简单的轴对称图形(第2课时)
5.3简单的轴对称图形第二课时

∟
三条垂直平分 PA 、PB、PC, 线交于一点 那么 PA、PB、 PC有什么关系?
C
B
结论:三角形三条边垂直平分线的 交点到三个顶点的距离相等。
如图,OP是∠MON的平分线,C是OP上的 一点,CA⊥OM,CB⊥ON,垂足分别为A、 B.(1)△AOC ≌ △ BOC (2)CA=CB M 证明:∵ CA⊥OM,CB⊥ON(已知) A C B
B
N
C
如图,已知 ABC △ 中,AC=14 cm, AB的中 垂线 交AC于D,垂足为E, DBC 的周长为24 cm ,求BC △ 多长?
解: ∵ DE是AB的垂直平分线,
所 DB=DA △的周长 ∵ DBC
∴
A E D B C
=BC+BD+DC
=BC+DA+DC=BC+AC =BC+14 BC+14=24 BC=10
2.分别以M,N为
M
C
的内部交于C.
3.作射线OC.
B
N
O
则射线OC即为所求.
A
河
D
B
线段的垂直平分线上的点到这条线段两个端点 的距离相等.
几何语言
如图: ∵ CD⊥AB于C,且AC=BC ∴MA=MB
如图:
∵CD垂直平分AB ∴
MA=MB
在△ABC中用刻度尺和量角器画出线段AB、BC、CA的 垂直平分线,看看三条垂直平分线的位置有什么关系
A
思考:若设交 解答: 点为 P,连接
∠
A D
B
G
E
C F
已知:如图,AB=AC,DB=DC
问:AD与BC有什么关系?
猜想:AD垂直平分BC
第五章 5.3简单的轴对称图形(二)教学设计与教学反思(七年级数学精品教案)

第五章生活中的轴对称3简单的轴对称图形(第2课时)一、学生起点分析学生的知识技能基础:学生在小学已经学习过生活中的轴对称图形,对轴对称图形的特点及对称轴有所了解,并能通过折纸动手制作轴对称图形。
在本章前面一节课中,又学习轴对称现象,对轴对称和轴对称图形的概念有了进一步的了解,具备了动手操作的基本技能。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些折纸活动,解决了一些简单的现实问题,感受到了从数学活动中积累数学经验的过程;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析(1)知识与技能1.本节通过实践操作与思考的有机结合,帮助我们认识简单的轴对称图形。
经历探索简单图形轴对称性的过程,进一步体验轴对称的特征,发展空间观念.2.探索并了解线段垂直平分线的有关性质.3.应用线段垂直平分线的性质解决一些实际问题.4.尺规作图。
(2)过程与方法本节知识是通过对现实生活情景中的轴对称现象引出课题,在观察生活的基础上,从生活实践中探索轴对称现象的共同特征,进一步发展空间观念,体会轴对称在生活中的广泛运用和丰富的文化价值。
因此,在学习中,首先要养成善于观察的习惯,从不同的情境中,通过思考、分析,总结共性,学会学习。
(3)情感态度与价值观1.培养学生的抽象思维和空间观念,结合教学进行审美教育,让学生充分感知数学美,激发学生热爱数学的情感。
2.结合教材和联系生活实际培养学生的学习兴趣和热爱生活的情感。
3.通过小组折叠协作活动,培养学生协作学习的意识和研究探索的精神。
三、教学设计分析按照学生的认识规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以实验发现法为主,直观演示法为辅。
教学中,精心设计了一个又一个带有启发性和思考性的问题,创设问题情境,诱导学生思考、操作,教师适时地演示,并用电教媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于自主探索、合作交流的积极状态,从而培养学生的思维能力。
七年级数学下册 简单的轴对称图形(第二课时)课件 华师大版

D
的距离是( ) B A.18 B.12
C.15 D.不能确定 A
5题
B
三、如左图所示,在△ABC中,∠C=
90°,BD是角平分线,交AC于点D,
DE⊥AB,垂足为点E,AD=3DE。AD
和3DC是什么关系?为什么?
解:∵ ∠C= 90°,BD是角平分线, DE⊥AB
∴ DE=DC(角平分线上的点到角两边的距离相等)
关系:PC与PD是能够互相重合的.即PC=PD
角平分线上的点到角两边的距离相等.
选择题:
1:下列两图中,能表示直线l1上一点P到直线l2 的距离的是( )
l1 P
l1 P
A
l2
图1
B
l2
图2
2:下列两图中,能表示角的平分线上的一点P 到角的边上的距离的是( )
M
P A
A
N P
判断:
∵ 如图,AD平分∠BAC(已知)
2.在左边△ABC中,找一 点P,使点P到△ABC三 边的距离相等
3.如右图:已知△ABC中,∠C =90°,AB的垂直平分线交BC 于点D,如果∠CAD=20°,则 ∠B= 。
三、本课小结
本课主要学习的是角平分线的性质,还学习了 如何应用这个性质去解决简单的几何问题.
作业
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
试验:按以下方法试验,使同学认识角是轴 对称图形。
结在半论透明:的纸角上是画∠轴AO对B,称对折图,使形角的两
条边完全重合,然后用直尺画出折痕OM. 从上面试验可以看出,角是轴对称图形,对
称轴是它的角平分线所在的直线.
A
P O
B
七年级数学北师大版贵州专版下册课件:5.3简单的轴对称图形(第2课时)

解析:因为等腰三角形ABC中,AB=AC,∠A=20°,所以 ∠ABC=80°,因为DE是线段AB的垂直平分线,所以AE=BE,所 以∠A=∠ABE=20°,所以∠CBE=∠ABC- ∠ABE=80°20°=60°.故选C.
3.如图所示,在△ABC中,BC=10,边BC的垂直平分 线分别交AB,BC于点E,D,BE=6,求△BCE的周长.
(3)由此你能得到什么结论?
线段是轴对称图形,垂直并且平分线段的直线是它的一条对称轴. 线段还有一条对称轴,它就是线段AB所在的直线.
线段垂直平分线的定义与性质
【活动内容一条线段,并且平分这条线段的直线,
叫做这条线段的垂直平分线,简称中垂线. 【活动内容2】
线段的对称性
【活动内容】 线段是轴对称图形吗?如果是,你能找出它的一条对称轴吗? 做一做:为了解决这个问题,请同学们拿出
准备好的纸,在纸上画出一条线段AB,对折AB
使点A,B重合,折痕与AB的交点为O. 想一想:(1)折痕两旁的部分能重合吗?线段是一个轴对称图形吗?这 条折痕是线段的对称轴吗?
(2)点O是线段AB的中点吗?折痕与线段AB垂直吗?为什么?
为AO=BO,∠AOM=∠BOM=90°,OM=OM,所以
△AOM≌△BOM,所以AM=BM.
线段垂直平分线的性质:线段垂直平分线上的点到 这条线段两个端点的距离相等.
尺规作图:作线段垂直平分线
已知:线段AB.
C
求作:线段AB的垂直平分线.
(1)分别以点A和B为圆心,任意长为半 径作弧,两弧相交于点C和D. (2)作直线CD.直线CD就是线段 AB的垂直平分线. 你能说明为什么所作的直线就是已知线段 的垂直平分线吗? 只要连接CA,CB,DA,DB就可以了,因为在△ADC和△BDC 中,AC=BC,AD=BD,CD=CD, 由SSS可知△ADC≌△BDC,得到∠ACD=∠BCD,再由等腰三角形的 “三线合一”就可知道CD是AB的垂直平分线.
北师大版初一数学下册简单的轴对称图形第二课时教学设计(黄丽平)

杏坛梁銶琚中学课堂教学设计一、基本信息课题:北师大版数学七年级下册第五章《生活中的轴对称》第三节简单的轴对称图形(2)设计人/单位:佛山市顺德区杏坛镇杏坛梁銶琚初级中学黄丽平学情分析:心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。
从年龄特点来看,初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。
生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
学生的知识技能基础:学生在小学已经学习过生活中的轴对称图形,对轴对称图形的特点及对称轴有所了解,并能通过折纸动手制作轴对称图形。
在本章前面一节课中,又学习轴对称现象,对轴对称和轴对称图形的概念有了进一步的了解,具备了动手操作的基本技能。
教材分析:简单的轴对称图形”是北师大版数学七年级下册第五章《生活中的轴对称》第三节,它对轴对称的学习具有承上启下的作用。
学生在前面已学习了轴对称及轴对称图形的基础上,认识简单的轴对称图形较容易,而让学生主动探索简单的轴对称图形的基本性质,认识线段垂直平分线的性质在现实生活中的广泛应用是学习本节内容的主要目标,对学生来说也是一个难点。
课型、时间:新授课(一个课时)教学目标或内容要求:(1)知识与技能1.本节通过实践操作与思考的有机结合,帮助我们认识简单的轴对称图形。
经历探索简单图形轴对称性的过程,进一步体验轴对称的特征,发展空间观念。
2•探索并了解线段垂直平分线的有关性质。
3•应用线段垂直平分线的性质解决一些实际问题。
4•线段垂直平分线的尺规作图。
简单的轴对称图形(二)学案

安阳中心学校七年级数学学案 创编:张杨 姓名 班级 时间: 年 月 日 课题:§7.22简单的轴对称图形学习目标:1. 能说出等腰三角形的“三线合一”的性质,及等腰三角形的判定会用符号语言表示。
2. 能说出等边三角形的轴对称性及性质.学习重点:等腰三角形的“三线合一”的性质.学习难点:等腰三角形的“三线合一”的性质.预习导学:1,角平分线的性质? 2,线段垂直平分线的性质?学习研讨:一、自主学习:(阅读课本225页,完成下列问题) 1、 什么样的三角形叫做等腰三角形? 的三角形叫做等腰三角形。
如图:在等腰△ABC 中,腰 ,底边 ,顶角 , 底角 B3、三角形若两边长为3和7,则其周长为________。
二.合作探究:1、拿出你准备的等腰三角形纸片,记作△ABC 。
把纸片折折看,让两腰AB 、AC 重叠在一起,折痕为AD .你能发现什么现象吗? (1)等腰三角形 轴对称图形。
(是或不是)(2)∠B = (3 )∠BAD = , AD 为顶角的(4)∠ADB =∠ADC=90°AD 为底边上的 (5 )BD= ,AD 为底边上的 。
结论:1,等腰三角形的两个底角相等 2,等腰三角形的 平分线、 上的高和 上的中线互相重合(简称“三线合一”)几何语言: 在△ABC 中, AB=AC 时,(1)∵AD ⊥BC ,∴∠____ = ∠____,___= ___(2)∵AD 是中线, ∴___⊥___ ,∠____ =∠____ 例1已知:如图,房屋的顶角∠BAC=100°,过屋顶A 的立柱AD ⊥BC ,屋椽AB=AC 。
求顶架上∠B 、∠C 、∠BAD 、∠CAD 的度数解:在△ABC 中,∵AB=AC (已知), ∴∠B=∠C ( ).又∵∠A +∠B +∠C = ( ).∴∠B=∠C=21(180°﹣ )= ° 又∵AD ⊥BC(已知),∴ (等腰三角形的顶角的平分线,与底边上的高互相重合).∴∠BAD= = =3. 的三角形叫做等边三角形,也叫 。
《简单的轴对称图形》第2课时示范公开课PPT教学课件【七年级数学下册北师大版】

A
B
C
D
E
ቤተ መጻሕፍቲ ባይዱ
55°
4
因为DE是线段AB的垂直平分线,根据线段垂直平分线的定义可知DE⊥AB,AE=BE.
所以∠AED=90°-∠A=55°,AC=AE+CE=BE+CE=3+1=4.
线段垂直平分线的性质:线段垂直平分线上的点到这条线段两个端点的距离相等.
C
C2
O
思路二:利用SAS可证△AOC△BOC,所以AC=BC.
C1
成立
利用尺规,作线段AB(如图)的垂直平分线.
A
B
已知:线段AB,如图.求作:AB的垂直平分线.
作法:
(1)分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点C和点D.
因为∠ACE=48°,所以∠ACB=∠ACE+∠ECB=72°.
所以∠A=180°-∠ABC-∠ACB=180°-48°-72°=60°.
3.画一个△ABC,利用尺规求作它的外心.
解:如图所示:
(3)点O即为△ABC的外心.
A
B
C
(2)分别作AB,BC,AC的垂直平分线,三条垂直平分线交于点O.
O
(3)分别以点A和C为圆心,以AD的长度为半径作弧,两弧在AC下方相交于点D.
.
例1 如图,MN是线段AB的垂直平分线,下列说法正确的有:_______.①AB⊥MN;②AD=DB;③MD=DN;④AB是MN的垂直平分线.
A
B
七年级数学下册第五章第2课时三线合一在等腰三角形中应用的六种常见题型习题课件新版北师大版ppt

6.如图,在△ABC 中,AD⊥BC 于点 D,且∠ABC=2∠C.试说 明:CD=AB+BD.
解:如图,以 A 为圆心,AB 长为半径画弧交 CD 于点 E, 连接 AE,过点 E 作 EF⊥AC 于点 F,则 AE=AB,∠EFA=∠EFC=90°, 所以∠AEB=∠ABC.
因为 AD⊥BC,所以 AD 是 BE 边上的中线,即 DE=BD. 又因为∠ABC=2∠C,所以∠AEB=2∠C. 因为∠AEB=180°-∠AEC=∠CAE+∠C,所以∠CAE=∠C. 又因为 EF=EF,∠EFA=∠EFC,所以△EFA≌△EFC, 所以 CE=AE=AB.所以 CD=CE+DE=AB+BD.
在△ABD 中,∠BAD=180°-∠B-∠ADB=45°, 所以∠B=∠BAD. 又因为 DH=DH,∠DHA=∠DHB, 所以△DHA≌△DHB,所以 BD=AD. 又因为 BD=CD,所以 AD=CD. 所以∠DAC=∠C=45°.所以∠B=∠DAC. 又因为 BE=AF,所以△BDE≌△ADF(SAS).所以 DE=DF.
3.如图,在△ABC 中,AB=AC,点 E 在△ABC 外,CE⊥AE 于点 E,∠CAE=12∠BAC.试说明:∠ACE=∠B.
解:如图,过点 A 作 AD⊥BC 于点 D,则∠ADB=90°.
因为 AB=AC,所以∠BAD=∠CAD=12∠BAC. 因为∠CAE=12∠BAC,所以∠BAD=∠CAE. 因为 CE⊥AE,所以∠E=90°.所以∠ADB=∠E.
2.如图,在△ABC 中,AB=AC,AD=DB,DE⊥AB 于点 E. 若 BC=12,且△BDC 的周长为 36,求 AE 的长.
解:因为△BDC 的周长=BD+BC+CD=36,BC=12, 所以 BD+DC=24. 因为 AD=BD,所以 AD+DC=24,即 AC=24. 因为 AB=AC,所以 AB=24. 又因为 DE⊥AB,所以 AE=EB=12AB=12.
简单的轴对称图形第二课时

课外探究:
如图:A,B,C三点表示三个工厂,现要建一 供水站,使它到这三个工厂的距离相等,请在图 中标出供水站的位置P,请给予说明理由。
A ●
B ●
c
●
谈谈你的收获如何?
小结
1. 垂直于一条线段并且平分它的直线叫这条 线段的垂直平分线(简称中垂线).
2. 线段是轴对称图形,它的垂直平分线是 它的一条对称轴 .
A
B
D
直线CD与线段AB的交点就是AB的中点,所以 我们也用这种方法作线段的中点.
2.在△ABC中,BC=10,边BC的垂直平分 线分别交AB,BC于点E,D,BE=6,求 △BCE的周长.
解:因为DE是线段BC的垂直平分线 所以EC=EB=6 所以△BCE的周长=EB+EC+BC=6+6+10=22
E D
B
C
(2)
如图,在△ABC中, C 90 ,AB的中垂线 DE交BC于D,交AB于E,连接AD,若AD平分∠BAC,找 出图中相等的线段,并说说你的理由。 A 你能找到图中相等的角吗? E 解:因为AB的中垂线DE交BC于D, 交AB于E, B C D 所以 EB=EA , DB=DA ; AC=AE 因为 AD平分∠BAC , DAB ABC DAC DC⊥AC, DE⊥AB, 所以 DC=DE
宁海中学 孙艺
思考
线段是轴对称图形吗?如果是,你能找出它 的一条对称轴吗?这条对称轴与线段存在着什么 关系?
A
B
按照下面的步骤做一做: (1)在纸片上画一条线段AB,
对折AB使点A,B重合,
折痕与AB的交点为O; (2)在折痕上任取一点C, 沿CA将纸折叠; (3)把纸展开, 得到折痕CA和CB。3、线段垂直平分线的性质:
《轴对称的图形》 (第2课时) 教案doc

课题第 1 章轴对称图形课时分配本课(章节)需 2 课时本节课为第 2 课时为本学期总第课时第 2 节轴对称的性质教学目标1.学会画轴对称图形的对称轴,了解轴称的基本性质。
2.能够画出简单的轴对称图形。
重点轴对称的性质和轴对称的应用。
难点轴对称性质的应用;画出轴对称图形的对称轴教学方法讲练结合、探索交流课型新授课教具投影仪教师活动学生活动一、新课引入上节课我们研究了轴对称的性质,同学们回忆一下:轴对称的性质有哪些?对应点的连线被对称轴垂直平分。
成轴对称的两个图形全等。
下面同学们来仔细观察一个图案上图给出了一个图案的一半,其中的虚线是这个图案的对称轴.(1)你能猜出整个图案的形状吗?(2)你能画出这个图案的另一半吗?二、新课讲解学生仔细阅读课本P12的内容,解决上述问题。
画已知线段关于某直线的对称线段,或画已知三角形关于某直线的对称三角形,或是更为复杂的图形,关键在于画出已知图形的各个顶点关于这条直线的对称点。
学生回答由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.A BC EF三、课堂练习1. 剪纸是中国的民间艺术.剪纸方法很多,下面是一种剪纸方法的图示(先将纸折叠,然后再剪,展开即得到图案):下面四个图案中,不能用上述方法剪出的是( )2. 已知△ABC 和直线l ,作出△ABC 关于直线l 的对称图形.3. 如图,△ABC 中,点E 在AC 上,点F 在BC 上,在AB 上找一点N ,使△ENF 的周长最小.1、画出下列图形对称轴,找出对称点。
lABCl A BC2、下图是两个关于某条直线成轴对称的图形,请你画出它们的对称轴。
四、本节课的收获。
(1)我能找到轴对称中的对称点;(2)会画出对称点、对称线段;(3)能找到对称轴学生板演作业第15 页第3、4、5 题板书设计复习例1 板演……………………………………例2 ……………………………………教学后记。
人教版数学八年级上册13.2 画轴对称图形(2课时)教案与反思

13.2 画轴对称图形投我以桃,报之以李。
《诗经·大雅·抑》原创不容易,【关注】,不迷路!第1课时画轴对称图形一、基本目标【知识与技能】掌握作已知图形关于直线的轴对称图形的方法.【过程与方法】在探索问题的过程中体会知识间的关系,并从实践中体会轴对称变换在实际生活中的应用,感受数学与生活的联系.【情感态度与价值观】经历实际操作、认真体验的过程,发展学生的思维空间,培养学生的应用意识和探究精神.二、重难点目标【教学重点】作出简单平面图形关于直线的轴对称图形.【教学难点】利用轴对称进行一些图案设计环节1 自学提纲,生成问题【5min阅读】阅读教材P67~P68的内容,完成下面练习.【3min反馈】1.画出下列轴对称图形的所有对称轴.略2.由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形的形状、大小完全一样;新图形上一个点,都是原图形上的某一点关于直线l的对称点;连结任意一对对应点的线段被对称轴垂直平分.3.几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连结这些对应点,就可以得到原图形的轴对称图形.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】画出△ABC关于直线l的对称图形.【互动探索】(引发学生思考)画已知图形关于直线对称的图形的关键是什么?【解答】如图所示:【互动总结】(学生总结,老师点评)我们在画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连结即可得到.活动2 巩固练习(学生独学)1.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是( B )2.在3×3的正方形格点图中,格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.略活动3 拓展延伸(学生对学)【例2】如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB =60°,则∠CFD=( )A.20°B.30°C.40°D.50°【互动探索】根据图形翻折变换后全等可得△ADE≌△FDE,∴∠EAD=∠EFD =90.∵∠EFB=60°,∴∠CFD=30°,故选B.【答案】B【互动总结】(学生总结,老师点评)折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.环节3 课堂小结,当堂达标(学生总结,老师点评)作与图形成轴对称的图形,关键在于将图形抽象出各点,然后作点的对称点,再连线即可.请完成本课时对应习!第2课时坐标中的轴对称一、基本目标【知识与技】理解并掌握关于x轴、y轴对称的点的坐标的规律.【过程与方法】1.在探索关于x轴、y轴对称的点的坐标的规律时,发展学生形象思维能力和数形结合的思维意识.2.在同一坐标系中,感受图形上点的坐标的变化与图形的轴对称变换之间的关系.【情感态度与价值观】在探规律的过程中,培养学的应用意识和探究精神,提高学生的求知欲和好奇心.二、重难点目标【教学重点】直角坐标系中关于x轴、y轴对称的点的特征.【教学难点】能解决有关坐标中的轴对称问题.环节1 自学提纲,生成问题【5min阅读】阅读教材P68~P70的内容,完成下面练习.【3min反馈】1.(1)点(x,)关于x轴对称的点的坐标为(x,-y);(2)关于x轴对称的点的坐标的特点:横坐标不变,纵坐标互为相反数.2.(1)点(x,y)关于y轴对称的点的坐标为(-x,y);(2)关于x轴对称的点的坐标的特点:横坐标互为相反数,纵坐标不变.3.点P(-4,3)关于x轴的对称点为Q,则点Q的坐标为(-4,-3).4.点P(-3,4)关于y轴的对称点为M,则点M的坐标为(3,4).环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】在平面直角坐标系中,已知点A(-3,1)、B(-1,0)、C(-2,-1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.【互动探索】(引发学生思考)作已知图形关于坐标轴的对称图形的关键是什么?【解答】如图,△DEF是△ABC关于y轴对称的图形.【互动总结】(学生总结,老师点评)在坐标系中作出关于坐标轴的对称点,然后顺次连结,即可作出已知图形关于坐标轴的对称图形.活动2 巩固练习(学生独学)1.点A(2,-3)向上平移6个单位后的点关于x轴对称的点的坐标是(2,-3).2.点P(3,4)关于y轴对称的点的坐标是P′(a,b),则a-b=-7.3.已知点A(2a-b,5+a),B(2b-1,-a+b).(1)若点A、B关于x轴对称,求a、b的值;(2)若A、B关于y轴对称,求(4a+b)2018的值.解:(1)∵点A、B关于x轴对称,∴2a-b=2b-1,5+a-a+b=0,解得a=-8,b=-5.(2)∵A、B关于y轴对称,∴2a-b+2b-1=0,5+a=-a+b,解得a=-1,b=3,∴(4a+b)2018=1.3.画出△ABC关于x轴对称的图形△A1B1C1,并指出△A1B1C1的顶点坐标.解:画图略.其中A1(3,-4)、B1(1,-2)、C1(5,-1).活动3 拓展延伸(学生对学)【例3】如图,在10×10的正方形网格中,每个小方格的边长都是1,四边形ABCD的四个顶点在格点上.(1)若以点B为原点,线段BC所在直线为x轴建立平面直角坐标系,画出四边形ABCD关于y轴对称的四边形A1B1C1D1;(2)点D1的坐标是________;(3)求四边形ABCD的面积.【互动探索】(1)以点B为原点,线段BC所在直线为x轴建立平面直角坐标系,然后作出各点关于y轴对称的点,顺次连结即可;(2)根据直角坐标系的特点,写出点D1的坐标;(3)把四边形ABCD分解为两个直角三角形,求出面积.【解答】(1)画图略.(2)点D1的坐标为(-1,1).(3)四边形ABCD的面积为×1×3+×1×2=.【互动总结】(学生总结,老师点评)轴对称变换作图,基本作法是:(1)先确定图形的关键点;(2)利用轴对称性质作出关键点的对称点;(3)按原图形中的方式顺次连结对称点.求多边形的面积可将多边形转化为规则图形的面积的和或差求解.环节3 课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!【素材积累】海明威和他的“硬汉形象”美国作家海明威是一个极具进取精神的硬汉子。
最新沪科版八年级数学上册《轴对称图形》全课时教学设计

第15章轴对称图形与等腰三角形15.1 轴对称图形第1课时轴对称图形(一)教学目标【知识与技能】1.在生活实例中认识轴对称,能画出简单轴对称图形的对称轴.2.使学生了解轴对称图形和关于直线成轴对称的概念.3.了解轴对称图形和轴对称的联系与区别.【过程与方法】1.通过实例认识轴对称,能够识别生活中的轴对称图形及其对称轴.2.培养学生的观察能力、思维能力、动手能力、总结能力.【情感、态度与价值观】1.让学生体验到数学与生活的密切联系,发展学生的空间观念和审美观.2.通过对对称的理解和轴对称性质的把握,发展学生发现美和鉴赏美的能力.重点难点【重点】理解并掌握轴对称图形、轴对称的概念、画对称图形的对称轴.【难点】理解并掌握轴对称图形和两个图形成轴对称之间的关系.教学过程一、创设情境、导入新知教师多媒体课件出示:师:同学们认识这些图形吗?生:认识.师:你能说出它们的共同点吗?学生观察后,思考并讨论交流.生:它们的左右两边是一样的.师:对,实际上它们的左右两边是对称的.自然界中,许多物体的平面图形都具有对称性.今天我们就来研究轴对称图形.二、共同探究,获取新知学生实验一师:把一张纸对折,然后从折叠处剪出一个图形,想一想:展开后会是什么样的图形?位于折痕两侧的图案有什么关系?学生分组活动,合作交流后选代表回答实验结果.生甲:我们得到了一个美丽的图形:飞鸟,它有对称美.生乙:我们得到的是大树和五角星,它们是对称的.生丙:我们得到的是轴对称图形,位于折痕两部分的图案能够完全重合.师:你们的发现真是了不起啊!那么你们能说说什么样的图形是轴对称图形吗?生甲:能够完全重合的图形是轴对称图形.生乙:不对!应该是沿着一条直线折叠后能完全重合的图形才是轴对称图形.师:很好,如果一个图形沿着一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.请同学们尽可能多地从你周围的环境中找出轴对称的物体.学生畅所欲言.教师提示:天上飞的、地上跑的、水里游的,还有已经学过的那些简单的图形、数字、字母等都可以.生:我们组将这个平行四边形对折后,发现无论怎么对折,两边都无法重合,所以它不是一个轴对称图形.师:有道理,其他同学有没有不同的想法?生:我们组将这个平等四边形剪拼成一个长方形,而长方形对折后两边完全重合,所以我们认为它是一个轴对称图形.师:听起来好像也有道理.生甲:我们反对.因为在刚才的学习中,我们知道判断一个图形是不是轴对称图形关键是看对折后两边能否完全重合,而这个图形对折后显然无法重合.生乙:(补充)而且你们将这个图形剪拼后,已经改变了这个图形的形状和性质,所以我们认为它原本不是一个轴对称图形.师:(回到赞成“是的”一方)听了对方的阐述,再结合我们一开始探讨轴对称图形时的要求,你现在的观点是什么?生:(沉默一会儿后)现在我也同意这个平行四边形不是轴对称图形了.师:对,平行四边形不是轴对称图形.学生实验二:折纸印墨迹学生分组完成实验教师提出问题1:你发现折痕两边的墨迹形状一样吗?为什么?问题2:两边墨迹的位置与折痕有什么关系?(让学生充分观察、讨论和交流,并指名汇报):生甲:我们组发现两边的墨迹形状一样,因为它们折过去能完全重合.生乙:我们组的发现和他们一样.生丙:两边的墨迹关于折痕对称.生丁:我想补充的是两边的墨迹是关于折痕成轴对称的.师:同学们观察得真仔细啊!那你们能说说究竟什么样的两个图形成轴对称吗?生甲:一个图形和另一个图形能完全重合,这两个图形成轴对称.生乙:我不同意他的观点,应该是一个图形沿着某条直线折叠,如果它能和另一个图形重合,那么称这两个图形关于这条直线对称.师:你真是太聪明了!动画演示,师生共同总结出轴对称、对称轴及对称点的概念.教师用多媒体展示练习,学生独立思考后回答.三、深入探究师:通过刚才的学习,你们能说说轴对称与轴对称图形是否是一回事吗?生齐答:不是.师:那谁能说说它们的关系呢?(见学生面有难色,让学生先思考交流)生甲:轴对称是两个图形,轴对称图形是一个图形.师:说得好,谁还想说?生乙:它们都是沿着一条地线对折的,并且能重合.生丙:如果把成轴对称的两个图形看成一个整体,就是一个轴对称图形;如果把一个轴对称图形看成两个图形就是成轴对称.师:怎样将一个轴对称图形看成两个图形呢?生:哦,是将位于对称轴两旁的部分看成两个图形.师:你可以当小老师了!各位同学的发现合起来就是轴对称与轴对称图形的区别与联系.四、课堂小结师:生活中处处有数学,我们只有学好了数学,才能更好地运用所学的知识去解决生活中的实际问题,谁想说说你今天收获得了什么?生甲:我今天最大的收获是认识了轴对称图形和轴对称.生乙:我通过观察发现了轴对称图形和轴对称的区别和联系.生丙:通过欣赏图片,我感受到了对称图形的美.生丁:通过找生活中的轴对称物体,我体会到数学就在我们身边,生活中处处有数学知识.教学反思在学习轴对称与轴对称图形的时候,充分让学生通过实验去感知、思考、探索知识,从更深层次上理解概念.在本节课中轴对称和轴对称图形是两个重要要概念且易混淆.在教学中充分地进行比较,这样不仅能帮助学生建立、理解概念,而且有利于学生在头脑中建立起事物与概念间的内在联系,达到事半功位的效果.第2课时轴对称图形(二)教学目标【知识与技能】1.知道线段垂直平分线的概念.2.知道成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线.【过程与方法】1.探索并了解线段垂直平分线的有关性质,通过作对称轴提高学生的作图能力.2.经历探索轴对称性质的活动,积累数学活动经验,进一步发展空间观念和表达能力.【情感、态度与价值观】1.让学生体验到数学与生活的密切联系,发展学生的空间观念和审美观.2.通过对对称的理解和轴对称性质的把握,发展学生发现美和鉴赏美的能力.重点难点【重点】会利用轴对称性质作对称点、轴对称图形等.【难点】根据题目要求画出轴对称图形.教学过程一、创设情境,导入新知师:上节课我们探讨了轴对称图形,知道现实生活中由于轴对称图形,而显得异常美丽,那么什么样的图形是轴对称图形呢?学生思考回答:如果一个图形沿着一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.师:大家想一想,我们以前学过的哪些几何图形是轴对称图形呢?生甲:正方形、矩形.生乙:圆、等腰三角形.生丙:角、线段.师:刚才有人提出“线段是轴对称图形”,今天我们就来研究这个简单的轴对称图形(板书课题).二、共同探究,获取新知教师画出一条线段.师:你能找出它的一条对称轴吗?生甲:它的对称轴是与线段垂直的,且垂足是线段中点的直线.教师画出一条线段AB,对折AB使点A、B重合,折痕与AB的交点为O.师:OA=OB吗?折痕与直线所成的两个角是多少度?学生观察.生:OA=OB,折痕与直线所成的两个解都是90°师;折痕(即线段的对称轴)与线段有什么关系?学生讨论交流.教师小结:经过线段的中点并且垂直这条线段的直线叫做这条线段的垂直平分线,又叫做线段的中垂线.线段是轴对称图形,它的对称图形就是线段的垂直平分线.教师让学生任意画一条线段,然后用带有刻度的直角三角板画出线段的垂直平分线.学生讨论做法,教师巡视指导.三、合作交流,深化理解教师多媒体出示:如图,△ABC与△A'B'C'关于直线l对称,点A'B'C'分别是点A、B、C的对称点,连接AA',设AA'与直线l交于点O1.师:直线l与线段AA'有怎样的位置关系?生:垂直.师:OA1与O1A'的长度有什么关系?学生观察后回答:相等.师:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;反过来,如果两个图形各对对应点的连线被同一条直线平分,那么这两个图形关于这条直线对称.四、练习新知师:请同学们完成课本练习的第3题.教师找三名学生板演,其余同学在下面做,教师巡视指导,然后集体订正.师:请同学们完成练习第4题.教师找两名学生板演,其余同学在下面做,然后集体订证.五、课堂小结师:今天你有什么收获你又学到了什么?学生回答,教师补充完整.教学反思对称是一种最基本的图形变换,是学生学习空间与图形的必要基础,了解对称图形,对于帮助学生建立空间观念,培养学生的空间想象力都有着不可忽视的作用,这节课鼓励每个学生动手、动口、动脑,积极参与到数学的学习过程中来,注意发挥学生的主体性,给学生留下充分的时间与空间进行活动.上述的自主活动是整堂课的重点所在,通过活动既可充分发挥学生的理解能力、创造能力,又能在整个活动中对轴对称的概念从感性认识升华到理性认识.第3课时轴对称图形(三)教学目标【知识与技能】1.理解并掌握平面直角坐标系中,与已知点关于x轴或y轴对称的点的坐标的规律.2.能作出与一个图形关于x轴或y轴对称的图形.【过程与方法】1.通过作图提高学生的实践能力.2.通过现实情境的创设使学生体验到数学就在我们身边,从而培养审美感以及数学应用意识.【情感、态度与价值观】1.通过贴近生活的素材和问题情境,激发学生学习数学的热情和兴趣,培养学生勇于创新的意识及多方位审视问题的创造技巧.2.在作图过程中使学生体验数形结合思想,体验学习的乐趣,增强解决问题的信心,获得解决问题的成功体验,逐步培养学生的理性精神.重点难点【重点】用坐标表示点关于坐标轴对称的点的坐标.【难点】找对称点的坐标之间的关系、规律.教学过程一、创设情境,导入新知师:什么是轴对称图形?生:如果一个图形沿着某条直线折叠,直线两旁的部分能够完全重合,这个图形就叫做轴对称图形.师:什么是轴对称?生:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形成轴对称.师:什么是线段的垂直平分线生;经过线段的中点并且垂直于这条线段的直线叫做这条线段的垂直平分线.师:很好!这节课我们继续学习轴对称的有关知识.老师板书课题.二、共同探究,获取新知师:已知点A和一条直线,你能画出这个点关于已知直线的对称点吗?教师多媒体出示:学生作图,教师巡视指导,然后集体纠正.教师边操作边讲解:我们过A点作MN的垂线并延长,记垂线与MN的交点为O,然后在上面截取一段使OA'=AO,则A'点就是A点关于MN的对称点.教师强调:不是题中要求作出的,比如我们作的这条垂线,它相当于辅助线,用虚线表示.三、深入探究,层层推进师:在平面直角坐标系里,如何作出图形的轴对称图形呢?下面只介绍以特殊直线(坐标轴)为对称轴的情形.教师多媒体出示:如图所示,在平面直角坐标系中,正方形ABCD四个顶点的坐标分别为A(1,1),B(3,1),C(3,3),D(1,3).师:我请两名同学分别作出点A、B、C、D关于x轴和y轴对称的点,并写出它们的坐标.学生思考.教师找两名学生板演,其余同学在下面做.教师出示表格.已知点的A(1,1)B(3,1)C(3,3)D(1,3)坐标关于x轴对A1(1,-1)B1(3,-1)C1(3,-3)D1(1,-3)应点的坐标关于y轴对A2(1,-1)B2(-3,1)C2(-3,3)D2(-1,3)应点的坐标师:观察上表,已知点与它关于x轴对称的点的坐标有什么关系?已知点与它关于y轴对称点的坐标呢?学生观察表格,思考后回答.生:关于x轴对称的点横坐标不变,纵坐标互为相反数;关于y轴对称的点纵坐标不变,横坐标互为相反数师:很好!我们得到:一般地,已知点P(x,y),它关于x轴对应的点的坐标为P1(x,-y),它关于y轴对应的点的坐标P2(-x,y).四、练习新知,加深理解教师找一名学生完成课本练习第1题,然后集体订正.点关于x轴对称的点关于y轴对称的点A(-2,0)(-2,0)(2,0)B(2,-3)(2,3)(-2,-3)C(-4,-2)(-4,2)(4,-2)D(-3,2)(-3,-2)(3,2)E(0,-1)(0,1)(0,-1)F(2,3)(2,-3)(-2,3)教师找一名学生板演练习2,其余同学在下面做,老师巡视指导,然后集体订正.五、课堂小结师:今天我们学习了什么知识?你有哪些收获?生甲:我学习了一点关于x轴或y轴对称的点的坐标的求法.生乙:我知道了一个图形关于x轴或y轴对称的图形的画法.师:你还有哪些疑问?学生提问,教师解答.教学反思上节课我们只是根据对称轴是两个图形对应点所连线段的垂直平分线作出一个图形关于一条对称轴对称的图形,在这节课上我们把图形放在坐标系里,来讨论这个图形上点的坐标和与它对应的点的坐标的关系,先让学生作出对应点,然后让他们自己分析关于两条坐标轴对称的两点坐标之间的关系.比较一个点和它的对应点和对称轴之间的关系,发挥了学生的主动性,让他们自己去发现规律,总结规律,提高他们的分析、归纳能力,同时也给他们提供表达自己观点的机会,提高他们表达问题的能力.。
七年级数学上册 1.2 简单的轴对称图形(第2课时)教案

1.2简单的轴对称图形(2)教学目标:1、经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念。
2、探索并了解线段垂直平分线的有关性质。
并能应用它们进行简单的推理说明。
会用尺规做线段的垂直平分线。
教学重点:1、线段是轴对称图形2、利用线段垂直平分线的有关性质进行推理说明。
教学难点:线段垂直平分线的有关性质教学方法:动手实践、讨论。
准备活动:准备一张画好一条线段的纸张教学过程:1、先复习轴对称图形的知识,提问:线段是不是轴对称图形呢?如果是,它的对称轴在哪里?引起学生思考并通过动手操作,寻找答案。
2、探索活动:做一做:按下面步骤做:(1)、用准备的线段AB,对折AB,使得点A、B重合,折痕与AB 的交点为O。
(2)在折痕上任取一点C,沿CA将纸折叠;(3)把纸展开,得到折痕CA和CB。
让学生提交相应的折纸结果,并附以简单的语言说明。
观察自己手中的图形,回答下列问题:a)CO与AB 有什么样的位置关系?b)AO与OB相等吗?CA与CB 呢?能说明你的理由吗?在折痕上另取一点,再试一试,你又有什么发现?引导学生按研究角的思路来独立探索线段的轴对称性。
学生会得到下面的结论:(1)线段是轴对称图形。
(2)它的对称轴垂直于这条线段并且平分这条线段。
(3)对称轴上的点各这条线段的两个端点的距离相等。
(4)垂直并且平分线段的直线叫做这条线段的垂直平分线。
简称中垂线。
(5)线段垂直平分线上的点到这条线段两个端点的距离相等。
说明:事实上线段还有另外一条对称轴,线段所在的直线,这一点同学们应知道并明白。
3、想一想:如何用符号描述线段中垂线的性质?如何利用中垂线的性质说理?P8想一想通过学生的独立思考和交流得出PA与PC相等,理由是:PA=PB,PB=PC,从而PA=PC4、你会用尺规作线段的垂直平分线吗?P8做一做:通过学生的作图实践、独立思考和交流,可以得出直线CD是线段AB的垂直平分线的理由是:先说明△ACD≌△BCD,再说明△AOC≌△BOC,从而得到直线CD是线段AB的垂直平分线。
《简单的轴对称图形(二)》导学案

简单的轴对称图形(二)(一)教学设计●教学目标【知识与技能目标】1.进一步理解轴对称、轴对称图形的概念。
2.探索等腰三角形的性质,掌握等腰三角形的轴对称性及其相关性质。
3.会利用轴对称的有关性质解决实际问题。
【情感与态度目标】1.通过优美的等腰三角形“三线合一”的性质,体会几何图形的和谐美。
2.在学习活动中,学会与同伴交流,体会获得成功的喜悦。
3.通过对实际问题的解决,使学生感受数学与我们的生活息息相关。
●教学重点:探索等腰三角形的轴对称性●教学难点:掌握等腰三角形有关概念及特性;加深等腰三角形“三线合一”的理解和应用C(二)例题精选例1 已知,如图,BC >AB ,BD 平分∠ABC ,且AD=DC ,求证:∠A+∠C=180°.例2 已知,如图(1),等边△ABC 和点P ,设点P 到△ABC 三边AB 、AC 、BC 的距离分别为h 1,h 2,h 3,△ABC 的高为h ,“若点P 在一边BC 上,此时h 3=0,可得结论:h 1+h 2+h 3=h ”请直接应用上述信息解决下列问题:当点P 在△ABC 内(如图2)、点P 在△ABC 外(如图3)这两种情况时,上述结论是否成立?若成立,请说明理由;若不成立,h 1,h 2,h 3与h 之间又有怎样的关系?请写出你的猜想,不需证明 .NKM M PPF E E DDCCB B AAM (2)F Q P(3)(1)EDCBA例 3 如图,是某城市部分街道示意图,△ABC 、△CDE都为正三角形,A 、B 、C 、D 、E 、F 、G 、H 为公共汽车停靠站,公车甲从A 站出发,按照A 、H 、G 、D 、E 、C 、F 的顺序到达F 站,公车乙从B 站出发,沿F 、H 、E 、D 、C 、G 的顺序到达G 站,如果甲、乙分别从A 、B 站出发,在各站耽误的时间相同,两车速度也一样,试问哪已辆公车先到达指定车站?为什么?. (三)练习精选1.等腰三角形的一腰为6,底边长为4,则这个等腰三角形的周长为( ) A .13; B .14; C .15; D .16.2.已知,等腰三角形的一边长为3,一边长等于6,则它的周长等于( ) A .12 B .15 C .12或15 D .15或183.在△ABC 中,AB=AC ,AB 的中垂线与AC 所在直线相交所得的锐角为50°,则底角B 的大小为4.等腰三角形的一个角是110°,它的另外两个角是 ;等腰三角形的一个角是80°,它的另外两个角为5.如图,△ABC 中,AB=AC ,BD ⊥AC 于D ,求证:∠DBC=21∠AHFG E D CBA DCBA6.如图,点D在AC上,点E在AB上,且AB=AC,BC=BD,AD=DE=BE,求∠A的度数.(五)知识拓展与提高练习7.如图所示,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD 于M,PN⊥CD于N,则PM=PN,你认为这个结论对吗?请阐述你的理由。
简单的轴对称图形(二)-

三边都相等的三角形是
等边三角形(也叫正三角形)
等边三角形是轴对称图形,它有三条
对称轴。
等边三角形三个内角都等于60°
1、如图, (1)等腰△ABC中,AB=AC,
顶角∠A=100°,那么底角
∠B= 40°, ∠C= 40°。 A (2)△ABC中,AB=AC,
等腰三角形“三线合一” 等腰三角形的两个底角相等。 2、如果一个三角形有两个角相等, 那么它们所对的边也相等。
某开发区新建了两片住宅区:A区、B区 (如图).现在要从煤气主管道的一个地方建 立一个接口,同时向这两个小区供气.请问,这个 接口应建在哪,才能使得所用管道最短?
B 小区
A小区Βιβλιοθήκη 煤气主管)道)
;led防爆灯的量 防爆手电筒的量 / led防爆灯的量 防爆手电筒的量 ;
把人带回来?不是说好让他们住市区里吗?你把我の话当耳边风啊?”余岚得知妹子带回来の人其中又有两位洋人,不禁大为怒火,隔着电筒语气重了些.余薇听了很生气,“他们想看雪梅,市里哪有雪梅看?你告诉我地址我马上带他们过去.”余岚被噎得一时说不出话来.余薇见她无话可 说,更加得理不饶人:“你不就是怕他们乱搞吗?这怪谁?一个巴掌拍不响,她们不愿意谁能强迫得了?我那些同学在学校大把女孩追,不是她们送上门谁稀罕一身泥腥味の村姑?”说罢,她气呼呼地挂了电筒,走出客栈大堂,顿感寒意袭人.难得元旦有三天假期,为了在家里多呆两天她还特 意多请了两天假,结果一回来就被姐姐骂个狗血淋头,真是扫兴.自从回国之后,她发现和姐姐越来越难以沟通.一个人在乡下呆久了,考虑问题の方式也会变得守旧不懂变通.所以她经常劝姐姐陪姐夫多出来走动走动,偏偏两口子对乡村生活恋恋不舍,真是难以理解.不过话说回来,不仅是姐 姐两口子喜欢农村生
人教版初中八年级上册数学精品课件 第十三章 轴对称 画轴对称图形 画轴对称图形

1.点P(–5, 6)与点Q关于x轴对称,则点Q的坐标为__(_–_5__, _–_6__). 2.点M(a, –5)与点N(–2, b)关于x轴对称,则a=__–_2__, b =___5__.
探究新知
问题3: 如图,在平面直角坐标系中你能画出点A关于y轴的对称点吗?
y
A′(–2,3)
A (2,3)
巩固练习 连接中考
1.如图,点A的坐标(–1,2),点A关于y轴的对称点的坐标为 ( A)
A.(1,2) B.(–1,–2) C.(1,–2) D.(2,–1)
巩固练习
连接中考
2.在平面直角坐标系中,点B的坐标是(4,–1),点A与点B关 于x轴对称,则点A的坐标是( A )
A.(4,1)
B.(–1,4)
O
你能说出点A 与点A'坐标的 关系吗?
x
探究新知
做一做: 在平面直角坐标系中画出下列各点关于y轴的对称点.
y
(x , y)
关于 y轴 对称
( –x, y )
B(–4,2) O
C '(3,4)
B '(–4,–2)
x
C (3,–4)
探究新知 归纳总结
关于y轴对称的点的坐标的特点是: 横坐标互为相反数,纵坐标相等. (简称:横反纵同)
导入新知
如图,是一幅老北京城的示 意图,其中西直门和东直门是关 于中轴线对称的.如果以天安门 为原点,分别以长安街和中轴线 为x轴和y轴建立平面直角坐标系. 根据如图所示的东直门的坐标, 你能说出西直门的坐标吗?
素养目标
2.掌握在平面直角坐标系中作出一个图形的轴 对称图形的方法.
1. 理解在平面直角坐标系中,已知点关于x 轴或y 轴对称的点的坐标的变化规律.
北师版 5.3 简单的轴对称图形2 第2课时 线段垂直平分线的性质及画法

第2课时 线段垂直平分线的性质及画法1.经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念.2.探索并掌握线段垂直平分线的有关性质.自学指导 阅读教材P123~P124,完成下列问题.(一)知识探究1.线段是轴对称图形,垂直并且平分线段的直线是它的一条对称轴.2.线段垂直平分线上的点到这条线段两个端点的距离相等.(二)自学反馈1.如图,直线CD 是线段AB 的垂直平分线,P 是直线CD 上的一点.已知线段PA =5,则线段PB 的长度为( B )A .6 B.5 C.4 D.32.如图,在△ABC 中,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧分别交于点D ,E ,则直线DE 是( D ) A .∠A 的平分线 B.AC 边的中线C .BC 边的高线 D.AB 边的垂直平分线活动1 小组讨论例1 如图,在△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长为13 cm ,求△ABC 的周长.解:因为DE 是AC 的垂直平分线,所以AD =CD ,AC =2AE =6(cm).因为△ABD 的周长为13 cm ,所以AB +BD +AD =AB +BD +DC =AB +BC =13 cm.所以△ABC 的周长为AB +BC +AC =13+6=19(cm).由垂直平分线的性质得AD =DC ,再通过线段之间的等量代换即可得出△ABC 的周长.例2 某旅游景区内有一块三角形绿地ABC ,如图所示,现要在道路AB 的边缘上建一个休息点M ,使它到A ,C 两个点的距离相等.在图中确定休息点M 的位置.解:作AC 的垂直平分线交AB 于M 点,则点M 即为所求.活动2 跟踪训练1.如图,已知直线MN 是线段AB 的中垂线,垂足为N ,AM =5 cm ,△MAB 的周长为16 cm ,那么AN 等于( A )A .3 cm B.4 cm C.5 cm D.6 cm2.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD.若CD =AC ,∠A =50°,则∠ACB 的度数为( D )A .90° B.95° C.100° D.105°活动3 课堂小结本课时主要学些了哪些知识与方法,有何收获和感悟?(1)线段的轴对称性:线段是轴对称图形.(2)线段的垂直平分线的性质⎩⎪⎨⎪⎧内容:线段垂直平分线上的点到这条线段两个端点的距离相等.作用:见垂直平分线,得线段相等.(3)线段垂直平分线的作图.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章生活中的轴对称
3简单的轴对称图形(第2课时)
一、学生起点分析
学生的知识技能基础:学生在小学已经学习过生活中的轴对称图形,对轴对称图形的特点及对称轴有所了解,并能通过折纸动手制作轴对称图形。
在本章前面一节课中,又学习轴对称现象,对轴对称和轴对称图形的概念有了进一步的了解,具备了动手操作的基本技能。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些折纸活动,解决了一些简单的现实问题,感受到了从数学活动中积累数学经验的过程;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析
(1)知识与技能
1.本节通过实践操作与思考的有机结合,帮助我们认识简单的轴对称图形。
经历探索简单图形轴对称性的过程,进一步体验轴对称的特征,发展空间观念.2.探索并了解线段垂直平分线的有关性质.
3.应用线段垂直平分线的性质解决一些实际问题.
4.尺规作图。
(2)过程与方法
本节知识是通过对现实生活情景中的轴对称现象引出课题,在观察生活的基础上,从生活实践中探索轴对称现象的共同特征,进一步发展空间观念,体会轴对称在生活中的广泛运用和丰富的文化价值。
因此,在学习中,首先要养成善于观察的习惯,从不同的情境中,通过思考、分析,总结共性,学会学习。
(3)情感态度与价值观
1.培养学生的抽象思维和空间观念,结合教学进行审美教育,让学生充分感知数学美,激发学生热爱数学的情感。
2.结合教材和联系生活实际培养学生的学习兴趣和热爱生活的情感。
3.通过小组折叠协作活动,培养学生协作学习的意识和研究探索的精神。
三、教学设计分析
按照学生的认识规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以实验发现法为主,直观演示法为辅。
教学中,精心设计了一个又一个带有启发性和思考性的问题,创设问题情境,诱导学生思考、操作,教师适时地演示,并用电教媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于自主探索、合作交流的积极状态,从而培养学生的思维能力。
指导学生通过折纸活动探索角平分线、线段垂直平分线的性质,再通过解决适当的实际问题来培养学生的分析能力和应用意识.
本节课设计了如下教学环节:
第一环节知识回顾
活动内容:
1.什么是轴对称图形?
2.下列图形哪些是轴对称图形?
活动目的:使学生对小学学过的生活中的轴对称图形进一步加深印象,熟悉轴对称图形及对称轴,为本节课学习做铺垫.
实际教学效果:所有同学都能清楚什么是轴对称图形找出对称轴,为学习线段做了很好的铺垫.
第二环节创设问题情境,激发学生的求知欲
活动内容:
学生作品呈现:多彩的脸谱,美丽的蝴蝶、飞机……,一片迷人的景色。
出示课题:《简单的轴对称图形(二) 》
活动目的:复习上节课轴对称图形,引导学生观察图形特点,(建筑物门、塑料盒、金字塔、建筑物房顶)通过观察得知,每幅图形中都有线段,引出课题。
实际教学效果:通过观察,学生对角和线段有了初步的感知。
学生在小学已经学过,轴对称图形上节课学过,所以引入即可。
第三环节探索研究,充分发挥学生的主体作用
探索1:探索线段的对称性:线段是轴对称图形吗?如果是,你能找出它的一条对称轴吗?这条对称轴与线段存在着什么关系?
活动内容:
按下面的步骤做一做:
⑴在纸上画一条线段AB,对折AB使点A,B重合,折痕与AB的交点为O;
⑵在折痕上任取一点M,沿MA将纸折叠;
⑶把纸张展开,得到折痕MA和MB.
问题思考:
⑴MO与AB具有怎样的位置关系?
⑵AO与BO相等吗?MA与MB呢?能说明你的理由吗?
⑶在折痕上移动M的位置,结果会怎样?
注意事项:教师鼓励学生在操作中尽可能多的探索等腰三角形线段的特征,并尽量运用自己的语言说明理由。
既可以根据折叠过程中某些线段或角重合说明,也可以运用全等来说明。
教师适时的引导,学生的动手操作,有利于培养学生的观察和概括能力;充分体现了教师为主导,学生为主体的教学思想。
实验结论:
⑴线段是轴对称图形,它的对称轴有两条:一条是线段AB本身所在的直线;另一条是CD,它垂直于AB又平分AB,称作AB的垂直平分线.
⑵无论M点取在直线的何处,线段MA和MB都重合.
⑶线段垂直平分线的概念:垂直且平分一条线段的直线叫这条线段的垂直平分线.
⑷线段的垂直平分线的性质:线段的垂直平分线上的点到这条线段两个端点的距离相等.
活动目的:鼓励学生按照研究角的思路独立探索线段的轴对称性.与上面一样,学生在说明理由时,既可以根据折叠过程中线段重合来说明,也可以由教师引导学
生通过全等来说明.
在折纸的基础上,通过做一做、想一想、议一议三个环节使学生在充分实践及思考的基础上,来学习线段的垂直平分线的概念。
使知识在传授的过程中达到层层深入,循序渐进的教育教学效果。
实际教学效果:本小节的教学主要是通过学生的动手实验来获取线段垂直平分线的有关知识,用纸张进行折叠活动使学生真正的经历了数学知识的形成过程,使课堂气氛变得生动而活泼.注意加强动手操作能力的训练。
教材通过折纸、画图等实践,在实际操作中探索了线段的轴对称性及其相关性质,给我们以丰富的感性认识,从而加深对知识的理解,如果没有一定动手能力,则不易完成学习任务。
最后,要注意将操作与思考有机地结合起来,借助于操作展开想象,再通过操作验证自己的结论,用自己的语言表达知识感悟。
探索2:尺规作图
活动内容:如图,已知线段AB,请画出它的垂直平分线.
1、多媒体展示历史上用直尺和圆规画出的美妙图形,介绍相关数学史。
2、学生首先进行自学,然后请两位同学到背板板演,其余同学在练习本上进行尺规作图。
教师适时强调写出规范的己知、求作。
完后各小组互相检查,教师再针对存在的问题进行强调纠正,加深学生对作法的理解和掌握。
3、各小组讨论:为什么所作的直线就是已知线段的垂直平分线?
活动目的:尺规作图能培养学生严谨的学习习惯、严密的逻辑思维和空间想象能力,尺规作图既能展现数学美,又能培养学生的学习兴趣。
著名哲学家沙利文曾说过:“优美的公式就如但丁神曲中的诗句,黎曼的几何与钢琴合奏曲一样优美。
”在课堂教学中,向学生展示标准图形,能让学生充分感受数学美,启发思维,深化知识的理解。
学生自己动手,尺规作图,则能提高审美认识,陶冶情操。
尺规
作图有着许多规范的作图语句,这些规范作图语句的使用,既可以避免在考试中出现不必要的失分,也能培养学生规范的书面表达能力和与他人合作交流的能力 实际教学效果:历史名图的展示、数学史的介绍,把学生引入到了一个数学美的世界,陶冶了学生的情操,激发了学生的学习热情和求知欲望,让学生以积极的态度参与到学习过程中。
第四环节 结合所学,拓展思维
活动内容:
1 如图,点C 在直线l 上,试过点C 画出直线l 的垂线.能否利用画线段垂直平分线的方法解决呢?试试看,完成整个作图.
2 如图,如果点C 不在直线l 上,试和同学讨论,应采取怎样的步骤,过点C 画出直线l 的垂线?
活动目的:在已学知识的基础上,大胆尝试,使学习变得有乐趣,在探索中理解简单轴对称图形在实际问题中的应用。
实际教学效果:大部分学生都能自己完成,有些学生在教师的引导下得以完成。
第五环节 提高练习,学以致用
活动内容:
1.在△ABC 中,BC=10,边BC 的垂直平分线分别交AB ,BC 于点E ,D ,BE=6,求△BCE 的周长.
2.如图,AB 是△ABC 的一条边,DE 是AB 的垂直平分线,垂足为E ,并交BC 于点D ,已知AB=8cm,BD=6cm,那么EA=________, DA=____.
3. 如图,在△ABC 中,AB=AC=16cm ,AB 的垂直平分线交AC 于D ,如果BC=10cm ,那么△BCD 的周长是_______cm.
4.如图,已知点D 在AB 的垂直平分线上,如果AC=5cm,BC=4cm,那么△BDC 的周长是 cm 。
E D B C A A B E D C A
B C D E 第1题 第2题 第3题 ∟A D E B
C M N 第4题
5.(拓展提高)A,B,C三点表示三个工厂,现要建一供水站,使它到这三个工厂的距离相等,请在图中标出供水站的位置P,请给予说明理由。
A
B C
活动目的:对本节知识进行巩固。
实际教学效果:通过设置一组层层递进的习题,在变式训练中分散了难点,使学生轻而易举的掌握了本节的重点。
第六环节课堂小结
活动内容:师生互相交流总结本节课的知识重点。
活动目的:鼓励学生结合本节课的学习,谈自己的收获与感想(学生畅所欲言,教师给予鼓励)包括垂直平分线的特点及性质,本课主要解决了以下两方面的问题:
⑴线段是轴对称图形吗?它的对称轴是什么?
⑵线段的垂直平分线的性质是什么?如何运用?
以及本节知识在实际问题中的应用及切身感受。
实际教学效果:学生畅所欲言自己的切身感受与实际收获,使大家学到了许多课外知识。
第七环节布置作业
四、教学反思
数学教学应从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流的方式去获取数学知识.
本节的教学主要是通过学生的动手实验来获取中垂线的有关知识,用纸张进行折叠活动使学生真正的经历了数学知识的形成过程,使课堂气氛变得生动而活泼.在得出实验结论后,提供了典型的练习题和实际应用题,让学生经历数学知识的应用过程,同时培养他们解决实际问题的能力.。