中考数学之_线段和(差)的最值问题

合集下载

中考数学复习之线段和差最值之阿氏圆问题,附练习题含参考答案

中考数学复习之线段和差最值之阿氏圆问题,附练习题含参考答案

中考数学复习线段和差最值系列之阿氏圆问题在前面的“胡不归”问题中,我们见识了“kP A+PB ”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆.如下图,已知A 、B 两点,点P 满足PA :PB=k (k ≠1),则满足条件的所有的点P 构成的图形为圆.下给出证明法一:首先了解两个定理(1)角平分线定理:如图,在△ABC 中,AD 是∠BAC 的角平分线,则AB DBAC DC=.证明:ABD ACDS BD SCD =,ABD ACDS AB DE AB SAC DF AC ⨯==⨯,即AB DBAC DC=(2)外角平分线定理:如图,在△ABC 中,外角CAE 的角平分线AD 交BC 的延长线于点D ,则AB DBAC DC=.证明:在BA 延长线上取点E 使得AE=AC ,连接BD ,则△ACD ≌△AED (SAS ),CD=ED 且AD 平分∠BDE ,则DB AB DE AE =,即AB DBAC DC=.接下来开始证明步骤:FEDCBAABCDE如图,PA :PB=k ,作∠APB 的角平分线交AB 于M 点,根据角平分线定理,MA PAk MB PB ==,故M 点为定点,即∠APB 的角平分线交AB 于定点;作∠APB 外角平分线交直线AB 于N 点,根据外角平分线定理,NA PAk NB PB==,故N 点为定点,即∠APB 外角平分线交直线AB 于定点;又∠MPN=90°,定边对定角,故P 点轨迹是以MN 为直径的圆.法二:建系不妨将点A 、B 两点置于x 轴上且关于原点对称,设A (-m ,0),则B (m ,0),设P (x ,y ),PA=kP B ,即:()()()()()()22222222222222222122102201x m y k x m k y kx y m k m x k m m k mx y x m k ++=-+-+-++-=++-+=-解析式满足圆的一般方程,故P 点所构成的图形是圆,且圆心与AB 共线. 那么这个玩意和最值有什么关系呢?且来先看个例子:例:如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12PA PB +的最小值为__________.EABC DP【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,故转化方法与之前有所不同,如下,提供两种思路. 法一:构造相似三角形注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB 最小值,直接连BM 即可. 【问题剖析】(1)这里为什么是12PA ?答:因为圆C 半径为2,CA=4,比值是1:2,所以构造的是12PA ,也只能构造12PA .(2)如果问题设计为PA+kPB 最小值,k 应为多少? 答:根据圆C 半径与CB 之比为2:3,k 应为23. 【小结】此类问题都是构造好的图形搭配恰当的比例,构造相似转化线段即可解决. 法二:阿氏圆模型对比一下这个题目的条件,P 点轨迹是圆,A 是定点,我们需要找出另一个定点M 使得PM:PA=1:2,这不就是把“阿氏圆”的条件与结论互换了一下嘛!而且这种问题里,给定的圆的位置、定点A 的位置、线段的比例等,往往都是搭配好的! P 点轨迹圆的圆心C 点和A 点在直线AC 上,故所求M 点在AC 边上,考虑到PM :PA=1:2,不妨让P 点与D 点重合,此时DM=12DA =1,即可确定M 点位置.已知PA 、圆确定PB已知PA 、PB 之比确定圆如果对这个结果不是很放心,不妨再取个特殊的位置检验一下,如下图,此时PM=3,PA=6,亦满足PM:PA=1:2.【小结】法二其实是开了上帝视角,在已知其是阿氏圆的前提下,通过特殊点找出所求M 点位置,虽不够严谨,却很实用.练习题1.如图,在ABC∆中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则2AD+3BD的最小值是.2.如图,已知正方ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,则12 PD PC-的最大值为_______.3.如图,已知菱形ABCD的边长为8,∠B=60°,圆B的半径为4,点P是圆B上的一个动点,则PD﹣12PC的最大值为.A BCDAB CDP4.如图,在△ABC中,CB=4,AB=2AC,则△ABC面积的最大值为.5.如图所示,∠ACB=60°,半径为2的圆O内切于∠ACB.P为圆O上一动点,过点P作PM、PN分别垂直于∠ACB的两边,垂足为M、N,则PM+2PN的取值范围为.6.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接P A,PB,则P A+14PB的最小值为.7.如图,在Rt△ABC中,∠C=90°,AC=9,BC=4,以点C为圆心,3为半径做⊙C,分别交AC,BC于D,E两点,点P是⊙C上一个动点,则13P A+PB的最小值为.8.如图,正方形ABCD的边长为4,E为BC的中点,以B为圆心,BE为半径作⊙B,点P是⊙B上一动点,连接PD、PC,则PD+12PC的最小值为.9.如图,扇形AOB中,∠AOB=90°,OA=6,C是OA的中点,D是OB上一点,OD=5,P是弧AB上一动点,则PC+12PD的最小值为.10.如图所示的平面直角坐标系中,A(0,4),B(4,0),P是第一象限内一动点,OP=2,连接AP、BP,则BP+12AP的最小值是.11.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则P A+PB的最小值为.12.如图,P为菱形ABCD内一点,且P到A、B两点的距离相等,若∠C=60°,CD=4,则PB+12PD的最小值为.13.如图,在⊙O 中,点A 、点B 在⊙O 上,∠AOB =90°,OA =6,点C 在OA 上,且OC =2AC ,点D 是OB 的中点,点M 是劣弧AB 上的动点,则CM +2DM 的最小值为 .14. 如图,已知抛物线y=ax 2+bx+c(a≠0)过A 、B 两点,OA=1,OB=5,抛物线与y 轴交于点C ,点C 的纵坐标与点B 的横坐标相同,抛物线的顶点为D.(1) 抛物线的解析式为_________________,顶点D 的坐标为__________.(2) 如图,已知⊙A 的半径为2,点M 是⊙A 上一动点,连接CM 、MB ,则13CM+BM 是否存在最小值?若存在,说明在何处取得最小值;若不存在,请说明理由.参考答案2.5 4.1635.6-6.2 8.5 9.13214.(1)y=x 2-6x+5 D(3,-4)(2)AH=13AM ,当H 、M 、B 13CM+BM 取最小值.。

中考数学复习之线段最值之瓜豆原理,附练习题含参考答案

中考数学复习之线段最值之瓜豆原理,附练习题含参考答案

中考数学复习线段和差最值系列之瓜豆原理两个动点,一个动点随着另一个动点的运动而运动,通过找到两动点的轨迹,求线段最值.瓜豆原理说的是“种瓜得瓜,种豆得豆”,两点运动的轨迹性质一样.一.轨迹之圆篇引例1:如图,P 是圆O 上一个动点,A 为定点,连接AP ,Q 为AP 中点. 考虑:当点P 在圆O 上运动时,Q 点轨迹是?【分析】观察动图可知点Q 轨迹是个圆,而我们还需确定的是此圆与圆O 有什么关系?考虑到Q 点始终为AP 中点,连接AO ,取AO 中点M ,则M 点即为Q 点轨迹圆圆心,半径MQ 是OP 一半,任意时刻,均有△AMQ ∽△AOP ,QM :PO =AQ :AP =1:2.【小结】确定Q 点轨迹圆即确定其圆心与半径,由A 、Q 、P 始终共线可得:A 、M 、O 三点共线,由Q 为AP 中点可得:AM =12AO .Q 点轨迹相当于是P 点轨迹成比例缩放.引例2:如图,P 是圆O 上一个动点,A 为定点,连接AP ,作AQ ⊥AP 且AQ =AP . 考虑:当点P 在圆O 上运动时,Q 点轨迹是?【分析】Q 点轨迹是个圆,可理解为将AP 绕点A 逆时针旋转90°得AQ ,故Q 点轨迹与P 点轨迹都是圆.接下来确定圆心与半径.考虑AP ⊥AQ ,可得Q 点轨迹圆圆心M 满足AM ⊥AO ;考虑AP =AQ ,可得Q 点轨迹圆圆心M 满足AM =AO ,且可得半径MQ =PO .即可确定圆M 位置,任意时刻均有△APO ≌△AQM .引例3:如图,△APQ 是直角三角形,∠P AQ =90°且AP =2AQ ,当P 在圆O 运动时,Q 点轨迹是?【分析】考虑AP ⊥AQ ,可得Q 点轨迹圆圆心M 满足AM ⊥AO ;考虑AP :AQ =2:1,可得Q 点轨迹圆圆心M 满足AO :AM =2:1.即可确定圆M 位置,任意时刻均有△APO ∽△AQM ,且相似比为2.【模型总结】为了便于区分动点P 、Q ,可称点P 为“主动点”,点Q 为“从动点”. 此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值);主动点、从动点到定点的距离之比是定量(AP :AQ 是定值).【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠P AQ =∠OAM ;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP :AQ =AO :AM ,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q 与P 的关系相当于旋转+伸缩. 古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.例1:如图,点P (3,4),圆P 半径为2,A (2.8,0),B (5.6,0),点M 是圆P 上的动点,点C 是MB 的中点,则AC 的最小值是_______.【分析】M 点为主动点,C 点为从动点,B 点为定点.考虑C 是BM 中点,可知C 点轨迹:取BP 中点O ,以O 为圆心,OC 为半径作圆,即为点C 轨迹.当A 、C 、O 三点共线且点C 在线段OA 上时,AC 取到最小值,根据B 、P 坐标求O ,利用两点间距离公式求得OA ,再减去OC 即可.最小值为32. 二.轨迹之线段篇引例:如图,P 是直线BC 上一动点,连接AP ,取AP 中点Q ,当点P 在BC 上运动时,Q 点轨迹是?【分析】当P 点轨迹是直线时,Q 点轨迹也是一条直线.可以这样理解:分别过A 、Q 向BC 作垂线,垂足分别为M 、N ,在运动过程中,因为AP =2AQ ,所以QN 始终为AM 的一半,即Q 点到BC 的距离是定值,故Q 点轨迹是一条直线.【引例】如图,△APQ 是等腰直角三角形,∠P AQ =90°且AP =AQ ,当点P 在直线BC 上运动时,求Q 点轨迹?【分析】当AP 与AQ 夹角固定且AP :AQ 为定值的话,P 、Q 轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q 点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q 点轨迹线段.【模型总结】 必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值);主动点、从动点到定点的距离之比是定量Q 2Q 1AB C(AP :AQ 是定值). 结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角)P 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )例2:如图,在平面直角坐标系中,A (-3,0),点B 是y 轴正半轴上一动点,C 、D 在x 正半轴上,以AB 为边在AB 的下方作等边△ABP ,点B 在y 轴上运动时,求OP 的最小值.【分析】求OP 最小值需先作出PB 点在直线上运动,故可知P 点轨迹也是直线.取两特殊时刻:(1)当点B 与点O 重合时,作出P 点位置P 1;(2)当点B 在x 轴上方且AB 与x 轴夹角为60°时,作出P 点位置P 2.连接P 1P 2,即为P 点轨迹.根据∠ABP =60°可知:12P P 与y 轴夹角为60°,作OP ⊥12P P ,所得OP 长度即为最小值,OP2=OA =3,所以OP =32. 练习题1.如图,在等腰Rt △ABC 中,AC =BC =P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.2.如图,正方形ABCD中,AB O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.3.△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.4.如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.5.如图,已知点A是第一象限内横坐标为AC ⊥x 轴于点M ,交直线y =-x 于点N ,若点P 是线段ON 上的一个动点,∠APB =30°,BA ⊥P A ,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.求当点P 从点O 运动到点N 时,点B 运动的路径长是________.6.如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .OABCDE FAB CDE OGAB CDEF7.如图,在反比例函数2y x=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数ky x=的图像上运动,若tan ∠CAB =2,则k 的值为( )A .2B .4C .6D .88.如图,A (-1,1),B (-1,4),C (-5,4),点P 是△ABC 边上一动点,连接OP ,以OP 为斜边在OP 的右上方作等腰直角△OPQ ,当点P 在△ABC 边上运动一周时,点Q 的轨迹形成的封闭图形面积为________.9.如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.10.如图,线段AB =2,点C 为平面上一动点,且∠ACB =90°,将线段AC 的中点P 绕点A 顺时针旋转90°得到线段AQ ,连接BQ ,则线段BQ 的最大值为 .ABCDP11.如图,⊙O的直径AB=2,C为⊙O上动点,连接CB,将CB绕点C逆时针旋转90⁰得到CD,连接OD,则OD的最大值为________12.如图,在 ABC中,∠ACB=90°,点D在BC边上,BC=5,CD=2,点E是边AC所在直线上的一动点,连接DE,将DE绕点D顺时针方向旋转60°得到DF,连接BF,则BF的最小值为____13.已知边长为6的等边△ABC中,E是高AD所在直线上的一个动点,连接BE,将线段BE绕点B顺时针旋转60°得到BF,连接DF,则在点E运动的过程中,当线段DF长度的最小值时,DE的长度为.14.如图1,在△ABC中,BE平分∠ABC,CF平分∠ACB,BE与CF交于点D.(1)若∠BAC=74°,则∠BDC=;(2)如图2,∠BAC=90°,作MD⊥BE交AB于点M,求证:DM=DE;(3)如图3,∠BAC=60°,∠ABC=80°,若点G为CD的中点,点M在直线BC上,连接MG,将线段GM绕点G逆时针旋转90°得GN,NG=MG,连接DN,当DN最短时,直接写出∠MGC的度数.15.如图1,在平面直角坐标系中,直线y =﹣5x +5与x 轴,y 轴分别交于A 、C 两点,抛物线y =x 2+bx +c 经过A 、C 两点,与x 轴的另一交点为B . (1)求抛物线解析式;(2)若点M 为x 轴下方抛物线上一动点,当点M 运动到某一位置时,△ABM 的面积等于△ABC 面积的35,求此时点M 的坐标; (3)如图2,以B 为圆心,2为半径的⊙B 与x 轴交于E 、F 两点(F 在E 右侧),若P 点是⊙B 上一动点,连接P A ,以P A 为腰作等腰Rt △P AD ,使∠P AD =90°(P 、A 、D 三点为逆时针顺序),连接FD .求FD 长度的取值范围.参考答案:1. π -2 4.8 6.527.D 8.3 9.4-12 1 12.7214.127°,25°15.(1)y=x 2-6x+5 (2)M(2,-3)、(4,-3) (3)2。

中考数学专题复习距离和差最值问题汇总

中考数学专题复习距离和差最值问题汇总

StandardiZation OfSany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#JΘθM≠径为2,点A、B. C 在G)O上,QA 丄03, /1 X03上一数点\ [求乡4PC的最小值;ZAOC = 60o, P 是(2)一次函^y^kX+h的图象与x、y轴分别交于点A (2, 0 坐标原点,设OA、AB的中点分别为C、D, P为OB上一动点,最小值,并求取得最小值时P点坐标. (OJ4) • 0 为求PC+PD的2016中考数学专题复习:最短距离问题导读最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是儿何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的儿何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。

利用一次函数和二次函数的性质求最值。

一、“两点之间的连线中,线段最短”,凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。

几何模型:“饮马问题”条件:如图,A、B是直线/同旁的两个定点•问题:在直线/上确定一点P,使PA + PB的值最小•方法:作点A关于直线/的对称点连结47?交/于点几^APA+ PB = AB的值最小(不必证明)•模型应用:例1,如图1,正方形ABCD的边长为2, E为AB的中点,P是AC ±一动点•连结BD,由正方形对称性可知,B与D关于直线AC对称.连结ED交AC于P,贝IJPB + PE的最小值是⑴如良ByBD(3)己知抛物线y = a χ2÷bx + c(a≠O)的对称轴为x=l,且抛物线经过A(—1,0)、B (0, —3)两点,与X 轴交于另一点B.在抛物线的对称轴x=l 上求一点M,使点M 到点A 的距离与到点C 的距离之和最小,并求出1I⅛⅛点M 的坐标;能使A 村到B 村的路程最近 二.归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用(1)若点P 是X 轴上任意一点,求证:PA-PBWAB ; (2)当PA-PB 最大时,求点P 的坐标. 练习:1-如图,当四边形刊BV 的周长最小时,<3= ______________2. 如图,A.尸两点在直线的两侧,点力到直线的距离4炉4,点方到直线的距离-β∖≡b 且加T 戸为直线上的动点,∖PA-PB∖的最大值为3. 如图,菱形個刃中,ZM 二60° , /员3, ΘA. Θ方的半径分别为2和1, A E 、 尸分别是边仞、Θ/和Θ5±的动点,则胁M 的最小值是 ______________________ ・例2,如图,两条公路OA 、OB 相交,在两条公路的丼H⅛ 在两条公路上各设置一个加油站,,请你设计一个方案,珂南个加油站设在何处, 可使运油车从油库出发,经过一个加油站,再到另一个加油) 卜池库,设为点P,如 的路程最短.同类题训练:如图 4, ZAoB = 45o , P 是 ZAO3 内一点,PO = IO, 0、R 分别是Q4、OB 上的动点,求 周长的最小值. APQR例3.如图,村庄A 、B 位于一条小河的两侧,若河岸a 、b 彼就平行,现在薯建设 一座与河岸垂直的桥CD,问桥址应如何选择,才 A ・这一模型。

中考数学之 线段和(差)的最值问题

中考数学之 线段和(差)的最值问题

求线段和(差)的最值问题【知识依据】:1.线段公理——两点之间,线段最短;2.对称的性质——①关于一条直线对称的两个图形全等;②对称轴是两个对称图形对应点连线的垂直平分线;3.三角形两边之和大于第三边;4.三角形两边之差小于第三边。

5、垂直线段最短 一、已知两个定点:1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧:(2)点A 、B 在直线同侧:A 、A ’ 是关于直线m 的对称点。

2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。

(1)两个点都在直线外侧:mm ABm ABm n mn(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧:(4)、台球两次碰壁模型变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短.变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短.nm Annnm二、一个动点,一个定点: (一)动点在直线上运动:点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、两点在直线两侧:2、两点在直线同侧:(二)动点在圆上运动点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、点与圆在直线两侧:2、点与圆在直线同侧:m nm nm nmmmmm三、已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA+PQ+QB 的值最小。

(原理用平移知识解) (1)点A 、B 在直线m 两侧:过A 点作AC ∥m,且AC 长等于PQ 长,连接BC,交直线m 于Q,Q 向左移动PQ 长,即为P 点,此时P 、Q 即为所求的点。

(2)点A 、B 在直线m 同侧:四、求两线段差的最大值问题(运用三角形两边之差小于第三边) 1、在一条直线m 上,求一点P ,使PA 与PB 的差最大; (1)点A 、B 在直线m 同侧:(2)点A 、B 在直线m 异侧:过B 作关于直线m 的对称点B ’,连接AB ’交点直线m 于P,此时PB=PB ’,PA-PB 最大值为AB ’Bmmmmm Q。

线段和差最值问题之对称,中考复习专题附练习题含参考答案

线段和差最值问题之对称,中考复习专题附练习题含参考答案

中考复习专题之线段(和差)最值问题之对称对称问题,指的是通过对称的方式求得线段(和差)最值的问题类型,包含一次对称即将军饮马问题、二次对称、过河修桥问题等. 1.将军饮马问题“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。

而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。

如图,将军在图中点A 处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?如图,在直线上找一点P 使得PA+PB 最小?这个问题的难点在于PA+PB 是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.作点A 关于直线的对称点A',连接PA',则PA'=PA ,所以PA+PB=PA'+PB当A'、P 、B 三点共线的时候,PA'+PB =A'B ,此时为最小值(两点之间线段最短) 作端点(点A 或点B )关于折点(上图P 点)所在直线的对称,化折线段为直线段.2.二次对称问题在OA 、OB 上分别取点M 、N ,使得△PMN 周长最小.AB 将军军营河此处M 、N 均为折点,分别作点P 关于OA (折点M 所在直线)、OB (折点N 所在直线)的对称点,化折线段PM +MN +NP 为P'M +MN +NP ’’,当P'、M 、N 、P''共线时,△PMN 周长最小. 3.过河修桥问题已知人在图中点A 村庄,现要过河去往B 村,桥必须垂直于河岸建造,问:桥建在何处能使路程最短?考虑MN 长度恒定,只要求AM +NB 最小值即可.问题在于AM 、NB 彼此分离,所以首先通过平移,使AM 与NB 连在一起,将AM 向下平移使得M 、N 重合,此时A 点落在A ’位置.问题化为求A'N +NB 最小值,显然,当A'、N 、B 共线时,AM+MN+BN 的值最小,并得出桥应建的位置. 【问题扩展1】已知将军在图中点A 处,现要过两条河去往B 点的军营,桥必须垂直于河岸建造,问:桥建在何处能使路程最短?BB考虑PQ 、MN 均为定值,所以路程最短等价于AP +QM +NB 最小,对于这彼此分离的三段,可以通过平移使其连接到一起.AP 平移至A'Q ,NB 平移至MB ’,化AP +QM +NB 为A'Q +QM +MB'.当A'、Q 、M 、B ’共线时,A'Q +QM +MB'取到最小值,再依次确定P 、N 位置. 【问题扩展1】如图,将军在A 点处,现在将军要带马去河边喝水,并沿着河岸走一段路,再返回军营,问怎么走路程最短?已知A 、B 两点,MN 长度为定值,求确定M 、N 位置使得AM +MN +NB 值最小?【分析】考虑MN 为定值,故只要AM +BN 值最小即可.将AM 平移使M 、N 重合,AM =A'N ,将AM +BN 转化为A'N +NB .构造点A 关于MN 的对称点A'',连接A''B ,可依次确定N 、M 位置,可得路线.军营BBB军营河练习题1.如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为___________.2.如图,正方形ABCD 的边长是4,M 在DC 上,且DM =1, N 是AC 边上的一动点,则△DMN 周长的最小值是___________.3.如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且AC :CB =1:3,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( ) A .(2,2)B .5(2,5)2C .8(3,8)3D .(3,3)4.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =3,DC =1,点P 是AB 上的动点,则PC +PD 的最小值为( ) A .4B .5C .6D .75.如图,在等边△ABC 中,AB =6, N 为AB 上一点且BN =2AN , BC 的高线AD 交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值是___________.6.如图,在Rt △ABD 中,AB =6,∠BAD =30°,∠D =90°,N 为AB 上一点且BN =2AN , M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值是___________.7.如图,在Rt △ABC 中,∠ACB =90°,AC =6.AB =12,AD 平分∠CAB ,点F 是AC 的中点,点E 是AD 上的动点,则CE +EF 的最小值为( ) A .3B .4C.D.8.如图,在锐角三角形ABC 中,BC =4,∠ABC =60°, BD 平分∠ABC ,交AC 于点D ,M 、N 分别是BD ,BC 上的动点,则CM +MN 的最小值是( ) AB .2C.D .49.如图,在菱形ABCD 中,AC=BD =6,E 是BC 的中点,P 、M 分别是AC 、AB 上的动点,连接PE 、PM ,则PE +PM 的最小值是( )A .6B.C.D .4.5P OBAMNNMD CBAPDCBAA BCDMNN M D BAE AFCDBNM DCBA10.如图,矩形ABOC 的顶点A 的坐标为(-4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( ) A .4(0,)3B .5(0,)3C .(0,2)D .10(0,)311.如图,在矩形ABCD 中,AB =6,AD =3,动点P 满足13PAB ABCD S S ∆=矩形,则点P 到A 、B 两点距离之和P A +PB 的最小值为( )A.B.C.D12.如图,矩形ABCD 中,AB =10,BC =5,点E 、F 、G 、H 分别在矩形ABCD 各边上,且AE =CG ,BF =DH ,则四边形EFGH 周长的最小值为( ) A.B.C.D.13.如图,∠AOB =60°,点P 是∠AOB 内的定点且OPM 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )ABC .6D .314. 如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N (3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB =30°,要使PM +PN 最小,则点P 的坐标为 . 15.如图,已知正比例函数y =kx (k >0)的图像与x 轴相交所成的锐角为70°,定点A 的坐标为(0,4),P 为y 轴上的一个动点,M 、N 为函数y =kx (k >0)的图像上的两个动点,则AM +MP +PN 的最小值为____________.16.如图,在平面直角坐标系中,矩形ABCD 的顶点B 在原点,点A 、C 在坐标轴上,点D 的坐标为(6,4),E 为CD 的中点,点P 、Q 为BC 边上两个动点,且PQ =2,要使四边形APQE 的周长最小,则点P 的坐示应为______________.17.如图,矩形ABCD 中,AD =2,AB =4,AC 为对角线,E 、F 分别为边AB 、CD 上的动点,且EF ⊥AC 于点M ,连接AF 、CE ,求AF +CE 的最小值.EPDCBAMDCBAPHFGEDCB AA BMOPN18.如图,在平面直角坐标系中,Rt△OAB 的直角顶点A 在x 轴的正半轴上,顶点B的坐标为(3),点C 的坐标为(12,0),点P 为斜边OB 上一动点,则PA+PC 的最小值为___________. 19.如图,△ AOB=30 °,点 M 、 N 分别在边 OA 、OB 上,且 OM=1 ,ON=3,点 P 、Q 分别在边 OB 、OA 上,则 MP+PQ+QN 的最小值 _________20.如图,在矩形ABCD 中,AB=4,BC=8,E 为CD 边的中点.若P ,Q 为BC 边上的两动点,且PQ=2,则当BP=___时,四边形APQE 的周长最小.21.如图在河的两侧有两个村庄,A 离河为60米,B 离河是30米,AB 的水平距离为120米,河的宽度为30米,问桥修在何处会使得从A 经过桥到B 的路程最小,最小值为多少?参考答案1.82.63.C4.B5.6. 7.C 8.C 9.C 10.B 11.A 12.B 13.D14.3(215. 16.8(,0)3 17.520.2+ 21.180A B CDEFMyxPCBAO Q P ED CB A。

2020中考数学总复习:将军饮马型最值问题-解题技巧总结精选全文

2020中考数学总复习:将军饮马型最值问题-解题技巧总结精选全文
求点P的坐标.
图T3-13
1
10
3
3
(3)∵y=- x2+ x,∴抛物线的对称轴为直线 x=5.
∵A,O 两点关于对称轴对称,∴PA=PO,
当 P,O,D 三点在一条直线上时,PA+PD=PO+PD=OD,此时△ PAD 的周长最小.
如图,OD 与对称轴的交点即为满足条件的点 P,
由(2)可知 D 点坐标为(10,5).
1
1
1
∵S△ PAB=3S 矩形 ABCD,∴2AB·h=3AB·AD,
2
∴h=3AD=2,∴动点 P 在与 AB 平行且与 AB 的距离是 2 的线段 l 上,如图,作点 A
关于直线 l 的对称点 A',连接 AA',BA',则 BA'即为所求的最短距离.在 Rt△ ABA'中,
AB=4,AA'=2+2=4,∴BA'= 2 + '2 = 42 + 42 =4 2,即 PA+PB 的最小值为
)
D.80°
[答案]D
[解析]分别作A关于直线BC和CD的对称点A',A″,连接A'A″,交BC于E,交CD于F,则
A'A″长即为△AEF周长的最小值.作DA延长线AH,易知∠DAB=130°,∠HAA'=50°.
又∠EA'A=∠EAA',∠FAD=∠A″,且∠EA'A+∠EAA'=∠AEF,∠FAD+∠A″=
图T3-4
.
[答案] 2 5
[解析]如图,在 CB 上截取 CM=CA,连接 DM.
= ,
在△ CDA 与△ CDM 中, ∠ = ∠,

中考复习之线段和差最值之费马点问题-附练习题含参考答案

中考复习之线段和差最值之费马点问题-附练习题含参考答案

ABCP中考数学复习线段和差最值系列之费马点皮耶·德·费马,17世纪法国数学家,有“业余数学家之王”的美誉,之所以叫业余并非段位不够,而是因为其主职是律师,兼职搞搞数学.费马在解析几何、微积分等领域都有卓越的贡献,除此之外,费马广为人知的是以其名字命名的“费马小定理”、“费马大定理”等.言归正传,今天的问题不是费马提出来的,是他解决的,故而叫费马点. 问题:在△ABC 内找一点P ,使得P A +PB +PC 最小.【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.以上依据似乎都用不上,怎么办?若点P 满足∠PAB=∠BPC=∠CPA=120°,则PA+PB+PC 值最小,P 点称为该三角形的费马点.一、如何作费马点问题要从初一学到的全等说起:(1)如图,分别以△ABC 中的AB 、AC 为边,作等边△ABD 、等边△ACE . (2)连接CD 、BE ,即有一组手拉手全等:△ADC ≌△ABE .(3)记CD 、BE 交点为P ,点P 即为费马点.(到这一步其实就可以了)(4)以BC 为边作等边△BCF ,连接AF ,必过点P ,有∠P AB =∠BPC =∠CP A =120°.在图三的模型里有结论:(1)∠BPD =60°;(2)连接AP ,AP 平分∠DPE .有这两个结论便足以说明∠P AB =∠BPC =∠CP A =120°.但是在这里有个小小的要求,细心的同学会发现,这个图成立的一个必要条件是∠BAC <120°,若120BAC ∠≥︒ ,这个图就不是这个图了,会长成这个样子:EB ACAB CDE此时CD 与BE 交点P 点还是我们的费马点吗?显然这时候就不是了,显然P 点到A 、B 、C 距离之和大于A 点到A 、B 、C 距离之和.所以,是的,你想得没错,此时三角形的费马点就是A 点!当然这种情况不会考的,就不多说了.二、为什么是这个点为什么P 点满足∠P AB =∠BPC =∠CP A =120°,P A +PB +PC 值就会最小呢?归根结底,还是要重组这里3条线段:P A 、PB 、PC 的位置,而重组的方法是构造旋转!在上图3中,如下有△ADC ≌△ABE ,可得:CD =BE .类似的手拉手,在图4中有3组,可得:AF =BE =CD .巧的,它们仨的长度居然一样长!更巧的是,其长度便是我们要求的P A +PB +PC 的最小值,这一点是可以猜想得到的,毕竟最小值这个结果,应该也是个特别的值! 接下来才是真正的证明:考虑到∠APB =120°,∴∠APE =60°,则可以AP 为边,在PE 边取点Q 使得PQ =AP ,则△APQ 是等边三角形.△APQ 、△ACE 均为等边三角形,且共顶点A ,故△APC ≌△AQE ,PC =QE . 以上两步分别转化P A =PQ ,PC =QE ,故P A +PB +PC =PB +PQ +QE =BE .没有对比就没有差别,我们换个P 点位置,如下右图,同样可以构造等边△APQ ,同样有△APC ≌△AQE ,转化P A =PQ ,PC =QE ,显然,P A +PB +PC =PB +PQ +QE >BE .还剩下第3个问题!如果说费马点以前还算是课外的拓展内容,那现在,已经有人把它搬上了中考舞台!【中考再现】问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE 与BC 交于点P ,可推出结论:P A +PC =PE .问题解决:如图2,在△MNG 中,MN =6,∠M =75°,MG=O 是△MNG 内一点,则点O 到△MNG 三个顶点的距离和的最小值是______.【分析】本题的问题背景实际上是提示了解题思路,构造60°的旋转,当然如果已经了解了费马点问题,直接来解决就好了!如图,以MG 为边作等边△MGH ,连接NH ,则NH 的值即为所求的点O 到△MNG 三个顶点的距离和的最小值.(此处不再证明)过点H 作HQ ⊥NM 交NM 延长线于Q 点,根据∠NMG =75°,∠GMH =60°,可得∠HMQ =45°,∴△MHQ 是等腰直角三角形, ∴MQ =HQ =4,∴NH== 练习题1.如图,在△ABC 中,△ACB=90°,AB=AC=1,P 是△ABC 内一点,求P A +PB +PC 的最小值.2. 如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.NG图2图1ABCD EPHGN M464Q HGN MABCDME3.如图,矩形ABCD中,AB=10,BC=15,现在要找两点E、F,则EA+EB+EF+FC+FD的最小值为__________4.如图,等腰Rt∆ABC中,AB=4,P为∆ABC内部一点,则PA+PB+PC的最小值为_______5.如图,∆ABC中,AB=4,,∠ABC=75°,P为∆ABC内的一个动点,连接PA、PB、PC,则PA+PB+PC的最小值为________6.如图,P为正方形ABCD对角线BD上一动点,若AB=2,则PA+PB+PC的最小值为______7.在Rt∆ABC中,∠ACB=90°,AC=1,,点O为Rt∆ABC内一点,连接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,则OA+OB+OC=_______8.如图,在四边形ABCD中,∠B=60°,AB=BC=3,AD=4,∠BAD=90°,点P是四边形内部一点,则PA+PB+PD的最小值是______9.如图,点P是矩形ABCD对角线BD上的一个动点,已知AB=2,,则PA+PB+PC 的最小值为_______10.如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则PA+PB+PD的最小值为__________11.已知,在∆ABC中,∠ACB=30°点P是ABC内一动点,则PA+PB+PC的最小值为__________12.如图,设点P到等边三角形ABC两顶点A、B的距离分别为2则PC的最大值为______13.如图,设点P到正方形ABCD两顶点A、D的距离为2PC的最大值为________14.如图,设点P到正方形ABCD两顶点A、D的距离为2则PO的最大值为_________.15.如图,在Rt∆ABC中,∠BAC=90⁰,AB=AC,点D是BC边上一动点,连接AD,把AD 绕点A逆时针旋转90⁰,得到AE,连接CE、DE,点F是DE的中点,连接CF问题:在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小,当PA+PB+PC 取最小值时,AP的长为m,用含有m的式子表示CE的长.参考答案1.7.8.7 9.3 10. 12.2+13.2+1 15.32m +。

人教版中考数学总复习微专题六 几何最值问题 模型三 线段和差——造桥选址

人教版中考数学总复习微专题六   几何最值问题 模型三  线段和差——造桥选址
第二部分 微专题拓展
微专题六 几何最值问题
目录
01 基本模型 02 针对训练 03 针对巩固
返回目录
基本模型
图示
问题概述:A,B两地在一条河的两岸,现要在河上造一座桥 MN.桥造在何处才能使从A到B的路径AMNB最短?(假定河的 模型总结 两岸是平行的直线,桥要与河垂直) 解决方法:过点B作BB′⊥l2,且BB′等于河宽,连接AB′交 l1于点M,作MN⊥l1交l2于点N,则MN就是桥所在的位置
返回目录
谢谢
返回目录
返回目录
针对训练 例3 如图W-6-5,已知直线a∥b,且a与b之间的距离为4, 点A到直线a的距离为2,点B到直线b的距离为3,试在直线a上 找一点C,直线b上找一点D,满足CD⊥a,AC+CD+DB的长度和 最短,且AC+DB=8.求AB的长度.
返回目录
解:如答图W-6-5,过点A作AE⊥a,使得线段AE=4,连接 EB交直线b于点D,过点D作DC⊥b交直线a于点C,连接AC,过 点B作BF⊥AE交AE的延长线于点F. ∵CD=AE=4,CD∥AE, ∴四边形AEDC是平行四边形. ∴AC=ED. ∴AC+CD+BD=ED+BD+CD=BE+CD, 此时AC+CD+DB的值最小. 由题意,得AF=2+4+3=9,EF=9-4=5,BE=AC+BD=8. ∴BF= BE2-EF2= 82-52= 39, ∴AB= BF2 + AF2= 39 + 81=2 3至点A′,使得AA′=35 m,连 接A′B,交公路b于点D,过点D作CD⊥公路a于点C,连接AC, BD,过点B作BF⊥AA′,交AA′的延长线于点H. 则天桥建在CD处能使由A经过天桥走到B的路程最短,最短路 线的长为AC+CD+DB=A′B+CD. 由题意,得AB=100,AH=20+25+35=80, A′H=80-35=45. ∴BH= AB2-AH2= 1002-802=60. ∴A′B= BH2 + A′H2= 602 + 452=75. ∴这个最短距离为A′B+CD=75+35=110(m).

2020年中考数学压轴解答题13 几何中的最值与定值问题 (学生版)

2020年中考数学压轴解答题13 几何中的最值与定值问题 (学生版)

备战2020中考数学之解密压轴解答题命题规律专题13 几何中的最值与定值问题【类型综述】线段和差的最值问题,常见的有两类:第一类问题是“两点之间,线段最短”.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”第二类问题是“两点之间,线段最短”结合“垂线段最短”.【方法揭秘】两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题.图1 图2 图3如图4,正方形ABCD的边长为4,AE平分∠BAC交BC于E.点P在AE上,点Q在AB上,那么△BPQ周长的最小值是多少呢?如果把这个问题看作“牛喝水”问题,AE是河流,但是点Q不确定啊.第一步,应用“两点之间,线段最短”.如图5,设点B关于“河流AE”的对称点为F,那么此刻PF+PQ的最小值是线段FQ.第二步,应用“垂线段最短”.如图6,在点Q运动过程中,FQ的最小值是垂线段FH.这样,因为点B和河流是确定的,所以点F是确定的,于是垂线段FH也是确定的.图4 图5 图6【典例分析】【例1】如图1,△ABC是边长为8的等边三角形,AD⊥BC于点D,DE⊥AB于点E.(1)求证:AE=3EB(2)若点F是AD的中点,点P是BC边上的动点,连接PE,PF,如图2所示,求PE+PF的最小值及此时BP 的长;(3)在(2)的条件下,连接EF,当PE+PF取最小值时,△PEF的面积是______.【例2】问题探究()1请在图①的正方形ABCD的对角线BD上作一点P,使PA PC+最小;()2如图②,点P为矩形ABCD的对角线BD上一动点,AB2=,BC3=点E为BC边的中点,请作一点+最小,并求这个最小值;P,使PE PC问题解决()3如图③,李师傅有一块边长为1000米的菱形采摘园ABCD,AC1200=米,BD为小路,BC的中点E为一水池,李师傅现在准备在小路BD上建一个游客临时休息纳凉室P,为了节省土地,使休息纳凉室P到水池E与大门C的距离之和最短,那么是否存在符合条件的点P?若存在,请作出点P的位置,并求出这个最短距离;若不存在,请说明理由.【例3】在平面直角坐标系中,点A (0,4),B (m ,0)在坐标轴上,点C ,O 关于直线AB 对称,点D 在线段AB 上.(1)如图1,若m =8,求AB 的长;(2)如图2,若m =4,连接OD ,在y 轴上取一点E ,使OD =DE ,求证:CE =2DE ;(3)如图3,若m =43,在射线AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.【例4】如图,一次函数122y x =-+的图像与坐标轴交于A 、B 两点,点C 的坐标为(1,0)-,二次函数2y ax bx c =++的图像经过A 、B 、C 三点.(1)求二次函数的解析式(2)如图1,已知点(1,)D n 在抛物线上,作射线BD ,点Q 为线段AB 上一点,过点Q 作QM y ⊥轴于点M ,作QN BD ⊥于点N ,过Q 作//QP y 轴交抛物线于点P ,当QM 与QN 的积最大时,求点P 的坐标;(3)在(2)的条件下,连接AP ,若点E 为抛物线上一点,且满足APE ABO ∠=∠,求点E 的坐标.【例5】如图,在平面直角坐标系中,抛物线y =﹣235333x x ++与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C .(1)求出△ABC 的周长.(2)在直线BC 上方有一点Q ,连接QC 、QB ,当△QBC 面积最大时,一动点P 从Q 出发,沿适当路径到达y 轴上的M 点,再沿与对称轴垂直的方向到达对称轴上的N 点,连接BN ,求QM +MN +BN 的最小值.(3)在直线BC 上找点G ,K 是平面内一点,在平面内是否存在点G ,使以O 、C 、G 、K 为顶点的四边形是菱形?若存在,求出K 的坐标;若不存在,请说明理由.【例6】在平面直角坐标系中,抛物线y =﹣x 2+bx +c 经过点A 、B ,C ,已知A (﹣1,0),C (0,3).【变式训练】一、单选题1.如图,APB △中,4,3AP BP ==,在AB 的同侧作正ABD △、正APE V 和正BPC △,则四边形PCDE 面积的最大值是( )A .12B .15C .20D .252.如图,在Rt ABC ∆中, 90BAC =︒∠,45ACB ∠=︒,22AB =,点P 为BC 上任意一点,连结PA ,以PA ,PC 为邻边作平行四边形PAQC ,连结PQ ,则PQ 的最小值为( )A .2B .2C .22D .43.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .34.已知:AB 是O e 的直径,AD ,BC 是O e 的切线,P 是O e 上一动点,若10AD =,4OA =,16BC =,则PCD ∆的面积的最小值是( )A .36B .32C .24D .10.45.⊙O 是半径为1的圆,点O 到直线L 的距离为3,过直线L 上的任一点P 作⊙O 的切线,切点为Q ;若以PQ 为边作正方形PQRS,则正方形PQRS 的面积最小为( )A .7B .8C .9D .106.在△ABC 中,AB=BC,点D 在AC 上,BD=6cm,E ,F 分别是AB ,BC 边上的动点,△DEF 周长的最小值为6 cm,则ABC ∠=( )A .20°B .25°C .30°D .35°7.如图,已知点(1,3)A -,(5,1)B -,点(,0)P m 是x 轴上一动点,点Q 是y 轴上一动点,要使四边形ABPQ 的周长最小,m 的值为( )A .3.5B .4C .7D .2.58.如图,四边形ABCD 中,∠BAD=130°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N,使三角形AMN 周长最小时,则∠AMN+∠ANM 的度数为( )A .80°B .90°C .100°D .130°二、填空题9.如图,ABC ∆是等边三角形,13AD AB =,点E 、F 分别为边AC 、BC 上的动点,当DEF ∆的周长最小时,FDE ∠的度数是______________.10.如图,△ABC 中,AB=8,AC=5,BC=7,点D 在AB 上一动点,线段CD 绕点C 逆时针旋转60°得到线段CE,AE 的最小值为________11.在Rt △ABC 中,∠BAC =90,AB =AC ,AD ⊥BC 于点D ,P 是线段AD 上的一个动点,以点P 为直角的顶点,向上作等腰直角三角形PBE ,连接DE ,若在点P 的运动过程中,DE 的最小值为3,则AD 的长为____.12.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.13.如图,在半径为2的⊙O 中,弦AB ⊥直径CD ,垂足为E ,∠ACD =30°,点P 为⊙O 上一动点,CF ⊥AP 于点F . ①弦AB 的长度为_____;②点P 在⊙O 上运动的过程中,线段OF 长度的最小值为_____.14.如图,矩形ABCD 中,6AB =,8BC =,M 是AD 边上的一点,且2AM =,点P 在矩形ABCD 所在的平面中,且90BPD ∠=︒,则PM 的最大值是_________.三、解答题15.如图,在平面直角坐标系中,矩形OABC 的两边OA OC 、分别在x 轴、y 轴的正半轴上,8,4OA OC ==.点P 从点O 出发,沿x 轴以每秒2个单位长的速度向点A 匀速运动,当点P 到达点A 时停止运动,设点P 运动的时间是t 秒.将线段CP 的中点绕点P 按顺时针方向旋转90o ,得点D ,点D 随点P 的运动而运动,连接DP DA 、.(1)请用含t 的代数式表示出点D 的坐标. (2)求t 为何值时,DPA ∆的面积最大,最大为多少?(3)在点P 从O 向A 运动的过程中,DPA ∆能否成为直角三角形?若能,求t 的值:若不能,请说明理由. (4)请直接写出整个运动过程中,点D 所经过的长度.16.已知矩形纸片OBCD 的边OB 在x 轴上,OD 在y 轴上,点C 在第一象限,且86OB OD ==,.现将纸片折叠,折痕为EF (点E,F 是折痕与矩形的边的交点),点P 为点D 的对应点,再将纸片还原。

最新二次函数中的最值问题整理(中考数学必考知识点)

最新二次函数中的最值问题整理(中考数学必考知识点)

二次函数中的最值问题归纳(中考数学必考知识点)一.线段和差最值1、如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0),B(4,0),与y轴交于点C,点D为BC的中点.(1)求该抛物线的函数表达式;(2)点G是该抛物线对称轴上的动点,若GA+GC有最小值,求此时点G的坐标;第二问解题思路:(1)根据点G是该抛物线对称轴上的动点可得当点G在直线BC与抛物线对称轴的交点上时,GA+GC最小,先求出点C的坐标.(2)再设直线BC的解析式为y=kx﹣4(k≠0),根据待定系数求得直线BC 的解析式为y=x﹣4,然后求出抛物线的对称轴为直线x=1,联立两解析式求解即可.2、如图,在平面直角坐标系中,直线y=4x+4与x轴交于A点,与y轴交于C点,抛物线)经过A,C两点,与x轴相交于另一点B,连接BC.点P是线段BC上方抛物线上的一个动点,过点P作PQ⊥BC交线段BC于点Q.(1)求抛物线的解析式;(2)点D为抛物线对称轴上的一个动点,求|DC﹣DB|的最大值;第二问解题思路:(1)作点C关于抛物线的对称轴的对称点N(2,4).(2)连接BN交抛物线的对称轴于点D,则点D为所求点,进而求解.二.线段最值3、如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(﹣1,0),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.(1)求抛物线的解析式和直线BC的解析式;(2)当点P在线段OB上运动时,求线段MN的最大值;第二问解题思路:(1)用m可分别表示出N、M的坐标,则可表示出MN的长.(2)再利用二次函数的最值可求得MN的最大值.变式训练:如图,已知抛物线经过点A(﹣6,0),B(2,0),与y轴交于点C.(1)求抛物线的解析式;(2)若点P为该抛物线上一动点.当点P在直线AC下方时,过点P作PE∥x轴,交直线AC于点E,作PF∥y轴.交直线AC于点F,求EF的最大值;4、如图,在平面直角坐标系中,直线y=4x+4与x轴交于A点,与y轴交于C点,抛物线)经过A,C两点,与x轴相交于另一点B,连接BC.点P是线段BC上方抛物线上的一个动点,过点P作PQ⊥BC交线段BC于点Q.(1)求抛物线的解析式;(2)求PQ的最大值,并写出此时点P的坐标;第二问解题思路:由PQ=HP sin∠PHQ=PH知,当PH最大时,PG最大,进而求解变式训练:如图,二次函数y=ax2+bx+2的图象与x轴相交于点A(﹣1,0)、B(4,0),与y轴相交于点C.(1)求该函数的表达式;(2)点P为该函数在第一象限内的图象上一点,过点P作PQ⊥BC,垂足为点Q,连接PC.线段PQ的最大值;变式训练:如图,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.对称轴为直线x=﹣1.(1)a=;(2)点P为直线AC下方抛物线上的一动点,过P作PE⊥AC于点E,过P作PF⊥x轴于点F,交直线AC于点G,求PE+PG的最大值;5、如图,抛物线y=ax2+bx+3交x轴于点A(3,0)和点B(﹣1,0),交y轴于点C.(1)求抛物线的表达式;(2)D是直线AC上方抛物线上一动点,连接OD交AC于点N,求的最大值,并求出此时D的坐标.第二问解题思路:过点D作DH∥y轴,交AC于点H,由(1)设D(m,﹣m2+2m+3),直线AC的解析式为y=kx+n,然后可求出直线AC的解析式,则有H(m,﹣m+3),进而可得DH=﹣m2+3m,最后根据△OCN∽△DHN可进行求解.变式训练:如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;三.周长和面积6、如图,抛物线过点O(0,0),E(10,0),矩形ABCD的边AB在线段OE上(点B在点A的左侧),点C,D在抛物线上.设B(t,0),当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?第二问解题思路:由抛物线的对称性得AE=OB=t,据此知AB=10﹣2t,再由x=t时BC=t2﹣t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得变式训练:如图1,抛物线y=ax2+bx+c与x轴相交于点B,C(点B在点C左侧),与y轴相交于点A(0,4),已知点C坐标为(4,0),△ABC面积为6.(1)求抛物线的解析式;(2)点M是直线AC下方抛物线上一点,过点P作直线AC的垂线,垂足为点H,过点P作PQ∥y轴交AC于点Q,求△PHQ周长的最大值及此时点P的坐标;7、如图,抛物线y=ax2+x+c经过坐标轴上A、B、C三点,直线y=﹣x+4过点B和点C.(1)求抛物线的解析式;(2)E是直线BC上方抛物线上一动点,连接BE、CE,求△BCE面积的最大值及此时点E的坐标;第二问解题思路:过E点作EG∥y轴交BC于点G,设E(t,﹣t2+t+4),则G(t,﹣t+4),可得S=﹣(t﹣2)2+4,当t=2时,△BCE的面积有最大值4,此时E △BCE(2,4)变式训练:二次函数y=ax2+bx+4(a≠0)的图象经过点A(﹣4,0),B(1,0),与y轴交于点C,点P为第二象限内抛物线上一点.(1)求二次函数的表达式;(2)如图,连接P A,PC,AC,求S的最大值;△P AC变式训练:已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)直接写出抛物线的函数解析式;(2)点N是第一象限内抛物线上的一动点,连接NA分别交BC、y轴于D、E两点,若△NBD、△CDE的面积分别为S1、S2,求S1﹣S2的最大值;四.AP+kBP型8、如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3),P是第四象限内这个二次函数的图象上一个动点,设点P的横坐标为m,过点P作PH⊥x轴于点H,与BC交于点M.(1)求这个二次函数的表达式;(3)求PM+2BH的最大值;第二问解题思路:设P点坐标为(m,m2﹣2m﹣3),则M点坐标为(m,m﹣3),H点坐标为(m,0),将PM+2BH转化为二次函数求最值即可变式训练:抛物线y=﹣x2+bx+c与x轴交于A、B(3,0)两点,与y轴交于点C,点和点P都在抛物线上.(1)求出抛物线表达式;(2)如图,若点P在直线AD的上方,过点P作PH⊥AD,垂足为H,①当点P是抛物线顶点时,求PH的长,②求AH+PH的最大值;变式训练:如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(m,0)两点,与y轴相交于点C(0,﹣3),抛物线的顶点为D.(1)求抛物线的解析式;(2)若P是直线BC下方抛物线上任意一点,过点P作PH⊥x轴于点H,与BC交于点M.①求线段PM长度的最大值.②在①的条件下,若F为y轴上一动点,求PH+HF+CF的最小值.。

中考数学 考点系统复习 第七章 作图与图形变换 微专题(五) 利用“两点之间,线段最短”求最值

中考数学 考点系统复习 第七章 作图与图形变换 微专题(五) 利用“两点之间,线段最短”求最值

2.★如图,在△ABC 中,AB=AC,AB 的垂直平分线交 AB 于点 N,交 AC 于点 M,P 是直线 MN 上一动点,H 为 BC 的中点,若 AB=13,△ABC 的周 长是 36.则 PB+PH 的最小值为 112 2.
3.★如图,在矩形 ABCD 中,AB=6,AD=3,点 P 为矩形 ABCD 内一点,
结论:AM+MN+NB 的最小值为 A″B+MN.
9.★如图,正方形 ABCD 的对角线上的两个动点 M,N,满足 AB= 2MN, 点 P 是 BC 的中点,连接 AN,PM,若 AB=6,则当 AN+MN+PM 的值最小 时,线段 AN 的长为 2 5 .
模型三:“两点两线”型(两个动点+两个定点) (一)利用垂直平分线的性质求四边形周长最小值 【模型分析】 点 P,Q 是∠AOB 内部的两定点,在 OA 上找点 M,在 OB 上找点 N,使得四 边形 PQNM 周长最小. 思路点拨:
8.★如图,在矩形 ABCD 中,AB=4,AD=6,AE=4,AF=2,点 G,H 分 别是边 BC,CD 上的动点,则四边形 EFGH 周长的最小值为 22 5+10+10.
1 且动点 P 满足 S△PAB=3S 矩形 ABCD,则点 P 到 A,B 两点距离之和的最小值为 22 13 .
4.★如图,直线 y=x+1 与抛物线 y=x2-4x+5 交于 A,B 两点,P 是 y
轴上的一个动点,当△PAB 的周长最小时,S△PAB=2.2. 4. 4
(二)线段差最大值问题 【基础模型】 两定点 A,B 位于直线 l 同侧,在直线 l 上找一点 P,使得|PA-PB|值最 大. 思路点拨:根据两边之差小于第三边,|PA-PB|的最大值即为 AB 的长, 连接 AB 并延长,与直线 l 交于点 P,点 P 即为所求.

二次函数线段和差最值的存在性问题解题策略

二次函数线段和差最值的存在性问题解题策略

中考数学压轴题解题策略(8)线段和差最值的存在性问题解题策略专题攻略两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,PA与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题.图1 图2 图3例题解析例如图1-1,抛物线y=x2-2x-3与x轴交于A、B两点,与y轴交于点C,点P是抛物线对称轴上的一个动点,如果△PAC的周长最小,求点P的坐标.图1-1【解析】如图1-2,把抛物线的对称轴当作河流,点A与点B对称,连结BC,那么在△PBC中,PB+PC总是大于BC的.如图1-3,当点P落在BC上时,PB+PC最小,因此PA+PC最小,△PAC的周长也最小.由y=x2-2x-3,可知OB=OC=3,OD=1.所以DB=DP=2,因此P(1,-2).图1-2 图1-3 例如图,抛物线21442y x x =-+与y 轴交于点A ,B 是OA 的中点.一个动点G 从点B 出发,先经过x 轴上的点M ,再经过抛物线对称轴上的点N ,然后返回到点A .如果动点G 走过的路程最短,请找出点M 、N 的位置,并求最短路程.图2-1【解析】如图2-2,按照“台球两次碰壁”的模型,作点A 关于抛物线的对称轴对称的点A ′,作点B 关于x 轴对称的点B ′,连结A ′B ′与x 轴交于点M ,与抛物线的对称轴交于点N .在Rt △AA ′B ′中,AA ′=8,AB ′=6,所以A ′B ′=10,即点G 走过的最短路程为10.根据相似比可以计算得到OM =83,MH =43,NH =1.所以M (83, 0),N (4, 1).图2-2例 如图3-1,抛物线248293y x x =-++与y 轴交于点A ,顶点为B .点P 是x 轴上的一个动点,求线段PA 与PB 中较长的线段减去较短的线段的差的最小值与最大值,并求出相应的点P 的坐标.图3-1【解析】题目读起来像绕口令,其实就是求|PA-PB|的最小值与最大值.由抛物线的解析式可以得到A(0, 2),B(3, 6).设P(x, 0).绝对值|PA-PB|的最小值当然是0了,此时PA=PB,点P在AB的垂直平分线上(如图3-2).解方程x2+22=(x-3)2+62,得416x=.此时P41(,0)6.在△PAB中,根据两边之差小于第三边,那么|PA-PB|总是小于AB了.如图3-3,当点P在BA的延长线上时,|PA-PB|取得最大值,最大值AB=5.此时P3(,0)2-.图3-2 图3-3例如图4-1,菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC、CD、BD 上的任意一点,求PK+QK的最小值.图4-1【解析】如图4-2,点Q关于直线BD的对称点为Q′,在△KPQ′中,PK+QK总是大于PQ′的.如图4-3,当点K落在PQ′上时,PK+QK的最小值为PQ′.如图4-4,PQ′的最小值为Q′H,Q′H就是菱形ABCD的高,Q′H3这道题目应用了两个典型的最值结论:两点之间,线段最短;垂线段最短.图4-2 图4-3 图4-4例如图5-1,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙B和⊙A上的动点,求PE+PF的最小值.图5-1【解析】E、F、P三个点都不确定,怎么办BE=1,AF=2是确定的,那么我们可以求PB+PA-3的最小值,先求PB+PA的最小值(如图5-2).如图5-3,PB+PA的最小值为AB′,AB′=6.所以PE+PF的最小值等于3.图5-2 图5-3例如图6-1,已知A(0, 2)、B(6, 4)、E(a, 0)、F(a+1, 0),求a为何值时,四边形ABEF 周长最小请说明理由.图6-1【解析】在四边形ABEF 中,AB 、EF 为定值,求AE +BF 的最小值,先把这两条线段经过平移,使得两条线段有公共端点.如图6-2,将线段BF 向左平移两个单位,得到线段ME .如图6-3,作点A 关于x 轴的对称点A ′,MA ′与x 轴的交点E ,满足AE +ME 最小. 由△A ′OE ∽△BHF ,得'OE HF OA HB =.解方程6(2)24a a -+=,得43a =.图6-2 图6-3例 如图7-1,△ABC 中,∠ACB =90°,AC =2,BC =1.点A 、C 分别在x 轴和y 轴的正半轴上,当点A 在x 轴上运动时,点C 也随之在y 轴上运动.在整个运动过程中,求点B 到原点的最大距离.图7-1【解析】如果把OB 放在某一个三角形中,这个三角形的另外两条边的大小是确定的,那么根据两边之和大于第三边,可知第三边OB 的最大值就是另两边的和.显然△OBC 是不符合条件的,因为OC 边的大小不确定.如图7-2,如果选AC 的中点D ,那么BD 、OD 都是定值,OD =1,BD 2.在△OBD 中,总是有OB <OD +BD .如图7-3,当点D 落在OB 上时,OB 21.图7-2 图7-3例如图8-1,已知A(-2,0)、B(4, 0)、(5,33)D-.设F为线段BD上一点(不含端点),连结AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD 以每秒2个单位的速度运动到D后停止.当点F的坐标是多少时,点M在整个运动过程中用时最少图8-1【解析】点B(4, 0)、(5,33)D-的坐标隐含了∠DBA=30°,不由得让我们联想到30°角所对的直角边等于斜边的一半.如果把动点M在两条线段上的速度统一起来,问题就转化了.如图8-2,在Rt△DEF中,FD=2FE.如果点M沿线段FD以每秒2个单位的速度运动到点D时,那么点M沿线段FE以每秒1个单位的速度正好运动到点E.因此当AF+FE最小时,点M用时最少.如图8-3,当AE⊥DE时,AF+FE最小,此时F(2,23)-.图8-2 图8-3例如图9-1,在Rt△ABC中,∠C=90°,AC=6,BC=8.点E是BC边上的点,连结AE ,过点E 作AE 的垂线交AB 边于点F ,求AF 的最小值.图9-1【解析】如图9-2,设AF 的中点为D ,那么DA =DE =DF .所以AF 的最小值取决于DE 的最小值.如图9-3,当DE ⊥BC 时,DE 最小.设DA =DE =m ,此时DB =53m . 由AB =DA +DB ,得5103m m +=.解得154m =.此时AF =1522m =.图9-2 图9-3例 如图10-1,已知点P 是抛物线214y x =上的一个点,点D 、E 的坐标分别为(0, 1)、(1, 2),连结PD 、PE ,求PD +PE 的最小值.图10-1【解析】点P 不在一条笔直的河流上,没有办法套用“牛喝水”的模型.设P 21(,)4x x ,那么PD 2=2222211(1)(1)44x x x +-=+.所以PD =2114x +. 如图10-2,2114x +的几何意义可以理解为抛物线上的动点P 到直线y =-1的距离PH .所以PD =PH .因此PD +PE 就转化为PH +PE .如图10-3,当P、E、H三点共线,即PH⊥x轴时,PH+PE的最小值为3.高中数学会学到,抛物线是到定点的距离等于到定直线的距离的点的集合,在中考数学压轴题里, 如果要用到这个性质,最好铺垫一个小题,求证PD=PH.图10-2 图10-3。

中考数学复习之线段和差最值问题胡不归问题,附练习题含参考答案

中考数学复习之线段和差最值问题胡不归问题,附练习题含参考答案

中考数学复习线段和差最值系列之“胡不归”问题从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”(“胡”同“何”)而如果先沿着驿道AC 先走一段,再走砂石地,会不会更早些到家?数学家们于是建立起模型来解决这个问题.【模型建立】如图,一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使21AC BCV V +的值最小.【问题分析】121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭,记12V k V =,即求BC +kAC 的最小值. 【问题解决】构造射线AD 使得sin ∠DAN =k ,CH /AC =k ,CH =kAC .将问题转化为求BC +CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小. 【模型总结】2驿道2MMM在求形如“P A +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“P A +kPB ”型问题转化为“P A +PC ”型.而这里的PB 必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB 的等线段. 例:如图,△ABC 中,AB =AC =10,tan A =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD BD +的最小值是_______.【分析】本题关键在于处理”,考虑tan A =2,△ABE三边之比为1:2sin ∠,故作DH ⊥AB 交AB 于H点,则DH .问题转化为CD +DH 最小值,故C 、D 、H共线时值最小,此时CD DH CH BE +===. 【小结】本题简单在于题目已经将BA 线作出来,只需分析角度的三角函数值,作出垂线DH ,即可解决问题,若稍作改变,将图形改造如下:则需自行构造α,如下图,这一步正是解决“胡不归”问题关键所在.ABCDEHEDCB AABCDEHEDCBαsin αHEDC BAEDCB练习题1.如图,平行四边形ABCD 中,∠DAB =60°,AB =6,BC =2,P 为边CD 上的一动点,则PB 的最小值等于________.2.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,则AB =2BC .若AC =2,点D 是AB 的中点,P 为边CD 上一动点,则AP +12CP 的最小值为_______3.如图,在平面直角坐标系中,二次函数y =x 2+3x ﹣4的图象与x 轴交于A 、C 两点,与y 轴交于点B ,若P 是x 轴上一动点,点Q (0,2)在y 轴上,连接PQ ,则PQ+2PC 的最小值是_______4.如图,平面直角坐标系中,一次函数3y x =-+x 轴、y 轴于A 、B 两点,若C 是x 轴上的动点,则2BC +AC 的最小值__________ABCDP5.如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上一动点,则AD+1 2DC的最小值为________6.如图.在平面直角坐标系xOy中,点A坐标为(0,,点C坐标为(2,0),点B为线段OA上一个动点,则12AB+BC的最小值为_______7.如图,在△ABC中,∠A=15°,AB=10,P为AC边上的一个动点(不与A、C重合),连接BP,则2AP+PB的最小值是________8.如图,△ABC中,AB=AC=10,∠A=45°,BD是△ABC的边AC上的高,点P是BD上动点,则2BP+CP的最小值是()9.在△ABC中,∠ACB=90°,P为AC上一动点,若BC=4,AC=6BP+AP的最小值为________.10.如图所示,菱形ABCO的边长为5,对角线OB的长为P为OB上一动点,则AP+的最小值为__________.11.如图,△ABC为等边三角形,BD平分∠ABC,△ABC点P为BD上动点,连接AP,则AP+12BP的最小值为.12.如图,在Rt△ABC中,∠C=90°,∠BAC=60°,BC=20cm,E是∠BAC平分线AD 上一点.现有一动点P沿着折线A﹣E﹣C运动,在AE上的速度是每秒4cm,在EC上的速度是每秒2cm,则点P从点A到点C的运动过程至少需_________s.13.如图,直角三角形ABC中,∠A=30°,BC=1,BD是∠ABC的平分线,点P是线段BD上的动点,求CP+12BP的最小值.14.如图,在△ABC 中,∠C =90°,AC =2,BC =6.点D 是在边BC 上的动点,则23BD +AD 的最小值是 .15.如图,矩形ABCD 中,点P 是AD 边上的动点,AB =2,BC =3,以PC 为边作如图所示的矩形PEFC ,且PE :EF =2:3,则2PB +3CF 的最小值是 .16.如图,已知抛物线()()248ky x x =+-(k 为常数,且k >0)与x 轴从左至右依次交于A ,B两点,与y 轴交于点C ,经过点B 的直线y b =+与抛物线的另一交点为D . (1)若点D 的横坐标为-5,求抛物线的函数表达式;(2)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF ,一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止,当点F 的坐标是多少时,点M 在整个运动过程中用时最少?17.抛物线2y=x轴交于点A,B(点A在点B的左边),与y轴交于点C.点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当12PE EC+的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标.(为突出问题,删去了两个小问)参考答案4.65.66.29.10 10.4 12.5 15.1016.(1)2y x x=(2)F(-2,) 17.O1(,0)。

2020年中考数学压轴题线段和差最值问题汇总--将军饮马问题及其11种变形汇总

2020年中考数学压轴题线段和差最值问题汇总--将军饮马问题及其11种变形汇总

2020年中考数学压轴题线段和差最值问题汇总---------将军饮马专题古老的数学问题“将军饮马”,“费马点”,“胡不归问题”,“阿氏圆”等都运用了化折为直的数学思想这类问题也是中考试题当中比较难的一类题目,常常出现在填空题压轴题或解答题压轴题中,那么如何破解这类压轴题呢?【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:1.定起点的最短路径问题:即已知起始结点,求最短路径的问题.2.确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.3.定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径.4.全局最短路径问题:求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”。

【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】直线、角、三角形、菱形、矩形、正方形、圆、坐标轴、抛物线等.【解题思路】“化曲为直”题型一:两定一动,偷过敌营。

题型二:两定一动,将军饮马。

例1:如图, AM ⊥EF ,BN ⊥EF ,垂足为M 、N ,MN =12m ,AM =5m ,BN =4m , P 是EF 上任意一点,则PA +PB 的最小值是______m .分析:这是最基本的将军饮马问题,A ,B 是定点,P 是动点,属于两定一动将军饮马型,根据常见的“定点定线作对称”,可作点A 关于EF 的对称点A ’,根据两点之间,线段最短,连接A ’B ,此时A ’P +PB 即为A ’B ,最短.而要求A ’B ,则需要构造直角三角形,利用勾股定理解决. 解答:作点A 关于EF 的对称点A ’,过点A ’作A ’C ⊥BN 的延长线于C .易知A ’M =AM =NC =5m ,BC =9m ,A ’C =MN =12m ,在Rt △A ’BC 中,A ’B =15m ,即PA +PB 的最小值是15m .例2:如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,且AE = 2,求EM+EC 的最小值解:点C 关于直线AD 的对称点是点B ,连接BE ,交AD 于点M ,则ME+MD 最小, 过点B 作BH ⊥AC 于点H ,则EH = AH – AE = 3 – 2 = 1,BH = BC 2 - CH 2 = 62 - 32 = 3 3在直角△BHE 中,BE = BH 2 + HE 2 = (33)2 + 12 = 27DB CD CBP E D C B A E D C B AA (3对应练习题1.如图,在△ABC 中,AC=BC=2,∠ACB=90°,D 是BC 边的中点,E 是AB 边上一动点,则EC+ED 的最小值是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求线段和(差)的最值问题
【知识依据】:1.线段公理——两点之间,线段最短;2.对称的性质——①关于一条直线对称的两个图形全等;②对称轴是两个对称图形对应点连线的垂直平分线;3.三角形两边之和大于第三边;4.三角形两边之差小于第三边。

5、垂直线段最短
一、已知两个定点:
1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧:
(2)点A 、B 在直线同侧:
A 、A ’ 是关于直线m 的对称点。

2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。

(1)两个点都在直线外侧:
m
m A
B
m A
B
m n m
n
(2)一个点在内侧,一个点在外侧:
(3)两个点都在内侧:
(4)、台球两次碰壁模型
变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短.
变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短.
n
m A
n
n
n
m
二、一个动点,一个定点: (一)动点在直线上运动:
点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、两点在直线两侧:
2、两点在直线同侧:
(二)动点在圆上运动
点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、点与圆在直线两侧:
2、点与圆在直线同侧:
m n
m n
m n
m
m
m
m
m
三、已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA+PQ+QB 的值最小。

(原理用平移知识解) (1)点A 、B 在直线m 两侧:
过A 点作AC ∥m,且AC 长等于PQ 长,连接BC,交直线m 于Q,Q 向左移动PQ 长,即为P 点,此时P 、Q 即为所求的点。

(2)点A 、B 在直线m 同侧:
四、求两线段差的最大值问题(运用三角形两边之差小于第三边) 1、在一条直线m 上,求一点P ,使PA 与PB 的差最大; (1)点A 、B 在直线m 同侧:
(2)点A 、B 在直线m 异侧:
过B 作关于直线m 的对称点B ’,连接AB ’交点直线m 于P,此时PB=PB ’,PA-PB 最大值
B
m
m
m
m
Q m Q
为AB’
一、在线段之和的最值问题中酝酿与构建,借用线段公理求解
例1 (湖北荆门)如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN =30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为( )
A 2
B
C 1
D 2
解析:PA+PB的线段之和最小值求法的依据是“平面几何中,两点之间线段最短”的数学模型与原理,故可作B关于MN的对称点是H,连接AH交MN于点P,AH的长就是PA+PB的线段之和的最小值,借助圆圆周角定理,可知根据∠AOH=90°,巧妙构造Rt△OAH,根据题意运用勾股定理可求出AH=,所以PA+PB的
最小值为故选B。

点评:本题是课本著名原题“泵站问题”的变形与应用,解决本题的关键做出点B或A关于MN的对称点,然后利用线段垂直平分线的性质和两点之间线段最短,并借助圆心角和圆周角的关系,构造直角三角形运用勾股定理计算最小值来解决问题.不管在什么背景图中,有关线段之和的最短问题,常化归与转化为线段公理“两点之间,线段最短”。

而化归与转化的方法大都是借助于“轴对称点”。

例2 圆锥底面半径为10cm,高为10cm,
(1)求圆锥的表面积;
(2)若一只蚂蚁从底面一点A出发绕圆锥一周回到SA上一点M处,且SM=3AM,求它所走的最短距离。

思路点拨:利用底面半径、高及母线组成的直角三角形构造勾股定理求出母线长,进而借助扇形面积公式求出表面积;蚂蚁在圆锥表面上行走一圈,而圆锥侧面展开后为扇形,故可在展开图(扇形)上求点A到M的最短距离(即AM的长)。

解析:(1)圆锥的母线长SA=,圆锥侧面展开图扇形的
弧长,
侧,S

=,
∴S
表= S

+ S

= 。

(2)沿母线SA将圆锥的侧面展开,得圆锥的侧面展开图,则线段AM的长就是蚂蚁所走的最短距离,由(1)知,弧AA′= ,
,又SA′= AS=,SM=3A′M,∴SM=,∴
在Rt⊿ASM中,,所以蚂蚁所走的最短距离是50cm.
点评:对于立体图形中要计算圆锥曲面上两点之间的最短距离,一般把立体的圆锥的侧面展开成扇形,转化为平面图形借助线段公理计算。

将立体图形转化为平面图形是初中阶段常用的基本方法与思想。

相关文档
最新文档