第3章 离散时间信号的傅里叶变换及DFT

合集下载

数字信号第三章 离散傅里叶变换

数字信号第三章  离散傅里叶变换

第三章离散傅里叶变换DFT: Discrete Fourier Transform第三章学习目标z理解傅里叶变换的几种形式z掌握离散傅里叶变换(DFT)及性质,圆周移位、共轭对称性,掌握圆周卷积、线性卷积及两者之间的关系z掌握频域抽样理论z掌握DFT的应用引言DFT要解决两个问题:一是频谱的离散化;二是算法的快速计算(FFT)。

这两个问题都是为了使计算机能够实时处理信号。

Fourier变换的几种可能形式时间函数频率函数连续时间、连续频率—傅里叶变换连续时间、离散频率—傅里叶级数离散时间、连续频率—序列的傅里叶变换可以得出一般的规律:一个域的离散对应另一个域的周期延拓;一个域的连续必定对应另一个域的非周期。

−jwndw e jwn 时域离散、非周期频域连续、周期z 时域周期化→频域离散化z 时域离散化→频域周期化离散连续周期性非周期性引言Fourier变换的几种可能形式时间函数频率函数连续时间、连续频率—傅里叶变换连续时间、离散频率—傅里叶级数离散时间、连续频率—序列的傅里叶变换离散时间、离散频率—周期序列的傅里叶级数由DTFT到DFS离散时间、离散频率的傅立叶级数(DFS)由上述分析可知,对DTFT,要想在频域上离散化,那么在时域上必须作周期延拓。

对长度为M的有限长序列x(n),以N为周期延拓(N≥M)。

注意:周期序列的离散傅里叶级数(DFS)只对有限长序列作周期延拓或周期序列成立。

……四种傅里叶变换形式的归纳时间函数频率函数连续和非周期非周期和连续连续和周期(T0)非周期和离散(Ω=2π/T)离散(T)和非周期周期(Ωs=2π/T)和连续离散(T)和周期(T0)周期(Ωs=2π/T)和离散(Ω=2π/T)在进行DFS 分析时,时域、频域序列都是无限长的周期序列周期序列实际上只有有限个序列值有意义长度为N 的有限长序列可以看成周期为N 的周期序列的一个周期(主值序列)借助DFS 变换对,取时域、频域的主值序列可以得到一个新的变换—DFT ,即有限长序列的离散傅里叶变换3.1 离散傅里叶变换(DFT )的定义及物理意义——有限长序列的离散频域表示x(n)的N 点DFT 是¾x(n)的z 变换在单位圆上的N 点等间隔抽样;¾x(n)的DTFT 在区间[0,2π)上的N 点等间隔抽样。

离散傅里叶变换(DFT)

离散傅里叶变换(DFT)

sin( k ) 2 , k 0,1, ,7 sin( k ) 8
kn 16
设变换区间N=16, 则
X (k ) x(n)W
n 0
15
e
N 0
3
j
2 kn 16
e
3 j k 16
sin( k ) 4 , k 0,1, ,15 sin( k ) 16
具体而言,即:
(1)时域周期序列看作是有限长序列x(n)的周期延拓
(2)频域周期序列看作是有限长序列X(k)的周期延拓 (3)把周期序列DFS的定义式(时域、频域)各取主值 区间,就得到关于有限长序列时频域的对应变换对。
(前面已证:时域上周期序列的离散傅里叶级数在频域上仍是同 周期序列)
第3章 离散傅里叶变换(DFT) (1)周期序列的主值区间与主值序列
DFT 矩阵方程为:X WN x 即: 1 X (0) 1 X (1) 1 WN 1 WN 2 X (2) = 1 ( N 1) X ( N 1) 1 W N 1 WN 2 WN 4 WN 2( N 1)
第3章 离散傅里叶变换(DFT)
第3章 离散傅里叶变换(DFT)
3.1 离散傅里叶变换的定义 3.2 离散傅里叶变换的基本性质 3.3 频率域采样 3.4 DFT的应用举例
第3章 离散傅里叶变换(DFT)
一. 引言
3.1 离散傅里叶变换的定义
我们已经学习了连续时间傅里叶变换、连续周期信 号的傅里叶级数、离散时间傅里叶变换,他们都是信号 处理领域中重要的数学变换。本章讨论离散傅里叶变换 (DFT),其开辟了频域离散化的道路,使数字信号处理可 以在频域进行。DFT存在快速算法,使信号的实时处理得 以实现。DFT不仅在理论上有重要意义,在各种信号处理 中也起着核心作用。

第三章离散傅里叶变换及其快速计算方法(DFT、FFT)

第三章离散傅里叶变换及其快速计算方法(DFT、FFT)

X (e jw )
(2)Z 变换 -- 提供任意序列的 z 域表示。
n

x( n)e jnw
X (z)
n


x ( n) z n
这两种变换有两个共同特征:
(1)变换适合于无限长序列 (2)它们是连续变量 ω 或 z 的函数
华北电力大学自动化系
3
3.1 问题的提出:可计算性
X (z)
而对于
n


x ( n) z n
n


x ( n) z n
找不到衰减因子使它绝对可和(收敛)。为此,定义新函 数,其 Z 变换:
华北电力大学自动化系
15
DFS 定义:正变换
X ( z)
n
x ( n) z n ~ ( n ) z n x
华北电力大学自动化系
6
3.1 问题的提出:傅里叶变换的四种形式 (3)
2. 周期连续时间信号:傅里叶级数 FS
~ (t ) x X (n 0 )
t T

时域周期频域离散
0
2 T
x(t)
~
n -
X(n 0 )e jn0t

时域连续函数造成频域是非周期的谱。 频域的离散对应时域是周期函数。
X (e jT )



T T
X (e jT )e jnT d
取样定理
n

x(nT )e jnT
1 X ( 0 ) T n
时域的离散化造成频域的周期延拓 时域的非周期对应于频域的连续
华北电力大学自动化系
8

《离散傅里叶变换-第三章》

《离散傅里叶变换-第三章》
( ∑ X ()W ( k ∑ XX kk ) = ∑ xxnnW ) ==∑ eex ( n= W )e
n0 0 = kn 8 7
3
3
2π − j kn 8
3 − j kπ 8
(2) 设变换区间N=16, 则
X(k) = ∑ x(n)W
n= 0
3π k −j 16
π
N= 0 = n0 0
2 = ∑ e, k = 0,1, ⋅ ⋅ ⋅, 7 π N =0 sin( k ) 8
2. 时域循环移位定理 设x(n)是长度为N的有限长序列,y(n)为x(n)的循环移位,即: y(n)=x((n+m))NRN(n) 则: Y(k)=DFT[y(n)]=W-kmNX(k) 其中:X(k)=DFT[x(n)], 0≤k≤N-1
kn 证明: Y ( k ) = DFT [ y (n )] = x (( n + m )) N RN (n )WN ∑ N− 令n+m=n′,则有1 n =0 N −1
~
~ ∞
x (n ) =
m =−∞

x ( n + mN )
(3.1.5)
(3.1.6) ••
~
x (n ) ••
0
••
N-1

n
x (n ) = x ( n ) ⋅ RN (n )
~
~
••
••
~(n ) x
•• •
0
••

••
•• •
~
••
N-1

n
一般定义周期序列 x(n) 中从n=0到N-1的第一个周期为 x(n)的主 n) x(n) (3.1.7) x( 值区间,而主值区间上的序列称为x(n) 的主值序列。(3.1.7) x(n)

第三章离散傅里叶变换DFT(一)

第三章离散傅里叶变换DFT(一)

F2
1 2
e j 4
3.1连续时间信号的傅里叶变换
非周期连续信号傅里叶变换
F j f (t)e j t dt
f (t)
1
F je j t d
2
该变换存在的充分条件: f t dt
频谱密度函数
周期信号的傅氏级数:
f (t)
F en
n
jn0t
(0
2 T
)
(1)
周期信号的频谱:
3.3连续时间信号的抽样
抽样原理(采样、sample)
周期 序列
3.3连续时间信号的抽样
需要解决的问题
fs (t) f (t) s(t)
1
Fs ( j) 2 F( j) * S( j)
由f sf(st
)
t
Fs j与F 能否恢复f t
j的关系
理想冲激序列抽样
s(t) Ts (t) (t nTs )
2
f (t) 1 sin t 2 cos t cos 2t
Fne jnt
4
n 2
1 2
e
j
4e
j 2t
[1
1 2j
]e
jt
1 [1 1 ]e jt 2j
1 e j 4e j2t 2
F2
1 2
e
j
4
F1
1
1 2j
1.12e
j 0.15
F0 1
F1
1
1 2j
1.12e
j 0.15
周期连续信号傅里叶级数展开
周期信号f(t)=f(t+nT) ,满足狄氏条件(有限区间逐 段光滑)时,可展成:
f (t)

数字信号处理第3章 离散傅里叶变换(DFT)

数字信号处理第3章 离散傅里叶变换(DFT)

Y(k)=DFT[y(n)]=aX1(k)+bX2(k), 0≤k≤N-1(3.2.1)
其中X1(k)和X2(k)分别为x1(n)和x2(n)的N点DFT。
3.2.2 循环移位性质
1. 序列的循环移位 设x(n)为有限长序列,长度为N,则x(n)的循环移 位定义为 y(n)=x((n+m))NRN(N) (3.2.2)
其中 XR(k)=Re[X(k)]=DFT[xep(n)]
(3.2.17)
X(k)=DFT[x(n)]=XR(k)+jXI(k) (3.2.18)
jXI(k)=jIm[X(k)]=DFT[xop(n)]
设x(n)是长度为N的实序列,且X(k)=DFT[x(n)],则
(1) X(k)=X*(N-k),0≤k≤N-1 (2) 如果 x(n)=x(N-m) 则X(k)实偶对称,即X(k)=X(N-k) (3.2.20) (3.2.19)
如果序列x(n)的长度为M, 则只有当频域采样点
数N≥M时, 才有
xN(n)=IDFT[X(k)]=x(n) 即可由频域采样X(k)恢复原序列x(n),否则产生时 域混叠现象。 这就是频域采样定理。
下面推导用频域采样X(k)表示X(z)的内插公式和内
插函数。设序列x(n)长度为M,在频域0~2π之间等间隔 采样N点,N≥M,则有
的值。
图 3.2.3 共轭对称与共轭反对称序列示意图
如同任何实函数都可以分解成偶对称分量和奇对
称分量一样,任何有限长序列x(n)都可以表示成共轭对 称分量和共轭反对称分量之和,即
x(n)=xep(n)+xop(n)
0≤n≤N-1
(3.2.11)
(3.2.13) (3.2.14)

信号与系统课件-第三章离散傅立叶变换DFT

信号与系统课件-第三章离散傅立叶变换DFT

拓展延伸:其他相关变换方法简介
要点一
拉普拉斯变换
要点二
Z变换
用于分析线性时不变系统的稳定性及频率响应特性。
用于分析离散时间线性时不变系统的稳定性及频率响应特 性。
THANKS
感谢观看
高频谱利用率
OFDM技术通过采用正交子载 波的方式,实现了频谱资源的 有效利用,提高了系统的频谱 利用率。
03
抗多径干扰能力强 04
由于OFDM系统采用了多载波调 制方式,每个子载波上的符号周 期相对较长,因此具有一定的抗 多径干扰能力。
适用于高速数据传 输
OFDM技术通过将高速数据流分 解成多个低速子数据流进行传输 ,降低了对单个载波的传输速率 要求从而适用于高速数据传输 场景。
共轭对称性
若x[n]为实序列,则其DFT满足 X[k]=X*[N-k],其中*表示共轭。
周期性与非周期性信号处理方法
周期性信号处理方法
对于周期性信号,可以通过截取一个周期的信号进行DFT分析,得到该信号的频谱特性。由于DFT具有周期性, 因此可以通过对截取信号的DFT结果进行周期延拓得到整个周期信号的频谱。
06
总结回顾与拓展延伸
关键知识点总结回顾
01
离散傅立叶变换(DFT)定义及性质
02
DFT是将连续时间信号在时域和频域上都进行离散化处理的一 种变换方法。
03
DFT具有线性性、时移性、频移性、共轭对称性等基本性质。
关键知识点总结回顾
直接计算法
根据DFT定义直接进行计算,但计算量大,不实用。
快速傅立叶变换(FFT)
仿真实验:不同窗函数对信号重构影响
实验目的
说明本实验的目的在于研究不同 窗函数对信号重构的影响,以便 在实际应用中选择合适的窗函数。

信号与系统复习资料第3章离散傅立叶变换(DFT)

信号与系统复习资料第3章离散傅立叶变换(DFT)

1 2
1 e 12
j 2 ( k 11)
1 e 12
B
Ak
6, 6,
1k 21 k 6 101
…11…22…rr…
10 0
11 0
B 0, 0其 0它 的…k… x(n) Xc(oks)6 n 6 0 ……
0 0
6 6, k 112r 6X~(k) 6, k 1112r
NT
T0
1 f0
T0 2 f0
N
1
fs
时域离散化==>频域周期化
时域周期化==>频域离散化
N NΩ0
NT0 fs s T f0 0
-7-
§3.3 离散傅里叶级数DFS
( Discrete Fourier Series )
连续周期信号:
~xa(t) ~xa(t kT0) 基频:0 2/T0
x2 m … 5 4 3 2 1 0 5 4 3 2 1 0 … 10
x2 1m … 0 5 4 3 2 1 0 5 4 3 2 1 … 8 x2 2m … 1 0 5 4 3 2 1 0 5 4 3 2 … 6 x2 3m … 2 1 0 5 4 3 2 1 0 5 4 3 … 10
n 0
n 0
x ( n ) I D F S [ X ( k ) ] N 1 N k 0 1 X ( k ) e j2 N n k N 1 N k 0 1 X ( k ) W N n k
其中:
WN
j 2
e N
-9-
X k 与 z 变 换 的 关 系 :
x (n ) x (n )R N (n )

x(n) x(nrN)

第三章.离散时间信号的傅里叶变换

第三章.离散时间信号的傅里叶变换

4、时域卷积定理

) = x ( 0 ) + 2∑ x ( n ) cos (ω n )
n =1
y (n) = x ( n) * h ( n)
Y ( e jω ) = X ( e jω ) H ( e jω )
X I ( e jω ) = 0 x ( n) =
π∫
1
π
0
X R ( e jω ) cos (ω n ) d ω
jω jω 2 2 ⎤ X ( e jω ) = ⎡ ⎣ X R ( e ) + X I ( e )⎦
12
如果 x ( n ) 是实信号,根据DTFT的正、反变换的定义,有 如下性质: ① X ( e jω ) 的实部 X R ( e jω ) 是 ω 的偶函数,即 ② X (e

= X ( e − jω )
x (t ) =
k =−∞
X ( k Ω0 ) =
1 T /2 x ( t ) e − jk Ω0t dt T ∫−T / 2
X ( k Ω 0 )代表了x ( t ) 中第k次谐波的幅度,并且它是离散的。
∑ X ( kΩ ) e
0

jk Ω0 t
并非所有周期信号都可展开成傅里叶级数。一个周期信号 能展开成傅里叶级数,除满足前面指出的平方可积条件 外,还需要满足如下的Dirichlet条件: ① 在任一周期内若存在间断点,则间断点的数目应是有限 的。 ② 在任一周期内的极大值和极小值的数目应是有限的。 ③ 在一个周期内应是绝对可积的,即
第三章
离散时间信号的傅里叶变换
第三章 离散时间信号的 傅里叶变换
内容概要
1、连续时间信号的傅氏变换 2、离散时间信号的傅氏变换(DTFT) 3、连续时间信号的抽样 4、离散时间周期信号的傅氏级数 5、离散傅氏变换(DFT) 6、利用DFT计算线性卷积 7、希尔伯特变换

第三章 离散傅里叶变换(DFT)

第三章  离散傅里叶变换(DFT)
WΒιβλιοθήκη n N=(W
− N
n
)*
W
n N
=
W
n N
+iN
3. 可约性 4. 正交性
W i⋅n N
= WNn / i
∑ ∑ 1
N
N −1
W
nk N
(WNmk
)
*
k =0
=
1 N
N −1
W (n−m)k N
k =0
=
⎧1, ⎩⎨0,
n − m = iN n − m ≠ iN
3.3 周期序列的离散傅里叶级数
z 可以看出,当0≤k≤N-1 时,X~(k) 是对X(z)在Z平面单 位圆上的N点等间隔采样,在此区间之外随着k的变 化,X~ (k ) 的值呈周期变化。
了。所以这种无穷长序列实际上只有N个序列值的信息是 有用的,因此周期序列与有限长序列有着本质的联系。
3.3 周期序列的离散傅里叶级数
z X~(k) ↔ ~x (n) 是一个周期序列的离散傅里叶 级数(DFS)变换对,这种对称关系可表示为:
∑ X
(k )
=
D F S [ x (n)]
=
N −1
x
10
X (k) =
|X(ejω)|
X (e jω ) ω= 2π k 10
=
− j 4π k
e 10
sin(π k / 2) sin(π k /10)
5

o
π




ω
3.3 周期序列的离散傅里叶级数
例2 已知周期序列x (n),求X (k )。并讨论 X~ (k)与 X (e jω ) 的关系
将n和k互换,有 ∑ Nx (-k ) = N-1 X (n)WNkn n=0

第3章 离散傅立叶变换 DFSDFS的性质DFTDFT的性质循环卷积利用DFT计算线性卷积频率域抽样FFT

第3章 离散傅立叶变换 DFSDFS的性质DFTDFT的性质循环卷积利用DFT计算线性卷积频率域抽样FFT

~x(n)
1 N
N
1
X~
(k
)W
N
kn
k 0
IDFS
X~ (k )
DFS[·] ——离散傅里叶级数正变换 IDFS[·]——离散傅里叶级数反变换
离散傅里叶变换(DFT)
我们知道周期序列实际上只有有限个序列值有意义,因此 它的许多特性可推广到有限长序列上。
一个有限长序列 x(n),长为N,
x(n)
图4.2.8 倒序规律
3.5.4 频域抽取法FFT(DIF―FFT)
在基2快速算法中,频域抽取法FFT也是一种常用 的快速算法,简称DIF―FFT。
设序列x(n)长度为N=2M,首先将x(n)前后对半分
开,得到两个子序列,其DFT可表示为如下形式:
N 1
X (k) DFT[x(n)] x(n)WNk
T0
频谱特点: 离散非周期谱
2. 连续时间非周期信号
x(t) 1 X ( j) ej td
2
X ( j) x(t) e j tdt
频谱特点: 连续非周期谱
3. 离散非周期信号
x(n) FT-1[ X (ej )] 1 X (ej ) ejnd
2
X (ej ) FT[x(n)] x(n) e-jn n
~x (n) IDFS [ X~ (k )] 1 N 1 X~ (k )e j2 / N nk
N n0
X~ (k ) DFS [~x (n)] N 1 ~x (n)e j2 / N kn n0
习惯上:记 WN e j2 / N ,叫旋转因子.
则DFS变换对可写为
X~(k) N 1 ~x (n)WNkn DFS~x (n) n0

第三章 离散傅里叶变换(DFT)

第三章  离散傅里叶变换(DFT)
N 1
~ X ( k ) N k ( r pn)
k 0
N 1
~ NX ( r pN ) ~ NX ( r )
j 2 nr N
1 ~ 因此, X (r ) N
~ ( n )e x
n 0
N 1
将r换成k则有 1 ~ X (k ) N

n 0
则有
~ ~ ~ (n) b~ (n) aX (k ) bX (k ) DFSax1 x2 1 2
其中,a,b为任意常数。
二.序列的移位
~ ~(n) X (k ) 如果 DFSx
则有:
~ ~(n m) W mk X (k ) DFSx N e
2 j mk N
即:
N 1 n 0 j 2 kn N
~ ~( n )e X (k ) x ~( n ) 1 x N
N 1 k 0
~ X ( k )e
2 j kn N
~ X (k ) 的周期性 2 N 1 j ( k mN ) n ~ 周期性: ( k m N) ~( n )e N X x
) X (k )
0
0 20
N 0 N

k
四.离散时间、离散频率的傅氏变换--DFT
x(nT)=x(n)
1 2 T0 F0 0
T0 NT
0
x (e
j k 0T
T 2T
1 2
( N 1) ( N 1)
NT N
0
)
2 T s 1 T 2
x(k )
n 0 N 1 j 2 nk N
~ ( n )W nk x N
N 1 n 0

DFT

DFT
WN e
j 2 N
1 N
nk X( k ) W N k 0
N 1
——旋转因子(N点)
x ( n ) X(k )
——周期为N的周期序列
DFS的性质
设 x(n) , y (n) 为周期为N的周期序列,对应的DFS为
X(k ) , Y( k ) (时域、频域均为周期为N的周期序列)
N 1 n 0
, n = 0, 1, 2 ,…, N-1
-j 2 nk N
DFT IDFT
X ( k ) x ( n) e x ( n) 1 N
N 1 k 0
, k 0,1, 2,, N 1
X (k ) e
j
2 nk N ,n
0,1, 2,, N 1
x ( n ) 是 x ( n ) 以N为周期的周期延拓序列(无限长)
x ( n)
x(n) x((n)) N
x((n))6
0
1 2 3 4
n
0
1 2 3 4 5
n
符号((n))N 是余数运算表达式,表示n对N求余数
例: x(n) 是周期为N=8的序列,求 n =11和 n =-2 对N的余数
解: n 11 1 8 3
Ω 0 Ωh 周期延拓 (ω=ΩT) |X(e jω)|
x(n)
0 T
(M-1)
(N-1)
n
-ωh 0 ωh 主周期 N点抽样

X (k )
ω
主值周期
x ( n)
周期延拓
0
N-1
n
ω0 = 2π/N
0
k
有限长序列的傅里叶分析
一、四种信号傅里叶表示

离散傅里叶变换(DFT)

离散傅里叶变换(DFT)

k=floor((-Nw/2+0.5):(Nw/2+0.5)); %建立关于纵轴对称的频率相量
for r=0:3;
K=3*r+1;
% 1,4,7,10
nx=0:(K*Nx-1); x=xn(mod(nx,Nx)+1);
%周期延拓后的时间向量 %周期延拓后的时间信号x
Xk=x*(exp(-j*dw*nx'*k))/K; %DFS
0
DFT的提出:
离散傅里叶变换不仅具有明确的物理意义,相对于DTFT, 它更便于用计算机处理。但是,直至上个世纪六十年代,由 于数字计算机的处理速度较低以及离散傅里叶变换的计算量 较大,离散傅里叶变换长期得不到真正的应用,快速离散傅 里叶变换算法的提出,才得以显现出离散傅里叶变换的强大 功能,并被广泛地应用于各种数字信号处理系统中。近年来, 计算机的处理速率有了惊人的发展,同时在数字信号处理领 域出现了许多新的方法,但在许多应用中始终无法替代离散 傅里叶变换及其快速算法。
X (e j ) x(n)e jn n
x(n) 1 X (e j )e jnd
2
其中ω为数字角频率,单位为弧度。 注意:非周期序列,包含了各种频率的信号。
局限性:离散时间傅里叶变换(DTFT)是特殊的Z变换,在数学和信号分 析中具有重要的理论意义。但在用计算机实现运算方面比较困难。这是因为, 在DTFT的变换对中,离散时间序列在时间n上是离散的,但其频谱在数字角
§1、傅里叶级数
周期为N的序列 ~x(n) ~x(n rN), (r为整数)
j( 2 )n
基频序列为 e1(n) e N
k次谐波序列为
ek (n)
j( 2 )nk
e N

第3章 离散傅里叶变换(DFT)

第3章 离散傅里叶变换(DFT)

时域循环移位定理表明:有限长序列的循环移位,在离散 频域中相当于引入一个和频率成正比的线性相移WN-mk 频域循环移位定理表明:时域序列的调制(相移)等效于频域 的循环移位
(3.1.7)
注:若x(n)实际长度为M,延拓周期为N,则当N<M时,(3.1.5) 式仍表示以N为周期的周期序列,但(3.1.6)和 (3.1.7)式仅对 N≥M时成立。
第3章 离散傅里叶变换(DFT)
图3.1.2(a)中x(n)实际长度M=6,
x (n) 如图 当延拓周期N=8时,~
3.1.2(b)所示。

DTFT:X(e )= x( n)e
M 1 n0
N (n) RN (n) xN ( n) x
(k ) x N (n)WNkn DFS : X
DFT与ZT关系:
k
z e
j k N
X (k ) X ( z )
k ,, ,..., N k ,, ,..., N
第3章 离散傅里叶变换(DFT)
(2)时/频域循)] X (k )
k 0,1,..., N 1


mk DFT [ x(( n m)) N RN (n)] WN X (k )
nl IDFT [ X (( k l )) N RN (k )] WN x ( n)
n 0 N 1
WN e
j
2 N
k 0,1,..., N 1 n 0,1,..., N 1
1 N 1 IDFT [ X (k )] x(n) X (k )WN kn N k 0
1 IDFT[ X (k )]N N
N 1
mk kn [ x ( m ) W ] W N N k 0 m 0 k ( mn ) W N k 0 N 1

数字信号处理第三章离散傅里叶变换(DFT)及其快速算法(FFT)

数字信号处理第三章离散傅里叶变换(DFT)及其快速算法(FFT)

周期
2
s、fs N
分辨率
2
N
fs N
返回
回到本节
DFT和DFS之间的关系:
周期延拓
取主值
有限长序列
周期序列
主值区序列
有限长序列 x(n) n 0,1, 2, M 1

周期序列 xN (n) x(n mN ) x((n))N m 0 n0 N 1 n mN n0 ((n))N n0
四种傅立叶变换
离散傅立叶变换(DFT)实现了信号首次在频域 表示的离散化,使得频域也能够用计算机进行处理。 并且这种DFT变换可以有多种实用的快速算法。使信 号处理在时、频域的处理和转换均可离散化和快速 化。因而具有重要的理论意义和应用价值,是本课程 学习的一大重点。
本节主要介绍
3.1.1 DFT定义 3.1.2 DFT与ZT、FT、DFS的关系 3.1.3 DFT的矩阵表示
• X(k)为x(n)的傅立叶变换 X (e j ) 在区间 [0, 2 ]上的N
点等间隔采样。这就是DFT的物理意义。
j ImZ
2பைடு நூலகம்3
4
5 6
1 2
N
k=0 ReZ
7 (N-1)
DFT与z变换
X(ejω)
X(k)
0
o

2
0
N 1 k
DFT与DTFT变换
回到本节
变量

、f k
之间的某种变换关系.
• 所以“时间”或“频率”取连续还是离 散值,就形成各种不同形式的傅里叶变换 对。
3.1 离散傅里叶变换的定义及物理意义
时间域
t:连续
模拟域

第3章 离散傅里叶变换(DFT)

第3章  离散傅里叶变换(DFT)

M为整数 M为整数
x (n ) =
m = −∞


x ( n + mN )
(3.1.5) (3.1.6)
x (n ) = x (n ) ⋅ RN (n )
~
~
x(n)=x((n))N,
% X (k ) =
m =− ∞
∑ X (k + mN )

% X (k ) = X (k ) RN (k )
回到本节
N k=0
k =0 N
为DFT变换 长度N≥M, , N 为DFT变换 长度N≥M, WN = e DFT 有限长 离散序列 有限长 离散序列
−j
2π N
第三章 离散傅里叶变换DFT
例1
解:
已知 x(n) = R4 (n),分别求N = 8和N =16 时的X (k)。
N = 8时
N−1 n=0 nk N
第三章 离散傅里叶变换DFT
式中x((n))N表示x(n)以N为周期的周期延拓序列, ((n))N 表示n对N求余, 即如果 n=MN+n1, 0≤n1≤N-1, 则 ((n))N=n1 例如 N = 5, x N (n) = x((n))5 则有
~
M为整数,
x (5) = x ((5))5 = x (0) x (6) = x ((6))5 = x (1)
∑e
n=0
k =0 8, = 0, k = 1, 2, 3, 4, 5, 6, 7
x(n)的16点DFT为
k 1 − W168 1 − e k X (k ) = W16 n = = k 2π −j k 1 − W16 n=0 1 − e 16 π 7π sin k −j k 2 = e 16 , k = 0,1, 2,L ,15 π sin k 16

第3章 3.1-3.2离散傅里叶变换(DFT)

第3章  3.1-3.2离散傅里叶变换(DFT)

n0
WNkm X (k)
第3章 离散傅立叶变换(DFT)
对比记忆:
循环时移:
x((n
m))
N
RN
(n)
W mkm N
X(k
)
线性时移:
x(n n0 ) e jn0 X(e j )
29
时域移位,频域相移
2020/4/5
第3章 离散傅立叶变换(DFT)
3. 频域循环移位定理 如果: X (k) DFT[x(n)], 0 k N 1 则 : Y (k) X ((k l))N RN (k)
e8
n0
n0
j 3k
e8
sin(
2
sin(
k) k)
,k
0,1,, 7
8
17 2020/4/5
第3章 离散傅立叶变换(DFT)
提高谱密度
18
图3.1.1 R4(n)的FT和DFT的幅度特性关系
2020/4/5
第3章 离散傅立叶变换(DFT)
3.3.2 DFT和DTFT、ZT的关系
设序列x(n)的长度为N, 其ZT、DTFT和
对任意整数m, 总有:
WNk WN(kmN) , k, m, N均为整数
所以(3.3.6)式中, X(k)满足:
N 1
X (k mN ) x(n)WN(kmN )n
n0
N 1
x(n)WNkn X (k)
n0
同理可证明(3.3.7)式中:
14 2020/4/5
x(n mN) x(n)
1.
设序列h(n)和x(n)的长度分别为N和M。h(n)与x(n)的
L点循环卷积定义为:L1
kn
e4
n0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

燕山大学机械学院机电系
由上述δ函数傅里叶变换性质,周期信号的傅里叶变换—FS为:
X ( jΩ)
k
X (kΩ ) e
0
jk0t
e
j t
dt
FT[e j0t ] 2 ( 0 )
X ( j ) 2
k
X (kΩ ) ( k )


② δ函数傅里叶变换性质:
FT[ (t )] (t )e
j t
dt e j 0 1
X(jΩ) 1 t 0
FT (t ) 1
x (t )
0
Ω
Yd-lbh 2009-02-25
3.1 连续时间信号的傅里叶(补充) 求x(t)=1的FT。
FT[ (t t0 )] (t t0 )e
j t
燕山大学机械学院机电系
dt e
j t0
1 (t ) IFT[1] 2



1 e
j t
1 d 2



e
j t
d
因为:
FT[e
j 0t
FT e j0t 2 ( 0 )
j 2
j sin 2
|X(jΩ)|
50 t
60
70
80
90
100
30
r e j
j 2
j 2 sin 2
r e
sin 2
3.1 连续时间信号的傅里叶(补充) ① δ函数定义及性质:
燕山大学机械学院机电系



(t )dt 1
(t ) 0
t 0




f (t ) (t )dt f (0)
f (t t0 ) (t )dt f (t0 )



f (t ) (t t0 )dt f (t0 )
燕山大学机械学院机电系
第3章 离散时间信号的傅里叶变换及DFT
要求: 1.掌握连续时间傅里叶变换FT 2.掌握离散时间傅里叶变换DTFT及性质
3.掌握离散傅里叶变换DFT及应用
Yd-lbh 2009-02-25
3.1 连续时间信号的傅里叶 (1)非周期时间信号傅里叶变换
燕山大学机械学院机电系
设x(t)为一连续信号,若x(t)属于L1空间,即满足:
燕山大学机械学院机电系
设x(t)为一连续时间周期信号,周期为T,即x(t) =x(t+nT), 该信号不属于L1空间。但如果x(t)满足狄义赫利条件,可以将其 展开为傅里叶级数,即:
x(t )
k
X (kΩ )e
0

jkΩ0t
(条件Ω0 2 / T ) k 0,1, ,



| x(t ) | dt

那么,x(t)的傅里叶变换存在,并定义为:
X ( jΩ) x(t )e
j t
dt
反变换为:
1 x(t ) 2



X ( jΩ )e
j t

X(jΩ)是Ω的连续函数,称为x(t)的频谱密度函数或频谱。 时域连续的非周 期信号其傅里叶变 换—FT在频域上是连 续的、非周期的。
kΩ0为第k次谐波频率。因为X(kΩ0)仅在Ω0的整数倍取值,即 在频率轴取值是离散的,称为x(t)在k次谐波的傅里叶系数。 X(kΩ0) 表示为:
1 t T X (kΩ0 ) x(t )e jkΩ0t dt T t
那么,周期信号x(t)的傅里叶变换为:
X ( jΩ) x(t )e
燕山大学机械学院机电系
求周期函数cos(Ω0t) 和sin(Ω0t)的傅里叶变换。
1 FT[cos( 0t )] FT (e j0t e j0t ) 2
FT[e j0t ] 2 ( 0 )
1 1 j0t j 0t FT (e e ) 2 ( 0 ) 2 ( 0 ) 2 2 ( 0 ) ( 0 )
Yd-lbh 2009-02-25
3.1 连续时间信号的傅里叶 计算周期信号 x(t ) 的傅里叶变换。
1 x(t ) r (t lT ),其中r (t ) 0 l ~
~
燕山大学机械学院机电系
~
t / 2 t / 2
x(t )

-2T -T
1.5 1 0.5 0
r r r j t j e |0 e 1 e j j j r e j j 2


0
10
20
30
40
cos 2
j sin 2
cos 2
r 设信号x(t ) 0
X ( jΩ) x(t )e
j t
燕山大学机械学院机电系
0 t 其余t

0
,求其傅里叶变换。
2
x(t)
dt r e
j t
dt
j 2 j j 2 2 e e


设连续时间信号 x(t ) eat u(t )
X ( jΩ) x(t )e j t dt e at u(t )e j t dt

a 0,求其傅里叶变换。
2 1.5
e
0
x(t)

( a j ) t
1 ( a j )t dt e a j
0
1 a j
1 0.5 0
0
5
10
15
20
25 t
30
35
40
45
50
|X(jΩ)|
0.8t 0 t x(t ) 0 其余t
6 4 2 0 -25 -20 -15 -10 -5 0 Ω 5 10 15 20 25
Yd-lbh 2009-02-25
3.1 连续时间信号的傅里叶
任何周期信号在满足狄义赫利条件下,可以展开为完备正 交函数线性组合的无穷级数。如果正交函数集是三角函数集, 则此时展成的级数称为傅里叶级数三角形式,如果正交函数集 176页 是复指数函数集,则称为傅里叶级数复指数形式。信号与系统,徐守时: Yd-lbh 2009-02-25
3.1 连续时间信号的傅里叶 (2)周期时间信号傅里叶变换

k
X (kΩ ) ( k )
0 0
2 T

k 0 Sa ( k 0 ) 2 k T

-2π/τ
0 2 π/T 2 π/τ
4 π/τ
Ω
(1)周期矩形信号频谱是离散的,谱线间隔是Ω0=2π/T; (2)当Ω=2πk/τ时,谱线的包络线过零点。
1 FT[sin( 0t )] FT (e j 0t e j 0t ) j ( 0 ) ( 0 ) 2 j j ( 0 ) ( 0 )
Yd-lbh 2009-02-25
3.1 连续时间信号的傅里叶
e j (0 )t dt 2 (0 )
因为 (t t0 ) (t0 t ),所以
2 (0 ) 2 ( 0 )
FT e j0t 2 ( 0 )
Yd-lbh 2009-02-25
3.1 连续时间信号的傅里叶(补充)
j t
dt [ X (k 0 )e jk0t ]e
k


j t
dt

k
X (k )
0



e
jk 0t j t
e
dt
k
X (kΩ )
0



e j ( k0 )t dt
Yd-lbh 2009-02-25
Yd-lbh 2009-02-25
3.2 离散时间信号的的傅里叶变换 3.2.1 DTFT的定义 设x(n)为一序列,该序列傅里叶变换为:
X (e
j
燕山大学机械学院机电系
)
n
x(n)e

jn
此式即为离散时间序列的傅里叶变换—DTFT。X(ejω)是ω的 连续函数,且是周期的,周期为2π。
20
10

2

0 -2000
-1500
-1000
-500
r e
2
Sa 2
sin 2
0 Ω
500
1000
1500
2000


j 2
Sa 2
sin x 称Sa( x ) 为抽样函数。 x
FT[1] 1 e
j t
燕山大学机械学院机电系
dt
(t )
1 2 e
FT 因为 (t ) 1,所以由非周期傅里叶反变换定义得



e
j t
d
Ω和t互换
( )
j t1 2j tdt
2 ( ) e
0 0

x(t ) x(t nT ) 2
FS
k
X (kΩ ) ( k )
0 0

该式表明,一个周期信号的傅里叶变换是:由在频率轴上 间距为Ω0的冲击序列所组成——线谱。 不具备傅里叶变换条件的周期信号,在引入冲激信号后可 以作傅里叶变换。时域连续周期信号傅里叶变换在频率上是离 散的、非周期的。
相关文档
最新文档