 次的概率是
P(X
K=0,1,2,3,……n
k)
C
k n
P
k
(1

P )nk
此时称随机变量X服从二项分布,记作XB(n,p)。并称P为成功概率。 注意:n,p,k 分别表示什么意义?

课题:独立重复试验与二项分布(第一课时)公开课教案

课题:独立重复试验与二项分布(第一课时)公开课教案

课题:独立重复试验与二项分布(第一课时)授课教师: 江鹏 时间:2015年4月3日 班级:高二2班教学目标1、理解n 次独立重复试验及二项分布模型,了解二项分布模型与二项式定理及两点分布的联系。

2、会判断一个具体问题是否是n 次独立重复试验,是否服从二项分布,培养学生的自主学习能力、数学建摸能力。

3、在小组合作学习中,独立思考与合作交流结合,使学生在互交互学中达到知识互补与内化,增强合作意识与培养良好的人际交往能力。

教学重点理解n 次独立重复试验及二项分布模型教学难点n 次独立重复试验及二项分布模型的应用教学手段多媒体辅助教学教学基本流程:(一)创设情景 导入新课1、用三个臭皮匠顶个诸葛亮的数学分析导入课堂,激起学生兴趣。

2、尝试练习;问题1:分析下面的试验,是否为独立重复试验?它们的相同点是什么?⑴投掷一个硬币投掷5次;⑵某人射击1次,击中目标的概率是0.8,他射击10次;(3)一个盒子中装有5个球(3个红球和2个黑球),有放回地依次从中抽取5个球;(4)生产一种零件,出现次品的概率是0.04,生产这种零件4件.问题2:判断下列试验是不是独立重复试验.(1)依次投掷四枚质地不同的硬币,3次正面向上.(2)某人射击,击中目标的概率是稳定的,他连续射击了10次,其中6次击中.(3)口袋中装有5个白球、3个红球,2个黑球,依次从中抽取5个球,恰好抽出4个白球.(二)小组合作,师生互动探究。

以此进行n 次独立重复试验的概念辨析。

教师提示学生从各次试验的条件,结果,独立性,概率等角度归纳总结。

(三)n 次独立重复试验:一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验.在n 次独立重复试验中,记)()()()(P P n 321n 321A P A P A P A A A A A i A i )(次试验的结果”显然,是“第 独立重复试验的特点:1)每次试验只有两种结果,要么发生,要么不发生;2)任何一次试验中,A 事件发生的条件相同,概率相同,即相互独立,互不影响试验的结果。

独立重复试验和二项分布教学案

独立重复试验和二项分布教学案

课题:独立重复试验与二项分布BGST 运用:1、课程标准:使学生正确理解独立重复试验与二项分布的意义,解决一些简单的实 际应用问题。

2、学习目标:理解n 次独立重复试验及二项分布模型,会判断一个具体问题是否服从二项分布,培养学生的自主学习能力、数学建摸能力,并能解决相应的实际问题。

3、教学重点:独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。

4、教学难点:二项分布模型的构建。

5、考点解读:古典概型使用公式时,确定m 和n 是关键;几何概型要统一度量;会计算n 次独立重复试验中恰好发生k 次。

独立重复试验与二项分布一、复习引入(大约2分钟):1. 已知事件B 发生条件下事件A 发生的概率称为事件A 关于事件B 的条件概率,记作(|)P A B .2. 对任意事件A 和B ,若()0P B ≠,则“在事件B 发生的条件下A 的条件概率”,记作P(A | B),定义为(|)P A B =3. 事件B 发生与否对事件A 发生的概率没有影响,即(|)()P A B P A =,称A 与B4. 离散型随机变量X 服从参数为p 的二点分布:如果离散型随机变量X 的分布列为 则称离散型随机变量X 服从参数为p 的二点分布。

二点分布二、概念形成(大约10分钟)实例1:将一枚均匀硬币随机掷10次,求正好出现5次正面的概率。

思考1、前一次结果是否影响后一次?也就是每次的结果是否相互独立?2、每次试验的结果有几个?结论1、各次试验结果不会受其他次试验结果影响;2、本小节涉及的每次试验,只考虑有两个可能的结果A 及 ,并且事件A 发生的概率相同。

在相同条件下,重复的做n次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验。

实例2:姚明在某场比赛中得到4次罚球机会,假设每次投篮都互不影响。

如果姚明投篮命中的概率为p,求投中X次的概率。

A表示事件“第k次投中”分析:用k一般的,事件A在n次试验中发生k次,共有种情形,由试验的独立性知道A在k 次试验中发生,而在其余次试验中不发生的概率都是(在一次试验中事件A发生的概率是p),那么,在n次独立重复试验中,事件A恰好发生k次的概率为例1、在人寿保险事业中,很重视某一年龄段的的投保人的死亡率,假如每个投保人能活到65岁的概率为0.6,试问3个投保人中:(1)全部活到65岁的概率;(2)有两个活到65岁的概率;(3)有1个活到65岁的概率;(4)都活不到65岁的概率。

-独立重复试验与二项分布 获奖教案

-独立重复试验与二项分布  获奖教案

2.2.3 独立重复试验与二项分布教材分析本节内容是新教材选修2-3第二章《随机变量及其分布》的第二节《二项分布及其应用》的第三小节。

通过前面的学习,学生已经学习掌握了有关概率和统计的基础知识:等可能事件概率、互斥事件概率、条件概率、相互独立事件概率的求法以及分布列有关内容。

二项分布是继超几何分布后的又一应用广泛的概率模型,而超几何分布在产品数量n 相当大时可以近似的看成二项分布。

在自然现象和社会现象中,大量的随机变量都服从或近似的的服从二项分布,实际应用广泛,理论上也非常重要。

可以说本节内容是对前面所学知识的综合应用,是一种模型的构建。

是从实际入手,通过抽象思维,建立数学模型,进而认知数学理论,应用于实际的过程。

会对今后数学及相关学科的学习产生深远的影响。

课时分配本节内容用1课时的时间完成,主要用独立重复试验分析,归纳的得出二项分布,并能二项分布解决实际问题。

教学目标重点: 独立重复试验中事件的概率及二项分布的求法,试验的概念及二项分布的概念. 难点: 应用二项分布解决实际问题.知识点:理解试验的概念;独立重复试验中事件的概率及二项分布的求法。

能力点:如何探寻二项分布,归纳思想的运用.教育点:经历由特殊到一般的研究数学问题的过程,体会探究的乐趣,激发学生的学习热情. 自主探究点:运用二项分布解决实际问题.考试点:独立重复试验的理解,用二项分布解决实际问题. 拓展点:独立重复试验的深入理解.教具准备 多媒体课件 课堂模式 学案导学 一、引入新课1、相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件.若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立. 2、相互独立事件同时发生的概率:()()()P AB P A P B =一般地,如果事件12,,,n A A A …相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,1212()()()()n n P A A A P A P A P A =…….二、探究新知思考:掷一枚图钉,针尖向上的概率为p ,则针尖向下的概率为1p - 问题(1):第1次、第2次、第3次…第n 次针尖向上的概率是多少?问题(2):用(1,2,3,,)i A i n =… 表示第i 次掷得针尖朝上的事件,这n 次试验相互独立么?问题(3):若连续抛掷3次,3次中恰有1次针尖向上,有几种情况?问题(4):每种情况的概率分别是多少?问题(5):这3次中恰有1次针尖向上的概率是多少?问题(6):连续掷n 次,恰有k 次针尖向上的概率是多少?根据上述问题,你能得出那些结论?一般地, 在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率是p ,那么事件A 发生k 次的概率为概率P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n事件A 发生的次数是一个随机变量X ,服从二项分布,记为X ~B (n ,p ),称p 为成功概率。

高中数学2.2.3独立重复试验与二项分布教案理新人教B版选修2_3

高中数学2.2.3独立重复试验与二项分布教案理新人教B版选修2_3

2.2.3 独立重复试验与二项分布【教学目标】①理解n次独立重复试验的模型和二项分布,并能利用它们解决一些简单的实际问题;②认真体会模型化思想在解决问题中的作用,感受概率在生活中的应用,提高数学的应用意识.【教学重点】理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题【教学难点】n次独立重复试验的模型及二项分布的判断一、课前预习1.n次独立重复试验:在_____的条件下,重复地做n次试验,各次试验的结果__________,则称它们为n次独立重复试验.2.在n次独立重复试验中,事件A恰好发生k次的概率公式为_________________________________3.二项分布:在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n 次独立重复试验中事件A恰好发生k次的概率为______________.则X的分布列n,的二项分布,记作:_______________.称为离散型随机变量X服从参数为p二、课上学习例1、在人寿保险事业中,很重视某一年龄段的投保人的死亡率假如每个投保人能活到65岁的概率为0.6.试问3个投保人中:(1)全部活到65岁的概率;(2)恰有2人活到65岁的概率;(3)恰有1人活到65岁的概率;(4)都活不到65岁的概率.例2、设一射手平均每射击10次中靶4次,求在5次射击中:(1)恰击中1次的概率;(2)第二次击中的概率;(3)有且只有第二次击中目标;(4)恰击中2次的概率;(5)第二、三两次击中的概率;(6)至少击中一次的概率.例3、一名学生每天骑自行车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是31. (1)设X 为这名学生在途中遇到红灯的次数,求X 的分布列;(2)求这名学生在途中至少遇到一次红灯的概率;(3)设Y 为这名学生首次停车前经过的路口数,求Y 的分布列.三、课后练习1.抛掷一枚质地均匀的骰子100次,求正好出现30次6点的概率.2.有一批种子,每粒发芽的概率为0.9,播下5粒种子.计算:(1)其中恰有4粒发芽的概率;(2)其中至少有4粒发芽的概率;(3)其中恰有3粒没发芽的概率.3.甲、乙两人进行三局二胜制乒乓球赛,已知每局甲取胜的概率为0.6,乙取胜的概率为0.4,那么最终甲胜乙的概率为( )36.0.A 216.0.B 432.0.C 648.0.D4.已知每门炮击中飞机的概率为0.6,欲有99%的把握击中来犯的一架敌机,需至少配置这样的高炮.A 3门 .B 4门 .C 5门 .D 6门5.某射手每次击中目标的概率都是0.8,每次射击结果相互独立,他连续射击4次:(1)第一次未中,后三次都击中目标的概率为____________;(2)恰有三次击中目标的概率为___________________.6.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是 ( ).A 33351A A - .B 211232323355A A A A A A ⋅⋅+ .C 331()5- .D 22112333232()()()()5555C C ⨯⨯+⨯⨯ 7.若),1.0,5(~B X那么=≤)2(X P ( ) 0729.0.A 00856.0.B 91854.0.C99144.0.D8.100件产品中有5件不合格品,每次取一件,有放回地取三次,求取得不合格品件数X 的分布列.9.某射手每次射击击中目标的概率是0.8,现在连续射击4次,求击中目标的次数X 的概率分布.10.某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布.精美句子1、善思则能“从无字句处读书”。

2022年高中数学新人教版A版精品教案《独立重复试验与二项分布教学设计》

2022年高中数学新人教版A版精品教案《独立重复试验与二项分布教学设计》

选修2-3§独立重复试验与二项分布一、学习目标次独立重复试验的模型表示的意义2理解二项分布表示的实际意义,能求出PX=K的概率二、学习重难点1、考纲要求:理解n次独立重复试验模型表示的意义,理解二项分布表示的含义2、考题分析:考查n次独立重复试验的模型表示的意义,考查二项分布表示的实际意义并求出PX=K的概率,一般出现在解答题中,往往与概率分布和数学期望相结合3、备考要求:理解n次独立重复试验模型表示的意义,掌握二项分布含义并应用三、自主学习预习课本P56~57,思考并完成以下问题1.独立重复试验及二项分布的定义分别是什么?2.两点分布与二项分布之间有怎样的关系?3.独立重复试验在相同条件下重复做的n次试验称为n次独立重复试验.4.二项分布在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A 发生的概率为,那么在n次独立重复试验中,事件A恰好发生次的概率为PX ==C错误!1-n-,=0,1,2,…,n.此时称随机变量X服从二项分布,记作X~Bn,,并称为成功概率.[点睛]两点分布与二项分布的区别1.判断以下命题是否正确.正确的打“√〞,错误的打“×〞1独立重复试验每次试验之间是相互独立的.2独立重复试验每次试验只有发生与不发生两种结果.3独立重复试验各次试验发生的事件是互斥的.2.X~B错误!,那么PX=4=________.3.连续掷一枚硬币5次,恰好有3次出现正面向上的概率是________.4.某人射击一次击中目标的概率为0.6, 经过3次射击,此人至少有两次击中目标的概率为________.四、典型例题:独立重复试验概率以及分布列的求法[典例1]〔课本例4〕某射手每次射击击中目标的概率是,求这名射手在10次射击中,〔1〕恰有8次击中目标的概率;〔2〕至少有8次击中目标的概率。

变式:某人射击5次,每次中靶的概率均为0.9,求他至少有2次中靶的概率.[典例2]〔教辅资料活学活用〕袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.有放回抽样时,求取到黑球的个数X的分布列.五、课后自主练习1.将一枚硬币连续抛掷5次,那么正面向上的次数X的分布为A.X~B5, B.X~B,5 C.X~B2, D.X~B5,12.随机变量X~B3,,那么PX=1等于A.B.0.288 C.D.3.某人考试,共有5题,解对4题为及格,假设他解一道题的正确率为,那么他及格的概率为053,3 1254.设随机变量X~B2,,Y~B4,,假设PX≥1=错误!,那么PY≥2的值为________.5、〔教辅资料例1〕某平安监督部门对5家小型煤矿进行平安检查简称安检,假设安检不合格,那么必须整改.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率都是计算:1恰有2家煤矿必须整改的概率;2至少有2家煤矿必须整改的概率.6.〔教辅资料活学活用〕甲、乙2人各进行3次射击,甲每次击中目标的概率为错误!,乙每次击中目标的概率为错误!,求:1甲恰好击中目标2次的概率;2乙至少击中目标2次的概率;3乙恰好比甲多击中目标2次的概率.六、课后作业课本第1、2、3课本第1、2七、课后反思。

人教A版高中数学选修第二章独立重复试验与二项分布教案新

人教A版高中数学选修第二章独立重复试验与二项分布教案新

2.2.3独立重复试验与二项分布(第一课时)教学目标:理解n 次独立重复试验的模型及二项分布教学重点:理解n 次独立重复试验的模型及二项分布教学过程一、复习引入:1. 已知事件B 发生条件下事件A 发生的概率称为事件A 关于事件B 的条件概率,记作(|)P A B .2. 对任意事件A 和B ,若()0P B ≠,则“在事件B 发生的条件下A 的条件概率”,记作P(A | B),定义为 (|)P AB P A B P B ()=()3. 事件B 发生与否对事件A 发生的概率没有影响,即 (|)()P A B P A =. 称A 与B 独立二、讲解新课:1 独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(.它是[](1)nP P -+展开式的第1k +项例1.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率解:(1)记“预报1次,结果准确”为事件A .预报5次相当于5次独立重复试验,根据n 次独立重复试验中某事件恰好发生k 次的概率计算公式,5次预报中恰有4次准确的概率4454455(4)0.8(10.8)0.80.41P C -=⨯⨯-=≈ 答:5次预报中恰有4次准确的概率约为0.41.(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即4454555555555(4)(5)(4)0.8(10.8)0.8(10.8)P P P P C C --=+==⨯⨯-+⨯⨯-450.80.80.4100.3280.74=+≈+≈答:5次预报中至少有4次准确的概率约为0.74.例2.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件A =“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验1小时内5台机床中没有1台需要工人照管的概率55513(0)(1)()44P =-=,1小时内5台机床中恰有1台需要工人照管的概率145511(1)(1)44P C =⨯⨯-, 所以1小时内5台机床中至少2台需要工人照管的概率为[]551(0)(1)0.37P P P =-+≈答:1小时内5台机床中至少2台需要工人照管的概率约为0.37.点评:“至多”,“至少”问题往往考虑逆向思维法例3.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击n 次记事件A =“射击一次,击中目标”,则()0.25P A =.∵射击n 次相当于n 次独立重复试验,∴事件A 至少发生1次的概率为1(0)10.75n n P P =-=-.由题意,令10.750.75n -≥,∴31()44n ≤,∴1lg4 4.823lg 4n ≥≈, ∴n 至少取5. 答:要使至少命中1次的概率不小于0.75,至少应射击5次课堂小节:本节课学习了n 次独立重复试验的模型及二项分布课堂练习:课后作业:。

高二数学(选修-人教B版)-独立重复试验与二项分布-1教案

高二数学(选修-人教B版)-独立重复试验与二项分布-1教案
(4)在逐步增加试验次数和将固定次数改为任意 次的过程中,体会独立重复试验的过程,逐步形成 次独立重复试验的概念,并得出概率计算公式.
给出数学概念的规范定义和概率计算公式.
概念辨析.
应用数学概念和公式,解决问题.
通过生活实例,进一步理解 次独立重复试验的概念,熟悉概率计算公式,建立二项分布模型.
建立二项分布模型,规范数学语言.
0
1
···
···
···
···
由于表中的第二行恰好是二项式展开式
各项对应的值,所以称这样的离散型随机变量 服从参数为 , 的二项分布,记作 .
(五)模型应用,深化理解
例2. 100件产品中有3件不合格,每次取一件,有放回地取3次,求取得不合格品件数 的分布列.
解: 可能的取值为0,1,2,3.由于是有放回地每次取一件,连续取三次,所以这相当于做3次独立重复试验,一次抽取到不合格品的概率 .因此
3.一个公式——二项分布 中,
.
4.模型思想——随机现象无处不在,模型思想往往事半功倍;以及
5.探究精神——模型的建立和探索都需要进行不断地探究.
(1)通过简化问题——减少试验次数、先求发生固定次数(2次)的概率.
(2)设置问题链,层层铺垫,建立模型得到公式.
(3)在问题(3)中先给出错解,再通过枚举法和计数原理得出正解,让问题变得更加清晰;
,
,
,
.
分布列为
0
1
2
3
0.912673
0.084681
0.002619
0.000027
例3. 9粒种子分别种在甲、乙、丙3个坑,每个坑3粒,每粒种子发芽的概率为0.5.若一个坑至少有一粒发芽,则这个坑不需要补种;否则,则需要补种.

北师大版高中数学选修第二章第十课时独立重复试验与二项分布教案

北师大版高中数学选修第二章第十课时独立重复试验与二项分布教案

江西省九江市实验中学高中数学 第二章 第十课时 独立重复试验与二项分布教案 北师大版选修2-3一、教学目标:1、知识与技能:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。

2、过程与方法:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算。

3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。

二、教学重点:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。

教学难点:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算。

三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、复习引入:1. 已知事件B 发生条件下事件A 发生的概率称为事件A 关于事件B 的条件概率,记作(|)P A B .2. 对任意事件A 和B ,若()0P B ≠,则“在事件B 发生的条件下A 的条件概率”,记作P(A | B),定义为(|)P AB P A B P B ()=()3. 事件B 发生与否对事件A 发生的概率没有影响,即(|)()P A B P A =.称A 与B 独立 4 独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验 5.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率k n k kn n P P C k P --=)1()(.它是[](1)nP P -+展开式的第1k +项3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是kn k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).由于k n k kn q p C -恰好是二项展开式011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--中的各项的值,所以称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n ,p ).(二)、探析新课:例1.十层电梯从低层到顶层停不少于3次的概率是多少?停几次概率最大?解:依题意,从低层到顶层停不少于3次,应包括停3次,停4次,停5次,……,直到停9次∴从低层到顶层停不少于3次的概率3364455549999991111111()()()()()()()2222222P C C C C =++++3459990129999999911()()2()()22C C C C C C C ⎡⎤=+++=-++⎣⎦+991233(246)()2256=-= 设从低层到顶层停k 次,则其概率为k 9999111C ()()()222k kk C -=,∴当4k =或5k =时,9kC 最大,即991()2k C 最大,答:从低层到顶层停不少于3次的概率为233256,停4次或5次概率最大.例2.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率.(2)按比赛规则甲获胜的概率. 解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为12,乙获胜的概率为12. 记事件A =“甲打完3局才能取胜”,记事件B =“甲打完4局才能取胜”,记事件C =“甲打完5局才能取胜”.①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜∴甲打完3局取胜的概率为33311()()28P A C ==. ②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负∴甲打完4局才能取胜的概率为2231113()()22216P B C =⨯⨯⨯=. ③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负∴甲打完5局才能取胜的概率为22241113()()()22216P C C =⨯⨯⨯=. (2)事件D =“按比赛规则甲获胜”,则D A B C =++,又因为事件A 、B 、C 彼此互斥,故1331()()()()()816162P D P A B C P A P B P C =++=++=++=.答:按比赛规则甲获胜的概率为12. 例3.一批玉米种子,其发芽率是0.8.(1)问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于98%?(2)若每穴种3粒,求恰好两粒发芽的概率.(lg 20.3010=) 解:记事件A =“种一粒种子,发芽”,则()0.8P A =,()10.80.2P A =-=, (1)设每穴至少种n 粒,才能保证每穴至少有一粒发芽的概率大于98%.∵每穴种n 粒相当于n 次独立重复试验,记事件B =“每穴至少有一粒发芽”,则00()(0)0.8(10.8)0.2n n n n P B P C ==-=.∴()1()10.2n P B P B =-=-.由题意,令()98%P B >,所以0.20.02n <,两边取常用对数得,lg 0.2lg 0.02n <.即(lg 21)lg 22n -<-,∴lg 22 1.69902.43lg 210.6990n ->=≈-,且n N ∈,所以取3n ≥.答:每穴至少种3粒,才能保证每穴至少有一粒发芽的概率大于98%.(2)∵每穴种3粒相当于3次独立重复试验,∴每穴种3粒,恰好两粒发芽的概率为2230.80.20.384P C =⨯⨯==,答:每穴种3粒,恰好两粒发芽的概率为0.384例4.某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布.解:依题意,随机变量ξ~B (2,5%).所以,P (ξ=0)=02C (95%)2=0.9025,P (ξ=1)=12C (5%)(95%)=0.095,P (2=ξ)=22C (5%)2=0.0025.因此,次品数ξ的概率分布是(三)、课堂小结:本节课学习了n次独立重复试验的模型及二项分布的简单应用(四)、课堂练习:练习册第60页练习1、3(五)、课后作业:课本第56页习题2-4中A组2、5 B组中题目。

独立重复试验与二项分布教学设计

独立重复试验与二项分布教学设计

课题:独立重复试验与二项分布青州第六中学冯波教材:人民教育出版社B版课型:新授课一.教材分析1.教材内容“二项分布”是普通高中课程标准实验教科书选修2-3第二章《概率》的内容,《概率》是组合数学的最初步的知识,以“计数问题”为主要特征,是学生学习概率理论与统计数学的基础知识,也是学生学习高等数学的预备知识。

其中所蕴涵的数学思想方法独特灵活,是发展学生的抽象、概括能力、培养学生逻辑推理能力、凸现数学的应用价值的好素材。

“二项分布”研究的对象是次独立重复事件的试验,是瑞士数学家雅伯努利首先研究的,故又称伯努利概型,由于学生已经学习了独立事件,又有二项式定理作为基础,再学习“二项分布”相对而言认知起来要容易一点。

本节计划两课时,今天是第一课时:2.地位与作用“二项分布”是概率理论中的三大概率分布之一,同时也是自成体系的知识块,也是后继课程某些内容的一个铺垫。

运用“二项分布”可以解决一些比较典型的数学问题,通过本课的教学,进一步提高学生的归纳演绎能力,让学生感受数学来源于生活,最终也将服务于生活,充分展示数学的应用价值。

二.学情分析认知分析:学生的认知结构中已经有了独立事件, 二项式定理等有关知识,对于概率的类型和概率分布已经有了初步的认识。

能力分析:学生能够运用所学知识区分概率的类型、判断事件之间是否独立,会求一些简单的概率分布,但归纳演绎能力、探索提炼的能力有待于进一步提高。

三.教学目标与重点、难点教学目标:知识目标:(1)使学生参与并探讨“二项分布”的形成过程,掌握“二项分布”中的字母意义和数学本质(2)准确认知伯努利试验,能正确应用“二项分布”解决实际问题能力目标:培养学生分析、归纳、演绎能力,发现问题,探求问题的能力,逻辑推理能力,以及由特殊到一般,又由一般到特殊的数学思想。

感情目标:通过对“二项分布”的教学,丰富学生数学认知的水平,提高学生数学建模的能力;通过对“二项分布”的教学,使学生感受和体验公式的简洁美、和谐美。

人教课标版高中数学选修2-3:《独立重复实验与二项分布(第1课时)》教案-新版

人教课标版高中数学选修2-3:《独立重复实验与二项分布(第1课时)》教案-新版

2.2.2 独立重复试验与二项分布(第1课时)一、教学目标1.核心素养根据由特殊到一般的思维方式,归纳二项分布的概念及其概率计算公式,从而提升学生数学建模能力和逻辑推理能力.2.学习目标(本课时的目标应与后面的“问题探究”对应,每个探究解决一个目标)(1)从具体情境中理解n次独立重复试验及其特点及二项分布,并能解决一些简单的实际问题.(2)从具体情境中理解二项分布及其概率计算公式.(3)能解决一些简单与n次独立重复试验的模型及二项分布有关的实际问题3.学习重点理解掌握n次独立重复试验的模型及其基本特点,正确掌握二项分布.4.学习难点能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算.二、教学设计(一)课前设计预习任务任务1(可以多个任务,问是学生提问,编者不用考虑)阅读教材,思考:n次独立重复试验的定义是什么?二项分布的内容是什么?任务2归纳出n次独立重复试验的基本特点,默写二项分布的计算公式.预习自测1.n次独立重复试验应满足的条件:①每次试验之间是相互独立的;②每次试验只有发生与不发生两种结果之一;③每次试验发生的机会是均等的;④各次试验发生的事件是互斥的.其中正确的是()A .①②B .②③C .①②③D .①②④ 解:C .2.二项分布计算公式()=(1)kn k k n P X k C p p -=-中,,,1,n p p k -分别表示的是( )①事件不发生的概率;②事件发生的概率;③实验总次数;④事件发生的次数. A .①②③④ B .③①②④ C .③②①④ D .①②④③ 解:C . (二)课堂设计 1.知识回顾(1)不可能同时发生的事件A 与事件B 称为互斥事件,且()=()()P A B P A P B ++.(2)在事件A 发生的条件下事件B 发生的概率叫做“在A 条件下B 发生的概率”,记作(|)P B A ,且()(|)=()P AB P B A P A . (3)事件A 是否发生对事件B 发生的概率没有影响,这样的两个事件叫做相互独立事件,且()=()()P AB P A P B .(4)事件12,,n A A A ⋅⋅⋅是相互独立的,则1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅. (5)二项式定理. 2.问题探究问题探究一 独立重复试验的定义及其基本特点? ●活动一 观察探究(1)某篮球队员罚球3次,每次命中率为0.7.(2)投掷一枚相同的硬币4次,每次正面向上的概率为0.5. (3)某射击选手射击6次,每次射击击中的概率为0.9. (4)一纸箱内装有5个白球、3个黑球,有放回地抽取5个球. (5)投掷一枚图钉8次,每次时针尖向上的概率为0.4. 问题:上面这些试验有什么共同的特点? 提示:从下面几个方面探究:(1)实验的条件; (2)每次实验间的关系; (3)每次试验可能的结果; (4)每次试验的概率;通过归纳发现:(1)每个例中的每次试验在相同条件下发生的; (2)每个例中的每次试验是相互独立的;(3)每个例中的每次试验都只有两种结果:发生与不发生; (4)每个例中的每次试验发生的概率都是相同的. ●活动二 归纳总结(1)定义:一般地,在相同条件下重复做的n 次试验,各次试验的结果相互独立,就称n 次独立重复试验.(2)特点:①条件相同;②相互独立;③结果有二;④概率相等. ●活动三 学以致用例1 判断下列试验是不是独立重复试验:(说明理由) (1)依次投掷四枚质地不同的硬币,3次正面向上;(2)姚明作为中锋,他职业生涯的每次罚球命中率为0.9,他连续投篮3次,恰有2次命中; (3)一纸箱内装有5个白球,3个黑球,2个红球,从中依次抽取5个球,恰好抽出4个白球; (4)一纸箱内装有5个白球,3个黑球,2个红球,从中有放回地抽取5个球,恰好抽出4个白球. 【知识点:独立重复试验】详解:(1)不是,因为条件不相同;(2)是;(3)不是,因为每次发生的概率不等;(4)是; 问题探究二 什么是二项分布?其概率计算公式是什么? ●活动一 计算观察问题:姚明作为中锋,他职业生涯的每次罚球命中率为0.9, (1)他连续投篮3次,恰有1次命中的概率是多少; (2)他连续投篮3次,恰有2次命中的概率是多少; (3)他连续投篮3次, 3次都命中的概率是多少; 解答:(1)3次中恰有1次命中有几种情况?共有3种情况:123A A A ,123A A A ,123A A A (设(1,2,3)i A i =表示事件“第i ”次命中)每一种情况的概率都是:120.9(10.9)⨯- 则恰有1次命中的概率是:1230.9(10.9)P =⨯⨯- (2)3次中恰有2次命中有几种情况?共有3种情况:123A A A ,123A A A ,123A A A (设(1,2,3)i A i =表示事件“第i ”次命中)每一种情况的概率都是:210.9(10.9)⨯-则恰有1次命中的概率是:2130.9(10.9)P =⨯⨯-;(3)3次都命中只有1种情况,即:123A A A (设(1,2,3)i A i =表示事件“第i ”次命中) 则概率是:310.9P =⨯; 观察三个试验的共同点: (1)都是独立重复试验;(2)每次试验分别有3(1,2,3)iC i =种情况;(3)每次试验的每种情况发生的概率相同.(4)他连续投篮n 次,恰有k 次命中的概率是多少;此次试验有k n C 种情况,每种情况发生的概率都是:0.9(10.9)k n k -⨯- 则此次试验发生的概率是:0.9(10.9)k k n k n P C -=-●活动二 归纳总结归纳:一般地,在n 次独立重复试验,设事件A 发生的次数是X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()(1)k k n k n P X k C p p -==-,其中n k ,,2,1,0⋅⋅⋅=.此时称随机变量X 服从二项分布,记作(,)X B n p :,并称p 为成功概率.理解:1)公式()(1)k k n k n P X k C p p -==-中各字母的含义,n —试验发生的总次数;k —试验中事件A 恰好发生的次数;p —事件A 发生概率;(1-p )—事件A 恰不发生的概率. 2)二项式()1-np p ⎡⎤+⎣⎦的展开式中第k +1项为1(1)kn k k k n T C p p -+=-,那么()(1)k kn k n P X k C p p -==-就是二项式()1-np p ⎡⎤+⎣⎦展开式中中第k +1项,所以公式()(1)k k n k n P X k C p p -==-(),0,1,2,...,.k n =所以公式叫做二项分布.3)当n =1时,二项分 布就是两点分布.问题探究三 初步利用n 次独立重复试验的模型及二项分布解决一些简单的问题 例2 某射手每次射击击中目标的概率是0.9,求这名射手在5次射击中,(1)恰有4次击中目标的概率;(2)至少有4次击中目标的概率.(列出算式即可) 【知识点:二项分布,互斥事件的概率;数学思想:分类讨论】详解:设X 为击中目标的次数,则(5,0.9)X B :(1)在5次射击中,恰有4次击中目标的概率为:44(54)540.9(10.9)P X C -==⨯⨯-(). (2)在5次射击中,至少有4次击中目标的概率为:44(54)55(55)5544+5=0.9(10.9)+0.9(10.9)P X P X P X C C --≥===⨯⨯-⨯⨯-()()()例3 重复抛掷一枚骰子6次,求至少4次得到点数为6的概率. 【知识点:二项分布,互斥事件的概率;数学思想:分类讨论】详解:设X 为得到点数6的次数,则1(6,)6X B :重复抛掷一枚骰子6次,至少4次得到点数为6的概率为:4(64)5(65)6(66)45666644+5+6111111=1+1+1666666P X P X P X P X C C C ---≥====⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯-⨯⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()()例4 重复抛掷一枚骰子6次,求至少1次得到点数为6的概率.【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】详解:设X 为得到点数6的次数,则1(6,)6X B :重复抛掷一枚骰子6次,至少1次得到点数为6的概率为:1(61)2(62)3(63)1256664(64)456641+2+3+4+5+6111111=1+1+1666666111 +1+66P X P X P X P X P X P X P X C C C C C ----≥=======⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯-⨯⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⨯⨯-⨯ ⎪ ⎪⎝⎭⎝⎭()()()()()()() 5(65)6(66)661111+16666C --⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭另解:设X 为得到点数6的次数,则1(6,)6X B :记事件A 为“至少1次得到点数为6”,则事件A 为 “没有1次得到点数为6”,又由于0(60)6110=166P A P X C -⎛⎫⎛⎫==⨯⨯- ⎪ ⎪⎝⎭⎝⎭()()则0(60)06111=1166P A P A C -⎛⎫⎛⎫=--⨯⨯- ⎪ ⎪⎝⎭⎝⎭()()例5 重复抛掷一枚骰子6次,求至少2次得到点数为6的概率.【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】详解:设X 为得到点数6的次数,则1(6,)6X B :记事件A 为“至少2次得到点数为6”,则事件A 为 “没有1次得到点数为6和恰好有1次得到点数为6”,又由于0(60)1(61)16611110+1=1+16666P A P X P X C C --⎛⎫⎛⎫⎛⎫⎛⎫===⨯⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()则0(60)1(61)16611111=1116666P A P A C C --⎛⎫⎛⎫⎛⎫⎛⎫=--⨯⨯--⨯⨯- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()3.课堂总结 【知识梳理】(1)一般地,在相同条件下重复做的n 次试验,各次试验的结果相互独立,就称为n 次独立重复试验.(2)一般地,在在n 次独立重复试验,设事件A 发生的次数是X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()(1)k kn k n P X k C p p -==-,其中n k ,,2,1,0⋅⋅⋅=.此时称随机变量X 服从二项分布,记作(,)X B n p :,并称p 为成功概率.【重难点突破】(1)独立重复试验的判断①每次试验是在相同的条件下进行的;②每次试验的结果不会受其他试验的影响,即每次试验是相互独立的; ③基本事件的概率可知,且每次试验保持不变; ④每次试验只有两种结果,要么发生,要么不发生. (2)二项分布的判断①在一次试验中,事件A 发生与不发生二者必居其一. ②事件A 在每次试验中,发生的概率相同.③试验重复地进行了n 次(n ≥2),且每次试验结果互不影响. 4.随堂检测1.一个学生通过某种英语听力测试的概率是12,他连续测试n 次,要保证他至少有一次通过的概率大于0.9,那么n 的最小值为( )A .3B .4C .5D .6【知识点:二项分布,对立事件的概率;数学思想:正难则反】 解:B2.若某射手每次射击击中目标的概率是0.9,每次射击的结果相互独立,那么在他连续4次的射击中,第一次未击中目标,后三次都击中目标的概率是( )A.33140.90.1C ⨯⨯B.30.9C.130.10.9⨯D.11340.90.1C ⨯⨯【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】 解:C3.有10门炮同时各向目标各发一枚炮弹,如果每门炮的命中率都是0.1,则目标被击中的概率约是( ) A.0.55 B.0.45 C.0.75 D.0.65【知识点:独立重复试验,对立事件的概率】 解:D4.一批产品共有100个,次品率为 3%,从中有放回抽取3个恰有1个次品的概率是( )A.123973100C C CB.1230.030.97C ⨯⨯ C.1330.03C ⨯D.1230.030.97C ⨯⨯【知识点:二项分布】 解:B5.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为 8081,则此射手射击一次的命中率是( )A.13B.23C.14D.25【知识点:二项分布,对立事件的概率;数学思想:正难则反】 解:B 4801(1)81p --= (三)课后作业 基础型 自主突破1.已知随机变量ξ~B (6,13),则P (ξ≥2)=( ) A.16143 B.471729 C.473729 D.1243【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】 解:C0(60)1(61)1661111212=101=11+13333P P P P C C ξξξξ--⎛⎫⎛⎫⎛⎫⎛⎫≥=-≤-=-=-⨯⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()()2.某一试验中事件A 发生的概率为p ,则在n 次试验中,A 发生k 次的概率为( ) A .1-p k B .(1-p )k ·p n -k C .(1-p )kD .C k n (1-p )k ·p n -k【知识点:二项分布,对立事件的概率】 解:D3.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是( ) A .(12)5 B .C 25(12)5C .C 35(12)3D .C 25C 35(12)5【知识点:二项分布】解:D 5次移动中有2次向右,剩下3次向上.4.某电子管正品率为34,次品率为14,现对该批电子管进行测试,设第ξ次首次测到正品,则P (ξ=3)的值为( ) A .C 23(14)2×34 B .C 23(34)2×14 C .(14)2×34 D .(34)2×14【知识点:二项分布,对立事件的概率】 解:D5.某种植物的种子发芽率是0.7,4颗种子中恰有3颗发芽的概率是________. 【知识点:二项分布】解:0.4116 33(43)430.7(10.7)P X C -==⨯⨯-()6.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为________(用数字作答).【知识点:二项分布】解:0.9477 33(43)44(44)443=3+=4=0.9(10.9)+0.9(10.9)P X P X P X C C --≥=⨯⨯-⨯⨯-()()()能力型 师生共研7.某单位6个员工借助互联网开展工作,每天每个员工上网的概率是0.5(相互独立),则一天内至少3人同时上网的概率为________.【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】 解:2132 666012666111X 1012=1222P P X P X P X C C C ⎛⎫⎛⎫⎛⎫≥=-=-=-=-⨯-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)()()() 8.2013年初,一考生参加北京大学的自主招生考试,需进行书面测试,测试题中有4道题,每一道题能否正确做出是相互独立的,并且每一道题被考生正确做出的概率都是34. (1)求该考生首次做错一道题时,已正确做出了两道题的概率;(2)若该考生至少做出3道题,才能通过书面测试这一关,求这名考生通过书面测试的概率. 【知识点:对立、互斥事件的概率,独立重复试验,二项分布;数学思想:分类讨论】解:(1)记“该考生正确做出第i 道题”为事件A i (i =1,2,3,4),则P (A i )=34,由于每一道题能否被正确做出是相互独立的,所以这名考生首次做错一道题时,已正确做出两道题的概率为 P (A 1A 2A 3)=P (A 1)·P (A 2)·P (A 3)=34×34×14=964.(2)记“这名考生通过书面测试”为事件B ,则这名考生至少正确做出3道题,即正确做出3道或4道题,故P (B )=C 34×(34)3×14+C 44×(34)4=189256. 9.9粒种子分种在3个坑中,每坑3粒,每粒种子发芽的概率为0.5.若一个坑内至少有1粒子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种的费用,写出ξ的分布列. 【知识点:对立事件的概率,二项分布】解:每个坑内3粒种子都不发芽的概率为(1-0.5)3=18,所以每个坑不需要补种的概率为p =1-18=78.利用3次独立重复试验的公式求解即可.补种费用ξ的分布列为10.一批玉米种子,其发芽率是0.8.问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于98%?(lg2=0.301 0)【知识点:独立重复试验,对立事件的概率,二项分布;数学思想:正难则反】解:记事件A =“种一粒种子,发芽”,则P (A )=0.8,P (A -)=1-0.8=0.2.设每穴至少种n 粒,才能保证每穴至少有一粒发芽的概率大于98%.因为每穴种n 粒相当于n 次独立重复试验,记事件B =“每穴至少有一粒发芽”,则P (B -)=C 0n ·0.80·0.2n =0.2n .所以P (B )=1-P (B -)=1-0.2n .由题意有1-0.2n >98%,所以0.2n <0.02,两边取对数得n lg0.2<lg0.02.即n (lg2-1)<lg2-2.所以n >lg2-2lg2-1≈2.43,且n ∈N ,所以n ≥3. 故每穴至少种3粒,才能保证每穴至少有一粒发芽的概率大于98%.探究型 多维突破11.某校组织一次冬令营活动,有8名同学参加,其中有5名男同学,3名女同学,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中X 名男同学.(1)求X 的分布列;(2)求去执行任务的同学中有男有女的概率.【知识点:对超几何分布】解:(1)X 的可能取值为0,1,2,3,且X 服从超几何分布,因此:P (X =0)=C 33C 38=156,P (X =1)=C 15C 23C 38=1556, P (X =2)=C 25C 13C 38=1528,P (X =3)=C 35C 38=528. ∴X 的分布列为(2)由上面的分布列,可知去执行任务的同学有男有女的概率为P (X =1)+P (X =2)=1556+1528=4556.12.一名学生骑自行车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是1 3.(1)设ξ为这名学生在途中遇到的红灯次数,求ξ的分布列;(2)设η为这名学生在首次停车前经过的路口数,求η的分布列;(3)求这名学生在途中至少遇到一次红灯的概率.【知识点:对立事件的概率,二项分布;数学思想:正难则反】解:(1)将遇到每个交通岗看做一次试验,遇到红灯的概率都是13,且每次试验结果相互独立,故ξ~B(6,13).所以ξ的分布列为P(ξ=k)=Ck6·(13)k·(23)6-k(k=0,1,2,…,6).(2)η=k(k=0,1,2,…,5)表示前k个路口没有遇上红灯,但在第k+1个路口遇上红灯,其概率为P(η=k)=(23)k·13,η=6表示一路没有遇上红灯,故其概率为P(η=6)=(23)6.所以η的分布列为(3)所求概率即P(ξ≥1)=1-P(ξ=0)=1-(23)6=665729.自助餐1.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为p1和p2.则()A.p1=p2B.p1<p2C.p1>p2D.以上三种情况都有可能【知识点:古典概型】解:B2.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n}:a n =⎩⎨⎧-1,第n 次摸取红球,1,第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( ) A .C 57×(13)2×(23)5 B .C 47×(23)2×(13)5 C .C 27×(23)2×(13)5 D .C 37×(13)2×(23)5 【知识点:独立重复试验,二项分布】解:C3.某厂大量生产某种小零件,经抽样检验知道其次品率是1%,现把这种零件每6件装成一盒,那么每盒中恰好含一件次品的概率是( )A .(99100)6B .0.01C.C 16100(1-1100)5D .C 26(1100)2(1-1100)4 【知识点:对立事件的概率,二项分布】解:C4.在4次独立重复试验中,事件A 出现的概率相同,若事件A 至少发生一次的概率为6581,则事件A 在1次试验中出现的概率为( )A.13B.25C.56D .都不对【知识点:对立事件的概率,二项分布;数学思想:正难则反】解:A5.抛掷三个骰子,当至少有一个5点或一个6点出现时,就说这次试验成功,则在54次试验中成功次数X ~( )A .B (54,427)B .B (52,1927)C .B (54,1927)D .B (54,1724)【知识点:二项分布】解:C6.已知随机变量ξ服从二项分布ξ~B (6,13),则P (ξ=2)=( )A.316B.4243C.16243D.80243【知识点:二项分布】解:D7.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值等于( )A .0B .1C .2D .3【知识点:二项分布】解:C8.有n 位同学参加某项选拔测试,每位同学能通过测试的概率都是p (0<p <1),假设每位同学能否通过测试是相互独立的,则至少有一位同学能通过测试的概率为( )A .(1-p )nB .1-p nC .p nD .1-(1-p )n【知识点:对立事件的概率,二项分布;数学思想:正难则反】解:D9.一个袋中有5个白球,3个红球,现从袋中每次取出1个球,取出后记下球的颜色然后放回,直到红球出现10次时停止,停止时取球的次数ξ是一个随机变量,则P (ξ=12)=________.(写出表达式不必算出最后结果)【知识点:二项分布】解:C 911(38)9(58)2·3810.某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进了3球的概率为________.(用数字作答)【知识点:二项分布】解:1512811.A ,B 两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A 赢得B 一张卡片,否则B 赢得A 一张卡片,若某人已赢得所有卡片,则游戏终止.求掷硬币的次数不大于7次时游戏终止的概率.【知识点:互斥事件的概率,二项分布】解:P =(12)5×2+2×C 45(12)5(12)2=116+2×5×(12)7=964.12.如图,一圆形靶分成A ,B ,C 三部分,其面积之比为1∶1∶2.某同学向该靶投掷3枚飞镖,每次1枚.假设他每次投掷必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中投中A 区域的概率;(2)设X 表示该同学在3次投掷中投中A 区域的次数,求X 的分布列;(3)若该同学投中A ,B ,C 三个区域分别可得3分,2分,1分,求他投掷3次恰好得4分的概率.【知识点:互斥事件的概率,二项分布】解:(1)设该同学在一次投掷中投中A 区域的概率为P (A ),依题意,P (A )=14.(2)依题意知,X ~B ⎝ ⎛⎭⎪⎫3,14,从而X 的分布列为:(3)设B i 表示事件“第i 次击中目标时,击中B 区域”,C i 表示事件“第i 次击中目标时,击中C区域”,i =1,2,3.依题意知P =P (B 1C 2C 3)+P (C 1B 2C 3)+P (C 1C 2B 3)=3×14×12×12=316.。

独立重复试验及二项分布精品教案

独立重复试验及二项分布精品教案

《独立重复试验及二项分布》教学设计一、教材及学情分析 本节内容是新课标教材选修2—3第二章《随机变量及其分布》的第二节《二项分布及其应用》的第三小节.通过前面的学习,学生已经学习掌握了有关概率和统计的基础知识:古典概率、互斥事件概率、条件概率、相互独立事件概率的求法以及两点分布、超几何分布和分布列的有关内容。

独立重复试验是研究随机现象的重要途径之一,很多概率模型的建立都以独立重复试验为背景,二项分布就是来自于独立重复试验的一个概率模型。

二项分布是继超几何分布后的又一应用广泛的概率模型,而超几何分布在产品数量n相当大时可以近似地看成二项分布。

在自然现象和社会现象中,大量的随机变量都服从或近似地服从二项分布,实际应用广泛,理论上也非常重要。

可以说本节内容是对前面所学知识的综合应用,是一种模型的构建,是从实际入手,通过抽象思维,建立数学模型,进而认知数学理论,应用于实际的过程。

会对今后数学及相关学科的学习产生深远的影响。

因此本节课宜采用以学生探究、发现为主的教学模式,让学生从具体试验得到独立重复试验,再得出二项分布,体会知识的过渡的思维,让学生有充分自由表达、质疑、探究问题的机会,在活动中学习、创新、提高。

二、三维目标1、知识与技能(1)理解n次独立重复试验的模型。

(2)掌握二项分布,并能利用它解决一些简单的实际问题。

2、过程与方法通过具体例子的学习,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力。

3、情感、态度与价值观激发学生学习兴趣,培养学生不断发现、探索新知的精神。

三、教学重点、难点重点:n次独立重复试验和二项分布的概念。

难点:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算四、教学过程(一)独立重复试验概念的引入教师:同学们喜欢什么奥运会项目?(各种不同的答案)教师:我最喜欢射击。

假设我击中目标的概率是0.8,那么我射击一次,用x 表示击中的次数,请写出x的分布列。

独立重复试验与二项分布教案

独立重复试验与二项分布教案

独立重复试验与二项分布教案教案:独立重复试验与二项分布一、教学目标1.了解独立重复试验的概念及其特点;2.掌握二项分布的概念、性质及其在实际问题中的应用;3.能够根据实际问题,正确使用二项分布进行计算和分析。

二、教学重点和难点1.独立重复试验的概念和特点;2.二项分布的概念、性质和应用。

三、教学准备1.教学资料:PPT、教科书、练习题;2.教学工具:计算器、白板、黑板笔。

四、教学过程Step 1:引入和导入(10分钟)教师介绍独立重复试验的概念,要求学生举例说明独立重复试验的特点,并引导学生思考实际生活中的独立重复试验的例子。

Step 2:讲解独立重复试验的概念和特点(20分钟)教师使用PPT讲解独立重复试验的概念和特点,包括试验的定义、试验的结果、试验的性质等。

并通过实例让学生理解和掌握相关概念。

Step 3:讲解二项分布的概念和性质(30分钟)教师使用PPT讲解二项分布的概念和性质,包括二项分布的定义、二项分布的概率函数、二项分布的期望和方差等,并通过实例让学生进行计算和分析。

Step 4:练习与讲评(40分钟)教师布置练习题,让学生进行练习和计算,然后进行讲评,解答学生的问题和疑惑。

Step 5:实际问题应用(10分钟)教师提供一些实际问题,让学生根据所学知识进行分析和计算,提醒学生要注意实际问题的背景和条件。

Step 6:小结与作业布置(10分钟)教师对本节课的重点内容进行小结,并布置相关作业,巩固所学知识。

五、教学反思通过本节课的教学,学生可以了解独立重复试验的概念和特点,掌握二项分布的概念、性质及其在实际问题中的应用。

教师在教学过程中要注重引导学生理解和运用,通过实例的讲解和训练,提高学生的分析和计算能力。

同时要注重与学生的互动,激发学生的学习兴趣,让学生积极参与课堂活动,提高课堂效果。

高中数学选修2-3精品教案4:2.2.3 独立重复实验与二项分布教学设计

高中数学选修2-3精品教案4:2.2.3 独立重复实验与二项分布教学设计

2.2.3独立重复试验与二项分布教学目标:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题.德育目标:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值教学重点:独立重复试验的概念形成及二项分布公式的发现与应用教学难点:概率模型的识别与应用教学过程:一、引入课本引例:掷一枚图钉,针尖向上的概率为0.6,则针尖向下的概率为 1-0.6=0.4 问题(1)第1次、第2次、第3次…第n 次针尖向上的概率是多少?第1次、第2次、第3次…第n 次针尖向上的概率都是0.6二、新课1、形成概念“独立重复试验”的概念:在同样条件下进行的,各次之间相互独立的一种试验.特点:⑴在同样条件下重复地进行的一种试验;⑵各次试验之间相互独立,互相之间没有影响;⑶每一次试验只有两种结果,即某事要么发生,要么不发生,并且任意一次试验中发生的概率都是一样的.问题(2):掷一枚图钉,针尖向上的概率为0.6,则针尖向下的概率为1-0.6=0.4,则连续掷3次,恰有1次针尖向上的概率是多少?分解问题(2)问题a :3次中恰有1次针尖向上,有几种情况?共3种情况123123123,,A A A A A A A A A 即13C问题b 它们的概率分别是多少?概率都是20.6(10.6)⨯-问题c 3次中恰有1次针尖向上的概率是多少?引申推广:连续掷n 次,恰有k 次针尖向上的概率是0.6(10.6)k k n k n p C -=⨯⨯-2定义:在n 次独立重复试验中,事件A 发生的次数为X ,在每次试验中事件A 发生的概率为P ,那么在在n 次独立重复试验中事件A 恰好发生k 次的概率是(X )(1)p k k n p k C P p ==-,K =0,1,2,3,……n此时称随机变量X 服从二项分布,记作X ~B (n ,p ).并称P 为成功概率.注:(1)n ,p ,k 分别表示什么意义?(2)这个公式和前面学习的哪部分内容有类似之处?典例解析:例1.某射手每次射击击中目标的概率是0 . 8.求这名射手在 10 次射击中,(1)恰有 8 次击中目标的概率;(2)至少有 8 次击中目标的概率.(结果保留两个有效数字.)解:设X 为击中目标的次数,则X ~B (10, 0.8 ) .(1)在 10 次射击中,恰有 8 次击中目标的概率为P (X = 8 )=88108100.8(10.8)0.30C -⨯⨯-≈. (2)在 10 次射击中,至少有 8 次击中目标的概率为P (X≥8) = P (X = 8) + P ( X = 9 ) + P ( X = 10 )8810899109101010101010100.8(10.8)0.8(10.8)0.8(10.8)C C C ---⨯⨯-+⨯⨯-+⨯⨯-0.68≈.例2.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件A =“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验11230.6(10.6)P C =⨯⨯-1小时内5台机床中没有1台需要工人照管的概率55513(0)(1)()44P =-=,1小时内5台机床中恰有1台需要工人照管的概率145511(1)(1)44P C =⨯⨯-, 所以1小时内5台机床中至少2台需要工人照管的概率为[]551(0)(1)0.37P P P =-+≈ 答:1小时内5台机床中至少2台需要工人照管的概率约为0.37.点评:“至多”,“至少”问题往往考虑逆向思维法.例3.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击n 次.记事件A =“射击一次,击中目标”,则()0.25P A =.∵射击n 次相当于n 次独立重复试验,∴事件A 至少发生1次的概率为1(0)10.75nn P P =-=-. 由题意,令10.750.75n -≥,∴31()44n ≤,∴1lg4 4.823lg 4n ≥≈, ∴n 至少取5.答:要使至少命中1次的概率不小于0.75,至少应射击5次.课堂练习:1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为()()A 33710(1)C p p -()B 33310(1)C p p -()C 37(1)p p -()D 73(1)p p - 2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为()()A 32100.70.3C ⨯⨯()B 1230.70.3C ⨯⨯()C 310()D 21733103A A A ⋅ 3.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是()()A 33351A A -()B 211232323355A A A A A A ⋅⋅+()C 331()5-()D 22112333232()()()()5555C C ⨯⨯+⨯⨯ 4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为()()A 23332()55C ⋅()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 答案:1. C 2.D 3. A 4. A课堂小结:独立重复试验两个对立的结果每次事件A 发生概率相同n 次试验事件A 发生k 次板书设计:(略)教学反思:。

高中数学新人教版B版精品教案《2.2.3 独立重复试验与二项分布》

高中数学新人教版B版精品教案《2.2.3 独立重复试验与二项分布》

独立重复试验与二项分布六盘水市第二十三中学周恋芸教学目标:1知识与技能理解n次独立重复试验的模型以及二项分布的定义,并能解决一些实际问题。

2过程与方法通过本节课的教学,让学生感受探究新知的过程,培养学生独立动手的能力。

3情感、态度与价值观通过本节的学习,体会数学教学重、难点:1重点:独立重复试验与二项分布的概念。

2难点:独立重复试验与二项分布的综合问题。

教学设计:一、创设情境,课题引入(一)回顾旧知事件的相互独立性:1对于事件A、B,若A的发生与B的发生互不影响,则称A、B是相互独立事件.2若A与B相互独立,则A与A,B与B,A与B也都相互独立.3若PAB=PAPB,则A与B相互独立.(二)情境创设有三张扑克牌,其中2张黑桃,1张红桃,依次有放回地从中抽取1张牌,共抽4次,规定抽取的黑桃总次数为 1 次算中奖(设置成一个小动画,吸引学生的注意力和学习兴趣)思考:1 每次抽取扑克牌的条件是否相同?2 每次抽取的结果是否受上次影响?二、新课讲解(一)n次独立重复试验1定义:A 一般地,在相同条件下重复做的n次试验成为n次独立重试验,记i为第i 次试验的结果,则:此时称随机变量X 服从二项分布,记作X~Bn,,并称为成功概率。

思考:你还能想到生活中或者之前的学习中遇到的n 次独立重复试验吗?生:抛硬币(n 次),掷骰子(n 次),摸球游戏(不放回),射击等(展示动画)2概念辨析(1)独立重复试验每次试验之间是相互独立的(2)独立重复试验每次试验只有发生与不发生两种结果(3)独立重复试验各次发生的事件是互斥的(4)袋中有 5 个白球、3 个红球, 先后从中抽出 5 个(5)袋中有 5 个白球、3 个红球, 有放回依次抽出 5 个(二)二项分布问题探究:投掷一枚图钉,设针尖向上的概率为,则针尖向下的概率为1-连续掷一枚图钉3次,记出现针尖向上的次数为X,问:(1)该试验属于独立重复试验吗?(2)仅出现1次针尖向上的概率是多少?(3)类似的,连续掷3次图钉,出现(=0,1,2,3)次针尖向上的概率是多少?(4)类比当掷n 次时,出现(=0,1,2,n )次针尖向上的概率又是多少?要求:学生自己解决第一问,教师带领计算第二问,第三、第四交由学生以小组为单位解决,并发现规律。

人教版数学高二《独立重复试验与二项分布》 精品教案

人教版数学高二《独立重复试验与二项分布》 精品教案
A.C 2× B.C 2×
C. 2× D. 2×
C
7.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响.则他恰好击中目标3次的概率为()
A.0.93×0.1
B.0.93
C.C ×0.93×0.1
D.1-0.13
C
由独立重复试验公式可知选C.
8.(2010·保定高二期末)位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是 .质点P移动五次后位于点(2,3)的概率是()
①③
对于①,设事件A为“抛掷一枚骰子出现的点数是3的倍数”,P(A)= .而在n次独立重复试验中事件A恰好发生了k次(k=0,1,2,……,n)的概率P(ξ=k)=C × k× n-k,符合二项分布的定义,即有ξ~B(n, ).
对于②,ξ的取值是1,2,3,……,P(ξ=k)=0.9×0.1k-1(k=1,2,3,……n),显然不符合二项分布的定义,因此ξ不服从二项分布.
A.3.32×10-5ห้องสมุดไป่ตู้.3.32×10-9
C.6.64×10-5D.6.64×10-9
B
相当于1个流星独立重复10次,其中落在地面上的有4次的概率P=C ×0.0024×(1-0.002)6≈3.32×10-9,应选B.
4.已知随机变量X服从二项分布,X~B ,则P(X=2)等于()
A. B.
C. D.
(1)记A表示事件:稿件能通过两位初审专家的评审;
B表示事件:稿件恰能通过一位初审专家的评审;
C表示事件:稿件能通过复审专家的评审;
D表示事件:稿件被录用.
则D=A+B·C,
而P(A)=0.5×0.5=0.25,P(B)=2×0.5×0.5=0.5,P(C)=0.3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

独立重复试验与二项分布
一、教学目标
●知识与技能:
理解n次独立重复试验及二项分布模型,会判断一个具体问题是否服
从二项分布,培养学生的自主学习能力、数学建摸能力,并能解决相
应的实际问题。

●过程与方法:
通过主动探究、自主合作、相互交流,从具体事例中归纳出数学概念,
使学生充分体会知识的发现过程,并渗透由特殊到一般,由具体到抽象
的数学思想方法。

●情感态度与价值观:
使学生体会数学的理性与严谨,了解数学来源于实际,应用于实际的唯
物主义思想,培养学生对新知识的科学态度,勇于探索和敢于创新的精
神。

二、教学重点、难点
重点:独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。

难点:二项分布模型的构建。

三、教学方法与手段
教学方法:诱思探究教学法
学习方法:自主探究、观察发现、合作交流、归纳总结。

教学手段:多媒体辅助教学
四、教学过程。

相关文档
最新文档