椭圆知识点总结

合集下载

椭圆知识点总结表

椭圆知识点总结表

椭圆知识点总结表一、基本概念1. 椭圆的定义椭圆的定义是指平面上到两个固定点(焦点)的距离之和是常数,这个常数称为椭圆的长轴,而两个焦点到椭圆中心的距离之和称为短轴。

椭圆中心到端点的距离称为半长轴和半短轴。

2. 椭圆的标准方程椭圆的标准方程为:$\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1$其中,$(h,k)$为椭圆中心的坐标,$2a$为椭圆的长轴长度,$2b$为椭圆的短轴长度。

3. 椭圆的离心率椭圆的离心率定义为:$e=\dfrac{\sqrt{a^2-b^2}}{a}$离心率是一个描述椭圆形状的重要参数,它越接近于0,椭圆的形状越趋近于圆形,离心率越接近于1,椭圆的形状越接近于长条形。

二、性质1. 椭圆的焦点椭圆有两个焦点,它们到椭圆上任意一点的距离之和是常数。

焦点的坐标可以用椭圆的长轴长度和离心率来确定。

2. 椭圆的直径椭圆的长轴和短轴是椭圆的直径,长轴的两个端点称为椭圆的顶点,短轴的两个端点称为椭圆的边缘点。

3. 椭圆的参数方程椭圆的参数方程为:$x=h+a\cos t$,$y=k+b\sin t$参数$t$在$[0,2\pi]$范围内变化,当$t=0$时,$(x,y)$恰好为椭圆的右顶点,当$t=\pi$时,$(x,y)$恰好为椭圆的左顶点。

4. 椭圆的焦准线椭圆的焦准线是椭圆上任一点到两个焦点的连线,这个连线的长度是椭圆长轴的长度。

5. 椭圆的切线椭圆的切线与椭圆的长轴和短轴有一定的关系,具体的切线方程可以用椭圆的参数方程来推导得到。

6. 椭圆的曲率椭圆上的每一点都有一个曲率,曲率描述了椭圆在该点处的弯曲程度。

曲率与椭圆的离心率有关,离心率越大,椭圆的曲率越小。

7. 椭圆的对称性椭圆具有许多对称性,包括关于坐标轴的对称、关于原点的对称、关于椭圆轴的对称等。

三、应用1. 天体运动椭圆在天体运动中有广泛的应用,例如行星的轨道就是椭圆。

根据开普勒定律,行星绕太阳运动的轨道是一个椭圆,太阳在椭圆的一个焦点上。

椭圆的相关知识点总结

椭圆的相关知识点总结

椭圆的相关知识点总结一、椭圆的定义椭圆是平面上到两个定点F1、F2的距离之和等于常数2a的点P的轨迹。

这两个定点F1、F2称为椭圆的焦点,常数2a称为椭圆的长轴,长轴的一半a称为椭圆的半长轴。

椭圆的短轴的长度为2b,短轴的一半b称为椭圆的半短轴。

椭圆上到焦点的距离等于常数2a的性质可以用数学语言表示为:|PF1|+|PF2|=2a。

椭圆的离心率e的定义是e=c/a,其中c是焦点到中心的距离。

显然,0<e<1,当e=0时,椭圆退化为一条线段;当e=1时,椭圆退化为一个圆。

二、椭圆的性质1. 焦点离心率椭圆的离心率大于0小于1。

2. 焦点公式椭圆长轴长度为2a,半短轴长度为b。

其中a、b分别是半长轴和半短轴的长度。

焦点坐标为(f1,0)和(-f1,0)。

其中f1=\sqrt{a^2-b^2}。

3. 针焦直线椭圆的焦点圆椭圆的大小只和a、b两轴有关,与焦点的远近无关。

4. 椭圆的直径垂直于直径的直线,称为轴;椭圆的两条轴相互垂直,且它们的交点是中心。

三、椭圆的方程1. 标准方程椭圆的标准方程为(x^2/a^2)+(y^2/b^2)=1,其中a、b分别为半长轴和半短轴的长度。

2. 一般方程椭圆的一般方程为Ax^2+By^2+Cx+Dy+E=0,其中A、B、C、D、E为常数。

一般方程的椭圆可以通过平移和旋转变换为标准方程。

四、椭圆的焦点椭圆的焦点离中心的距离c=\sqrt{a^2-b^2}。

五、椭圆的参数方程设椭圆的焦点为(f,0)和(-f,0),半长轴为a,半短轴为b,则椭圆的参数方程为:x=a\cos t,y=b\sin t,其中0\leq t\leq 2\pi。

六、椭圆的极坐标方程椭圆的极坐标方程可以表示为:r=\frac{a(1-e^2)}{1+e\cos\theta},其中e为椭圆的离心率。

七、椭圆的图形椭圆的图形是一种闭合的曲线,形状类似于椭子。

椭圆的长轴和短轴分别是轴、横轴。

椭圆是关于两条坐标轴对称的曲线。

椭圆的认识知识点总结

椭圆的认识知识点总结

椭圆的认识知识点总结一、椭圆的定义椭圆是平面上到两个固定点F1和F2的距离之和等于常数2a(a>0)的点P的轨迹。

这两个固定点F1和F2称为椭圆的焦点,常数2a称为椭圆的长轴。

椭圆上距离F1和F2的距离之差等于2b(b>0),其中b称为椭圆的短半轴。

椭圆的离心率e定义为e=c/a,其中c是焦距。

二、椭圆的性质1. 椭圆的长轴和短半轴椭圆的长轴是通过两个焦点的直线,而短半轴是垂直于长轴并且通过椭圆中心的直线。

椭圆的长轴和短半轴的长度分别为2a和2b。

2. 椭圆的离心率椭圆的离心率e决定了椭圆形状的“扁平程度”,e的取值范围是0<e<1。

当e=0时,椭圆的形状是一个圆;当e→1时,椭圆的形状趋近于一个长而狭窄的椭圆。

3. 椭圆的焦点和焦准线椭圆上任何一点到两个焦点的距离之和是一个常数2a,这个定理称为定义定理。

椭圆的长轴是两个焦点之间的直线,称为主轴。

两个焦点之间的直线称为焦准线。

4. 椭圆的轴线方程椭圆的长轴和短半轴分别平行于坐标轴,可以通过坐标轴和焦点的位置来确定椭圆的轴线方程,通常有(x-h)²/a²+(y-k)²/b²=1和(x-h)²/b²+(y-k)²/a²=1两种形式。

5. 椭圆的参数方程和焦点方程椭圆的参数方程是一对参数方程x=a*cosθ,y=b*sinθ。

椭圆的焦点方程是通过焦点和参数θ来表示椭圆上的点的坐标方程。

6. 椭圆的面积椭圆的面积可以通过长轴和短半轴的长度计算得出,通常为πab。

7. 椭圆的周长椭圆的周长可以通过参数方程和积分计算得出,通常为4aE(e),其中E(e)是第二类椭圆积分。

8. 椭圆的方程椭圆的方程可以通过焦点、焦准线、长轴和短轴的长度来表示,通常为(x-h)²/a²+(y-k)²/b²=1。

三、椭圆的应用1. 天体运动椭圆的轨迹方程在天文学中有广泛的应用,例如行星的轨道运动就可以用椭圆轨迹方程描述。

(完整版)椭圆知识点归纳总结

(完整版)椭圆知识点归纳总结

(完整版)椭圆知识点归纳总结1. 椭圆的定义椭圆是平面上到两个给定点的距离之和等于常数的点的集合。

这两个给定点称为焦点,而常数称为离心率。

椭圆的形状由焦点之间的距离决定,离心率的大小则决定了椭圆的扁平程度。

2. 椭圆的基本性质- 椭圆的长轴是焦点之间的距离,短轴是长轴的垂直中垂线。

- 椭圆的离心率介于0和1之间,且离心率为0时为圆。

- 椭圆有两个对称轴,分别是长轴和短轴的中垂线。

- 椭圆的焦点和任意一点的距离和等于离心率与该点到椭圆两个焦点的距离之和。

- 椭圆的面积为π * a * b,其中a和b分别是长轴和短轴的一半。

3. 椭圆的方程普通椭圆的方程为:(x-h)²/a² + (y-k)²/b² = 1其中(h,k)是椭圆的中心坐标,a和b分别是椭圆长轴和短轴的一半。

4. 椭圆的参数方程椭圆的参数方程为:x = h + a * cos(t)y = k + b * sin(t)其中(h,k)是椭圆的中心坐标,a和b分别是椭圆长轴和短轴的一半,t是参数。

5. 椭圆的焦点与直径- 焦点到定点的距离等于椭圆的常数离心率。

- 椭圆的两个焦点与椭圆的直径的交点相同。

6. 椭圆与其他几何图形关系- 椭圆与直线的关系:给定一条直线,椭圆上离直线距离之和最小的点在直线的垂直线上。

- 椭圆与双曲线的关系:双曲线可以看作是离心率大于1的椭圆。

- 椭圆与抛物线的关系:抛物线可以看作是离心率等于1的椭圆。

7. 椭圆的应用椭圆在现实生活中有广泛的应用,例如:- 天体运动:行星、卫星等的轨道可以近似看作是椭圆。

- 椭圆滤波器:在信号处理中用于清除噪音。

- 光学器件:如折射球面镜、椭圆镜等。

以上是关于椭圆的常见知识点的归纳总结,希望能对你有所帮助。

数学选修椭圆知识点总结

数学选修椭圆知识点总结

数学选修椭圆知识点总结1. 椭圆的定义椭圆是平面上一点到两个给定点(称为焦点)的距离之和等于定值(称为椭圆的半长轴)的所有点的轨迹。

这个定值等于椭圆的长度,两个焦点的距离等于椭圆的主轴。

2. 椭圆的方程椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1其中(a,0)和(-a,0)分别是椭圆的两个焦点,直线x=a和x=-a分别是椭圆的两个直径。

3. 椭圆的性质椭圆有很多性质,其中一些重要的性质包括:- 椭圆的离心率e < 1- 椭圆的直径是椭圆的最长直线段- 椭圆的焦点到椭圆上任意点的距离之和等于椭圆的半长轴4. 椭圆的焦点和焦距椭圆有两个焦点,它们位于椭圆的主轴上,并且满足焦距的性质。

椭圆的焦点和焦距的关系由以下公式给出:c = √(a^2-b^2)5. 椭圆的参数方程椭圆的参数方程为:x = a*cos(t)y = b*sin(t)其中t的范围为0 <= t <= 2π6. 椭圆的面积和周长椭圆的面积可以用以下公式计算:S = πab其中a和b分别为椭圆的半长轴和半短轴。

椭圆的周长可以用以下公式计算:L = 4aE(e)其中E(e)是第二类完全椭圆积分。

7. 椭圆的变换椭圆可以通过一些线性变换转化为标准椭圆方程。

一般情况下,椭圆可以通过平移、旋转和缩放等变换转化为标准椭圆方程。

8. 椭圆的应用椭圆在几何学、物理学、工程学等领域都有着广泛的应用。

在几何学中,椭圆是圆锥曲线中的一个重要成员,它的性质和特征被广泛应用于曲线的研究和建模中。

在物理学中,椭圆的运动规律和能量转换规律被广泛应用于物体运动和动力学模型的建立。

在工程学中,椭圆的形状和性质被广泛应用于建筑物、机械设备、电子设备等的设计和制造中。

总之,椭圆是一个非常有趣且重要的数学概念,它的定义、性质、方程、焦点、焦距、离心率、参数方程等内容都具有重要的理论和应用价值。

对椭圆进行深入的研究不仅可以帮助我们更好地理解数学知识,还可以帮助我们更好地应用数学知识解决实际问题。

椭圆的知识点总结

椭圆的知识点总结

椭圆的知识点总结一、椭圆的定义椭圆是平面上的一种特殊曲线,它的定义可以有多种方式。

在解析几何中,我们通常采用焦点-直线之和等于常数的定义来描述椭圆。

具体而言,椭圆定义为到两个固定点(焦点)的距离之和等于常数的点的集合。

这个常数被称为椭圆的长轴长度。

另外,椭圆还有一个短轴,它垂直于长轴且通过长轴的中点。

椭圆的长轴和短轴的长度决定了椭圆的形状。

二、椭圆的性质1. 焦点性质:椭圆有两个焦点,它们位于长轴上,且椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴长度。

2. 直径性质:椭圆的直径是经过焦点的直线段,并且它恰好与椭圆相交于椭圆上的两点。

3. 周长性质:椭圆的周长可以用椭圆的半长轴和半短轴的长度来表示,即2πb+4aE(e),其中a和b分别为椭圆的长轴和短轴的长度,E(e)为第二类椭圆积分。

4. 质心性质:椭圆的质心位于椭圆的中心,且与椭圆的几何中心重合。

椭圆的质心满足椭圆上所有点到该质心的距离之和等于椭圆的长轴长度。

5. 对称性质:椭圆具有关于长轴和短轴的对称性,且同时具有关于两个焦点的对称性。

6. 离心率性质:椭圆的离心率e是一个重要的参数,它刻画了椭圆的形状。

椭圆的离心率满足0<e<1,且e=√(1-b²/a²)。

7. 焦点和直角坐标系的关系:椭圆在直角坐标系中的方程形式可以用来描述椭圆的形状,其一般方程为(x²/a²)+(y²/b²)=1。

三、椭圆的方程椭圆的方程通常以长轴和短轴的长度来表示,其一般方程为(x²/a²)+(y²/b²)=1。

在给定长轴和短轴的情况下,可以通过椭圆的方程来确定椭圆的形状和位置。

四、椭圆的焦点椭圆有两个焦点,它们分别位于长轴的两端。

椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴长度。

焦点是椭圆的重要特性,它们的位置决定了椭圆的形状和方向。

五、椭圆的参数方程椭圆还可以用参数方程来描述。

数学椭圆知识点总结

数学椭圆知识点总结

数学椭圆知识点总结椭圆是数学中有着许多重要性质和应用的一个图形。

下面是对椭圆的一些基本概念、性质和应用的总结。

一、基本概念:1.椭圆的定义:椭圆是平面中到两个给定点距离之和等于常数的点的集合。

2.椭圆的元素:椭圆的两个给定点叫做焦点,连接两焦点的线段长度叫做主轴;主轴的中点叫做椭圆的中心;主轴的一半长度叫做半轴长度;椭圆中心到焦点的距离叫做焦距。

3.椭圆的方程:标准椭圆的方程形式为:(x/a)²+(y/b)²=1其中,a是椭圆的半长轴长度,b是椭圆的半短轴长度。

二、性质:1.对称性:椭圆是关于x轴和y轴对称的。

2.焦点性质:椭圆上的任意一点到两个焦点的距离之和等于椭圆的长轴长度。

3.离心率:椭圆的离心率是一个衡量椭圆圆度的量。

离心率e的取值范围是0到1之间,当e=0时,椭圆退化成一个圆;当e=1时,椭圆退化成一个抛物线。

4.焦半径性质:椭圆的焦半径性质是指在椭圆上取一点P,以焦点为中心,过点P作圆的切线,切点和焦点之间的距离等于焦距。

5.弦长性质:椭圆上取一点P,过点P作两直线段与椭圆相交,分别与圆交于A、B两点,则线段AB的长度等于弦长。

6.空间对称性:椭圆的三维空间图形是椭球,具有空间对称性。

三、应用:1.天体运动:开普勒的椭圆轨道定律描述了行星运动的椭圆轨道特性。

2.光学:反射和折射定律中的焦点性质和弦长性质可以用来解决光学问题。

3.通信:在无线通信中,椭圆是天线和信号传播路径的数学模型,用于研究无线信号的覆盖范围和传播特性。

4.机械工程:在机械零件的设计中,椭圆齿轮和椭圆齿条可以用来实现转动和直线运动的转换。

5.地理测量学:地球的纬度和经度构成的网格是一种椭圆形状的二维曲面,用于定位和测量地球上的位置。

6.统计学:椭圆是多元统计分析中用来表示数据分布形状的图形,如椭圆的主轴和离心率可以用来描述数据的差异和相关性。

总结起来,椭圆是数学中一个重要的图形,具有许多特殊的性质和应用。

椭圆知识点总结

椭圆知识点总结

椭圆知识点总结一、椭圆的方程椭圆的标准方程是x^2/a^2 + y^2/b^2 = 1,其中a和b分别代表椭圆长轴和短轴的一半。

椭圆的焦点到中心的距离是c,满足c^2 = a^2 - b^2。

二、椭圆的性质1. 椭圆对称性:椭圆关于x轴和y轴对称。

2. 焦点性质:椭圆上任意一点到两个焦点的距离之和等于常数2a。

3. 长短轴性质:椭圆的长轴和短轴互相垂直,长轴的长度是2a,短轴的长度是2b。

4. 离心率:椭圆的离心率e定义为c/a,表示椭圆拉伸的程度,离心率介于0到1之间。

5. 参数方程:椭圆的参数方程为x = a*cos(t),y = b*sin(t),其中t为参数。

6. 弦长:椭圆上任意一点到两个焦点的距离之和等于常数2a,因此椭圆上任意一条弦的长度小于或等于2a。

7. 焦准线性质:椭圆上任意一点到两个准线的距离之差等于常数2a。

三、椭圆与圆的关系1. 圆是椭圆的特殊情况:当椭圆的长轴和短轴相等时,椭圆就变成了圆。

2. 椭圆的离心率介于0到1之间,当离心率等于0时,椭圆就是一个圆。

因此,椭圆和圆可以看作是同一种几何图形的不同特例。

四、椭圆的应用1. 天体运动:椭圆轨道是描述天体运动的重要数学工具,如行星绕太阳运动、卫星绕地球运动等。

2. 光学:椭圆镜片和椭圆抛物面反射器是光学领域常用的元件,用于聚焦和成像。

3. 工程设计:椭圆的性质在设计椭圆形建筑、椭圆形机械零件、椭圆形轨迹等方面有重要应用。

4. 地理测量:椭圆在地图投影和地理测量中有广泛应用,如椭球面测量、椭圆地图投影等。

五、椭圆的求解1. 椭圆的参数方程可以通过消除参数t来得到椭圆的标准方程。

2. 根据椭圆的焦点性质和准线性质,可以求解椭圆的焦点和准线方程。

3. 椭圆的面积可以通过积分求解,面积公式为S = πab。

4. 椭圆的周长可以通过椭圆的参数方程求解,周长公式为L = 4aE(e),其中E(e)为椭圆的第二类完全椭圆积分。

六、椭圆的变换1. 平移变换:椭圆的平移变换可以用矩阵形式表示,通过平移变换可以将椭圆移动到任意位置。

复习椭圆相关知识点总结

复习椭圆相关知识点总结

复习椭圆相关知识点总结一、椭圆的定义椭圆是平面上的一条封闭曲线,其定义为到两个给定点的距离之和等于常数(椭圆的长轴)。

即设两点F1(-c, 0)、F2(c, 0)(c为常数),过F1、F2点分别作两条互相垂直的直线,这两条直线交于一点O,任意取一点M,连接M到两点的距离之和是常数,即|MF1| + |MF2| = 2a(常数),则点M的轨迹称为椭圆。

二、椭圆的性质1.椭圆的离心率椭圆的离心率是指椭圆焦点到中心点的距离与长轴之比,其数值范围在0到1之间。

2.椭圆的焦点和直径椭圆有两个焦点,分别位于椭圆的长轴上,并向短轴的对称位置。

而椭圆的长轴和短轴之间的距离称为椭圆的直径。

3.椭圆的参数方程椭圆的参数方程为:x = a * cos(t),y = b * sin(t)。

其中,a和b分别为椭圆的长短轴长度,t为参数。

4.椭圆的切线和法线椭圆上的切线与法线分别垂直于轨迹曲线,在切点处切线的斜率等于轨迹曲线的斜率,法线的斜率是切线斜率的相反数。

5.椭圆的焦点位置椭圆的焦点位置可以通过以下公式计算得出: c = sqrt(a^2 - b^2)。

三、椭圆的应用椭圆在数学和物理学中都有着广泛的应用,例如在天文学中,椭圆常用来描述行星、卫星和彗星的运动轨迹;在工程学中,椭圆常用来描述电子束的运动轨迹;在通信领域中,椭圆常用来描述无线信号的传播路径等。

四、椭圆的计算1.椭圆的面积椭圆的面积可以通过以下公式计算得出:S = π * a * b。

2.椭圆的周长椭圆的周长可以通过以下公式计算得出:C = 4a * E(e)。

其中,E(e)是椭圆的第二类完全椭圆积分,e是椭圆的离心率。

3.椭圆的焦距椭圆的焦距可以通过以下公式计算得出:f = 2a * e。

五、椭圆的变换椭圆可以通过平移、旋转、缩放等变换来得到新的椭圆,这些变换可以通过矩阵运算来表示,从而方便进行计算和分析。

综上所述,椭圆是一种经典的几何图形,在数学和物理学中有着广泛的应用。

椭圆公式知识点总结

椭圆公式知识点总结

椭圆公式知识点总结一、椭圆的定义:椭圆可以通过焦点和准线来定义。

给定两个点F1和F2(焦点),定义椭圆E为平面上到这两个焦点的距离之和等于常数2a的点的集合。

即对于椭圆E上的任意一点P,有PF1 + PF2 = 2a。

该常数2a称为椭圆的长轴长度。

二、椭圆的标准方程:椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)为椭圆的中心,a为长轴的长度的一半,b为短轴的长度的一半。

该方程中的参数可以通过椭圆的焦点和准线的位置确定。

三、半通径和离心率:对于椭圆E,定义半通径r为椭圆上任意一点P到椭圆中心O的距离,即OP=r。

另外,椭圆的离心率e定义为焦点到中心的距离除以长轴的长度,即e=√(a²-b²)/a。

离心率可以描述椭圆的瘦胖程度,当离心率接近于0时,椭圆趋近于圆形;当离心率接近于1时,椭圆变得更加扁平。

四、焦点和准线属性:椭圆的焦点F1和F2具有一些特殊的性质。

首先,椭圆上的任意一点到两个焦点的距离之和等于椭圆的长轴长度。

其次,椭圆上任意一点到准线的距离之和等于椭圆的长轴长度。

这些性质可以通过椭圆的几何构造得到。

五、参数方程和极坐标方程:椭圆也可以通过参数方程和极坐标方程进行描述。

参数方程为x = a*cos(t),y = b*sin(t),其中t为参数。

极坐标方程为r = a*(1-e*cos(θ)),其中θ为极角。

这些方程可以将椭圆与圆和其他曲线进行对比,从而更好地理解椭圆的性质。

六、旋转椭圆:椭圆可以通过旋转来获得不同的形态。

当椭圆沿着坐标轴旋转θ角度时,可以得到旋转椭圆。

旋转椭圆的标准方程可以通过坐标变换得到。

旋转椭圆的性质与普通椭圆类似,但是在计算和解析过程中需要考虑坐标轴的旋转。

七、椭圆的应用:椭圆具有广泛的应用。

在几何学中,椭圆可以描述行星的轨道和天体的运动。

在工程学和物理学中,椭圆可以用来描述光学系统的成像和传输特性。

椭圆知识点总结课件

椭圆知识点总结课件

椭圆知识点总结课件一、椭圆的定义1. 椭圆是平面上到两个定点F1、F2的距离之和等于常数2a的动点P的轨迹。

2. 椭圆上任意一点P到两个焦点的距离之和等于常数2a。

3. 椭圆是圆心在原点、长轴平行于x轴、短轴平行于y轴的椭圆。

二、椭圆的坐标方程1. 椭圆的标准方程为:$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$ ,其中a为椭圆长轴的半径,b为椭圆短轴的半径。

2. 椭圆的焦点坐标为:F1(-c, 0)、F2(c, 0),其中c为椭圆长轴上的焦距。

三、椭圆的性质1. 圆心:椭圆的圆心为坐标原点O(0,0)。

2. 长轴和短轴:椭圆的长轴长度为2a,短轴长度为2b。

3. 焦距:椭圆的焦点之间的距离等于2a,焦距为2c。

4. 离心率:椭圆的离心率定义为e=c/a,即焦距与长轴的比值。

5. 光学性质:椭圆是一种特殊的抛物线,具有使入射平行光汇聚于一个焦点的性质。

四、椭圆的参数方程1. 椭圆的参数方程为:$x=a\cos \theta, y=b\sin \theta$ ,其中$\theta$为参数。

2. 由参数方程可得到椭圆的参数形式,可以更好地描述椭圆的轨迹。

五、椭圆的相关定理1. 椭圆上每一点到两个焦点的距离之和等于常数2a。

2. 椭圆的对称性:椭圆关于x轴、y轴和原点具有对称性。

3. 椭圆的切线和法线:椭圆上每一点的切线与入射角的正弦值成正比。

六、椭圆的应用1. 几何应用:椭圆在几何中有着广泛的应用,如描述天体轨道、建筑设计等。

2. 工程应用:椭圆在工程中也有着重要的应用,如椭圆形的齿轮设计、水泵设计等。

3. 科学应用:椭圆在物理学、天文学等领域有着重要的应用,如描述天体运动轨迹等。

七、椭圆的历史及发展1. 椭圆的历史:椭圆的概念最早可以追溯至古希腊时代,由著名的数学家开普勒在17世纪首次提出。

2. 椭圆的发展:椭圆在历史上有着丰富的发展历程,成为了数学中的重要概念,并在科学和工程领域有着广泛的应用。

椭圆及知识点总结

椭圆及知识点总结

椭圆及知识点总结一、椭圆的定义椭圆是一个平面上距离两个定点的距离之和等于常数的所有点的轨迹。

这两个定点称为焦点,两个焦点到椭圆上任意一点的距离之和等于常数的这个常数称为椭圆的长轴。

椭圆的长度长的半轴即长轴,另一个短的半轴即椭圆的短轴。

椭圆的离心率是一个反映椭圆形状的参数,它等于焦距与长轴之比。

二、椭圆的性质1. 横坐标a,纵坐标b,a>b2. 椭圆两焦点(-c,0)和(c,0)。

3. 椭圆的离心率e,e=c/a。

4. 椭圆的方程为x²/a²+y²/b²=1。

5. 椭圆的周长C=4aE(e),其中E(e)表示第二类椭圆积分。

6. 椭圆的面积S=πab。

三、椭圆的方程椭圆的方程可以通过直角坐标系下的坐标点和离心率来表示,一般来说,椭圆的标准方程为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为坐标系原点的坐标,a为长轴的长度,b为短轴的长度。

还可以通过参数方程来表示椭圆,参数方程为:x=a*cos(t)+hy=b*sin(t)+k其中(t为参数,a、b分别为长短半轴,(h,k)为椭圆的中心点。

四、椭圆的应用1. 天体运动:开普勒定律描述行星和卫星绕太阳和行星绕行星运动的轨道为椭圆。

2. 工程建筑:椭圆的形状被广泛运用在建筑设计中,例如拱门、拱桥的设计。

3. 数学物理:椭圆的性质在物理学和工程学中有着重要的应用,例如在电磁场和引力场的研究中。

五、椭圆的知识点总结1. 椭圆的定义:椭圆是平面上距离两个定点的距离之和等于常数的轨迹。

2. 椭圆的性质:椭圆有特定的横纵坐标、焦点坐标、离心率、方程、周长和面积等特性。

3. 椭圆的方程:椭圆的标准方程和参数方程可以描述椭圆的形状和特性。

4. 椭圆的应用:椭圆在天体运动、工程建筑和数学物理等领域都有着重要的应用价值。

综上所述,椭圆是一种重要的圆锥曲线,具有独特的形状和性质,在数学、物理、工程等领域都有着重要的应用价值。

(完整版)椭圆基本知识点总结

(完整版)椭圆基本知识点总结

椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质椭圆:12222=+b y a x )0(>>b a 与 12222=+bx a y )0(>>b a 的简单几何性质标准方程12222=+b y a x )0(>>b a 12222=+b x a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤ b x ≤,a y ≤对称性关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ±),0(a ±,)0,(b ±轴长 长轴长=a 2,短轴长=b 2离心率)10(<<=e ace c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1; (p 是椭圆上一点)1.椭圆标准方程中的三个量c b a ,,的几何意义222c b a +=2.通径:过焦点且垂直于长轴的弦,其长ab 223.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠ 为最大角。

4.焦点三角形的面积2tan221θb S F PF =∆,其中21PF F ∠=θ5. 用待定系数法求椭圆标准方程的步骤.(1)作判断:依据条件判断椭圆的焦点在x 轴上还是在y 轴上. (2)设方程:①依据上述判断设方程为2222by a x +=1)0(>>b a 或2222a y b x +=1)0(>>b a②在不能确定焦点位置的情况下也可设mx 2+ny 2=1(m >0,n >0且m ≠n ). (3)找关系,根据已知条件,建立关于a ,b ,c 或m ,n 的方程组. (4)解方程组,代入所设方程即为所求. 6.点与椭圆的位置关系: 2222b y a x +<1,点在椭圆内,2222b y a x +=1,点在椭圆上,2222b y a x +>1, 点在椭圆外。

椭圆知识点总结

椭圆知识点总结

椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=;3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质1.对称性:对于椭圆标准方程12222=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

2.范围:椭圆上所有的点都位于直线a x±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。

3.顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

总结椭圆的相关知识点

总结椭圆的相关知识点

总结椭圆的相关知识点一、椭圆的定义椭圆是一个平面上的几何图形,其定义可以通过焦点和到焦点距离之和的性质来描述。

具体来说,设F1、F2是平面上两个不重合的定点,a是一个大于零的实数,且d是一个大于a的实数,则椭圆E是到F1和F2的距离之和为常数2a的所有点P的轨迹,即PF1+PF2=2a。

从椭圆的定义可以看出,其形状是由F1、F2和到F1、F2的距离之和2a共同决定的,可以通过变化F1、F2和2a来得到不同形状的椭圆。

椭圆可以看作是一个长轴和短轴的交错的点P的轨迹,其中长轴和短轴是垂直于对称轴的,对称轴是长轴的中点到F1和F2的中垂线。

这一几何性质对于椭圆的研究和应用具有重要的意义。

二、椭圆的性质椭圆有许多独特的性质,其中一些性质是椭圆独有的,这些性质为研究和应用椭圆提供了重要的理论基础。

首先,椭圆上的任意一点P到焦点F1、F2的距离之和等于一个定值2a,这一特性决定了椭圆的形状。

其次,椭圆上的任意一条切线与长轴和短轴的夹角相等,这一性质为椭圆的切线方程和切线的长度提供了重要的理论依据。

此外,椭圆上的所有点关于长轴和短轴的两端对称,这一性质为椭圆研究和应用提供了便利。

另外,椭圆还有许多重要的性质,包括椭圆的离心率、焦点的坐标、椭圆的参数方程等。

这些性质为解决实际问题和推导椭圆的方程提供了重要的依据。

因此,深入理解椭圆的性质对于研究和应用椭圆具有重要的意义。

三、椭圆的方程椭圆的方程是研究和应用椭圆的重要工具,它可以通过焦点和长轴、短轴等性质来推导得到。

具体来说,设椭圆的焦点为F1(-c,0),F2(c,0),椭圆的长轴为2a,短轴为2b,则椭圆的标准方程为(x^2/a^2)+(y^2/b^2)=1。

如果椭圆的焦点在原点上,则椭圆的标准方程为x^2/a^2+y^2/b^2=1。

从椭圆的方程可以看出,它与焦点、长轴、短轴之间存在着密切的关系,通过方程可以推导出椭圆的离心率、焦点的坐标、椭圆的参数方程等重要性质,这些性质为研究和应用椭圆提供了重要的理论基础。

椭圆几何性质知识点总结

椭圆几何性质知识点总结

椭圆几何性质知识点总结1. 椭圆的定义椭圆的定义是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

即PF1+PF2=2a。

其中F1和F2称为焦点,2a称为长轴长度。

椭圆的对称轴是通过两个焦点的连接线,称为长轴。

椭圆的短轴是垂直于长轴,并且过椭圆中心的直线。

2. 椭圆的焦点和离心率椭圆的焦点是椭圆的特殊点,它决定了椭圆的形状和大小。

椭圆的离心率e定义为焦点到椭圆中心的距离与长轴长度a的比值。

离心率的取值范围是0<e<1,当e=0时,椭圆退化为一个圆,当e=1时,椭圆退化为一条直线。

3. 椭圆的参数方程椭圆的参数方程可以通过参数t来表示椭圆上的点的坐标。

一般来说,椭圆的参数方程可以写成x=acos(t),y=bsin(t)。

其中(a,b)是椭圆的长短轴长度,t是参数。

4. 椭圆的直角坐标方程椭圆的直角坐标方程可以表示为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)是椭圆的中心点坐标。

5. 椭圆的几何性质椭圆具有许多重要的几何性质,例如:a. 椭圆的焦点性质:任意点到两个焦点的距离之和等于椭圆的长轴长度。

b. 椭圆的直径定理:椭圆的任意直径的长度都等于椭圆的长轴长度。

c. 椭圆的对称性:椭圆具有关于两个坐标轴的对称性。

d. 椭圆的切线性质:椭圆上的任意一点处的切线与两个焦点到该点的连线的夹角相等。

6. 椭圆的面积和周长椭圆的面积可以表示为S=πab,其中a和b分别是椭圆的长轴和短轴的长度。

椭圆的周长可以表示为C=4aE(e),其中E(e)是椭圆的第二类完全椭圆积分。

7. 椭圆的方程类型椭圆的方程可以分为标准方程和一般方程两种类型。

标准方程是指椭圆的中心点在坐标原点的方程形式,一般方程是指椭圆的中心点不在坐标原点的方程形式。

8. 椭圆的相关问题在实际问题中,椭圆经常出现在各种应用中,例如天体运动、工程设计等。

因此,研究椭圆的相关问题对于理论研究和应用都具有重要意义。

数学椭圆涉及知识点总结

数学椭圆涉及知识点总结

数学椭圆涉及知识点总结一、椭圆的定义1.1、直角坐标系下的定义在直角坐标系中,椭圆的定义如下:给定两个固定点F1和F2(称为焦点)以及一个正实数a,且a>0。

椭圆是到两个焦点的距离之和等于常数2a的点的集合,即对于任意点P(x,y),PF1+PF2=2a。

1.2、参数方程的定义椭圆也可以用参数方程来表示。

假设椭圆的焦点在原点,半长轴为a,半短轴为b(a>b>0)。

椭圆上的点可以表示为(x,y)=(a*cosθ, b*sinθ),其中θ是参数。

1.3、其他等价定义除了以上直角坐标系和参数方程的定义之外,椭圆还有许多其他等价的定义,例如:轴对称、封闭曲线等等。

二、椭圆的性质2.1、焦点、顶点和长轴、短轴椭圆有两个焦点和两条主轴。

焦点是椭圆上的两个固定点,两个焦点之间的距离等于2a。

椭圆的两个主轴分别是椭圆的长轴和短轴,其长度分别为2a和2b。

2.2、离心率椭圆的离心率e是一个表示椭圆形状的重要参数,它是焦距与长轴的比值,即e=c/a,其中c是焦点到原点的距离。

离心率是一个小于1的实数,并且与椭圆的形状密切相关。

2.3、焦点、半焦距和半通径椭圆的焦点F1和F2之间的距离是2c,称为焦距。

椭圆的半焦距用c表示,半焦距与长短轴关系为c=sqrt(a^2-b^2)。

半通径是椭圆上的任意点到两个焦点的距离之和的一半。

2.4、椭圆的标准方程椭圆的标准方程是(x^2/a^2)+(y^2/b^2)=1,其中(a>b>0)。

根据标准方程,椭圆的长轴平行于x轴,短轴平行于y轴。

2.5、对称性质椭圆是关于x轴和y轴对称的,且有中心对称性质。

2.6、切线与法线椭圆上任意一点处的切线是垂直于从该点到两个焦点的连线的直线。

而该点处的法线是与切线垂直的直线。

2.7、焦半径定理焦半径定理描述了椭圆上任意一点处的两条焦半径的乘积为常数(等于长短轴的乘积),这是椭圆独特的性质之一。

2.8、面积椭圆的面积是一个重要的性质,其面积等于πab,其中a和b分别是椭圆的长轴和短轴的长度。

椭圆知识点详细总结

椭圆知识点详细总结

椭圆知识点详细总结在数学的世界中,椭圆是一个非常重要的几何图形,它具有独特的性质和广泛的应用。

接下来,让我们一起深入了解椭圆的相关知识。

一、椭圆的定义平面内与两个定点 F₁、F₂的距离之和等于常数(大于|F₁F₂|)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

用数学语言表示就是:|PF₁| +|PF₂| = 2a(2a > 2c,其中 2c 为焦距)。

二、椭圆的标准方程1、焦点在 x 轴上的椭圆标准方程为:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(a > b > 0),其中 a 为椭圆的长半轴长,b 为椭圆的短半轴长。

2、焦点在 y 轴上的椭圆标准方程为:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(a > b > 0)。

要注意区分焦点所在的坐标轴,根据焦点位置来确定方程的形式。

三、椭圆的性质1、对称性椭圆关于 x 轴、y 轴和原点对称。

2、范围对于焦点在 x 轴上的椭圆,x 的取值范围是a, a,y 的取值范围是b, b;对于焦点在 y 轴上的椭圆,x 的取值范围是b, b,y 的取值范围是a, a。

3、顶点椭圆有四个顶点,焦点在 x 轴上时,顶点坐标为(±a, 0),(0, ±b);焦点在 y 轴上时,顶点坐标为(0, ±a),(±b, 0)。

4、离心率椭圆的离心率 e =\(\frac{c}{a}\)(0 < e < 1),其中 c 为焦距的一半。

离心率反映了椭圆的扁平程度,e 越接近 0,椭圆越接近于圆;e 越接近 1,椭圆越扁。

5、焦半径椭圆上一点 P(x₀, y₀)到焦点 F₁、F₂的距离分别为|PF₁| = a +ex₀,|PF₂| = a ex₀(焦点在 x 轴上);|PF₁| = a + ey₀,|PF₂| = a ey₀(焦点在 y 轴上)。

椭圆知识点总结框架

椭圆知识点总结框架

椭圆知识点总结框架一、椭圆的定义1. 椭圆的几何定义2. 椭圆的代数定义3. 参数方程和极坐标方程二、椭圆的性质1. 椭圆的焦点和直径2. 椭圆的离心率3. 椭圆的直角坐标方程4. 椭圆的极坐标方程5. 椭圆的对称性6. 椭圆的形状7. 椭圆的周长和面积三、椭圆的方程1. 椭圆标准方程2. 椭圆的变换方程3. 椭圆的参数方程4. 椭圆的极坐标方程四、椭圆的图形1. 椭圆的图像特征2. 椭圆的几何分析3. 椭圆的轴和焦点4. 椭圆的绘制方法五、椭圆的应用1. 椭圆在天文学中的应用2. 椭圆在机械工程中的应用3. 椭圆在工程测量中的应用4. 椭圆在地理学中的应用5. 椭圆在其他领域中的应用六、椭圆与其他几何图形的关系1. 椭圆与圆的关系2. 椭圆与抛物线的关系3. 椭圆与双曲线的关系4. 椭圆与直线的关系七、椭圆的数学推导1. 椭圆的性质证明2. 椭圆的相关公式推导3. 椭圆的参数化方程推导4. 椭圆的极坐标方程推导八、椭圆的计算题1. 椭圆的周长计算2. 椭圆的面积计算3. 椭圆的焦点坐标计算4. 椭圆的离心率计算以上是关于椭圆的知识点总结框架,接下来我们将对每个知识点进行详细讲解。

一、椭圆的定义1. 椭圆的几何定义椭圆是平面上到两个定点F1,F2的距离之和等于常数2a的点P的集合,这个常数2a称为椭圆的长轴,两个定点F1,F2称为椭圆的焦点。

椭圆的几何定义可以简单理解为平面上到两个固定点的距离之和等于常数的点的轨迹。

2. 椭圆的代数定义设椭圆的两个焦点为F1(-c,0),F2(c,0), 两个焦点到椭圆上任意点P(x,y)的距离之和等于椭圆的长轴长2a,则有|PF1|+|PF2|=2a。

根据勾股定理可以得到椭圆的代数方程:(x+c)^2+y^2+(x-c)^2+y^2=4a^2。

3. 参数方程和极坐标方程椭圆的参数方程是x=a*cos(t),y=b*sin(t), 其中a,b分别为椭圆的长短半轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆知识点知识要点小结:知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=;3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

(2)范围:椭圆上所有的点都位于直线a x±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。

(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为 )0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。

a 和b 分别叫做椭圆的长半轴长和短半轴长。

(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作ac a c e==22。

②因为)0(>>c a,所以e 的取值范围是)10(<<e 。

e 越接近1,则c 就越接近a ,从而22c a b -=越小,因此椭圆越扁;反之,e 越接近于0,c 就越接近0,从而b 越接近于a ,这时椭圆就越接近于圆。

当且仅当b a =时,0=c ,这时两个焦点重合,图形变为圆,方程为a y x=+22。

注意:椭圆12222=+by a x 的图像中线段的几何特征(如下图):(1))2(21a PF PF =+;e PM PF PM PF ==2211;)2(221ca PM PM =+;(2))(21a BF BF ==;)(21c OF OF ==;2221b a B A B A +==;(3)c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1;知识点四:椭圆12222=+b y a x 与 12222=+bx a y )0(>>b a 的区别和联系标准方程12222=+b y a x )0(>>b a 12222=+bx a y )0(>>b a 图形性质焦点)0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距c F F 221= c F F 221= 范围 a x ≤,b y ≤b x ≤,a y ≤对称性 关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ±),0(a ±,)0,(b ±轴长长轴长=a 2,短轴长=b 2离心率)10(<<=e ace 准线方程ca x 2±= ca y 2±=焦半径01ex a PF +=,02ex a PF -= 01ey a PF +=,02ey a PF -=注意:椭圆12222=+b y a x ,12222=+bx a y )0(>>b a 的相同点:形状、大小都相同;参数间的关系都有)0(>>b a 和)10(<<=e ace ,222c b a +=;不同点:两种椭圆的位置不同;它们的焦点坐标也不相同。

规律方法: 1.如何确定椭圆的标准方程?任何椭圆都有一个对称中心,两条对称轴。

当且仅当椭圆的对称中心在坐标原点,对称轴是坐标轴,椭圆的方程才是标准方程形式。

此时,椭圆焦点在坐标轴上。

确定一个椭圆的标准方程需要三个条件:两个定形条件b a ,;一个定位条件焦点坐标,由焦点坐标的形式确定标准方程的类型。

2.椭圆标准方程中的三个量c b a ,,的几何意义椭圆标准方程中,c b a ,,三个量的大小与坐标系无关,是由椭圆本身的形状大小所确定的。

分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为:)0(>>b a ,)0(>>c a ,且)(222c b a +=。

可借助右图理解记忆:显然:c b a ,,恰构成一个直角三角形的三条边,其中a 是斜边,b 、c 为两条直角边。

3.如何由椭圆标准方程判断焦点位置 椭圆的焦点总在长轴上,因此已知标准方程,判断焦点位置的方法是:看2x ,2y 的分母的大小,哪个分母大,焦点就在哪个坐标轴上。

4.方程均不为零)C B A C By Ax ,,(22=+是表示椭圆的条件方程C By Ax =+22可化为122=+CBy C Ax ,即122=+BC By A C x ,所以只有A 、B 、C 同号,且A ≠B 时,方程表示椭圆。

当B C A C >时,椭圆的焦点在x 轴上;当BCA C <时,椭圆的焦点在y 轴上。

5.求椭圆标准方程的常用方法: ①待定系数法:由已知条件确定焦点的位置,从而确定椭圆方程的类型,设的参数c b a ,,的值。

其主要步骤是“先定型,再定量”;出标准方程,再由条件确定方程中 ②定义法:由已知条件判断出动点的轨迹是什么图形,然后再根据定义确定方程。

6.共焦点的椭圆标准方程形式上的差异共焦点,则c 相同。

与椭圆12222=+b y a x )0(>>b a 共焦点的椭圆方程可设为12222=+++mb y m a x )(2b m ->,此类问题常用待定系数法求解。

7.判断曲线关于x 轴、y 轴、原点对称的依据:① 若把曲线方程中的x 换成x -,方程不变,则曲线关于y 轴对称; ② 若把曲线方程中的y 换成y -,方程不变,则曲线关于x 轴对称;③ 若把曲线方程中的x 、y 同时换成x -、y -,方程不变,则曲线关于原点对称。

8.如何求解与焦点三角形△PF 1F 2(P 为椭圆上的点)有关的计算问题?思路分析:与焦点三角形△PF 1F 2有关的计算问题时,常考虑到用椭圆的定义及余弦定理(或勾股定理)、三角形面积公式2121sin 2121PF F PF PF S F PF ∠⨯⨯=∆相结合的方法进行计算解题。

将有关线段2121F F PF PF 、、,有关角21PF F ∠ (21PF F ∠≤21BF F ∠)结合起来,建立21PF PF +、21PF PF ⨯之间的关系.9.如何计算椭圆的扁圆程度与离心率的关系? 长轴与短轴的长短关系决定椭圆形状的变化。

离心率)10(<<=e ace ,因为222b a c -=,0>>c a ,用b a 、表示为)10()(12<<-=e ab e 。

显然:当a b 越小时,)10(<<e e 越大,椭圆形状越扁;当ab越大,)10(<<e e 越小,椭圆形状越趋近于圆。

(一)椭圆及其性质1、椭圆的定义(1)平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1 F 2|)的点的轨迹叫做椭圆,这两个定点叫椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

(2)一动点到定点的距离和它到一条定直线的距离的比是一个)1,0(内常数e ,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率 2、椭圆的标准方程3、椭圆的参数方程)(sin cos 为参数ϕϕϕ⎩⎨⎧==b y a x4、离心率: 椭圆焦距与长轴长之比a c e =⇒2)(1abe -= 10<<e 椭圆的准线方程左准线c a x l 21:-= 右准线ca x l 22:=(二)、椭圆的焦半径椭圆的焦半径公式:(左焦半径)01ex a r += (右焦半径)02ex a r -= 其中e 是离心率 焦点在y 轴上的椭圆的焦半径公式:⎩⎨⎧-=+=0201ey a MF ey a MF( 其中21,F F 分别是椭圆的下上焦点) (三)、直线与椭圆问题(韦达定理的运用)1、弦长公式:若直线b kx y l +=:与圆锥曲线相交与A 、B 两点,),(),,2211y x B y x A (则 弦长221221)()(y y x x AB -+-=221221)()(kx kx x x -+-= 2121x x k -+=2122124)(1x x x x k -++=例1. 已知椭圆及直线y =x +m 。

(1)当直线和椭圆有公共点时,求实数m 的取值范围; (2)求被椭圆截得的最长弦所在的直线的方程。

2、已知弦AB 的中点,研究AB 的斜率和方程AB 是椭圆x 2a 2+y 2b 2=1(a >b >0)的一条弦,中点M 坐标为(x 0,y 0),则AB 的斜率为-b 2x 0a 2y 0.运用点差法求AB 的斜率,设A (x 1,y 1),B (x 2,y 2).A 、B 都在椭圆上,∴⎩⎨⎧x 1 2a 2+y 12b 2=1,x 2 2a 2+y 22b 2=1,两式相减得x 1 2-x 2 2a 2+y 1 2-y 22b 2=0,∴x 1-x 2x 1+x 2a 2+y 1-y 2y 1+y 2b 2=0, 即y 1-y 2x 1-x 2=-b 2x 1+x 2a 2y 1+y 2=-b 2x 0a 2y 0.故k AB =-b 2x 0a 2y 0.例、过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。

相关文档
最新文档