因式分解全章教案

合集下载

因式分解教案6篇

因式分解教案6篇

因式分解教案6篇在教学工作者开展教学活动前,时常要开展教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。

教案要怎么写呢?下面是精心整理的因式分解教案6篇,仅供参考,希望能够帮助到大家。

因式分解教案篇1知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。

教学目标:理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。

考查重难点与常见题型:考查因式分解能力,在中考试题中,因式分解出现的频率很高。

重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。

习题类型以填空题为多,也有选择题和解答题。

教学过程:因式分解知识点多项式的因式分解,就是把一个多项式化为几个整式的积。

分解因式要进行到每一个因式都不能再分解为止。

分解因式的常用方法有:(1)提公因式法如多项式其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。

(2)运用公式法,即用写出结果。

(3)十字相乘法对于二次项系数为l的二次三项式寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。

分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。

(5)求根公式法:如果有两个根X1,X2,那么2、教学实例:学案示例3、课堂练习:学案作业4、课堂:5、板书:6、课堂作业:学案作业7、教学反思:因式分解教案篇2一、教材分析1、教材的地位与作用“整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了学生的自主探索过程,依据原有的知识基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的基本法则、两个主要的乘法公式及因式分解的基本方法学生自己对知识内容的探索、认识与体验,完全有利于学生形成合理的知识结构,提高数学思维能力.利用公式法进行因式分解时,注意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。

因式分解全章教案和练习题

因式分解全章教案和练习题

因式分解全章教案和练习题一、教学目标1. 让学生掌握因式分解的基本概念和方法。

2. 培养学生运用因式分解解决实际问题的能力。

3. 提高学生对数学逻辑思维和运算能力的培养。

二、教学内容1. 因式分解的定义和意义2. 提公因式法3. 公式法4. 交叉相乘法5. 分解因式的应用三、教学重点与难点1. 重点:掌握因式分解的方法和步骤。

2. 难点:灵活运用因式分解解决实际问题。

四、教学方法1. 采用启发式教学,引导学生主动探索因式分解的方法。

2. 通过例题讲解,让学生逐步掌握因式分解的技巧。

3. 设计练习题,巩固所学知识,提高学生应用能力。

五、教学过程1. 导入:回顾整式的相关知识,引出因式分解的概念。

2. 讲解:讲解因式分解的定义、意义及基本方法。

3. 示范:举例子,演示因式分解的步骤和技巧。

4. 练习:让学生独立完成练习题,检验掌握程度。

5. 总结:对本节课的内容进行归纳总结,强调重点和难点。

6. 作业布置:布置课后练习题,巩固所学知识。

教案练习题:1. 请简述因式分解的意义和作用。

3. 分解因式:x^2 5x + 64. 分解因式:x^2 + 2x + 15. 分解因式:x^2 46. 分解因式:3x^2 97. 分解因式:2x^3 8x8. 分解因式:x^2 + 3x + 29. 分解因式:4x^3 16x10. 分解因式:x^2 2x 3答案:1. 因式分解的意义和作用:将一个多项式表示为几个整式的乘积形式,便于理解和计算,可以用来解决一些实际问题,如求解多项式方程等。

2. 因式分解方法:a. 提公因式法:适用于多项式中存在公因式的情况。

b. 公式法:适用于能够运用公式进行分解的情况,如平方差公式、完全平方公式等。

c. 交叉相乘法:适用于两组数或多组数交叉相乘后能够得到原多项式的情况。

3. 分解因式:x^2 5x + 6 = (x 2)(x 3)4. 分解因式:x^2 + 2x + 1 = (x + 1)^25. 分解因式:x^2 4 = (x + 2)(x 2)6. 分解因式:3x^2 9 = 3(x^2 3) = 3(x + √3)(x √3)7. 分解因式:2x^3 8x = 2x(x^2 4) = 2x(x + 2)(x 2)8. 分解因式:x^2 + 3x + 2 = (x + 1)(x + 2)9. 分解因式:4x^3 16x = 4x(x^2 4) = 4x(x + 2)(x 2)10. 分解因式:x^2 2x 3 = (x 3)(x + 1)因式分解全章教案和练习题(续)六、教学内容1. 结合公式法与十字相乘法2. 提公因式与公式法的综合运用3. 分解因式在实际问题中的应用4. 因式分解的进一步拓展七、教学重点与难点1. 重点:掌握不同因式分解方法的组合运用。

北师大版本八年级数学下第四章因式分解全章教案(可编辑修改word版)

北师大版本八年级数学下第四章因式分解全章教案(可编辑修改word版)

北师大版本八年级数学下第四章因式分解全章教案1 因式分解【知识与技能】使学生了解因式分解的意义,理解因式分解的概念;通过对分解因式与整式的乘法的观察与比较,学习代数式的变形和转化与化归的能力,培养学生的分析问题能力与综合应用能力.【过程与方法】认识因式分解与整式乘法的相互关系——互逆关系(即相反变形),并能利用这种关系寻求因式分解的方法;通过解决实际问题,学会将实际应用问题转化为用所学到的数学知识解决问题,体验解决问题策略的多样性,发展实践应用意识.【情感态度】培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度.【教学重点】因式分解的概念.【教学难点】难点是理解因式分解与整式乘法的相互关系,并利用它们之间的相互关系寻求因式分解的方法.一.情景导入,初步认知下题简便运算怎样进行?问题1:736×95+736×5问题2:-2.67× 132+25×2.67+7×2.67【教学说明】对乘法公式进行分析,为因式分解作铺垫.二.思考探究,获取新知问题:(1)993-99 能被99 整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流。

993-99 = 99×992-99 = 99(992-1)∴993-99 能被99 整除.(2)993-99 能被100 整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流。

小明是这样做的:993-99 = 99×992-99×1 = 99(992-1)= 99(99+1)(99- 1)= 99×98×100所以993-99 能被100 整除.想一想:(1)在回答993-99 能否被100 整除时,小明是怎么做的?(2)请你说明小明每一步的依据.(3)993-99 还能被哪些正整数整除?为了回答这个问题,你该怎做?【教学说明】老师点拨:回答这个问题的关键是把993-99 化成了怎样的形式?【归纳结论】以上三个问题解决的关键是把一个数式化成了几个数的积的形式.可以了解:993-99 可以被98、99、100 三个连续整数整除.将99 换成其他任意一个大于 1 的整数,上述结论仍然成立吗?学生探究发现:用a 表示任意一个大于1 的整数,则:a3-a=a×a2-a=a×(a2-1)=a ×(a+1)(a-1)=(a-1)×a×(a+1)① 能理解吗?你能与同伴交流每一步怎么变形的吗?② 这样变形是为了达到什么样的目的?【教学说明】经历从分解因数到分解因式的类比过程,探究概念本质属性.【归纳结论】把一个多项式化成几个整式的积的形式叫做把这个多项式分解因式.三.运用新知,深化理解1.下列各式从左到右的变形,哪些是因式分解?(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2.答案:(2)(3)是因式分解.2.试将下列各式化成几个整式的积的形式(1)3x2-2x= - (2)m2-4n2 =答案:(1)x(3x-2) (2)(m+2n)(m-2n)3.分解因式.4m2-4m= 2a3+2a= y2+4y+4=答案:4m(m-1) 2a(a2+1) (y+2)2 4.如果a+b=10,ab=21,则a2b+ab2 的值为.答案:210.5.如果a-3b=-3,那么5-a+3b 的值是()A.0B.2C.5D.8答案:D.6.9993-999 能被998 整除吗?能被1000 整除吗?解:9993-999=999(9992-1)=999(999+1)(999-1)=999×1000×998 所以9993- 999 能被998 整除,能被1000 整除。

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案第一章:整式的乘法1.1 整式乘法的基本概念理解整式的定义及表示方法掌握整式乘法的基本原理1.2 整式的乘法法则学习整式乘法的基本法则练习整式乘法的计算方法1.3 多项式乘多项式理解多项式乘多项式的概念掌握多项式乘多项式的计算方法1.4 单项式乘多项式理解单项式乘多项式的概念掌握单项式乘多项式的计算方法第二章:平方差公式与完全平方公式2.1 平方差公式推导平方差公式练习应用平方差公式解题2.2 完全平方公式推导完全平方公式练习应用完全平方公式解题2.3 平方根与乘方理解平方根与乘方的概念掌握平方根与乘方的计算方法第三章:因式分解3.1 因式分解的概念理解因式分解的定义及意义掌握因式分解的基本方法3.2 提取公因式法学习提取公因式法的方法练习提取公因式法解题3.3 公式法学习公式法的方法练习公式法解题3.4 分组分解法学习分组分解法的方法练习分组分解法解题第四章:应用题与综合练习4.1 应用题解法学习应用题的解法练习解决实际问题4.2 综合练习综合运用所学知识解决实际问题提高解题能力与思维水平第五章:复习与总结5.1 复习重点知识复习整式的乘法与因式分解的重点知识巩固所学内容5.2 总结全章内容总结整式的乘法与因式分解的主要概念和方法提高学生的综合运用能力第六章:多项式的乘法与除法6.1 多项式乘多项式理解多项式乘多项式的概念掌握多项式乘多项式的计算方法6.2 单项式乘多项式与多项式乘单项式理解单项式乘多项式与多项式乘单项式的概念掌握单项式乘多项式与多项式乘单项式的计算方法6.3 多项式除以单项式理解多项式除以单项式的概念掌握多项式除以单项式的计算方法6.4 多项式除以多项式理解多项式除以多项式的概念掌握多项式除以多项式的计算方法第七章:分式与分式方程7.1 分式的概念与性质理解分式的定义及表示方法掌握分式的基本性质7.2 分式的运算学习分式的运算规则练习分式的计算方法7.3 分式方程理解分式方程的定义及解法掌握解分式方程的方法7.4 应用题与综合练习学习解决实际问题中涉及分式与分式方程的问题提高解决实际问题的能力第八章:二次三项式的因式分解8.1 二次三项式的概念理解二次三项式的定义及表示方法掌握二次三项式的性质8.2 二次三项式的因式分解学习二次三项式的因式分解方法练习二次三项式的因式分解技巧8.3 应用题与综合练习学习解决实际问题中涉及二次三项式的因式分解的问题提高解决实际问题的能力第九章:方程的解法与应用9.1 方程的解法学习方程的解法掌握解一元二次方程的方法9.2 方程的应用理解方程在实际问题中的应用练习解决实际问题中涉及方程的问题9.3 应用题与综合练习学习解决实际问题中涉及方程的问题提高解决实际问题的能力第十章:复习与总结10.1 复习重点知识复习本章的重点知识巩固所学内容10.2 总结全章内容总结本章的主要概念和方法提高学生的综合运用能力重点和难点解析1. 整式乘法的基本概念和原理:理解整式乘法的定义和表示方法,掌握整式乘法的原理是学习整式乘法的基础,需要重点关注。

浙教版七下第六章《因式分解》教案

浙教版七下第六章《因式分解》教案

浙教版七下第六章《因式分解》教案一、教学内容本节课选自浙教版七年级下册第六章《因式分解》的第一课时。

主要内容包括:因式分解的意义,提取公因式法,以及应用举例。

具体涉及的教材章节为6.1节。

二、教学目标1. 理解因式分解的概念,掌握提取公因式法进行因式分解的方法。

2. 能够运用因式分解解决一些实际问题,提高数学思维能力。

3. 培养学生的观察能力、分析能力和解决问题的能力。

三、教学难点与重点教学重点:提取公因式法进行因式分解。

教学难点:理解因式分解的意义,以及如何找出多项式中的公因式。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:练习本、草稿纸、笔。

五、教学过程1. 实践情景引入通过一个简单的实际问题,引导学生思考如何求解一个多项式的值。

如:计算长方形的面积和周长,引导学生将面积和周长公式中的多项式进行因式分解。

2. 知识讲解(1)因式分解的意义:将一个多项式表示成几个整式的乘积的形式。

(2)提取公因式法:找出多项式中的公因式,并将其提取出来。

3. 例题讲解讲解两道例题,一道为提取公因式的简单例子,另一道为稍微复杂的多项式因式分解。

4. 随堂练习让学生独立完成两道练习题,巩固因式分解的方法。

5. 答疑解惑针对学生在练习中遇到的问题,进行解答和讲解。

六、板书设计1. 因式分解的概念及意义。

2. 提取公因式法进行因式分解的步骤。

3. 两道例题的解答过程。

4. 练习题目及答案。

七、作业设计1. 作业题目:(1)分解因式:6x^2 9x。

(2)分解因式:5a^2 + 10a。

2. 答案:(1)3x(2x 3)。

(2)5a(a + 2)。

八、课后反思及拓展延伸1. 反思:本节课学生掌握了因式分解的基本方法,但部分学生在提取公因式时仍存在困难,需要在今后的教学中加强练习。

2. 拓展延伸:引导学生思考,除了提取公因式法,还有哪些方法可以进行因式分解?为学生学习下一节课的内容做好准备。

重点和难点解析1. 教学难点与重点的明确。

因式分解教案模板(10篇)

因式分解教案模板(10篇)

因式分解教案模板(10篇)因式分解教案 1教学目标:1、进一步巩固因式分解的概念;2、巩固因式分解常用的三种方法3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题5、体验应用知识解决问题的乐趣教学重点:灵活运用因式分解解决问题教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3教学过程:一、创设情景:若a=101,b=99,求a2-b2的值利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。

二、知识回顾1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)(1)._2-4y2=(_+2y)(_-2y)因式分解(2).2_(_-3y)=2_2-6_y整式乘法(3).(5a-1)2=25a2-10a+1整式乘法(4)._2+4_+4=(_+2)2因式分解(5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解(7).2πR+2πr=2π(R+r)因式分解2、规律总结(教师讲解):分解因式与整式乘法是互逆过程.分解因式要注意以下几点:(1).分解的对象必须是多项式.(2).分解的结果一定是几个整式的乘积的形式.(3).要分解到不能分解为止.3、因式分解的方法提取公因式法:-6_2+6_y+3_=-3_(2_-2y-1)公因式的概念;公因式的求法公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)24、强化训练教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。

现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:场景一:正方形折叠演示师:这就是我们得到的正方形。

下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。

(完整版)因式分解——公式法教案

(完整版)因式分解——公式法教案

因式分解——公式法(1)一.教课内容人教版八年级上册数学十四章因式分解——公式法第一课时二.教材剖析分解因式与数系中分解质因数近似,是代数中一种重要的恒等变形,它是在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。

在后边的学习过程中应用宽泛,如:将分式通分和约分,二次根式的计算与化简,以及解方程都将以它为基础。

所以分解因式这一章在整个教材中起到了承上启下的作用。

同时,在因式分解中表现了数学的众多思想,如:“化归”思想、“类比”思想、“整体”思想等。

所以,因式分解的学习是数学学习的重要内容。

依据《课标》的要求,本章介绍了最基本的两种分解因式的方法:提公因式法和运用公式法(平方差、完好平方公式)。

所以公式法是分解因式的重要方法之一,是现阶段的学习要点。

三.教课目的知识与技术:理解和掌握平方差公式的构造特色,会运用平方差公式分解因式过程与方法: 1. 培育学生自主研究、合作沟通的能力2.培育学生察看、剖析和创新能力,深入学生逆向思想能力和数学应企图识,浸透整体思想感情、态度与价值观:让学生在合作学习的过程中体验成功的愉悦,进而加强学好数学的梦想和信心四.教课重难点要点:会运用平方差公式分解因式难点:正确理解和掌握公式的构造特色,并擅长运用平方差公式分解因式易错点:分解因式不完全五.教课方案(一)温故知新1.什么是因式分解?以下变形过程中,哪个是因式分解?为何?22(1)( 2x - 1) = 4 x- 4x + 1;(2)3x2 + 9xy - 3x = 3x( x+ 3y + 1);(3)x2 - 4+ 2x = ( x + 2)( x - 2) + 2x.2.我们已经学过的因式分解的方法是什么?将以下多项式分解因式。

(1) a3b3 - 2a2 b - ab ;( 2) - 9 x2 y + 3xy2 - 6 xy.【设计企图】经过复习因式分解的定义和方法,为持续学习公式法作好铺垫。

3.依据乘法公式进行计算:(1)( x + 1)(x -1);(2)( x + 2 y)(x - 2 y).4.依据上题结果分解因式:(1) x2 - 1;(2) x 2 - 4 y 2 .由以上 3、 4 两题,你发现了什么?【设计企图】经过整式乘法中的平方差公式引出公式法因式分解进而引出课题。

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案一、教学目标:1. 理解整式乘法的基本概念和方法,能够熟练进行整式的乘法运算。

2. 掌握因式分解的基本原理和方法,能够对简单的一元二次方程进行因式分解。

3. 能够应用整式的乘法与因式分解解决实际问题。

二、教学内容:1. 整式乘法的基本概念和方法。

2. 整式乘法的运算规则。

3. 因式分解的基本原理和方法。

4. 因式分解的运算规则。

5. 应用整式的乘法与因式分解解决实际问题。

三、教学重点与难点:1. 整式乘法的运算规则。

2. 因式分解的方法和技巧。

3. 应用整式的乘法与因式分解解决实际问题。

四、教学方法:1. 采用讲解法,讲解整式乘法与因式分解的基本概念和方法。

2. 采用示范法,示范整式乘法与因式分解的运算过程。

3. 采用练习法,让学生通过练习来巩固所学知识。

4. 采用问题解决法,引导学生应用整式的乘法与因式分解解决实际问题。

五、教学准备:1. 教案、教材、PPT等教学资源。

2. 练习题、测试题等教学资料。

3. 教学黑板、粉笔等教学工具。

4. 投影仪、电脑等教学设备。

六、教学进程:1. 导入:通过复习整式的加减法,引出整式乘法的重要性,激发学生的学习兴趣。

2. 讲解:讲解整式乘法的基本概念和方法,重点讲解运算规则。

3. 示范:示范整式乘法的运算过程,让学生理解并掌握运算规则。

4. 练习:布置练习题,让学生通过练习巩固所学知识。

5. 总结:对本节课的内容进行总结,强调整式乘法的重要性。

七、作业布置:1. 完成练习题,巩固整式乘法的运算规则。

2. 预习下一节课的内容,为学习因式分解做准备。

八、课堂反馈:1. 课堂提问:通过提问了解学生对整式乘法的掌握情况。

2. 练习批改:及时批改学生的练习题,指出错误并给予讲解。

3. 学生反馈:听取学生的意见和建议,调整教学方法。

九、课后反思:1. 总结本节课的教学效果,反思教学方法的优缺点。

2. 根据学生的反馈,调整教学策略,提高教学质量。

因式分解全章教案和练习题

因式分解全章教案和练习题

因式分解全章教案和练习题一、教学目标1. 让学生掌握因式分解的基本概念和方法。

2. 培养学生运用因式分解解决实际问题的能力。

3. 提高学生对数学知识的逻辑思维和运算能力。

二、教学内容1. 因式分解的定义和意义。

2. 提公因式法、交叉相乘法、分组分解法等因式分解方法。

3. 因式分解的应用和练习。

三、教学重点与难点1. 重点:因式分解的方法和技巧。

2. 难点:灵活运用因式分解解决实际问题。

四、教学方法1. 采用讲授法讲解因式分解的基本概念和方法。

2. 利用案例分析和练习题引导学生运用因式分解解决实际问题。

3. 运用小组讨论法和互助合作法提高学生的参与度和合作能力。

五、教学安排1. 第一课时:介绍因式分解的定义和意义,讲解提公因式法。

2. 第二课时:讲解交叉相乘法,分组分解法,因式分解的应用。

3. 第三课时:课堂练习,巩固所学知识。

4. 第四课时:拓展练习,提高学生的应用能力。

5. 第五课时:总结因式分解的方法和技巧,查漏补缺。

练习题:1. 下列多项式,请进行因式分解:(1)x^2 4(2)x^2 + 4(3)x^2 9(4)x^2 + 92. 请用提公因式法对下列多项式进行因式分解:(1)x^2 5x + 6(2)x^2 + 6x + 93. 请用交叉相乘法对下列多项式进行因式分解:(1)x^2 7x + 12(2)x^2 + 8x + 154. 请用分组分解法对下列多项式进行因式分解:(1)x^2 4x + 3x + 9(2)x^2 + 5x 6x + 165. 下列多项式,请进行因式分解并求解:(1)2x^2 8x + 4(2)3x^2 12x + 9六、教学策略1. 案例分析:通过具体的数学问题,让学生了解因式分解在实际问题中的应用。

2. 练习巩固:设计具有梯度的练习题,让学生在实践中掌握因式分解的方法。

3. 小组讨论:组织学生进行小组讨论,分享解题心得,互相学习,提高解题能4. 总结提升:在课程结束时,引导学生总结因式分解的常用方法和技巧,提高学生的数学思维能力。

因式分解教案9篇

因式分解教案9篇

因式分解教案9篇因式分解教案篇1教学目标:1、理解运用平方差公式分解因式的方法。

2、掌握提公因式法和平方差公式分解因式的综合运用。

3、进一步培养学生综合、分析数学问题的能力。

教学重点:运用平方差公式分解因式。

教学难点:高次指数的转化,提公因式法,平方差公式的灵活运用。

教学案例:我们数学组的观课议课主题:1、关注学生的合作交流2、如何使学困生能积极参与课堂交流。

在精心备课过程中,我设计了这样的自学提示:1、整式乘法中的平方差公式是___,如何用语言描述把上述公式反过来就得到_____,如何用语言描述2、下列多项式能用平方差公式分解因式吗若能,请写出分解过程,若不能,说出为什么①-2+y2 ②-2-y2 ③4-92④ (+y)2-(-y)2 ⑤ a4-b43、试总结运用平方差公式因式分解的条件是什么4、仿照例4的分析及旁白你能把3y-y因式分解吗5、试总结因式分解的步骤是什么师巡回指导,生自主探究后交流合作。

生交流热情很高,但把全部问题分析完已用了30分钟。

生展示自学成果。

生1: -2+y2能用平方差公式分解,可分解为(y+)(y-)生2: -2+y2=-(2-y2)=-(+y)(-y)师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。

生3:4-92 也能用平方差公式分解,可分解为(2+9)(2-9)生4:不对,应分解为(2+3)(2-3),要运用平方差公式必须化为两个数或整式的平方差的形式。

生5: a4-b4可分解为(a2+b2)(a2-b2)生6:不对,a2-b2 还能继续分解为a+b)(a-b)师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。

反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:(1) 我在备课时,过高估计了学生的能力,问题2中的③、④、⑤ 多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:下列多项式能用平方差公式因式分解吗为什么可能效果会更好。

因式分解教案 (优秀5篇)

因式分解教案 (优秀5篇)

因式分解教案(优秀5篇)初二数学因式分解教案篇一1、shouldshould是情态动词,意为“应当,应该”。

表示义务、责任,可用于各种人称,无人称和数的变化,也不能单独作谓语,只能和主要动词一起构成谓语,表示说话人的语气和情态;否定形式为should not,缩写为shouldn’t。

其主要用法有:(1)表示责任和义务,意为“应该”。

You should take your teacher’s advice.你应该听从你老师的建议。

You shouldn’t be late for class.你不应该上课迟到。

(2)表示推断,意为“可能,该”。

The train should have already left.火车可能已经离开了。

(3)当劝某人做或不做某事时,常用should do sth.或shouldn’t do sth.,比must和ought to 更加委婉。

You should brush your teeth vefore you go to bed.你在睡觉前应该刷牙。

2、need(1)need作实义动词,意为“需要,必然”,有人称、时态及数的变化。

sb./sth.需要某人/某物need+ to do sth.需要做某事doing需要(被)做He needs some help.他需要些帮助。

You didn’t need to come so early.你不必来这么早。

The flowers need watering.花需要浇水。

(2)need也可作情态动词,意为“需要,必须”,没有人称、数和时态的变化,后接动词原形,多用于否定句和疑问句中。

He need not go at once.他不必立刻走。

Need he go at once?他必须立刻走吗?用must提问的句子,其否定回答常用needn’t。

— Must he hand in his homework this morning?他必须今天上午交作业吗?— No, he needn’t.不,不必了。

因式分解教案 (优秀5篇)

因式分解教案 (优秀5篇)

因式分解教案(优秀5篇)因式分解教案篇一【教学目标】1、了解因式分解的概念和意义;2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

【教学重点、难点】重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。

【教学过程】㈠、情境导入看谁算得快:(抢答)(1)若a=101,b=99,则a2-b2=___________;(2)若a=99,b=-1,则a2-2ab+b2=____________;(3)若x=-3,则20x2+60x=____________。

㈡、探究新知1、请每题答得最快的同学谈思路,得出最佳解题方法。

(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

2、观察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2,20x2+60x=20x(x+3),找出它们的特点。

(等式的左边是一个什么式子,右边又是什么形式?)3、类比小学学过的因数分解概念,得出因式分解概念。

(学生概括,老师补充。

)板书课题:§6.1 因式分解因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。

㈢、前进一步1、让学生继续观察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2,20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?2、因式分解与整式乘法的关系:因式分解结合:a2-b2 (a+b)(a-b)整式乘法说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。

因式分解教案四篇

因式分解教案四篇

因式分解教案四篇因式分解教案篇1课型复习课教法讲练结合教学目标(学问、力量、教育)1.了解分解因式的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).2.通过乘法公式,的逆向变形,进一步进展同学观看、归纳、类比、概括等力量,进展有条理的思索及语言表达力量教学重点把握用提取公因式法、公式法分解因式教学难点依据题目的形式和特征恰当选择方法进行分解,以提高综合解题力量。

教学媒体学案教学过程一:【课前预习】(一):【学问梳理】1.分解因式:把一个多项式化成的形式,这种变形叫做把这个多项式分解因式.2.分解困式的方法:⑴提公团式法:假如一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:平方差公式: ;完全平方公式: ;3.分解因式的步骤:(1)分解因式时,首先考虑是否有公因式,假如有公因式,肯定先提取公团式,然后再考虑是否能用公式法分解.(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。

4.分解因式时常见的思维误区:提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项 1易漏掉.分解不彻底,如保存中括号形式,还能连续分解等(二):【课前练习】1.以下各组多项式中没有公因式的是( )A.3x-2与 6x2-4xB.3(a-b)2与11(b-a)3C.mxmy与 nynxD.aba c与 abbc2. 以下各题中,分解因式错误的选项是( )3. 列多项式能用平方差公式分解因式的是()4. 分解因式:x2+2xy+y2-4 =_____5. 分解因式:(1) ;(2) ;(3) ;(4) ;(5)以上三题用了公式二:【经典考题剖析】1. 分解因式:(1) ;(2) ;(3) ;(4)分析:①因式分解时,无论有几项,首先考虑提取公因式。

北师大八年级数学下册教案:第4章 因式分解

北师大八年级数学下册教案:第4章 因式分解

北师大八年级数学下册教案:第4章因式分解4.1因式分解1.理解并掌握因式分解的概念;2.理解因式分解与整式乘法之间的关系,并能够运用其解决问题.(难点)一、情境导入某中学决定购买m台电脑和m套桌椅,现在知道每台电脑的单价是a元,每套桌椅的价格是b元,小明说:“总共需要(ma+mb)元.”小华说:“总共需要m(a+b)元.”同学们,你们觉得他们计算出的总金额一样吗?二、合作探究探究点一:因式分解的概念下列从左到右的变形中是因式分解的有()①x2-y2-1=(x+y)(x-y)-1;②x3+x=x(x2+1);③(x-y)2=x2-2xy+y2;④x2-9y2=(x+3y)(x-3y).A.1个B.2个C.3个D.4个解析:①没把一个多项式转化成几个整式积的形式,故①不是因式分解;②把一个多项式转化成几个整式积的形式,故②是因式分解;③是整式的乘法,故③不是因式分解;④把一个多项式转化成几个整式积的形式,故④是因式分解;故选B.方法总结:因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.探究点二:因式分解与整式乘法的关系及简单应用已知三次四项式2x3-5x2-6x+k分解因式后有一个因式是x-3,试求k的值及另一个因式.解析:此题可设此三次四项式的另一个因式为(2x2-mx-k3),将两因式的乘积展开与原三次四项式比较就可求出k的值.解:设另一个因式为2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一个因式为2x2+x-3.方法总结:因为整式的乘法和分解因式互为逆运算,所以分解因式后的两个因式的乘积一定等于原来的多项式.三、板书设计1.因式分解的概念把一个多项式转化成几个整式的积的形式,这种变形叫做因式分解.2.因式分解与整式乘法的关系因式分解是整式乘法的逆运算.本课是通过对比整式乘法的学习,引导学生探究因式分解和整式乘法的联系,通过对比学习加深对新知识的理解.教学时采用新课探究的形式,鼓励学生参与到课堂教学中,以兴趣带动学习,提高课堂学习效率.4.2提公因式法第1课时直接提公因式因式分解1.理解公因式的概念,能熟练确定多项式各项的公因式;2.掌握用直接提公因式法分解因式的基本方法.(重点)一、情境导入小华家买了一套新房,装修时打算在三室两厅的地面上贴相同规格的地板砖,为此小华的父亲要求小华测算出三室两厅的地面总面积.小华发现三室两厅的地面宽度相同,都是a 米,大厅长度为c米,三室长度均为d米,其中a=3.6,b=5.6,c=2.8,d=4.2,那么怎样计算总面积比较简便呢?二、合作探究探究点一:确定公因式多项式6ab2c-3a2bc+12a2b2中各项的公因式是()A.abc B.3a2b2C.3a2b2c D.3ab解析:系数的最大公约数是3,相同字母的最低指数次幂是ab,可知公因式为3ab.故选D.方法总结:确定多项式中各项的公因式,可概括为三“定”:(1)定系数,即确定各项系数的最大公约数;(2)定字母,即确定各项的相同字母因式(或相同多项式因式);(3)定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.探究点二:用提公因式法进行因式分解(一)【类型一】用提公因式法因式分解因式分解:(1)8a3b2+12ab3c;(2)2a(b+c)-3(b+c);(3)(a+b)(a-b)-a-b.解析:将原式各项提取公因式即可得到结果.解:(1)原式=4ab2(2a2+3bc);(2)原式=(2a-3)(b+c);(3)原式=(a+b)(a-b-1).方法总结:提公因式法的基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式.【类型二】用因式分解简化运算计算:(1)39×37-13×91;(2)29×20.15+72×20.15+13×20.15-20.15×14.解析:(1)首先提取公因式13,进而求出即可;(2)首先提取公因式20.15,进而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法总结:在计算求值时,若式子各项都含有公因式,用提取公因式的方法可使运算简便.三、板书设计1.公因式多项式各项都含有的相同因式叫这个多项式各项的公因式.2.提公因式法如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,这种因式分解的方法叫做提公因式法.本节中要给学生留出自主学习的空间,然后引入稍有层次的例题,让学生进一步感受因式分解与整式的乘法是逆过程,从而可用整式的乘法检查错误.本节课在对例题的探究上,提倡引导学生合作交流,使学生发挥群体的力量,以此提高教学效果.第2课时变形后提公因式因式分解1.进一步理解因式分解的意义和公因式的意义;2.熟练运用提公因式法分解因式.(重点)一、情境导入下面的多项式有公因式吗?如果有,怎样因式分解呢?(1)a(2-x)+b(2-x)-c(x-2);(2)a(m-n)2+b(n-m)2;(3)a(a-b)3-(b-a)3.二、合作探究探究点:用提公因式法进行因式分解(二)【类型一】利用因式分解整体代换求值已知a+b=7,ab=4,求a2b+ab2的值.解析:原式提取公因式变形后,将a+b与ab的值代入计算即可求出值.解:∵a+b=7,ab=4,∴原式=ab(a+b)=4×7=28.方法总结:求代数式的值,有时要将已知条件看作一个整体代入求值.【类型二】因式分解与三角形知识的综合△ABC的三边长分别为a、b、c,且a+2ab=c+2bc,请判断△ABC是等边三角形、等腰三角形还是直角三角形?并说明理由.解析:对已知条件进行化简后得到a=c,根据等腰三角形的概念即可判定.解:整理a+2ab=c+2bc,得a+2ab-c-2bc=0,(a-c)+2b(a-c)=0,(a-c)(1+2b)=0,∴a-c=0或1+2b=0,即a=c或b=-12(舍去),∴△ABC是等腰三角形.方法总结:通过提公因式分解因式,找出三边的关系来判定三角形的形状.【类型三】运用因式分解探究规律阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.(1)上述因式分解的方法是____________,共应用了______次;(2)若分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,则需应用上述方法______次,结果是____________;(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).解析:(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.解:(1)因式分解的方法是提公因式法,共应用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需应用上述方法2016次,结果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法总结:解决此类问题需要认真阅读,理解题意,根据已知得出分解因式的规律是解题关键.三、板书设计1.提公因式分解因式的一般步骤:(1)观察;(2)适当变形;(3)确定公因式;(4)提取公因式.2.提公因式法因式分解的应用本课时是在上一课时的基础上进行的拓展延伸,在教学时要给学生足够主动权和思考空间,突出学生在课堂上的主体地位,引导和鼓励学生自主探究,在培养学生创新能力的同时提高学生的逻辑思维能力.4.3公式法第1课时平方差公式1.理解平方差公式,弄清平方差公式的形式和特点;(重点)2.掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式.(难点)一、情境导入1.同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?请与大家交流.2.你能将a 2-b 2分解因式吗?你是如何思考的?二、合作探究探究点一:用平方差公式因式分解【类型一】判定能否利用平方差公式分解因式下列多项式中能用平方差公式分解因式的是()A .a 2+(-b )2B .5m 2-20mnC .-x 2-y 2D .-x 2+9解析:A 中a 2+(-b )2符号相同,不能用平方差公式分解因式,错误;B 中5m 2-20mn 两项都不是平方项,不能用平方差公式分解因式,错误;C 中-x 2-y 2符号相同,不能用平方差公式分解因式,错误;D 中-x 2+9=-x 2+32,两项符号相反,能用平方差公式分解因式,正确.故选D.方法总结:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【类型二】利用平方差公式分解因式分解因式:(1)a 4-116b 4;(2)x 3y 2-xy 4.解析:(1)a 4-116b 4可以写成(a 2)2-(14b 2)2的形式,这样可以用平方差公式进行分解因式,而其中有一个因式a 2-14b 2仍可以继续用平方差公式分解因式;(2)x 3y 2-xy 4有公因式xy 2,应先提公因式再进一步分解因式.解:(1)原式=(a 2+14b 2)(a 2-14b 2)=(a 2+14b 2)(a -12b )(a +12b );(2)原式=xy 2(x 2-y 2)=xy 2(x +y )(x -y ).方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式.分解因式必须进行到每一个多项式都不能再分解因式为止.【类型三】利用因式分解整体代换求值已知x 2-y 2=-1,x +y =12,求x -y 的值.解析:已知第一个等式左边利用平方差公式化简,将x +y 的值代入计算即可求出x -y 的值.解:∵x 2-y 2=(x +y )(x -y )=-1,x +y =12,∴x -y =-2.方法总结:有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入可使运算简便.探究点二:用平方差公式因式分解的应用【类型一】利用因式分解解决整除问题248-1可以被60和70之间某两个自然数整除,求这两个数.解析:先利用平方差公式分解因式,再找出范围内的解即可.解:248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1).∵26=64,∴26-1=63,26+1=65,∴这两个数是65和63.方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析被哪些数或式子整除.【类型二】利用平方差公式进行简便运算利用因式分解计算:(1)1012-992;(2)5722×14-4282×14.解析:(1)根据平方差公式进行计算即可;(2)先提取公因式,再根据平方差公式进行计算即可.解:(1)1012-992=(101+99)(101-99)=400;(2)5722×14-4282×14=(5722-4282)×14=(572+428)(572-428)×14=1000×144×14=36000.方法总结:一些比较复杂的计算,如果通过变形转化为平方差公式的形式,则可以使运算简便.【类型三】因式分解的实际应用如图,100个正方形由小到大套在一起,从外向里相间画上阴影,最里面一个小正方形没有画阴影,最外面一层画阴影,最外面的正方形的边长为100cm ,向里依次为99cm ,98cm ,…,1cm ,那么在这个图形中,所有画阴影部分的面积和是多少?解析:相邻两正方形面积的差表示一块阴影部分的面积,而正方形的面积是边长的平方,所以能用平方差公式进行因式分解.解:每一块阴影的面积可以表示成相邻正方形的面积的差,而正方形的面积是其边长的=(1002-992)+(982-972)+…+(32-22)平方,这样就可以逆用平方差公式计算了.则S阴影+1=100+99+98+97+…+2+1=5050(cm2).答:所有阴影部分的面积和是5050cm2.方法总结:首先应找出图形中哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、板书设计1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.第2课时完全平方公式1.理解完全平方公式,弄清完全平方公式的形式和特点;(重点)2.掌握运用完全平方公式分解因式的方法,能正确运用完全平方公式把多项式分解因式.(难点)一、情境导入1.分解因式:(1)x2-4y2;(2)3x2-3y2;(3)x4-1;(4)(x+3y)2-(x-3y)2;2.根据学习用平方差公式分解因式的经验和方法,你能将形如“a2+2ab+b2、a2-2ab +b2”的式子分解因式吗?二、合作探究探究点一:用完全平方公式因式分解【类型一】判定能否利用完全平方公式分解因式下列多项式能用完全平方公式分解因式的有()(1)a2+ab+b2;(2)a2-a+12-24ab+4b2;(4)-a2+8a-16.4;(3)9aA.1个B.2个C.3个D.4个解析:(1)a 2+ab +b 2,乘积项不是两数的2倍,不能运用完全平方公式;(2)a 2-a +14=(a -12)2;(3)9a 2-24ab +4b 2,乘积项是这两数的4倍,不能用完全平方公式;(4)-a 2+8a -16=-(a 2-8a +16)=-(a -4)2.所以(2)(4)能用完全平方公式分解.故选B.方法总结:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.【类型二】运用完全平方公式分解因式因式分解:(1)-3a 2x 2+24a 2x -48a 2;(2)(a 2+4)2-16a 2.解析:(1)有公因式,因此要先提取公因式-3a 2,再把另一个因式(x 2-8x +16)用完全平方公式分解;(2)先用平方差公式,再用完全平方公式分解.解:(1)原式=-3a 2(x 2-8x +16)=-3a 2(x -4)2;(2)原式=(a 2+4)2-(4a )2=(a 2+4+4a )(a 2+4-4a )=(a +2)2(a -2)2.方法总结:分解因式的步骤是一提、二用、三查,即有公因式的首先提公因式,没有公因式的用公式,最后检查每一个多项式的因式,看能否继续分解.探究点二:用完全平方公式因式分解的应用【类型一】运用因式分解进行简便运算利用因式分解计算:(1)342+34×32+162;(2)38.92-2×38.9×48.9+48.92.解析:利用完全平方公式转化为(a ±b )2的形式后计算即可.解:(1)342+34×32+162=(34+16)2=2500;(2)38.92-2×38.9×48.9+48.92=(38.9-48.9)2=100.方法总结:此题主要考查了运用公式法分解因式,正确掌握完全平方公式是解题关键.【类型二】利用因式分解判定三角形的形状已知a ,b ,c 分别是△ABC 三边的长,且a 2+2b 2+c 2-2b (a +c )=0,请判断△ABC的形状,并说明理由.解析:首先利用完全平方公式分组进行因式分解,进一步分析探讨三边关系得出结论即可.解:由a 2+2b 2+c 2-2b (a +c )=0,得a 2-2ab +b 2+b 2-2bc +c 2=0,即(a -b )2+(b -c )2=0,∴a -b =0,b -c =0,∴a =b =c ,∴△ABC 是等边三角形.方法总结:通过配方将原式转化为非负数的和的形式,然后利用非负数性质解答,这是解决此类问题一般的思路.【类型三】整体代入求值已知a +b =5,ab =10,求12a 3b +a 2b 2+12ab 3的值.解析:将12a 3b +a 2b 2+12ab 3分解为12ab 与(a +b )2的乘积,因此可以运用整体代入的数学思想来解答.解:12a 3b +a 2b 2+12ab 3=12ab (a 2+2ab +b 2)=12ab (a +b )2.当a +b =5,ab =10时,原式=12×10×52=125.方法总结:解答此类问题的关键是对原式进行变形,将原式转化为含已知代数式的形式,然后整体代入.三、板书设计1.完全平方公式:a 2+2ab +b 2=(a +b )2,a 2-2ab +b 2=(a -b )2.2.完全平方公式的特点:(1)必须是三项式(或可以看成三项的);(2)有两个同号的平方项;(3)有一个乘积项(等于平方项底数的±2倍).简记口诀:首平方,尾平方,首尾两倍在中央.本节课学生的探究活动比较多,教师既要全局把握,又要顺其自然,千万不可拔苗助长,为了后面多做几道练习而主观裁断时间安排.其实公式的探究活动本身既是对学生能力的培养,又是对公式的识记过程,而且还可以提高他们应用公式的本领.。

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案第一章:整式的乘法1.1 单项式乘以单项式教学目标:了解单项式乘以单项式的运算法则。

掌握单项式乘以单项式的计算方法。

教学重点:单项式乘以单项式的运算法则。

教学难点:如何正确计算单项式乘以单项式。

教学准备:教材、黑板、投影仪。

教学过程:导入:回顾整数乘法的运算法则。

讲解:讲解单项式乘以单项式的运算法则,举例说明。

练习:学生独立完成练习题,教师批改并讲解。

1.2 单项式乘以多项式教学目标:了解单项式乘以多项式的运算法则。

掌握单项式乘以多项式的计算方法。

教学重点:单项式乘以多项式的运算法则。

教学难点:如何正确计算单项式乘以多项式。

教学准备:教材、黑板、投影仪。

教学过程:导入:回顾整数乘法的运算法则。

讲解:讲解单项式乘以多项式的运算法则,举例说明。

练习:学生独立完成练习题,教师批改并讲解。

第二章:因式分解2.1 提公因式法教学目标:了解提公因式法的概念。

掌握提公因式法的运用。

教学重点:提公因式法的概念和运用。

教学难点:如何正确运用提公因式法进行因式分解。

教学准备:教材、黑板、投影仪。

教学过程:导入:回顾整式的乘法。

讲解:讲解提公因式法的概念和运用,举例说明。

练习:学生独立完成练习题,教师批改并讲解。

2.2 公式法教学目标:了解公式法的概念。

掌握公式法的运用。

教学重点:公式法的概念和运用。

教学难点:如何正确运用公式法进行因式分解。

教学准备:教材、黑板、投影仪。

教学过程:导入:回顾整式的乘法。

讲解:讲解公式法的概念和运用,举例说明。

练习:学生独立完成练习题,教师批改并讲解。

第六章:十字相乘法6.1 十字相乘法的原理教学目标:理解十字相乘法的原理。

掌握十字相乘法的步骤。

教学重点:十字相乘法的原理和步骤。

如何正确运用十字相乘法分解因式。

教学准备:教材、黑板、投影仪。

教学过程:导入:回顾提公因式法和公式法。

讲解:讲解十字相乘法的原理和步骤,举例说明。

练习:学生独立完成练习题,教师批改并讲解。

2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)因式分解法教案

2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)因式分解法教案

21.2 解一元二次方程21.2.3 因式分解法一、教学目标【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度与价值观】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.二、课型新授课三、课时1课时四、教学重难点【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.五、课前准备课件六、教学过程(一)导入新课1.解一元二次方程的方法有哪些?(出示课件2)学生答:直接开平方法:x2=a (a≥0),配方法:(x+m)2=n (n≥0),公式法:x=2ba-±(b2-4ac≥0).2. 什么叫因式分解?学生答:把一个多项式分解成几个整式乘积的形式叫做因式分解,也叫把这个多项式分解因式.3.分解因式的方法有那些?(出示课件3)学生答:(1)提取公因式法:am+bm+cm=m(a+b+c).(2)公式法:a²-b²=(a+b)(a-b), a²±2ab+b²=(a±b) ².(3)十字相乘法.教师问:下面的方程如何使解答简单呢?x2+25x=0.出示课件5:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)教师问:你能根据题意列出方程吗?学生答:设物体经过x s 落回地面,这时它离地面的高度为0m ,即10x -4.9x 2=0.教师问:你能想出解此方程的简捷方法吗?(二)探索新知探究 因式分解法的概念学生用配方法和公式法解方程10x -4.9x 2=0.(两生板演)配方法解方程10x -4.9x 2=0. 解:2100049x x -=,22210050500494949x x ⎛⎫⎛⎫-+-=+- ⎪ ⎪⎝⎭⎝⎭2250504949x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭50504949x -=±50504949x =±+110049,=x 20.=x公式法解方程10x -4.9x 2=0.解:24.9100x x -=,a=4.9,b=-10,c=0.b 2-4ac= (-10)2-0=100,a acb b x 242-±-=()10102 4.9--±=⨯110049,=x20. =x教师引导学生尝试找出其简洁解法为:(出示课件7)x(10-4.9x)=0. ∴x=0或10-4.9x=0, ∴x1=0,x2=10049≈2.04.这种解法是不是很简单?教师问:以上解方程的方法是如何使二次方程降为一次方程的?x(10-4.9x)=0,①x=0或10-4.9x=0,②通过学生的讨论、交流可归纳为:(出示课件8)可以发现,上述解法中,由①到②的过程,不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫做因式分解法.教师提示:(出示课件9)1.用因式分解法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的方法;3.理论依据是“ab=0,则a=0或b=0 ”.师生共同归纳:(出示课件10)分解因式法解一元二次方程的步骤是:1.将方程右边化为等于0的形式;2.将方程左边因式分解为A×B;3.根据“ab=0,则a=0或b=0”,转化为两个一元一次方程;4.分别解这两个一元一次方程,它们的根就是原方程的根.例1 解下列方程:(出示课件11)(1)x(x-2)+x-2=0; (2)5x 2-2x-14=x 2-2x+34. 师生共同解答如下: 解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x 1=2,x 2=-1;(2)原方程整理为4x 2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x 1=-12,x 2=12. 想一想 以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.学生思考后,教师总结如下:(出示课件12)一.因式分解法简记歌诀:右化零,左分解;两因式,各求解.二.选择解一元二次方程的技巧:1.开平方法、配方法适用于能化为完全平方形式的方程.2.因式分解法适用于能化为两个因式之和等于0的形式的方程.3.配方法、公式法适用于所有一元二次方程.出示课件13:解下列方程:2222221 +=0; (2) -=0; (3) 3-6=-3;(4) 4-121=0; (5) 3(2+1)=4+2; (6) (-4)=(5-2).()x x x x x x x x x x x 学生自主思考并解答.(六生板演)解:⑴因式分解,得x(x+1)=0.于是得x=0或x+1=0,x 1=0,x 2=-1.⑵因式分解,得x (x)=0于是得x=0或x-2=0x1=0,x2=2.⑶将方程化为x2-2x+1 = 0. 因式分解,得(x-1)(x-1)=0.于是得x-1=0或x-1=0,x1=x2=1.⑷因式分解,得(2x+11)(2x-11)=0.于是得2x+11=0或2x-11=0,x1=-5.5,x2=5.5.⑸将方程化为6x2-x-2=0. 因式分解,得(3x-2)(2x+1)=0. 于是得3x-2=0或2x+1 = 0,x1=23,x2=12.⑹将方程化为(x-4)2-(5-2x)2=0.因式分解,得(x-4-5+2x)(x-4+5-2x)=0.(3x-9)(1-x)=0.于是得3x-9=0或1-x=0,x1=3,x2=1.出示课件16:用适当方法解下列方程:−x)2;(2)x2-6x-19=0;(3)3x2=4x+1;(4)y2-15=2y;(5)5x(x-3)-(x-3)(x+1)=0;(6)4(3x+1)2=25(x-2)2.教师提示:根据方程的结构特征,灵活选择恰当的方法来求解.四种方法的选择顺序是:直接开平方法→因式分解法→公式法→配方法.师生共同解答如下.(出示课件17,18,19)解:(1)(1-x)2=3,∴(x-1)2=3,x-1∴x1=1x2=1.(2)移项,得x2-6x=19.配方,得x2-6x+(-3)2=19+(-3)2.∴(x-3)2=28.∴x-3=±.∴x1=3+,x2=3-.(3)移项,得3x2-4x-1=0.∵a=3,b=-4,c=-1,∴x=−(−4)±√(−4)2−4×3×(−1)2×3=2±73.∴x1=2+73,x2=2-73.(4)移项,得y2-2y-15=0.把方程左边因式分解,得(y-5)(y+3)=0. ∴y-5=0或y+3=0.∴y1=5,y2=-3.(5)将方程左边因式分解,得(x-3)[5x-(x+1)]=0. ∴(x-3)(4x-1)=0.∴x-3=0或4x-1=0.∴x1=3,x2=1 4 .6)移项,得4(3x+1)2-25(x-2)2=0.∴[2(3x+1)]2-[5(x-2)]2=0.∴[2(3x+1)+5(x-2)]·[2(3x+1)-5(x-2)]=0. ∴(11x-8)(x+12)=0.∴11x-8=0或x+12=0.∴x1=811,x2=-12.出示课件20,21:用适当的方法解下列方程:(1)x2-41=0;(2) 5(3x+2)2=3x(3x+2).学生自主思考并解答.解:(1)∵x2-14=0,∴x2=14,即x=±14.∴x1=12,x2=-12.⑵原方程可变形为5(3x+2)2-3x(3x+2)=0,∴(3x+2)(15x+10-3x)=0.∴3x+2=0或12x+10=0.∴x1=-23,x2=-56.(三)课堂练习(出示课件22-30)1.已知x=2是关于x的一元二次方程kx²+(k²﹣2)x+2k+4=0的一个根,则k的值为.2. 解方程:2(x﹣3)=3x(x﹣3).3.解下列方程:(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12.4.小华在解一元二次方程x2-x=0 时,只得出一个根x=1,则被漏掉的一个根是()A.x=4 B.x=3C.x=2 D.x=05.我们已经学习了一元二次方程的四种解法:直接开平方法、配方法、公式法和因式分解法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x2-3x+1=0;②(x-1)2=3;③x2-3x=0;④x2-2x=4.我选择______________________.6.解方程:(x2+3)2-4(x2+3)=0.参考答案:1.-32.解:2(x﹣3)=3x(x﹣3),移项得2(x﹣3)﹣3x(x﹣3)=0,因式分解得(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3,x2=32.3.解:⑴x2+2x+2=0,(x+1)2=-1.此方程无解.⑵x2-4x-12=0,(x-2)2=16.x1=6,x2=-2.4.D5.解:答案不唯一.若选择①,①适合公式法,x2-3x+1=0,∵a=1,b=-3,c=1,∴b2-4ac=9-4=5>0.∴x=3±5 2.∴x1=3+52,x2=3-52.若选择②,②适合直接开平方法,∵(x-1)2=3,x-1=±3,∴x1=1+3,x2=1- 3. 若选择③,③适合因式分解法,x2-3x=0,因式分解,得x(x-3)=0.解得x1=0,x2=3.若选择④,④适合配方法,x2-2x=4,x2-2x+1=4+1=5,即(x-1)2=5.开方,得x-1=± 5.∴x1=1+5,x2=1- 5.5.提示:把(x2+3)看作一个整体来提公因式,再利用平方差公式,因式分解.解:设x2+3=y,则原方程化为y2-4y=0.分解因式,得y(y-4)=0,解得y=0,或y=4.①当y=0 时,x2+3=0,原方程无解;②当y=4 时,x2+3=4,即x2=1.解得x=±1.所以原方程的解为x1=1,x2=-1.(四)课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?⑴公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法).⑵方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法.(五)课前预习预习下节课(21.2.4)的相关内容。

因式分解全章教案和练习题

因式分解全章教案和练习题

因式分解全章教案和练习题第一章:因式分解的基本概念教学目标:1. 理解因式分解的含义和意义。

2. 掌握因式分解的基本方法和步骤。

教学内容:1. 因式分解的定义和作用。

2. 提公因式法:找出多项式的公因式,并进行提取。

3. 分解因式:将多项式分解为两个或多个因式的乘积。

教学方法:1. 采用讲解法,讲解因式分解的基本概念和方法。

2. 利用例题进行讲解和示范,让学生跟随老师一起进行因式分解。

教学步骤:1. 导入新课,介绍因式分解的概念和意义。

2. 讲解提公因式法,让学生理解并掌握提取公因式的步骤。

3. 讲解分解因式的方法,让学生理解并掌握分解因式的步骤。

4. 进行课堂练习,让学生运用所学知识进行因式分解。

教学评价:1. 课堂练习的完成情况。

2. 学生对因式分解的基本概念和方法的理解程度。

第二章:提公因式法教学目标:1. 掌握提公因式法的基本步骤。

2. 能够运用提公因式法进行因式分解。

教学内容:1. 提公因式法的步骤:找出多项式的公因式,进行提取。

2. 提公因式法的应用:对多项式进行因式分解。

教学方法:1. 采用讲解法,讲解提公因式法的步骤和应用。

2. 利用例题进行讲解和示范,让学生跟随老师一起进行提公因式法。

教学步骤:1. 回顾上一章的内容,复习因式分解的基本概念。

2. 讲解提公因式法的步骤,让学生理解并掌握提取公因式的步骤。

3. 讲解提公因式法的应用,让学生理解并掌握如何运用提公因式法进行因式分解。

4. 进行课堂练习,让学生运用所学知识进行提公因式法。

教学评价:1. 课堂练习的完成情况。

2. 学生对提公因式法的基本步骤和应用的理解程度。

第三章:十字相乘法教学目标:1. 掌握十字相乘法的基本步骤。

2. 能够运用十字相乘法进行因式分解。

教学内容:1. 十字相乘法的步骤:找出多项式的两个因式的乘积,进行相乘。

2. 十字相乘法的应用:对多项式进行因式分解。

教学方法:1. 采用讲解法,讲解十字相乘法的步骤和应用。

整式的乘除与因式分解全单元的教案

整式的乘除与因式分解全单元的教案

整式的乘除与因式分解全单元的教案整式的乘除与因式分解全单元的教案范文第十五章整式的乘除与因式分解15.1.1 整式教学目标1.单项式、单项式的定义.2.多项式、多项式的次数.3、理解整式概念.教学重点单项式及多项式的有关概念.教学难点单项式及多项式的有关概念.教学过程Ⅰ.提出问题,创设情境在七年级,我们已经学习了用字母可以表示数,思考下列问题1.要表示△ABC的周长需要什么条件?要表示它的面积呢?2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?结论:1、要表示△ABC的周长,需要知道它的各边边长.要表示△ABC 的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,那么△ABC的周长可以表示为a+b+c;△ABC的面积可以表示为 ?c?h.2.小王的平均速度是.问题:这些式子有什么特征呢?(1)有数字、有表示数字的字母.(2)数字与字母、字母与字母之间还有运算符号连接.归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.判断上面得到的三个式子:a+b+c、 ch、是不是代数式?(是)代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.Ⅱ.明确和巩固整式有关概念(出示投影)结论:(1)正方形的周长:4x.(2)汽车走过的路程:vt.(3)正方体有六个面,每个面都是正方形,这六个正方形全等,所以它的表面积为6a2;正方体的体积为长×宽×高,即a3.(4)n的相反数是-n.分析这四个数的特征.它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、ch、中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.请同学们阅读课本P160~P161单项式有关概念.根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、ch、这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.结论:4x、vt、6a2、a3、-n、 ch是单项式.它们的系数分别是4、1、6、1、-1、.它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、ch都是二次单项式;a3是三次单项式.问题:vt中v和t的指数都是1,它不是一次单项式吗?结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?写出下列式子(出示投影)结论:(1)t-5.(2)3x+5y+2z.(3)三角尺的面积应是直角三角形的面积减去圆的面积,即ab-3.12r2.(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.我们可以观察下列代数式:a+b+c、t-5、3x+5y+2z、ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?这样推理合情合理.请看投影,熟悉下列概念.根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.a+b+c的项分别是a、b、c.t-5的项分别是t、-5,其中-5是常数项.3x+5y+2z的项分别是3x、5y、2z.ab-3.12r2的项分别是 ab、-3.12r2.x2+2x+18的项分别是x2、2x、18.找多项式的次数应抓住两条,一是找准每个项的次数,二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也到符号的魅力所在.我们把单项式与多项式统称为整式.Ⅲ.随堂练习1.课本P162练习Ⅳ.课时小结通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,发展符号感.Ⅴ.课后作业1.课本P165~P166习题15.1─1、5、8、9题.2.预习“整式的加减”.课后作业:《课堂感悟与探究》15.1.2 整式的加减(1)教学目的:1、解字母表示数量关系的过程,发展符号感。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解一, 概念理解:多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.二, 因式分解的方法:(1)提公因式法如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式 例题讲解:(1)2ab 2+ 4abc (2)-m 2n 3 -3n 2m 3(3)2x (x+y )2+6x 2(x+y )2学生练习:1、3x 2+6=2、7x 2-21x=3、8a 3b 2-12ab 2c+ab=4、-24x 3-12x 2+28x=5、-5ab 2+20a 2b-15ab 3=6、am-am-1=( )(a-1)7、若多项式-6ab+18abx+24aby 的一个因式是-6ab ,那么另一个因式是( )8、多项式-6ab 2+18a 2b 2-12a 3b 2c 的公因式是( )9、-4.2×3.14-3.5×3.14+17.7×3.14 10、 30.5×768.3-768.3×20.5拓展与探究1、 已知n 为非零的自然数,先将2n+4-2n 分解因式,再说明2n+4-2 n 能否被30整除.2、若a=-2,a+b+c=-2.8,求a 2(-b-c )-3.2a (c+b )的值。

3、说明139792781--能被45整除。

(2)运用公式法。

(1)a 2-b 2=(a+b)(a -b); (2)a 2±2ab+b 2=(a ±b)2;(3)a 3+b 3=(a+b)(a 2-ab+b 2); (4)a 3-b 3=(a -b)(a 2+ab+b 2).下面再补充几个常用的公式:(适度讲解)(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca);(7)a n -b n =(a -b)(a n-1+a n-2b+a n-3b 2+…+ab n-2+b n-1)其中n 为正整数;(8)a n -b n =(a+b)(a n-1-a n-2b+a n-3b 2-…+ab n-2-b n-1),其中n 为偶数;(9)a n +b n =(a+b)(a n-1-a n-2b+a n-3b 2-…-ab n-2+b n-1),其中n 为奇数.例题讲解:1、1- 14x 2 =+-3632a a )()3()3)((22a b b a b a b a -+++- 2、若x 2+mx +25 是一个完全平方式,则m 的值是( )3、一块边长为a 的正方形广场,扩建后的正方形边长比原来长2米,问扩建后的广场面积增加了多少?学生练习:1、x -4 2、116 x 2-14 x +143、 9m 2-6m +2n -n 24、多项式a 2+4ab +2b 2,a 2-4ab +16b 2,a 2+a +14,9a 2-12ab +4b 2中,能用完全平方公式分解因式的有几个?5、已知正方形的面积是2269y xy x ++ (x>0,y>0),利用分解因式,写出表示该正方形的边长的代数式 。

6、一个多项式分解因式的结果是)2)(2(33b b -+,那么这个多项式是( )7、在对某二次三项式进行因式分解时,甲同学因看错了一次项系数而将其分解为()()912--x x ,而乙同学因看错了常数项而将其分解为()()422--x x ,试将此多项式进行正确的因式分解。

8、已知22==+ab b a ,,求32232121ab b a b a ++的值。

9、大正方形的周长比小正方形的周长长96厘米,它们的面积相差960平方厘米。

求这两个正方形的边长。

(3)十字相乘法对于二次项系数为l 的二次三项式,2q px x ++ 寻找满足ab=q ,a+b=p 的a ,b ,如有,则);)((2b x a x q px x ++=++对于一般的二次三项式),0(2≠++a c bx ax 寻找满足 a 1a 2=a ,c 1c 2=c,a 1c 2+a 2c 1=b 的a 1,a 2,c 1,c 2,如有,则).)((22112c x a c x a c bx ax ++=++ 例题讲解:a 2-a -6 2421x x -- 2232x xy y -+ 2273x x -+学生练习:1、2675x x -- 2、22568x xy y +-3、22483m mn n ++4、53251520x x y xy --5、若x 2+mx +n 能分解成( x+2 ) (x – 5),则m= ,n= ;6、若二次三项式2x 2+x+5m 在实数范围内能因式分解,则m= ;7、若x 2+kx -6有一个因式是(x -2),则k 的值是 ;8、关于X 的二次三项式x 2-4x +c 能分解成两个整系数的一次的积式,那么c 可取下面四个值中的( )(A) -8 (B) -7 (C) -6 (D) -5 (4)换元法例题讲解:1、设(x +y)(x +2+y)-15=0,则x +y 的值是( )2、分解因式x 6 + 14x 3 y + 49y 2.学生练习: 1、(x +y)(x +y -1)-122、()()243a b a b +-++ 3、(x 2+4x+6) + (x 2+6x+6) +x 24 (x-1)(x+2)(x-3)(x+4)+24(5)拆项法和添项法 例题讲解:分解因式:x 3-9x+8x 2+2ax -3a 2(6)双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax 2+bxy+cy 2+dx+ey+f),我们也可以用十字相乘法分解因式.例如:分解因式2x 2-7xy -22y 2-5x+35y -3.我们将上式按x 降幂排列,并把y 当作常数,于是上式可变形为:2x 2-(5+7y)x -(22y 2-35y+3)因式分解的应用知识点一:用因式分解法求某些代数式的值和进行简单多项式的除法例题讲解:1、不论a为何值,代数式-a2+4a-5值( )(A )大于或等于0 (B )0 (C )大于0 (D )小于0 2、若。

=,,则b a b b a ==+-+-01222 4、如果2a+3b=1,那么3-4a-6b= 。

5、c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是()A 、直角三角形B 、等腰三角形C 、等腰直角三角形D 、等边三角形6、计算:()()[]()11222+-÷+-+-b a b a b a 学生练习:1、已知31=+a a ,则221a a +的值是 2、()()b a ab b a 321510322+÷+3、已知三个连续奇数的平方和为251,求这三个奇数4、已知多项式c bx ax x +++23能被432-+x x 整除。

(1)求c a +4;(2)求c b a --22; (3)若a,b,c 为整数,且c ≥a >1,试确定a,b,c的值。

5、计算()12)1584(234+÷--++x x x x x6、已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状。

知识点二:用因式分解解简单的方程例题讲解:1、03=-x x2、求方程01552=-+--y x xy x 的整数解学生练习:1、方程()()112-=-x x 的解是? 2、()()513=+-x x3、()()221429+=-x x因式分解中考题集1. ax+by+ay+bx2. x2-13. x2+x^34. x2+x3-25. x2-6x+86. x2-12x+358. x4-1 10. b2+ab+ac+bc 11. x6+8x3+912. x2-100x+99 14. x2-x-y2-y 15. 7x2-19x-616. 8x2-6x-9 17. (x+1)(x+2)-12 18. x2+(p+q)x+pq 19. 3x4-6x2+3 20. a2(x-2a)2-a(x-2a)2 21. 25m2-10mn+n2 22. x2-3x-28 23. y4+2y3-3y2 24. (x-1)2*(3x-2)+(2-3x)25. (x-2)2-x+2 26. x2-12x-28 27. 12a2*b(x-y)-4ab(y-x)28. a2+5a+6 34. 6y2-16y+8 35. 6-7a-5a236. 3x 2-17x+10 37. 6a 2-11ab+3b 2 38. 2m 3+3m 2-5m39. (x+y)2-2(x+y)-3 40. a 2-b 2+2ab-c 2 41. m 2+2mn+n 2-142. x 2-4y 2+4yz-z 29、因式分解:9x 2-y 2-4y -4=__________.10、若n m y x -=))()((4222y x y x y x +-+,则m=_______,n=_________。

11、已知,01200520042=+++++x x x x 则.________2006=x12、若6,422=+=+y x y x 则=xy ___。

13、计算)1011)(911()311)(211(2232---- 的值是( ) 21、已知312=-y x ,2=xy ,求 43342y x y x -的值。

22、已知2=+b a ,求)(8)(22222b a b a +--的值23、(1)已知2,2-==+xy y x ,求xy y x 622++的值;(2)已知21,122=+-=-y x y x ,求y x -的值; (3)已知21=+b a ,83-=ab ,求(1)2)(b a -;(2)32232ab b a b a +- (4)已知0516416422=+--+y x y x ,求x+y 的值;24、2222224)(b a b a c ---25、先分解因式,然后计算求值:(本题6分)(a 2+b 2-2ab )-6(a -6)+9,其中a=10000,b=9999。

26、已知,8=+n m ,15=mn 求22n mn m +-的值。

24、27已知:,012=-+a a(1)求222a a +的值;(2)求1999223++a a 的值。

28、已知x(x -1)-(x 2-y)=-2.求xy y x -+222的值.换元法分解因式(将重复出现的两项或者多项看成一个整体或者用一个字母代替它,使得分解因式变得简单)例1、24)4)(3)(2)(1(-++++x x x x例2、3)2(2)2(222-+-+a a a a例3.(x+1)(x+2)(x+4)(x+5)+2例4.利用公式变形1.已知a,b,c 为△ABC 的三边,a 4+b 4+c 4+2a 2b 2-2b 2c 2-2a 2c 2=0,则说明三角形ABC 的形状。

相关文档
最新文档