最新人教版高中数学必修三几何概型课件(公开课)(28张PPT)幻灯片

合集下载

人教版高中数学必修三第三章第3节 3.3.1 几何概型 课件(共24张PPT)

人教版高中数学必修三第三章第3节 3.3.1 几何概型  课件(共24张PPT)

20米”为事件A, 在如图所示的长30m的区 域内事件A发生所,以p( A) 30 0.6
50
[学生归纳]P( A)
20m
30m

构成事件 试验的全部结
变压器
50m
问题2(撒豆子问题):如图, 假设你 在每个图形上随机撒一粒黄豆, 分别计 算它落到阴影部分的概率.


解析:记“落到阴影部分”为事件A, 在
必修3 几何概型
古典概型的特点及其概率公式:
(1)试验中所有可能出现的基本事
古 1.特点 件只有有限个。

(2)每个基本事件出现的可能性相等.

型 2.事件A的概率公式:
A包含基本事件的个数 P(A)=
基本事件的总数
(赌博游戏):甲、乙两赌徒掷骰子, 规定掷一次谁掷出6点朝上则谁胜,请问 甲、乙赌徒获胜的概率谁大?
为事件A, 事件A发生的概率
P( A)

取出水的体积 杯中所有水的体积
0.1 1

0.1.
1.几何概型的定义:
如果每个事件发生的概率只与构成该事件 区域的长度(面积或体积)成比例,则称这样的 概率模型为几何概率模型,简称为几何概型.
2.几何概型的特点:
(1)试验中所有可能出现的基本事件 有无限多个.
⑷某公共汽车站每隔15分钟有一辆汽车到 达,乘客到达车站的时刻是任意的,求一个乘 客到达车站后候车时间大于10 分钟的概率?
运用1:如图,在边长 为2的正方形中随机撒一 粒豆子,则豆子落在圆内 的概率是____________。
运用2:在500 ml的水中有一个草履虫, 现在从中随机取出2 水m样l 放到显 微镜
Hale Waihona Puke 记候车时间大于10分钟为事件A,则当乘客到达

高中数学几何概型课件新人教版必修3

高中数学几何概型课件新人教版必修3

例2:在玩转盘游戏中,对于右 图两个转盘,当指针指向B时甲 获胜,则甲胜的概率分别是 _____?
BN B
N BN
BN B
N BN
例3:在装有5升纯净水的容器中放入一个病毒,现用100ml 的量筒随机取出一筒水,那么这100ml水中含有病毒的概率 是______?
思考:向边长为1m的正方形内随 机抛掷一粒芝麻,那么芝麻落在正 方形中心的概率是_______?
新课探究 定义:如果每个事件发生的概率只与构成该 事件区域的长度(面积或体积)成比例,则 称这样的概率模型为几何概型. 注:(1)可能出现的结果有无限多个;
(2)每个结果发生的可能性相等.
几何概型中事件A的概率计算公式:
P(A)试验 构全 成部 A 事 的结 件 区区 果 域 (域 所 面 长 (长 构 积 度 面度 成 或 积 )的 体 或 )积 体
新课探究 定义:如果每个事件发生的概率只与构成该 事件区域的长度(面积或体积)成比例,则 称这样的概率模型为几何概型. 注:(1)可能出现的结果有无限多个;
(2)每个结果发生的可能性相等.
几何概型中事件A的概率计算公式?
例题讲解
例1、有一根长度为3m的绳子,拉直后在任意位置剪断, 那么剪得的两段的长度都不小于1m的概率是____?
复习引入
古典概率模型:
(1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等。
古典概型中任意总数
新课探究
实例1:某班公交车到终点 实例2:往正方形中投一
站的时间可能是11:30~12: 粒芝麻,芝麻可能落在
00之间的任何一个时刻;
例题讲解
例4、 某人午觉醒来,发现表停了,他打开收音机, 想听电台报时,求他等待的时间不多于10分钟的 概率?

高中教材数学必修三《3.3几何概型》ppt

高中教材数学必修三《3.3几何概型》ppt

答案 1-π4 解析 阴影部分的面积 S=a2-π×(a2)2=a2-π4a2,正方形木板 的面积为 a2,故击中阴影部分的概率是a2-a2π4a2=1-π4.
思考:“必然事件的概率为1,但概率为1的事件一 定是必然事件。”这种说法对吗?为什么?
举例: 在单位圆内有一点A,现在随 机向圆内扔一颗小豆子。
解析 取出 10mL 麦种,其中“含有病种子”这一事件 记为 A,则
P(A)=取 所出 有种 种子 子的 的体 体积 积=210000=2100.
1、已知棱长为2的正方体,内切球O,若在 正方体内任取一点,则这一点不在球内的概
率为_______. 1
6
例:(1)x和y取值都是区间[1,4]中的整数, 任取一个x的值和一个y的值,求 “ x – y ≥1 ”
A
(1)求小豆子落点正好为点A的概率。 (2)求小豆子落点不为点A的概率。
结论:
不可能事件概率为0,概率为0的事件不一定是不可能事件;
必然事件概率为1,概率为1的事件不一定是必然事件。
题型三 与体积有关的几何概型
在 2L 高产优质小麦种子中混入了一粒带白粉病的种 子,从中随机取出 10mL,求含有白粉病种子的概率是多 少?
4
总长度3
(3)有根绳子长为3米,拉直后任意剪成两段, 每段不小于1米的概率是
题型二 与面积有关的几何概型
例 ABCD 为长方形,AB=2,BC=1,O 为 AB 的中点.
在长方形 ABCD 内随机取一点,取到的点到 O 的距离大于 1
的概率为( )
A.π4
B.1-π4
C.π8
D.1-π8
解析 如图所示,长方形 ABCD 的面积为 2,以 O 为圆心,1 为半径作圆,在矩形内部的部分(半圆)的面积为π2,

高中数学人教版必修3课件:3.3几何概型(共26张PPT)

高中数学人教版必修3课件:3.3几何概型(共26张PPT)
的长度(面积或体积)成比例,则称这样的概率模型为 几何概率模型,简称为几何概型.
问题5 几何概型有哪些特点 ?
Hale Waihona Puke 问题6 古典概型与几何概型有何异同?
异 古典概型的特征
几何概型的特征
(1)试验中所有可 (1)试验中所有可
能出现的基本事件 能出现的基本事件
有有限个;
有无限个;

(2)每个基本事件出 (2)每个基本事件出 现的可能性相等. 现的可能性相等.
3
所以落在正 方 形 内 各 点是 2
等可能的.
1
01 2 3 4 5 x
y
y-x =1
5
4
y-x = -1
3
2
1
0 1 234 5 x
假设你家订了一份报纸,送报人可能在早上 6:30—7:30之间把报纸送到你家,你父亲离开家去 工作的时间在早上7:00—8:00之间,问你父亲在离 开家前能得到报纸 (称为事件A) 的概率是多少?
第一课时
数学是好“玩的……
问题1 有两个转盘,红色区域表示中奖,如果 你参加这次游戏,你会转那个盘?为什么?
问题2 两根3米长的绳子,拉直后在任意位置剪 断,断点在红色区域的可能性谁大?与什么有关?
问题3
思考
上述三个问题是 古典概型吗? 为什么?
绿


绿
绿 绿红
问题4 什么是几何概率模型? 如果每个事件发生的概率只与构成该事件区域
问题7
知识点1 与长度有关的几何概型
某人午觉醒来,发现表停了,他打 开收音机,想听电台报时,求他等待的 时间不多于10分钟的概率. 解

知识点2 与面积有关的几何概型 解

课件_人教版高中数学必修三几何概型课件_课件PPT精品课件[完整版]

课件_人教版高中数学必修三几何概型课件_课件PPT精品课件[完整版]
求他等待的时间不多于10分钟的
的概率模型为几何概率模型,简称几何概型。 1升,求小杯水中含有这个细菌的概率.
基本事件的总数 他打开收音机想听电台整点报时, 转盘(1)的中奖概率: (2)每个基本事件出现的可能性相等.
几何概型的特点: 记“剪得两段绳长都不小于1m”为事件A.
A包含的基本事件的个数 思考:问题2的基本事件是什么?每个基本事件发生是等可能的吗?能把基本事件列出来吗? 试验的全部结果所构成的区域长度(面积或体积)
试验的全部结果所构成的区域长度(面积或体积)
A包含的基本事件的个数
加油
解:此试验是几何概型,正方形面积为S,区域A的面积为SA,
20元
8元
加油
10元
(1)
(2)
概念形成
几何概型:
(2)每个基定本事件义出现的:可能如性相等果每个事件发生的概率只与构成该事
A包含的基本事件的个数
件区域的长度(面积或体积)成比例,则称这样 (1)试验中所有可能出现的基本事件只有有限个.
变式2 在棱长为2的正方体ABCD-A1B1C1D1 内任取一点P, 求点P到点A的距离小于等于1的概率.
实际应用
例2.某人午觉醒来,发现表停了, 他打开收音机想听电台整点报时, 求他等待的时间不多于10分钟的 概率.
: 设A= 等待的时间不多于10分钟
则事件A发生恰好是打开收音机的时刻位于[50,60]时间段内,因此由几何概型 的求概率公式得
解:取出0.1升中“含有这个细菌”这一事件记为A,则
PA杯取 中出 所水 有的 水体 的 积 01.体 1积 0.1
反思小结
古典概型
几何概型
共同点
基本事件发生的等可 能性
基本事件发生的等可 能性

高中数学必修3课件:3.3.1 几何概型

高中数学必修3课件:3.3.1 几何概型
栏目 导引
精彩推荐典例展示
第三章 概率
规范解答 几何概型与其他知识的综合应用
例4 (本题满分12分)已知圆C:x2+y2=12,直线l:4x+3y
=25.
(1)求圆C的圆心到直线l的距离;
(2)求圆C上任意一点A到直线l的距离小于2的概率.
【解】 (1)由点到直线 l 的距离公式可得
d= 422+5 32=5 1 .
栏目 导引
第三章 概率
题型二 与面积有关的几何概型 例2 有四个游戏盘,将它们水平放稳后,在上面扔一颗
小玻璃球,若小球落在阴影部分,则可中奖.小明要想增加 中奖机会,应选择的游戏盘是( )
【解析】 各选项中奖的概率依次为38,14,31,13,故选 A.
栏目 导引
第三章 概率
【答案】 A 【名师点评】 找出或构造出随机事件对应的几何图形,利 用图形的几何特征计算相关的面积,套用公式从而求得随机 事件的概率.
B.25
C.35
D.54
栏目 导引
第三章 概率
解析:选 A.所有的基本事件构成的区间长度为 3-(-2)=5, ∵直线在 y 轴上的截距 b 大于 1, ∴直线横截距小于-1, ∴“直线在 y 轴上的截距 b 大于 1”包含的基本事件构成的 区间长度为-1-(-2)=1,由几何概型概率公式得直线在 y 轴上的截距 b 大于 1 的概率为 P=51,故选 A.
栏目 导引
第三章 概率
【名师点评】 本题相当于把正方体分割为27个棱长为1的小 正方体,蜜蜂位于正中间的一个正方体内.
栏目 导引
第三章 概率
跟踪训练
3.已知正方体ABCDA1B1C1D1内有一个内切球O,则在正方 体 ABCDA1B1C1D1 内 任 取 点 M , 点 M 在 球 O 内 的 概 率 是 ________.

人教版高中数学必修三第三章第3节 3.3.1 几何概型 课件.(共19张PPT)

人教版高中数学必修三第三章第3节 3.3.1 几何概型  课件.(共19张PPT)

P( A)

构成事件A的区域长度(面积或体积) 全部结果所构成的区域长度(面积或体积)
3.几何概型问题的概率的求解.
作业:P142习题3.3 2.3.4
问题情境
1.取一根长度为30cm的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于 10cm的概率有多大?
基本事件:
从30cm的绳子上的任意一点剪断.
对于问题1.记“剪得两段绳长都不小于10cm”为事件A. 把绳子三等 分,于是当剪断位置处在中间一段上时,事件A发生.由于中间一段的长 度等于绳长的1/3.
基本事件:
射中靶面直径为122cm的大圆内 的任意一点.
对于问题2.记“射中黄心”为事件B,由于中靶点随机地落在面积
为 1 π 1222 cm2的大圆内,而当中靶点落在面积为1 π 12.22 cm2
4
4
的黄心内时,事件B发生.
1 π12.22
事件B发生的概率为P(B)
4 1
π1222
复习
古典概型的两个基本特点: (1)所有的基本事件只有有限个; (2)每个基本事件发生都是等可能的.
那么对于试验的所有可能结果是无穷 多的情况相应的概率应如何求呢?
思 考:
1.国家安全机关监听录音机记录了两个间谍的谈话, 发现30min的磁带上,从开始30s处起,有10s长的一段内 容包含间谍犯罪的 信息.后来发现,这段谈话的部分被某 工作人员擦掉了,该工作人员声称他完全是无意中按错 了键,使从此后起往后的所有内容都被擦掉了.那么由 于按错了键使含有犯罪内容的谈话被部分或全部 擦掉的概率有多大?
问创题设情情境境3:
下图是卧室和书房地板的示意图, 图中每一块方砖除颜色外完全相同,小 猫分别在卧室和书房中自由地走来走去, 并随意停留在某块方砖上。在哪个房间 里,小猫停留在黑砖上的概率大?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)x的取值是区间[1,4]中的实数,任取一 个x的值,求 “取得值大于2”的概率。
1
2
34
几何概型 P = 2/3
总长度3
• 问题3:有根绳子长为3米,拉直后 任意剪成两段,每段不小于1米的 概率是多少?
P(A)=1/3
思考:怎么把随机事件转化为线段?
四、例题讲解
例1.某人午觉醒来,发现表停了,他打开 收音机想听电台整点报时,求他等待
解: 设A= 等待的时间不多于10分钟
则事件A发生恰好是打开收音机的 时刻位于[50,60]时间段内,因此 由几何概型的求概率公式得
P(A)= 60-50 60
1 =
6
即“等待报时的时间不多于10分钟”的概率为
1 6
.
点评:
0
10
20
30 40
50
60
打开收音机的时刻X是随机的,可以是0~60 之间的任何时刻,且是等可能的.我们称X服从[0, 60]上的均匀分布,X称为[0,60]上的均匀随机数.
每箭都能中靶,且射中靶面内任一点都是等可能的, 请问射中黄心的概率是多少?
不是为古典概 型?
设“射中黄心”为事件A
P(A)试验A全 对部 应结 区果 域构 的 的成 面 面区 积 积 1域 100
几何概型定义 如果每个事件发生的概率只与构成该事
件区域的长度(面积和体积)成比例,则称 这样的概率模型为几何概率模型,简称几何 概型。
几何概型的特点:
(1)基本事件有无限多个; (2)基本事件发生是等可能的.
在几何概型中,事件A的概率的计算公式如下
P (A ) 全 部 构 结 成 果 事 所 件 构 A 的 成 区 的 域 区 长 域 度 长 ( 度 面 ( 积 面 或 积 体 或 积 体 ) 积 )
问题:(1)x的取值是区间[1,4]中的整数, 任取一个x的值,求 “取得值大于2”的概率 。 古典概型 P = 2/4=1/2
例2(1)x和y取值都是区间[1,4]中的
整数,任取一个x的值和一个y的值,求 “ x
– y ≥1 ”的概率。
y
作直线 x - y=1
4
3
古典概型
2
P=3/8
1
1 234x -1
例2(2)x和y取值都是区间[1,4]中的实数, 任取一个x的值和一个y的值, 求 “ x – y ≥1 ”的概率。
y
例 3 (会面问题)甲、乙二人约定在 12 点到 5 点之间在某地会面,先到者等一个小时后即离去 设二人在这段时间内的各时刻到达是等可能的, 且二人互不影响。求二人能会面的概率。
解: 以 X , Y 分别表示甲乙二人到达的时刻,
于是 0X5,0Y5.
y
即 点 M 落在图中的阴影部
分。所有的点构成一个正
5
4
方形,即有无穷多个结果。 3
由于每人在任一时刻到达
2
1
.M(X,Y)
都是等可能的,所以落在正
方形内各点是等可能的。
0 1 2 3 4 5x
二人会面的条件是:|XY|1,
阴影部分的面积 p 正方形的面积
25 2 1 42
2
9
25
25 .
y
5 4 3 2 1
y-x =1 y-x = -1
0 1 234 5 x
的时 间不多于10分钟的概率.
0 10 20 30 40 50 60
分析:因为电台每隔1小时报时一次,他在0~60之 间任何一个时刻打开收音机是等可能的,但0~60之 间有无穷个时刻,不能用古典概型的公式计算随机 事件发生的概率。所以他在哪个时间段打开收音机 的概率只与该时间段的长度有关,而与该时间段的 位置无关,这符合几何概型的条件。
❖ 对于复杂的实际问题,解题的关键是要建立 模型,找出随机事件与所有基本事件相对应 的几何区域,把问题转化为几何概率问题,利 用几何概率公式求解.
变式引申:已知地铁列车每10分一班, 在车站停1分,求乘客到达站台立即乘上 车的概率。
分析: 前一列车刚走
后一列车来
乘客同时 此刻到达
等11分
解:由几何概型可知,所求事件A的 概率为P(A)=1/11
刻, 那末 0 x T , 0 y T .
两人会面的充要条件为 xyt,
若以 x, y 表示平面 上点的坐标 , 则有
故所求的概率为
阴影部分面积 p 正方形面积
T2 (Tt)2
T2
1(1 t )2. T
y
T
o

t
yxt
xyt

T
x
练一练
1.两根相距8m的木杆上系一根拉直绳子,并在 绳子上挂一盏灯,求灯与两端距离都大于3m的 概率.
人教版高中数学必修三几 何概型课件(公开课)(28
张PPT)
回顾复习
这是古典概型,它是这样定义的: (1)试验中所有可能出现的基本事件 只有有限个; (2)每个基本事件出现的可能性相等
.
其概率计算公式:
P(A)=
A包含的基本事件的个数 基本事件的总数
下面是运动会射箭比赛的靶面,靶面半径为
10cm,黄心半径为1cm.现一人随机射箭 ,假设
解:记“灯与两端距离都大于3m”为事件A, 由于绳长8m,当挂灯位置介于中间2m 时,事件A发生,于是
例4 甲、乙两人约定在下午1 时到2 时之间到某 站乘公共汽车 , 又这段时间内有四班公共汽车它 们的开车时刻分别为 1:15、1:30、1:45、2:00.如 果它们约定 见车就乘; 求甲、乙同乘一车 的概率.假定甲、乙两人到达 车站的时刻是互相不牵连的, 且每人在1时到2 时的任何时 刻到达车站是等可能的.
解 设 x, y 分别为 甲、乙两人到 达的时刻, 则有
1x2,
1y2.
y 2
1:45

1:30

1:15

1
o




1 1 : 151 : 30 1 : 45

2
x
见车就乘 的概率为
p

阴影部分面积 正方形面积
4 (1 4)2 (2 1)2
1. 4
一般会面问题
甲、乙两人相约在 0 到 T 这段时间内, 在预 定地点会面. 先到的人等候另一个人, 经过时间 t ( t<T ) 后离去.设每人在0 到T 这段时间内各时刻 到达该地是等可能的 , 且两人到达的时刻互不牵 连.求甲、乙两人能会面的概率. 解 设x,y分别为,乙 甲两人到达的时
4
D
3 2
1
A
作直线 x - y=1
C
几何概型
F
E B
P=2/9
1 234x -1
例2 假设你家订了一份报纸,送报人可能在早
上6:30—7:30之间把报纸送到你家,你父亲 离开家去工作的时间在早上7:00—8:00之间, 问你父亲在离开家前能得到报纸(称为事件A) 的概率是多少?
父亲离家时间
报纸送到时间
相关文档
最新文档