九年级上册数学 圆 几何综合单元复习练习(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册数学 圆 几何综合单元复习练习(Word 版 含答案)
一、初三数学 圆易错题压轴题(难)
1.如图,在直角体系中,直线AB 交x 轴于点A(5,0),交y 轴于点B,AO 是⊙M 的直径,其半圆交AB 于点C,且AC=3.取BO 的中点D,连接CD 、MD 和OC . (1)求证:CD 是⊙M 的切线;
(2)二次函数的图象经过点D 、M 、A,其对称轴上有一动点P,连接PD 、PM,求△PDM 的周长最小时点P 的坐标;
(3)在(2)的条件下,当△PDM 的周长最小时,抛物线上是否存在点Q ,使S △PDM =6S △QAM ?若存在,求出点Q 的坐标;若不存在,请说明理由.
【答案】解:(1)证明:连接CM ,
∵OA 为⊙M 直径,∴∠OCA=90°.∴∠OCB=90°. ∵D 为OB 中点,∴DC=DO .∴∠DCO=∠DOC . ∵MO=MC ,∴∠MCO=∠MOC . ∴
.
又∵点C 在⊙M 上,∴DC 是⊙M 的切线. (2)∵A 点坐标(5,0),AC=3 ∴在Rt △ACO 中,.
∴545(x )x 5)12152-
=--(,∴,解得10
OD 3
=
. 又∵D 为OB 中点,∴
1552
4
+∴D 点坐标为(0,154).
连接AD ,设直线AD 的解析式为y=kx+b ,则有
解得.
∴直线AD 为
.
∵二次函数的图象过M (5
6
,0)、A(5,0), ∴抛物线对称轴x=
154
. ∵点M 、A 关于直线x=154对称,设直线AD 与直线x=15
4
交于点P , ∴PD+PM 为最小.
又∵DM 为定长,∴满足条件的点P 为直线AD 与直线x=15
4
的交点. 当x=
15
4时,45y (x )x 5)152
=
--(. ∴P 点的坐标为(15
4,56
). (3)存在. ∵
,5
y a(x )x 5)2
=--(
又由(2)知D (0,154),P (15
4,56
), ∴由
,得
,解得y Q =±
103
.
∵二次函数的图像过M(0,5
6
)、A(5,0), ∴设二次函数解析式为,
又∵该图象过点D (0,15
4
),∴,解得a=
512
. ∴二次函数解析式为
.
又∵Q 点在抛物线上,且y Q =±103
. ∴当y Q =103
时,,解得x=
1552-或x=1552
+;
当y Q =5
12
-
时,,解得x=
15
4
.
∴点Q 的坐标为(15524
-,103),或(15524+,10
3),或(154,512-).
【解析】
试题分析:(1)连接CM ,可以得出CM=OM ,就有∠MOC=∠MCO ,由OA 为直径,就有∠ACO=90°,D 为OB 的中点,就有CD=OD ,∠DOC=∠DCO ,由∠DOC+∠MOC=90°就可以得出∠DCO+∠MCO=90°而得出结论.
(2)根据条件可以得出2222OC OA AC 534=-=-=和OC OB
tan OAC AC OA
∠=
=,从而求出OB 的值,根据D 是OB 的中点就可以求出D 的坐标,由待定系数法就可以求出抛物线的解析式,求出对称轴,根据轴对称的性质连接AD 交对称轴于P ,先求出AD 的解析式就可以求出P 的坐标. (3)根据PDM DAM PAM S S S ∆∆∆=-,求出Q 的纵坐标,求出二次函数解析
式即可求得横坐标.
2.如图,以A (0,3)为圆心的圆与x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD 的延长线交x 轴的负半轴于点E ,且∠BEO =60°,AD 的延长线交x 轴于点C .
(1)分别求点E 、C 的坐标;
(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式; (3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由.
【答案】(1)点C 的坐标为(-3,0)(2)2343333
y x x =++3)⊙M 与⊙A 外切 【解析】
试题分析:(1)已知了A 点的坐标,即可得出圆的半径和直径,可在直角三角形BOE 中,根据∠BEO 和OB 的长求出OE 的长进而可求出E 点的坐标,同理可在直角三角形OAC 中求出C 点的坐标;
(2)已知了对称轴的解析式,可据此求出C 点关于对称轴对称的点的坐标,然后根据此点坐标以及C ,A 的坐标用待定系数法即可求出抛物线的解析式;
(3)两圆应该外切,由于直线DE ∥OB ,因此∠MED=∠ABD ,由于AB=AD ,那么
∠ADB=∠ABD ,将相等的角进行置换后可得出∠MED=∠MDE ,即ME=MD ,因此两圆的圆心距
AM=ME+AD ,即两圆的半径和,因此两圆外切.
试题解析:(1)在Rt△EOB 中,3
cot60232EO OB =⋅︒=⨯=, ∴点E 的坐标为(-2,0).
在Rt△COA 中,tan tan60333OC OA CAO OA =⋅∠=⋅︒=⨯=, ∴点C 的坐标为(-3,0).
(2)∵点C 关于对称轴2x =-对称的点的坐标为F (-1,0), 点C 与点F (-1,0)都在抛物线上. 设()()13y a x x =++,用()
03A ,代入得
()()30103a =++,
∴3
3
a =. ∴()()3
13y x x =
++,即 2343333
y x x =
++. (3)⊙M 与⊙A 外切,证明如下: ∵ME ∥y 轴,
∴MED B ∠=∠.
∵B BDA MDE ∠=∠=∠, ∴MED MDE ∠=∠. ∴ME MD =.
∵MA MD AD ME AD =+=+, ∴⊙M 与⊙A 外切.
3.在直角坐标系中,⊙C 过原点O ,交x 轴于点A (2,0),交y 轴于点B (0,).
(1)求圆心C 的坐标.
(2)抛物线y=ax 2+bx+c 过O ,A 两点,且顶点在正比例函数y=-的图象上,求抛物线的解析式.
(3)过圆心C 作平行于x 轴的直线DE ,交⊙C 于D ,E 两点,试判断D ,E 两点是否在(2)中的抛物线上.
(4)若(2)中的抛物线上存在点P (x 0,y 0),满足∠APB 为钝角,求x 0的取值范围.