离散数学-公式合集

合集下载

离散知识点公式总结

离散知识点公式总结

离散知识点公式总结1. 集合论集合是离散数学中的基本概念,它是由一些确定的对象所组成的一个整体。

集合之间的运算包括并集、交集、差集、补集等。

其相关公式如下:- 并集:对于集合A和B,它们的并集定义为包含A和B中所有元素的集合,记作A∪B。

公式:A∪B={x|x∈A或x∈B}- 交集:对于集合A和B,它们的交集定义为同时属于A和B的所有元素的集合,记作A∩B。

公式:A∩B={x|x∈A且x∈B}- 差集:对于集合A和B,A与B的差集定义为属于A但不属于B的元素所组成的集合,记作A-B。

公式:A-B={x|x∈A且x∉B}- 补集:对于集合A,相对于全集合U而言,A的补集定义为全集合中不属于A的元素所组成的集合,记作A'。

公式:A'={x|x∈U且x∉A}2. 关系和函数关系是一种描述元素之间的对应关系的数学工具,而函数则是一种特殊的关系。

在离散数学中,关系和函数的定义和性质是非常重要的内容。

其相关公式如下:- 关系R:对于集合A和B,关系R定义为A和B的笛卡尔积中的元素对所组成的集合。

公式:R={(a,b)|a∈A且b∈B}- 函数f:对于集合A和B,如果f是从A到B的一个映射,那么对于任意元素a∈A,都有唯一的元素b∈B与之对应。

公式:f:A→B3. 图论图论是离散数学中的一个重要分支,它研究的是由顶点和边组成的数学结构。

图论的基本概念包括图的类型、路径和回路、连通性、树等。

其相关公式如下:- 有向图:对于图G=(V,E),如果E中的边是有方向的,则称G为有向图。

公式:G=(V,E),E={(u,v)|u,v∈V,u→v}- 无向图:对于图G=(V,E),如果E中的边是无方向的,则称G为无向图。

公式:G=(V,E),E={{u,v}|u,v∈V,u≠v}- 路径:在图G中,顶点v1,v2,...,vn的一个路径是图G中的一个顶点序列,其中相邻的顶点用一条边连接。

公式:v1,v2, (v)- 回路:在图G中,如果一条路径的起点和终点是同一个顶点,则称其为回路。

离散数学重要公式定理汇总分解

离散数学重要公式定理汇总分解

离散数学重要公式定理汇总分解离散数学是计算机科学领域中的一门基础课程,它主要研究离散结构和离散对象之间的关系。

离散数学中有许多重要的公式和定理,这些公式和定理在计算机科学和其他领域中有广泛的应用。

下面是对离散数学中一些重要的公式和定理的汇总。

1.集合:-幂集公式:一个集合的幂集是所有它子集的集合。

一个集合有n个元素,那么它的幂集有2^n个元素。

-集合的并、交、差运算规则:并集运算满足交换律、结合律和分配律;交集运算也满足交换律、结合律和分配律;差集运算不满足交换律和结合律。

2.逻辑:-代数运算规则:多个逻辑表达式的与、或、非运算满足交换律、结合律和分配律。

-归结原理:对于一个给定的只包含“合取”和“析取”的合式公式集合,如果假设集合中的每个合式公式都为真,以及从这些前提出发,不能推导出这个集合中的一个假命题,则称这个假设集合是不一致的。

3.图论:-图的欧拉路径和欧拉回路:对于一个连通的图,如果它存在欧拉路径,那么这个图中最多只有两个度数为奇数的节点;如果一个连通的图存在欧拉回路,那么所有节点的度数都是偶数。

-图的哈密顿路径和哈密顿回路:对于一个图,如果它存在哈密顿路径,那么这个图中任意两个不相邻的节点u和v之间必然存在一条边;如果一个图存在哈密顿回路,那么从任意一个节点开始,可以经过图中的所有节点且最后回到起点。

4.代数结构:-子群定理:如果G是群H的一个子集,并且G是关于群H的运算封闭的,那么G是H的一个子群。

- 同态定理:如果f是从群G到群H的一个满射同态,那么G的核ker(f)是G的一个正规子群,而H是G/ker(f)的同构像。

5.排列组合:-排列公式:从n个元素中取出m个元素进行排列,有P(n,m)=n!/(n-m)!-组合公式:从n个元素中取出m个元素进行组合,有C(n,m)=n!/(m!*(n-m)!)以上只是离散数学中一小部分重要的公式和定理,这些公式和定理在计算机科学、密码学、图形学等领域中有广泛的应用。

离散数学重要公式定理汇总

离散数学重要公式定理汇总
⑴ 交换律 对任何集合A、B,有AB=BA。 ⑵ 结合律 对任何集合A、B、C,有 (AB)C=A(BC)。教材里有证明。 ⑶ 同一律 对任何集合A,有AΦ=A。 ⑷ 对任何集合A,有AA=Φ。 ⑸ ∩对可分配 A∩(BC)=(A∩B)(A∩C)
关系的性质
一. 自反性
定义:设R是集合A中的关系,如果对于任意x∈A都 有<x,x>∈R (xRx),则称R是A中自反关系。 即 R是A中自反的关系x(xAxRx) 例如: 在实数集合中,“”是自反关系,因
离散数学重要公式定理汇总
大一上
Formula
基本的等价公式
⑴ 对合律 PP ⑵ 幂等律 P∨PP P∧PP ⑶ 结合律 P∨(Q∨R)(P∨Q)∨R P∧(Q∧R)(P∧Q)∧R ⑷交换律 P∨QQ∨P P∧QQ∧P ⑸分配律 P∨(Q∧R)(P∨Q)∧(P∨R) P∧(Q∨R)(P∧Q)∨(P∧R) ⑹ 吸收律 P∨(P∧Q)P P∧(P∨Q)P ⑺德.摩根定律 (P∨Q)P∧Q (P∧Q)P∨Q
2013-12-16 7
Formula
• 蕴含的性质
*若AB且A为重言式,则B必为重言式 *若AB且BC,则AC (传递性) *若AB且AC,则A(B ∧ C) *若AB且C B,则(A∨C) B 证明见书P22
2013-12-16
8
conjunction
一、全功能真值表
2013-12-16 10
normal form
主析取范式定义 析取范式 A1∨A2∨...∨An, , 其中每个Ai (i=1,2..n) 都是小项,称之为主析取范式。 思考:主析取范式与析取范式的区别是什么? 主析取范式的写法 方法Ⅰ:列真值表 ⑴列出给定公式的真值表。 ⑵找出真值表中每个“T”对应的真值指派再对 应的小项。 ⑶用“∨”联结上述小项,即可。

离散数学重要公式定理汇总分解

离散数学重要公式定理汇总分解
⑴ 交换律 对任何集合A、B,有AB=BA。 ⑵ 结合律 对任何集合A、B、C,有 (AB)C=A(BC)。教材里有证明。 ⑶ 同一律 对任何集合A,有AΦ=A。 ⑷ 对任何集合A,有AA=Φ。 ⑸ ∩对可分配 A∩(BC)=(A∩B)(A∩C)
关系的性质
一. 自反性
定义 :设 R是集合 A中的关系,如果对于任意x∈A都 有<x,x>∈R (xRx),则称R是A中自反关系。 即 R是A中自反的关系x(xAxRx) 例如: 在实数集合中 , “ ”是自反关系,因
例 邻居关系和朋友关系是对称关系。
四.反对称性
定义:设R为集合A中关系,若对任何x, y∈A,如果有 xRy,和yRx,就有x=y,则称R为A中反对称关系 。
R是A上反对称的 xy((xAyAxRyyRx) x=y) xy((xAyAxyxRy)y Rx) (P112) 由R的关系图看反对称性:两个不同的结点之间 最多有一条边。 从关系矩阵看反对称性:以主对角线为对称的两 个元素中最多有一个1。 另外对称与反对称不是完全对立的,有些关系它 既是对称也是反对称的,如空关系和恒等关系。
如 实数的大于关系>,父子关系是反自反的。 注意:一个不是自反的关系,不一定就是反自反
的。
三.对称性 定义:R是集合A中关系,若对任何x, y∈A,如果有
xRy,必有yRx,则称R为A中的对称关系。 R是A上对称的
xy((xAyAxRy) yR方向相反的两 条边。 从关系矩阵看对称性:以主对角线为对 称的矩阵。
3
2018/10/25
Formula
等价公式(前10个)与集合论的公式比较: ⑴ 对合律 ~~AA ~A表示A的绝对补集 ⑵ 幂等律 A∪AA A ∩ A A ⑶ 结合律 A∪(B∪C)(A∪B)∪C; A∩(B∩C)(A∩B)∩C ⑷交换律 A∪BB∪A A∩BB∩A ⑸分配律 A∪(B∩C)(A∪B)∩(A∪C) A∩(B∪C)(A∩B)∪(A∩C) ⑹ 吸收律 A∪(A∩B)A A∩(A∪B)A

离散数学基本公式

离散数学基本公式

离散数学基本公式离散数学是数学的一个重要分支,它主要研究的是非连续的、分离的对象,如集合、图论、数论、逻辑等。

在这些领域中,一些基本的公式和定理是理解和应用离散数学的关键。

以下是一些离散数学的基本公式:1、德摩根定律德摩根定律是布尔代数中的基本公式之一,它表示对于任何逻辑运算,如果我们把所有的否命题和原命题结合在一起,我们就会得到一个恒等式。

用符号表示为:P ∧ Q) ∨(¬P ∧¬Q) ≡ P ∨ QP ∨ Q) ∧(¬P ∨¬Q) ≡ P ∧ Q2.集合论中的互补律在集合论中,互补律表示对于任何集合A和它的补集A',我们有:A ∪ A' = U,其中U是全集A ∩ A' = ∅,其中∅表示空集3.图论中的欧拉公式欧拉公式是图论中的一个基本公式,它表示对于一个连通无向图G,其顶点数v、边数e和欧拉数euler(G)之间有以下关系:euler(G) = v + e - 2其中euler(G)是图G的欧拉数,v是图G的顶点数,e是图G的边数。

这个公式在计算图的欧拉数或者判断一个图是否连通等方面都有重要应用。

4.数论中的费马小定理费马小定理是数论中的一个重要定理,它表示对于任何正整数n,如果它是质数p的幂次方,那么我们可以找到一个整数x,使得x的n 次方等于1(模p)。

用数学语言表示为:x^n ≡ x (mod p)其中n是正整数,p是质数,x是整数。

这个定理在密码学、计算机科学等领域都有广泛的应用。

5.逻辑中的排中律和反证法排中律是指对于任何命题P,P或非P必定有一个是真命题。

反证法则是通过假设相反的命题成立来证明原命题的一种方法。

在证明过程中,如果假设的相反命题成立会导致矛盾,那么原命题就一定是正确的。

这些公式和定理只是离散数学中的一小部分,但它们是理解和应用离散数学的基础。

在学习的过程中,我们还需要掌握更多的公式和定理,以及它们的应用方法。

离散数学公式范文

离散数学公式范文

离散数学公式范文离散数学是一门关于离散结构及其运算规则的数学课程。

它研究的对象包括离散对象(如集合、图、函数等)和离散运算(如关系、代数运算等),以及这些对象和运算之间的关系和性质。

离散数学具有广泛的应用领域,如计算机科学、信息技术、电子通信等。

本文将介绍一些离散数学中常用的公式及其应用。

一、集合公式1.交集运算:对于集合A和B,它们的交集记作A∩B,定义为A和B 中都包含的元素所组成的集合。

A∩B={x,x∈A且x∈B}2.并集运算:对于集合A和B,它们的并集记作A∪B,定义为A和B 中所有元素所组成的集合。

A∪B={x,x∈A或x∈B}3.差集运算:对于集合A和B,它们的差集记作A-B,定义为属于A 但不属于B的元素所组成的集合。

A-B={x,x∈A且x∉B}4.对称差运算:对于集合A和B,它们的对称差记作A△B,定义为属于A或属于B但不同时属于A和B的元素所组成的集合。

A△B={x,(x∈A且x∉B)或(x∉A且x∈B)}二、数学归纳法数学归纳法是一种证明方法,用于证明一类命题对于所有正整数成立。

它的基本思想是通过证明基本情况成立,然后证明如果对于一些正整数n成立,则对于n+1也成立,从而得出结论对于所有正整数成立。

数学归纳法的三个步骤:1.基础步骤:证明当n取最小值时命题成立。

2.归纳假设:假设当n=k时命题成立,即P(k)成立。

3.归纳步骤:证明当n=k+1时命题也成立,即P(k+1)成立。

三、逻辑公式逻辑公式是描述命题之间关系的数学表达式。

常用的逻辑公式有如下几种:1.否定:对于命题p,它的否定记为¬p,表示p是假的。

2.合取:对于命题p和q,它们的合取记为p∧q,表示p和q同时为真时整个表达式才为真。

3.析取:对于命题p和q,它们的析取记为p∨q,表示p和q至少有一个为真时整个表达式才为真。

4.蕴含:对于命题p和q,它们的蕴含记为p→q,表示如果p为真,则q也为真;如果p为假,则整个表达式为真。

离散数学部分概念和公式总结

离散数学部分概念和公式总结

离散数学部分概念和公式总结命题:称能判断真假的陈述句为命题。

命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。

命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。

给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。

若指定的一组值使A的值为真,则称成真赋值。

真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。

将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。

命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。

(2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。

(3)若A至少存在一组赋值是成真赋值,则A是可满足式。

主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。

主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。

命题的等值式:设A、B为两命题公式,若等价式A↔B是重言式,则称A与B是等值的,记作A<=>B。

约束变元和自由变元:在合式公式∀x A和∃x A中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。

一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A↔B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。

前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Q k…x k B,称A为前束范式。

集合的基本运算:并、交、差、相对补和对称差运算。

笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。

二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。

数理逻辑重要公式离散数学

数理逻辑重要公式离散数学

关于全称量词的:
关于存在量词的:
x(A(x)B)xA(x)B x(A(x)B)xA(x)B x(A(x)B)xA(x)B x(BA(x))BxA(x)
x(A(x)B)xA(x)B x(A(x)B)xA(x)B x(A(x)B)xA(x)B x(BA(x))BxA(x)
量词分配等值式 x(A(x)B(x))xA(x)xB(x) x(A(x)B(x))xA(x)xB(x) 取式 析取三段论 假言三段论 等价三段 构造性二难
4
(AB)(AB)(AA) B 构造性二难(特殊形式)
(AB)(CD)( BD) (AC)
推理定破律坏性(续二难)
说明: A, B, C为元语言符号 若某推理符合某条推理定律,则它自然是正确的 AB产生两条推理定律: A B, B A
等值公式
双重否定律 : AA
结合律:
(AB)CA(BC)
分配律:
基(A本B等)C值式A(BC)
A(BC)(AB)(AC)
A(BC) (AB)(AC)
交换律:
ABBA, ABBA
等幂律: AAA, AAA
1
德·摩根律 : (AB)AB
(AB)AB
吸收律: 零 律:
A(AB)A, A(AB)A A11, A00
5
基本等值式
1、基本等值式:
命题逻辑中基本等值式的代换实例
2、消去量词等值式 设D={a1,a2,…,an} xA(x)A(a1)A(a2)…A(an) xA(x)A(a1)A(a2)…A(an)
3、否定等值式 x(x)= x(x) x(x)= x(x)
6
量词辖域收缩与扩张等值式
设A(x)是含x自由出现的公式,B中不含x的出现

离散数学逻辑公式大全化简

离散数学逻辑公式大全化简

离散数学逻辑公式大全化简
离散数学逻辑公式大全:
一、对称表达式
1. 对立矛盾:P∧(¬P),这就意味着,实际上什么都不是真。

2. 波尔定理:(P→Q)∨(Q→P),即P和Q之一必定是另一个的条件。

3. 谓词逻辑:∀xPx,表明了P是对任意x是真的。

二、蕴涵表达式
1. 因果关系:P→Q,其中P是因,Q是果。

2. 排中律:P∨(Q∧R)≡(P∨Q)∧(P∨R),即P既支持Q和R的同时满足,也支持Q和R的分别满足。

3. 简单蕴涵:P→Q,Q即P的蕴涵结果。

三、命题逻辑
1. 范式:¬(P∨Q)即¬P∧¬Q,这表明,若P和Q两者成立其一,则结果
为假。

2. 合取范式:P ∨ Q,表示只要PQ其一成立,结果即成立。

3. 否定范式:P→Q,表示只有当P成立,Q才会成立,否则结果为假。

四、可辩证表达式
1. 含义性质:P→Q,表明当P为真时,Q也可能为真,但可能有证据
表明P为假时,Q也可能为假。

2. 对抗性质:¬P∧Q,表明当P(或Q)被否定时,另一方会加强对这个变量的认可。

3. 不可满足性:P∧¬P,表明两个性质之间存在矛盾,因此,这种形式无法同时满足。

离散数学部分概念和公式总结(考试专用)

离散数学部分概念和公式总结(考试专用)

命题:称能判断真假的陈述句为命题。

命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。

命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。

给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。

若指定的一组值使A的值为真,则称成真赋值。

真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。

将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。

命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。

(2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。

(3)若A至少存在一组赋值是成真赋值,则A是可满足式。

主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。

主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。

命题的等值式:设A、B为两命题公式,若等价式A↔B是重言式,则称A与B是等值的,记作A<=>B。

约束变元和自由变元:在合式公式∀x A和∃x A中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。

一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A↔B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。

前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Q k…x k B,称A为前束范式。

集合的基本运算:并、交、差、相对补和对称差运算。

笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。

二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。

离散数学公式

离散数学公式

离散数学公式
离散数学是一门利用数学原理研究离散复杂系统的科学,是一门多维而全面的学科,其研究范围涵盖了计算机科学、逻辑学、概率论和组合数学等领域。

关系公式:若集合X和Y之间存在一对一的函数关系,则X到Y的映射关系可以用公式f:X→Y表示,其中•x∈X表示x是X集合中的一个元素,•f(x)∈Y表示f(x)是Y集合中的一个元素,•f:X→Y表示Y集合的每个元素都可以通过函数f映射回X集合中的一个元素。

函数关系公式:若集合X和Y之间存在可定义的函数关系,则可以用f:X→Y表示,其中•f:X→Y表示函数f把X集合中的元素映射到Y集合中,•f(x)表示x在X集合中的元素映射到Y集合中的元素。

算数逻辑公式:若集合X和Y之间存在逻辑关系,则可以用公式
x∈X⊃y∈Y表示,其中•x∈X表示x是X集合中的一个元素,•y∈Y表示y是Y集合中的一个元素,•x∈X⊃y∈Y表示若x属于X集合,则y属于Y集合。

离散数学重要公式定理汇总.

离散数学重要公式定理汇总.

⑺吸收律 对任何集合A、B,有 A∪(A∩B)=A A∩(A∪B) =A
证明: A∪(A∩B) = (A∩E)∪(A∩B) = A∩(E∪B) = A∩E=A (同一) (分配) (零律) (同一)
⑻ AB A∪B=B
差集的性质
设A、B、C是任意集合,则 ⑴ A-Φ=A ⑵ Φ-A=Φ ⑶ A-A=Φ ⑷ A-BA ⑸ AB A-B=Φ ⑹ (A-B)-C=(A-C)-(B-C) ⑺ A-(B∩C)=(A-B)∪(A-C) ⑻ A-(B∪C)=(A-B)∩(A-C) ⑼ A∩(B-C)=(A∩B)-(A∩C) 注意:∪对- 是不可分配的,如A∪(A-B)=A 而(A∪A)-(A∪B)=Φ
⑴幂等律 对任何集合A,有A∩A=A。 ⑵交换律 对任何集合A、B,有A∩B=B∩A。 ⑶结合律 对任何集合A、B、C,有 (A∩B)∩C=A∩(B∩C)。 ⑷同一律 对任何集合A,有A∩E=A。 ⑸零律 对任何集合A,有A∩Φ=Φ。 ⑹ AB A∩B=A。
交、并的性质 ⑴幂等律 对任何集合A,有A∪A=A。 ⑵交换律 对任何集合A、B,有A∪B=B∪A。 ⑶结合律 对任何集合A、B、C,有 (A∪B)∪C=A∪(B∪C)。 ⑷同一律 对任何集合A,有A∪Φ=A。 ⑸零律 对任何集合A,有A∪E =E 。 ⑹分配律 对任何集合A、B、C,有 A∩(B∪C) =(A∩B)∪(A∩C)。 A∪(B∩C) =(A∪B)∩(A∪C)。
2019/1/15 6
Formula
3.重要的重言蕴含式(如教材第43页所示) I1.P∧QP , I2. P∧QQ I3. PP∨Q I4. QP∨Q I5. PPQ I6. QPQ I7. (PQ)P I8. (PQ)Q I9. P,Q P∧Q I10. P∧(P∨Q)Q I11. P∧(PQ)Q I12. Q∧(PQ)P I13. (PQ)∧(QR)PR I14. (P∨Q)∧(PR)∧(QR)R I15. AB (A∨C)(B∨C) I16. AB (A∧C)(B∧C)

离散数学等价公式表16个

离散数学等价公式表16个

离散数学等价公式表16个一、双重否定律。

1. “非非A等于A”。

就好像说“不是不喜欢那就是喜欢啦”,A和两个否定后的A是一回事儿,这就是双重否定律。

二、幂等律。

2. “A和A做合取(并且)还是A”,就像你说“苹果是水果并且苹果是水果”,这其实就等于说“苹果是水果”,这就是A合取A等价于A。

3. “A或A做析取(或者)还是A”。

好比“今天要么是晴天要么是晴天”,这和说“今天是晴天”是一样的,A析取A等价于A。

三、交换律。

4. “A和B做合取,等于B和A做合取”。

这就像说“小明是男生并且小红是女生”和“小红是女生并且小明是男生”是一样的,合取里A和B的顺序换一换不影响结果。

5. “A或B做析取,等于B或A做析取”。

比如说“要么吃苹果要么吃香蕉”和“要么吃香蕉要么吃苹果”是一样的道理,析取时A和B交换顺序结果不变。

四、结合律。

6. “A和(B和C)做合取,等于(A和B)和C做合取”。

这就好比三个人站一起,不管是先把后面两个人看成一组再和前面的组合,还是先把前面两个人看成一组再和后面的组合,最后都是这三个人站一起的关系,合取的这种组合方式结果一样。

7. “A或(B或C)做析取,等于(A或B)或C做析取”。

例如去旅游,不管是先想“去北京或者(去上海或者去广州)”,还是“(去北京或者去上海)或者去广州”,其实都是在考虑这三个地方去其中一个的选择,析取的这种组合结果相同。

五、分配律。

8. “A和(B析取C)等于(A和B)析取(A和C)”。

可以想象成你有一堆苹果(A),要分给两组人,一组是喜欢香蕉或者橙子(B析取C)的人,这就相当于把苹果分给喜欢香蕉的人(A和B)或者分给喜欢橙子的人(A和C)。

9. “A或(B合取C)等于(A或B)合取(A或C)”。

比如参加比赛,你可以是数学好(A)或者(语文好并且英语好(B合取C)),这就相当于(数学好或者语文好(A或B))并且(数学好或者英语好(A或C))。

六、德摩根律。

10. “非(A和B)等于非A或非B”。

离散数学公式范文

离散数学公式范文

离散数学公式范文离散数学是研究离散对象及其性质、结构和相互关系的一门数学学科。

它是数学中的一个重要分支,广泛应用于计算机科学、信息科学、金融、工程和其他领域。

离散数学的内容丰富多样,其中包括了许多重要的公式。

本文将介绍一些与离散数学相关的公式,帮助读者更好地理解和应用离散数学。

1.排列组合公式:排列公式表示从n个不同元素中取r个元素所能组成的不同排列的个数,记作P(n,r)。

组合公式表示从n个不同元素中取r个元素所能组成的不同组合的个数,记作C(n,r)。

它们的计算公式如下:P(n,r)=n!/(n-r)!C(n,r)=n!/(r!*(n-r)!)2.容斥原理公式:容斥原理是一种计数方法,用于计算多个集合的交集和并集中的元素个数。

假设A1,A2,...,An是n个集合,容斥原理公式如下:A1∪A2∪...∪An,=Σ(,Ai,)-Σ(,Ai∩Aj,)+Σ(,Ai∩Aj∩Ak,)-...+(-1)^(n-1)*,A1∩A2∩...∩An3.递推关系公式:递推关系是一种数列的定义方式,通过前几项的关系来递推出后面的项。

其中最著名的递推关系是斐波那契数列的定义,即F(n)=F(n-1)+F(n-2),其中F(0)=0,F(1)=14.二项式定理公式:二项式定理是代数中一种重要的展开公式,用于计算(x+y)^n的展开式。

它的公式如下:(x+y)^n=Σ(C(n,r)*x^(n-r)*y^r),其中r取值范围为0到n。

5.欧拉欧系数公式:欧拉欧系数是用于描述图的性质的一种算子。

对于一个图G的顶点集V和边集E,欧拉欧数E(G)定义为:E(G)=,E,-,V,+16.布尔代数公式:布尔代数是一种逻辑代数,用于描述和操作命题的真值。

其中的一些重要公式包括德摩根定律、分配律、吸收定律等。

7.图论中的公式:图论是离散数学中的一个重要分支,用于研究图的性质和结构。

其中一些重要的公式包括图的度数和、握手定理、树的性质等。

离散数学基本公式

离散数学基本公式

离散数学基本公式离散数学是数学中的一个重要分支,主要研究离散对象及其关系的数学结构。

离散数学中有很多基本公式,下面将介绍一些常用的公式。

1.排列公式:排列是从一个集合中取出特定元素组成一定长度的有序排列。

对于n个不同元素中取r个元素排列的个数表示为P(n,r),其计算公式为:P(n,r)=n!/(n-r)!其中,n!表示n的阶乘,即n!=n*(n-1)*(n-2)*...*12.组合公式:组合是从一个集合中取出特定元素组成一定长度的无序组合。

对于n个不同元素中取r个元素组合的个数表示为C(n,r),其计算公式为:C(n,r)=n!/(r!*(n-r)!)3.二项式定理:二项式定理是将一个二次多项式展开为一系列项的求和,其公式为:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+C(n,2)*a^(n-2)*b^2+...+C(n,n)*a^0*b^n4.递推公式:递推公式是通过前一项或前几项的值求得下一项的值。

在离散数学中,递推公式经常用来求解递归关系式。

例如,斐波那契数列的递推公式为:F(n)=F(n-1)+F(n-2)其中,F(n)表示斐波那契数列的第n项,F(0)=0,F(1)=15.布尔代数公式:布尔代数是离散数学中研究命题逻辑的一种代数结构。

布尔代数中有一些常见的公式,如德·摩根定律:¬(p∧q)=¬p∨¬q¬(p∨q)=¬p∧¬q其中,¬表示取非操作,∧表示逻辑与操作,∨表示逻辑或操作。

6.常用等式:在离散数学中,还有一些常用的等式,如:a+(a*b)=aa∨(a∧b)=aa∧(a∨b)=a这些等式在布尔代数、集合论等离散数学的领域中经常被使用。

7.容斥原理:容斥原理是离散数学中常用的一种求解集合问题的方法,其公式为:A1∪A2∪...∪An,=,A1,+,A2,+...+,An,-,A1∩A2,-,A1∩A3,-...+(-1)^(n+1)*,An-1∩An,+...+(-1)^(n+1)*,A1∩A2∩...∩A其中,A,表示集合A的元素个数。

离散数学公式大全总结

离散数学公式大全总结

离散数学公式大全总结离散数学是数学中的一个分支,涵盖了许多概念和公式。

以下是一些离散数学中常见的公式和概念的总结:1. 集合理论:集合并:$A \cup B = {x | x \in A \text{或} x \in B}$集合交:$A \cap B = {x | x \in A \text{且} x \in B}$集合补:$A' = {x | x \notin A}$集合差:$A - B = {x | x \in A \text{且} x \notin B}$幂集:如果$A$有$n$个元素,$P(A)$有$2^n$个子集。

容斥原理:$|A \cup B| = |A| + |B| - |A \cap B|$2. 排列和组合:排列数:$P(n, k) = \frac{n!}{(n - k)!}$组合数:$C(n, k) = \frac{n!}{k!(n - k)!}$二项定理:$(a + b)^n = \sum_{k=0}^{n}C(n, k)a^{n-k}b^k$3. 图论:手握定理:$2 \cdot \text{边数} = \sum \text{度数}$欧拉图:一个连通图是欧拉图,当且仅当每个顶点的度数都是偶数。

哈密顿图:包含图中每个顶点的圈。

图着色:给定图中的顶点,用尽量少的颜色对它们进行着色,使得相邻的顶点颜色不相同。

图的最短路径:Dijkstra算法和Floyd-Warshall算法用于找到图中的最短路径。

4. 布尔代数:布尔变量:$0$表示假,$1$表示真。

逻辑与:$A \land B$逻辑或:$A \lor B$逻辑非:$\lnot A$逻辑与门:$AND$逻辑或门:$OR$逻辑非门:$NOT$布尔恒等定律:$A \land 1 = A$,$A \lor 0 = A$德·摩根定律:$\lnot (A \land B) = \lnot A \lor \lnot B$,$\lnot (A \lor B) = \lnot A \land \lnot B$5. 树和图:树的顶点数与边数关系:$V = E + 1$二叉树的性质:最多有$2^k$个叶子节点,高度为$h$的二叉树最多有$2^{h+1} - 1$个节点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

命题联结词等价公式定义设A和B是两个命题公式,如果A和B在任意赋值情况下都具有相同的真值,则称A和B是等价公式。

记为A⇔B。

性质定理设A、B、C是公式,则(1)A⇔A(2)若A⇔B则B⇔A(3)若A⇔B且B⇔C则A⇔C定理设A、B、C是公式,则下述等价公式成立:(1)双重否定律⌝⌝A⇔A(2)等幂律 A∧A⇔A ; A∨A⇔A(3)交换律 A∧B⇔B∧A ; A∨B⇔B∨A(4)结合律(A∧B)∧C⇔A∧(B∧C)(A∨B)∨C⇔A∨(B∨C)(5)分配律(A∧B)∨C⇔(A∨C)∧(B∨C)(A∨B)∧C⇔(A∧C)∨(B∧C)(6)德·摩根律⌝(A∨B)⌝⇔A∧⌝B⌝(A∧B)⇔⌝A∨⌝B(7)吸收律 A∨(A∧B)⇔A;A∧(A∨B)⇔A(8)零一律 A∨1⇔1 ; A∧0⇔0(9)同一律 A∨0⇔A ; A∧1⇔A(10)排中律 A∨⌝A⇔1(11)矛盾律 A∧⌝A⇔0(12)蕴涵等值式 A→B⇔⌝A∨B(13)假言易位 A→B⇔⌝B→⌝A(14)等价等值式 A↔B⇔(A→B)∧(B→A)(15)等价否定等值式 A↔B⇔⌝A↔⌝B⇔⌝B↔⌝A(16)归缪式(A→B)∧(A→⌝B)⇔⌝A主合取范式取极大值,P=0主析取范式取极小值,P=1公式的蕴涵1.6.1 蕴涵的概念定义设G、H是两个公式,若G→H是永真式,则称G蕴涵H,记作G⇒H。

推理规则1.前提引入规则:可以在证明的任何时候引入前提;2.结论引入规则:在证明的任何时候,已证明的结论都可以作为后续证明的前提;3.置换规则:在证明的任何时候,命题公式中的任何子命题公式都可以用与之等价的命题公式置换。

4.附加:A⇒(A∨B);5.化简:(A∧B)⇒A;6.假言推理:(A→B) ∧A⇒B7.拒取式:(A→B)∧⌝B ⇒⌝A;8.假言三段论:(A→B)∧(B→C)⇒(A→C);9.析取三段论:(A∨B) ∧⌝B ⇒A;10.等价三段论:(A↔B)∧(B↔C)⇒(A↔C)11.构造性二难规则:(A→B)∧(C→D)∧(A∨C)⇒(B∨D);12.合取引入规则:A,B⇒A∧B推理常用方法1.直接证法直接证法就是根据一组前提,利用前面提供的一些推理规则,根据已知的等价公式和蕴涵式,推演得到有效的结论的方法,即有前提直接推导出结论。

例构造下列推理的证明。

前提:P∨Q,P→R,Q→S 结论:S∨R证明(1)P∨Q 前提引入规则(2)P→R 前提引入规则(3)Q→S 前提引入规则(4)S∨R (1)(2)(3)构造性二难规则2.间接证法间接证法主要有如下两种情况。

(1)附加前提证明法有时要证明的结论以蕴涵式的形式出现,即推理的形式结构为:(G1∧G2∧…∧G n)⇒(R→C)设(G1∧G2∧…∧G n)为S,则上述推理可表示为证明S⇒(R→C),即证明S→(R→C)为永真式。

用附加前提证明法证明下面推理。

前提:P→(Q→R),⌝S∨P,Q 结论:S→R证明:(1)⌝S∨P 前提引入规则(2)S 附加前提引入规则(3)P (1)(2)析取三段论规则(4)P→(Q→R)前提引入规则(5)Q→R (3)(4)假言推理规则(6)Q 前提引入规则(7)R (5)(6)假言推理规则2)归缪法定义设G1,G2,…,G n是n个命题公式,如果G1∧G2∧…∧G n 是可满足式,则称G1,G2,…,G n是相容的。

否则(即G1∧G2∧…∧G n是矛盾式)称G1,G2,…,G n是不相容的。

例用归缪法证明。

前提:P∨Q,P→R,Q→S 结论:S∨R证明(1)⌝(S∨R)附加前提引入规则(2)⌝S∧⌝R (1)置换规则(3)⌝S (2)化简规则(4)⌝R (2)化简规则(5)Q→S 前提引入规则(6)⌝Q∨S (5)置换规则(7)⌝Q (3)(6)析取三段论(8)P∨Q 前提引入规则(9)P (7)(8)析取三段论规则(10)P→R 前提引入规则(11)⌝P∨R (10)置换规则(12)R (9)(11)析取三段论规则(13)⌝R∧R (4)(12)合取引入规则谓词表示例2.1 将下列命题在谓词逻辑中符号化,并讨论它们的真值:(1)只有4是素数,8才是素数。

(2)如果2小于3,则8小于7。

解(1)设谓词G(x):x是素数,a:4,b:8;(1)中的题符号化为谓词的蕴涵式:G(a)→G(b)由于此蕴涵式的前件为假,所以(1)中的命题为真。

(2)设谓词H(x,y):x小于y,a:2,b:3,c:8,d:7(2)中的命题符号化为谓词的蕴涵式:H(a,b)→H(c,d)由于此蕴涵式的前件为真,后件为假,所以(2)中的命题为假。

例 2.2 在个体域分别限制为(a)和(b)条件时,将下面的命题符号化:(1)所有人都是要死的。

(2)有的人天生就近视。

其中:(a)个体域D1为人类集合。

(b)个体域D2为全总个体域。

解(a)令F(x):x要死的;G(x):x天生就近视。

(1)在个体域D1中除人外,没有其他的事物,因而(1)可符号化为:∀x F(x)(2)在个体域D1中有些人是天生就近视,因而(2)可符号化为谓词的蕴涵式:∃ x G(x)(b)在个体域D2中除人外,还有其他的事物,因而在将(1)、(2)符号化时,必须考虑先将人分离出来,令M(x):x是人。

在D2中,(1)、(2)可分别描述如下:对于宇宙间的一切事物,如果事物是人,则他是要死的。

(2)在宇宙间存在着天生就近视的人。

将(1)、(2)分别符号化为:(1)∀x(M(x)→F(x))(2)∃x(M(x)→G(x))在个体域D1、D2中命题(1)、(2)都是真命题。

例2.3 在个体域分别限制为(a)和(b)条件时,将下面的命题符号化:(1)对任意的x,都有x2-5x+6=(x-2)(x-3)(2)存在x,使得x+1=0。

其中:(a)个体域D1为自然数集合。

(b)个体域D2为实数集合。

解(a)令F(x):x2-5x+6=(x-2)(x-3);G(x):x+1=0。

(1)可符号化为:∀x F(x)(2)可符号化为:∃x G(x)在个体域D1中命题(1)为真命题,命题(2)为假命题。

(b)在个体域D2中(1)、(2)符号化分别为(1)∀x F(x)(2)∀x G(x)在个体域D2中命题(1)、(2)都是真命题。

例2.4 将下列命题符号化,并指出真值情况。

(1)没有人登上过月球。

(2)所有人的头发未必都是黑色的。

解个体域为全总个体域,令M(x):x是人。

(1)令F(x):x登上过月球。

命题(1)符号化为:⌝∃x(M(x)∧F(x))设a是1969年登上月球完成阿波罗计划的一名美国人,则M(a)∧F(a)为真,故命题(1)为假。

(2)令H(x):x的头发是黑色的。

命题(2)可符号化为:⌝∀x(M(x)→H(x))我们知道有的人头发是褐色的,所以∀x(M(x)→H(x))为假,故命题(2)为真。

例2.5 将下列命题符号化。

(1)猫比老鼠跑得快。

(2)有的猫比所有老鼠跑得快。

(3)并不是所有的猫比老鼠跑得快。

(4)不存在跑得同样快的两只猫。

解设个体域为全总个体域。

令C(x):x是猫;M(y):y是老鼠;Q(x,y):x比y跑得快;L(x,y):x和y跑得同样快。

这4个命题分别符号化为:(1)∀x∀y(C(x)∧M(y)→Q(x,y));(2)∃x(C(x)∧∀y(M(y)→Q(x,y)));(3)⌝∀x ∀y(C(x)∧M(y)→Q(x,y));(4)⌝∃x∃ y(C(x)∧C(y)∧L(x,y))2.3 谓词逻辑约束公式的等价与蕴涵2.3.1 谓词逻辑的等价公式定义2.7 设A、B是命题逻辑中的任意两个公式,设它们有共同的个体域E,若对任意的解释I都有T I(A)= T I(B),则称公式A、B在E上是等价的,记作A⇔B。

定理1设A(x)是谓词公式,有关量词否定的两个等价公式:(1)﹁∀x A(x)⇔∃x﹁A(x)(2)﹁∃x A(x)⇔∀x﹁A(x)证明(1)设个体域是有限的为:D={ a1,a2,…,a n},则有﹁∀x A(x)⇔﹁(A(a1)∧A(a2)∧…∧A(a n))⇔﹁A(a1)∨﹁A(a2)∨…∨﹁A(a n))⇔∃x﹁A(x)(2)设个体域是有限的为:D={ a1,a2,…,a n},则有﹁∃x A(x)⇔﹁(A(a1)∨ A(a2)∨…∨A(a n))⇔﹁A(a1)∧﹁A(a2)∧…∧﹁A(a n)⇔∀x﹁A(x)定理2 设A(x)是任意的含自由出现个体变项x的公式,B是不含x出现的公式,则有(1)∀x(A(x)∨B)⇔∀x A(x)∨B(2)∀x(A(x)∧B)⇔∀x A(x)∧B(3)∀x(A(x)→ B)⇔∃x A(x)→ B(4)∀x(B→A(x))⇔B→∀x A(x)(5)∃x(A(x)∨B)⇔∃x A(x)∨B(6)∃x(A(x)∧B)⇔∃x A(x)∧B(7)∃x(A(x)→ B)⇔∀x A(x)→ B(8)∃x(B→A(x))⇔B→∃x A(x)4.量词分配等值式:∀x(A(x)∧B(x))⇔∀x A(x)∧∀x B(x)∃x(A(x)∨B(x))⇔∃xA(x)∨∃x B(x)集合论定义3.5 设A 是有限集,由A 的所有子集作为元素而构成的集合称为A 的幂集,记作ρ(A),即ρ(A)={X|X ⊆A }。

在A 的所有子集中,A 和φ这两个子集又叫平凡子集。

例如:A ={1,2,3},则 ρ(A)={φ,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}定理3.2 设A 是有限集,|A|=n ,则A 的幂集ρ(A)的基为2n 。

证明:由排列组合知: n n n n n n c c c c A ++++=-110)( ρ又由二项式定理知:n n n n nn n c c c c 2110=++++- 所以可得: n A 2)(=ρ集合的运算3.3.1 集合的并运算定义3.6 任意两个集合A 、B 的并,记作A ∪B ,它也是一个集合,由所有属于A 或者属于B 的元素合并在一起而构成的,即A ∪B ={x | x ∈A 或x ∈B }例如,A ={a ,b ,c },B ={a ,b ,c ,d ,e },则A ∪B ={a ,b ,c ,d ,e }又如,A ={1,2,3,4,5},B ={1,3,5,7,9},则A ∪B ={1,2,3,4,5,7,9}用文氏图表示集合之间的并运算:用平面上的矩形表示全集U 。

用矩形内的圆表示U 中的任一集合。

图中表示了集合A 和集合B 的并集。

阴影部分就是A ∪B 。

由集合并运算的定义可知,并运算具有以下性质:(1)幂等律:A ∪A =A (2)同一律:A ∪φ=A(3)零律:A∪U=U (4)结合律:(A∪B)∪C=A∪(B∪C)(5)交换律:A∪B=B∪A3.3.2 集合的交运算定义3.7 任意两个集合A、B的交记作A∩B,它也是一个集合,由所有既属于A又属于B的元素构成,即A∩B ={x | x∈A且x∈B}例如,A={a,b,c},B={b,c,d,e},则A∩B={b,c}又如,A={1,2,3,4,5},B={1,3,5,7,9},则A∩B={1,3,5}集合的交运算的文氏图表示,见图,其中阴影部分就是A∩B。

相关文档
最新文档