不等式与不等式组专题复习
中考数学复习专题三-不等式和不等式组(解析版)
中考专题复习知识点1、不等式的解:能使不等式成立的未知数的值叫做不等式的解。
知识点2、不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集。
知识点3、不等式的解集在数轴上的表示: (1)x >a :数轴上表示a 的点画成空心圆圈,表示a 的点的右边部分来表示;(2)x <a :数轴上表示a 的点画成空心圆圈,表示a 的点的左边部分来表示;(3)x ≥a :数轴上表示a 的点画成实心圆点,表示a 的点及表示a 的点的右边部分来表示;(4)x ≤a :数轴上表示a 的点画成实心圆点,表示a 的点及表示a 的点的左边部分来表示。
在数轴上表示大于3的数的点应该是数3所对应点的右边。
画图时要注意方向(向右)和端点(不包括数3,在对应点画空心圆圈)。
如图所示:同样,如果某个不等式的解集为x ≤-2, 那么它表示x 取-2左边的点 画实心圆点。
如图所示:总结:在数轴上表示不等式解集的要点: 小于向左画,大于向右画;无等号画空心圆圈,有等号画圆点。
知识点4、不等式的性质:(1)不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
知识点5、一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的不等式,叫做一元一次不等式。
知识点6、解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)未知数的系数化为1。
通过这些步骤可以把一元一次不等式转化为x >a (x ≥a )或x <a (x ≤a )的形式。
知识点7、一元一次不等式组:由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。
知识点8、知识点9、解不等式组:求不等式组解集的过程叫做解不等式组。
知识点10、解一元一次不等式组的一般步骤:先分别解不等式组中的各个不等式,然后再求出这几个不等式解集的公共部分。
(中考复习)第10讲 不等式与不等式组
解不等式.
基础知识 · 自主学习 题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考
2.不等式的基本性质:
加上(或减去) 同一个数或同一个整式, (1)不等式两边都_______________ 不等式仍然成立;若a>b,则a±c>b±c. 乘以(或除以) 同一个________ 正数 , (2)不等式两边都_______________ 不等式 a b 仍然成立;若 a>b,c>0,则 ac>bc, > . c c 乘以(或除以) 同一个________ 负数 , (3)不等式两边都_______________ 改变不 等号的方向, 改变后不等式仍能成立; 若 a>b, c<0, 则 ac<bc, a b < . c c
< 3 x-3, x+1 【例 3】 2 ( 0 1 3 · 杭州)当 x 满足条件1 时, 求 1 2(x-4)<3(x-4) 出方程 x2-2x-4=0 的 根 .
< 3 x- 3, x+ 1 2<x, 解:由1 求得 则 2<x<4. 1 x<4, 2( x- 4) <3(x-4) 解方程 x2- 2x-4= 0 可得 x1=1+ 5,x2=1- 5, ∵ 2< 5< 3, ∴ 3< 1+ 5< 4,符合题意. ∴方程 x2- 2x-4= 0 的 根 为
图9-5 解:2(x+1)≥x+4,
2x+2≥x+4,
x≥2.
在数轴上表示如图9-6所示:
图9-6 1,2,3 . 2.(2013· 白银)不等式2x+9≥3(x+2)的正整数解是__________
初四数学不等式及不等式组专题复习三
1.下列说法,错误的是( )A 、3x 3-<的解集是1x -<B 、-10是10x 2-<的解C 、2x <的整数解有无数多个D 、2x <的负整数解只有有限多个2.若,a a >-则a 必为( )A 、负整数B 、 正整数C 、负数D 、正数3.设“○”“△”“□”表示三种不同的物体,现用天平称了两次,情况如图所示,那么“○”“△”“□”质量从大到小的顺序排列为( )A 、□○△B 、 □△○C 、 △○□D 、△□○4.若a <b <0,则下列答案中,正确的是( )A 、a <bB 、a >bC 、2a <2bD 、a 3>b 25.关于x 的方程a x 4125=+的解都是负数,则a 的取值范围( )A 、a >3B 、a <3-C 、a <3D 、a >3-6. a |a |+的值一定是( ).(A)大于零 (B)小于零 (C)不大于零 (D)不小于零7. 若由x < y 可得到ax > ay ,应满足的条件是( ).(A) a ≥0 (B) a ≤0 (C) a >0 (D) a <08. 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A) a <0 (B) a >-1 (C) a <-1 (D) a <19.不等式组⎩⎨⎧>+<-02x 01x 的解集是( ) A 、12<<-x B 、1x < C 、x 2<- D 、无解10.不等式组2130x x ≤⎧⎨+≥⎩的解在数轴上可以表示为( )A、、、11.不等式组⎩⎨⎧->-≥-31x 20x 1 的整数解是( ) A 、-1,0 B 、-1,1 C 、0,1 D 、无解12.九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ).(A)2人 (B)3人 (C)4人 (D)5人13. 某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是xkm ,那么x 的最大值是( ).(A)11 (B)8 (C)7 (D)514.当x 时,代数式52+x 的值不大于零15.若x <1,则22+-x 0(用“>”“=”或“”号填空)16.不等式x 27->1,的正整数解是17.不等式x ->10-a 的解集为3x <,则a18.有解集3x 2<<的不等式组是(写出一个即可)19.若不等式组⎩⎨⎧>>3x a x 的解集为3x >,则a 的取值范围是 20.关于x 的不等式组⎩⎨⎧<->+25a 332b x x 的解集为-1<x <1,则ab____________。
2023年九年级数学中考复习《不等式和不等式组》分类专题集训(附答案)
2023年九年级数学中考复习《不等式和不等式组》分类专题集训(一)不等式过关训练➢典例精讲1.如果关于x的不等式(a+2020)x﹣a>2020的解集为x<1,那么a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<20202.已知关于x的不等式(a+3b)x>a﹣b的解集为x<﹣,则关于x的一元一次不等式bx﹣a>0的解集为.3.若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b的解集是.4.已知关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,则满足条件的整数a的个数是()A.3个B.4个C.5个D.6个5.若关于x的不等式7x+9>2x+a的负整数解为﹣2,﹣1,则a的取值范围是.➢课后训练1.已知关于x的不等式(2﹣a)x>3的解集为,则a的取值范围是()A.a>0B.a<0C.a>2D.a<22.若关于x的不等式(2m﹣n)x﹣m>5n的解集为x<,则关于x的不等式(m﹣n)x>m+n的解集为()A.x<B.x>C.x>5D.x<53.已知关于x的不等式3(a﹣b)x+a﹣5b>0的解集为x<1,则关于x的不等式ax≥4b的解集为.4.若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<125.若关于x的不等式2x﹣m≥0的负整数解为﹣1,﹣2.﹣3.则m的取值范围是.(二)不等式组过关训练➢典例精讲一、两同问题1.若关于x的不等式组的解集为x≥2,则m的取值范围是()A.m≥﹣2B.m≤2C.m<2D.m=22.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤2二、有解、无解问题3.若不等式组有解,则a的取值范围是()A.a≤B.a≤4C.1≤a≤4D.a≥4.若不等式组无解,则m的取值范围为()A.m≤8B.m<8C.m≥8D.m>8三、整数解问题5.关于x的不等式组的解中恰有4个整数解,则a的取值范围是()A.18≤a≤19B.18≤a<19C.18<a≤19D.18<a<196.关于x的不等式组有且只有4个整数解,则常数m的取值范围是.7.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.2C.D.8.(2019•沙坪坝区校级二模)若数m使关于x的一元一次不等式组至多有4个整数解,则非负整数m的值之和是()A.6B.10C.15D.219.(2022•渝中区校级模拟)如果关于x的不等式组有且仅有2个奇数解,则符合条件的所有整数m的和是()A.15B.21C.28D.3610.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是.➢课后训练一、两同问题1.不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤32.若关于x的不等式组的解集是x≤a,则a的取值范围是()二、有解、无解问题3.若不等式组有解,则实数a的取值范围是()A.a<﹣36B.a≤﹣36C.a≥﹣36D.a>﹣364.若关于x的不等式组无解,则a的取值范围是.三、整数解问题5.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3B.4C.6D.16.关于x的不等式组恰有三个整数解,那么m的取值范围为()A.﹣1<m≤0B.﹣1≤m<0C.0≤m<1D.0<m≤17.关于x的不等式组的解集中至少有7个整数解,则整数a的最小值是()A.4B.3C.2D.18.(2022秋•沙坪坝区校级月考)若数m使关于x的一元一次不等式组至多5个整数解,则则整数m的最大值是()A.7B.8C.9D.109.(2022秋•渝中区校级月考)若数a使关于y的不等式组恰好有两个奇数解,则符合条件的所有整数a的和是()A.7B.8C.9D.1010.若关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是.(三)方程与不等式组综合过关训练➢典例精讲1.(2020春•渝中区校级期末)关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A.5B.2C.4D.62.若数a使关于x的方程=﹣﹣1有非负数解,且关于y的不等式组恰好有两个偶数解,则符合条件的所有整数a的和是()A.﹣22B.﹣18C.11D.123.(2021秋•渝中区校级期末)整数a使得关于x,y的二元一次方程组的解为正整数(x,y均为正整数),且使得关于x的不等式组无解,则所有满足条件的a的和为()A.9B.16C.17D.304.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则符合条件的所有整数m的和是()A.﹣2B.2C.6D.10➢课后训练1.(2022秋•九龙坡区校级月考)若整数a使关于x的方程x+2a=1的解为负数,且使关于的不等式组无解,则所有满足条件的整数a的值之和是()A.5B.7C.9D.102.(2022秋•沙坪坝区校级期末)若关于x的一元一次不等式组的解集为x≥,且关于y 的方程3y﹣2=的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.103.(2021春•沙坪坝区期末)关于x、y的方程组的解是正整数,且关于t的不等式组有解,则符合条件的整数m的值的和为.参考答案与试题解析➢典例精讲1.如果关于x的不等式(a+2020)x﹣a>2020的解集为x<1,那么a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<2020【解答】解:∵不等式(a+2020)x﹣a>2020的解集为x<1,∴a+2020<0,解得,a<﹣2020,故选:B.2.已知关于x的不等式(a+3b)x>a﹣b的解集为x<﹣,则关于x的一元一次不等式bx﹣a>0的解集为x<﹣.【解答】解:∵不等式(a+3b)x>a﹣b的解集是x<﹣,∴a+3b<0,即a<﹣3b,∵,即8a=﹣12b,,∵a+3b<0,2a+3b=0,则a>0,b<0,∴bx﹣a>0的解集为x<﹣.故答案为:x<﹣.3.若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b的解集是x >﹣1.【解答】解:ax<﹣bx+b,(a+b)x<b,∵关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,∴=,且a+b<0,∴a=b<0,∴ax>2bx+b变为﹣bx>b,∴x>﹣1,故答案为x>﹣1.4.已知关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,则满足条件的整数a的个数是()A.3个B.4个C.5个D.6个【解答】解:解不等式3x﹣2a<4﹣5x得:x<,∵关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,是1,2,3,∴3<≤4,解得:10<a≤14,∴整数a可以是11,12,13,14,共4个,故选:B.5.若关于x的不等式7x+9>2x+a的负整数解为﹣2,﹣1,则a的取值范围是﹣6≤a<﹣1.【解答】解:解不等式得:x>,∵负整数解是﹣1,﹣2,∴﹣3≤<﹣2.∴﹣6≤a<﹣1.故答案为:﹣6≤a<﹣1.➢课后训练1.已知关于x的不等式(2﹣a)x>3的解集为,则a的取值范围是()A.a>0B.a<0C.a>2D.a<2【解答】解:根据题意得:2﹣a<0,解得:a>2.故选:C.2.若关于x的不等式(2m﹣n)x﹣m>5n的解集为x<,则关于x的不等式(m﹣n)x>m+n的解集为()A.x<B.x>C.x>5D.x<5【解答】解:不等式(2m﹣n)x﹣m>5n,变形得:(2m﹣n)x>5n+m,根据已知解集为x<,得到=,且2m﹣n<0,即2m<n,整理得:4m+20n=26m﹣13n,即33n=22m,整理得:3n=2m,即m=1.5n,n<0,代入所求不等式得:0.5nx>2.5n,解得:x<5.故选:D.3.已知关于x的不等式3(a﹣b)x+a﹣5b>0的解集为x<1,则关于x的不等式ax≥4b的解集为x≤2.【解答】解:不等式移项得:3(a﹣b)x>5b﹣a,由不等式的解集为x<1,得到a﹣b<0,且=1,整理得:a<b,且4a=8b,即a=2b,∴a<0,则不等式ax≥4b变形得:x≤=2,故答案为:x≤2.4.若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<12【解答】解:移项,得:3x≤m,系数化为1,得:x≤,∵不等式的正整数解为1,2,3,∴3≤<4,解得:9≤m<12,故选:D.5.若关于x的不等式2x﹣m≥0的负整数解为﹣1,﹣2.﹣3.则m的取值范围是﹣8<m≤﹣6.【解答】解:∵2x﹣m≥0,∴2x≥m,∴x≥,∵不等式组的负整数解为﹣1,﹣2.﹣3,∴﹣4<≤﹣3,则﹣8<m≤﹣6,故答案为:﹣8<m≤﹣6.➢典例精讲一、两同问题1.若关于x的不等式组的解集为x≥2,则m的取值范围是()A.m≥﹣2B.m≤2C.m<2D.m=2【解答】解:,解x﹣m>0,得:x>m,解5﹣2x≤1,得:x≥2,∵不等式组的解集是x≥2,∴m<2,故选:C.2.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤2【解答】解:解不等式组,由①可得:x<2,由②可得:x<a,因为关于x的不等式组的解集是x<2,所以,a≥2,故选:A.二、有解、无解问题3.若不等式组有解,则a的取值范围是()A.a≤B.a≤4C.1≤a≤4D.a≥【解答】解:,解不等式①得:x≥1,解不等式②得:x≤4a,又∵不等式组有解,∴4a≥1,解得:a≥,故选:D.4.若不等式组无解,则m的取值范围为()A.m≤8B.m<8C.m≥8D.m>8【解答】解:解不等式<﹣1得:x>8,又∵不等式组无解,∴m≤8,故选:A.三、整数解问题5.关于x的不等式组的解中恰有4个整数解,则a的取值范围是()A.18≤a≤19B.18≤a<19C.18<a≤19D.18<a<19【解答】解:不等式组整理得:,解得:a﹣2<x<21,由不等式组恰有4个整数解,得到整数解为17,18,19,20,∴16≤a﹣2<17,解得:18≤a<19,故选:B.6.关于x的不等式组有且只有4个整数解,则常数m的取值范围是.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<m+5,∴原不等式组的解集为﹣1≤x<m+5,由不等式组的整数解只有4个,得到整数解为﹣1,0,1,2,∴2<m+5≤3,∴﹣2<m≤﹣故答案为﹣2<m≤﹣.7.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.2C.D.【解答】解:解不等式x﹣a≤0,得:x≤a,解不等式2x+3a≥0,得:x≥﹣a,则不等式组的解集为﹣a≤x≤a,∵不等式至少有6个整数解,则a+a≥5,解得a≥2.a的最小值是2.故选:B.8.(2019•沙坪坝区校级二模)若数m使关于x的一元一次不等式组至多有4个整数解,则非负整数m的值之和是()A.6B.10C.15D.21【解答】解:解不等式组,得﹣1<x≤,∵至多有4个整数解,<4,解得m<7;∴故满足条件的所有非负整数m的值之和为0+1+2+3+4+5+6=21,故选:D.9.(2019•渝中区校级模拟)如果关于x的不等式组有且仅有2个奇数解,则符合条件的所有整数m的和是()A.15B.21C.28D.36【解答】解:解不等式组,得:﹣<x<,∵不等式组有且仅有2个奇数解,∴-1<≤1,解得:0<m≤8,所以所有满足条件的整数m的值为1,2,3,4,5,6,7,8,和为36.故选:D.10.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是7≤a<9或﹣3≤a<﹣1.【解答】解:,∵解不等式①得:x,解不等式②得:x≤4,∴不等式组的解集为<x≤4,∵关于x的不等式组的所有整数解的和为7,∴当时,这两个整数解一定是3和4,∴,∴7≤a<9,当时,整数解是﹣2,﹣1,0,1,3和4,∴﹣3,∴﹣3≤a<﹣1,∴a的取值范围是7≤a<9或﹣3≤a<﹣1.故答案为:7≤a<9或﹣3≤a<﹣1.➢课后训练一、两同问题1.不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤3【解答】解:解不等式3(x+1)>12,得:x>3,∵不等式组的解集为x>3,∴m≤3,故选:D.2.若关于x的不等式组的解集是x≤a,则a的取值范围是()A.a≤2B.a>﹣2C.a<﹣2D.a≤﹣2【解答】解:解不等式﹣2x﹣1>3,得:x<﹣2,解不等式a﹣x≥0,得:x≤a,∵不等式组的解集为x≤a,∴a<﹣2,故选:C.二、有解、无解问题3.若不等式组有解,则实数a的取值范围是()A.a<﹣36B.a≤﹣36C.a≥﹣36D.a>﹣36【解答】解:不等式组整理得:,由不等式组有解,得到a﹣1>﹣37,解得:a>﹣36.故选:D.4.(2020春•陇西县期末)若关于x的不等式组无解,则a的取值范围是a≥﹣2.【解答】解:,解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥﹣2.故答案是:a≥﹣2.三、整数解问题5.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3B.4C.6D.1【解答】解:解不等式组得:<x<2,由关于x的不等式组恰好只有2个整数解,得﹣1≤<0,即0≤a<4,满足条件的整数a的值为0、1、2、3,整数a的值之和是0+1+2+3=6,故选:C.6.关于x的不等式组恰有三个整数解,那么m的取值范围为()A.﹣1<m≤0B.﹣1≤m<0C.0≤m<1D.0<m≤1【解答】解:,解不等式①可得x>m,解不等式②可得x≤3,由题意可知原不等式组有解,∴原不等式组的解集为m<x≤3,∵该不等式组恰好有三个整数解,∴整数解为1,2,3,∴0≤m<1.故选:C.7.关于x的不等式组的解集中至少有7个整数解,则整数a的最小值是()A.4B.3C.2D.1【解答】解:,解①得x≤2a,解②得x>﹣a.则不等式组的解集是﹣a<x≤2a.∵不等式至少有7个整数解,则2a+a>7,解得a>2.整数a的最小值是3.故选:B.8.(2019秋•沙坪坝区校级月考)若数m使关于x的一元一次不等式组至多5个整数解,则则整数m的最大值是()A.7B.8C.9D.10【解答】解:不等式组的解为,∵至多5个整数解,∴<5,∴m<,故选:B.9.(2020秋•渝中区校级月考)若数a使关于y的不等式组恰好有两个奇数解,则符合条件的所有整数a的和是()【解答】解:不等式组整理得:,解得:<y<4,由不等式组有解且恰好有两个奇数解,得到奇数解为3,1,∴﹣1≤<1,∴﹣3≤a<5,则满足题意a的值有﹣3,﹣2,﹣1,0,1,2,3,4,5四个,则符合条件的所有整数a的和是9.故选:C.10.若关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是﹣3<m≤﹣2或2<m≤3.【解答】解:解不等式+3>﹣1,得:x>﹣4.5,∵不等式组的整数解的和为﹣7,∴不等式组的整数解为﹣4、﹣3或﹣4、﹣3、﹣2、﹣1、0、1、2,则﹣3<m≤﹣2或2<m≤3,故答案为:﹣3<m≤﹣2或2<m≤3.➢典例精讲方程与不等式综合含参问题1.(2020春•渝中区校级期末)关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A.5B.2C.4D.6【解答】解:解方程3﹣2x=3(k﹣2)得x=,∵方程的解为非负整数,∴≥0,即k≤3,即非负整数k=1,3,不等式组整理得:,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,当k=0时,x=4.5,不是整数;当x=2时,k=1.5,不是整数,两个k的值不符合题意,舍去;综上,k=1,3,则符合条件的整数k的值的和为4.故选:C.2.若数a使关于x的方程=﹣﹣1有非负数解,且关于y的不等式组恰好有两个偶数解,则符合条件的所有整数a的和是()【解答】解:去分母得:3ax+3=﹣14x﹣6,解得:x=﹣,∵关于x的方程=﹣﹣1有非负数解,∴3a+14<0,∴a<﹣,不等式组整理得:,解得:<y<4,由不等式组有解且恰好有两个偶数解,得到偶数解为2,0,∴﹣2≤<﹣1,∴﹣7≤a<﹣3,则满足题意a的值有﹣7,﹣6,﹣5,则符合条件的所有整数a的和是﹣18.故选:B.3.(2019秋•渝中区校级期末)整数a使得关于x,y的二元一次方程组的解为正整数(x,y均为正整数),且使得关于x的不等式组无解,则所有满足条件的a的和为()A.9B.16C.17D.30【解答】解:解方程组得:,∵方程组的解为正整数,∴a﹣3=1或a﹣3=2或a﹣3=5或a﹣3=10,解得a=4或a=5或a=8或a=13;解不等式(2x+8)≥7,得:x≥10,解不等式x﹣a<2,得:x<a+2,∵不等式组无解,∴a+2≤10,即a≤8,综上,符合条件的a的值为4、5、8,则所有满足条件的a的和为17,故选:C.4.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则符合条件的所有整数m的和是()A.﹣2B.2C.6D.10【解答】解:解不等式>0,得:x>m,解不等式﹣x<﹣4,得:x>4,∵不等式组的解集为x>4,∴m≤4,解方程组得,∵x,y均为整数,∴m=4或m=10或m=2或m=﹣4,又m≤4,∴m=﹣4或m=4或m=2,则符合条件的所有整数m的和是2,故选:B.➢课后训练1.(2019秋•九龙坡区校级月考)若整数a使关于x的方程x+2a=1的解为负数,且使关于的不等式组无解,则所有满足条件的整数a的值之和是()A.5B.7C.9D.10【解答】解:解方程x+2a=1得:x=1﹣2a,∵方程的解为负数,∴1﹣2a<0,解得:a>0.5,∵解不等式①得:x<a,解不等式②得:x≥4,又∵不等式组无解,∴a≤4,∴a的取值范围是0.5<a≤4,∴整数和为1+2+3+4=10,故选:D.2.(2020秋•沙坪坝区校级期末)若关于x的一元一次不等式组的解集为x≥,且关于y 的方程3y﹣2=的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.10【解答】解:解不等式≤2x,得:x≥,解不等式2x+7≤4(x+1),得:x≥,∵不等式组的解集为x≥,∴≤,解得m≤5,解方程3y﹣2=,得:y=,∵方程的解为非负整数,∴符合m≤5的m的值为2和5,则符合条件的所有整数m的积为10,故选:D.3.(2019春•沙坪坝区期末)关于x、y的方程组的解是正整数,且关于t的不等式组有解,则符合条件的整数m的值的和为5.【解答】解:,①﹣②得:3y=7﹣m,解得:y=,把y=代入①得:x=,由方程组的解为正整数,得到7﹣m与8+m都为3的倍数,∴m=1,4,不等式组整理得:,即﹣1≤t≤m,由不等式组有解,得到m=1,4,综上,符合条件的整数m的值的和为1+4=5.故答案为:5.。
(中考数学真题复习)第10讲 不等式与不等式组 基础例题 附答案解析
中考数学复习不等式与不等式组一、选择题1.(2013·广东)不等式5x -1>2x +5的解集在数轴上表示正确的是(D)图9-12.(2013·绵阳)设“▲”、“●”、“■”分别表示三种不同的物体,现用天平称两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为(C)图9-2A .■、●、▲B .▲、■、●C .■、▲、●D .●、▲、■3.若a <b <0,则下列式子:①a +1<b +2;②a b>1;③a +b <ab ;④1a <1b中,正确的有(C)A .1个B .2个C .3个D .4个4.(2012·攀枝花)下列说法中,错误的是(C)A .不等式x <2的正整数解中有一个B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x >-3D .不等式x <10的整数解有无数个二、填空题5.(2013·烟台)≥0,的最小整数解是__x =3__.6.(2013·宁夏)点P (a ,a -3)在第四象限,则a 的取值范围是__0<a <3__.7.(2013·内江)一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组≥0,的整数,则这组数据的平均数是__5__.8的解集是-1<x <1,则(a +b )2012=__1__.三、解答题9.解不等式组:(1)(2013·北京解:由3x >x -2,得x >-1,由x+13>2x ,得x <15,∴-1<x <15.(2)(2013·毕节≤3(x+2),2x-1+3x 2<1,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.≤3(x+2),①2x-1+3x 2<1,②,由①得:x ≥-1,由②得:x <3,不等式组的解集为:-1≤x <3.在数轴上表示如图9-3所示:图9-3不等式组的非负整数解为2,1,0.10.(2013·河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2((2-5)+1=2(-3)+1=-6+1=-5(1)求(-2)⊕3的值;解:(-2)⊕3=-2×(-2-3)+1=-2×(-5)+1=10+1=11.(2)若3⊕x的值小于13,求x的取值范围,并在图9-4所示的数轴上表示出来.图9-4解:∵3⊕x<13,∴3(3-x)+1<13,9-3x+1<13,-3x<3,x>-1,在数轴上表示如图9-5所示.图9-5B组能力提升11.(2012·襄阳)≤0有解,则a的取值范围是(B)A.a≤3B.a<3C.a<2D.a≤212的解集为x>3,则m的取值范围是__m≤3__.13.(2013·乐山)对非负实数x“四舍五入”到个位的值记为<x>,即当n为非负整数时,若n-12≤x<n+12,则<x>=n,如<0.46>=0,<3.67>=4.给出下列关于<x>的结论:①<1.493>=1;②<2x>=2<x>;③若<12x-1>=4,则实数x的取值范围是9≤x<11;④当x≥0,m为非负整数时,有<m+2013x>=m+<2013x>;⑤<x+y>=<x>+<y>.其中,正确的结论有__①③④__(填写所有正确的序号).14.(2013·乐山)已知关于x、y①②的解满足不等式组≤0,求满足条件的m的整数值.解:由②-①×2得7y=4,y=47,x=m+87,y=47满足不等式组≤0,3m+247+47≤0,m+87+207>0.解得-4<m≤-43.m为整数时,m=-3或m=-2,∴满足条件的m的整数值为-3或-2. 15.(2013·十堰)定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.(1)如果[a]=-2,那么a的取值范围是__-2≤a<-1__.(2)如果x+12=3,求满足条件的所有正整数x.解:根据题意得3≤x+12<4,解得:5≤x<7,则满足条件的所有正整数为5,6.16.(2012·湛江)先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x2-4>0.解:∵x2-4=(x+2)(x-2),∴x2-4>0可化为(x+2)(x-2)>0.由有理数的乘法法则“两数相乘,同号得正”,得解不等式组①,得x>2,解不等式组②,得x<-2,∴(x+2)(x-2)>0的解集为x>2或x<-2,即一元二次不等式x2-4>0的解集为x>2或x<-2.问题:(1)一元二次不等式x2-16>0的解集为__x>4或x<-4__;解析:∵x2-16=(x+4)(x-4)∴x2-16>0可化为(x+4)(x-4)>0由有理数的乘法法则“两数相乘,同号得正”,得解不等式组①,得x>4,解不等于组②,得x<-4,∴(x-4)(x-4)>0的解集为x>4或x<-4,即一元二次不等式x2-16>0的解集为x>4或x<-4.>0的解集为__x>3或x<1__;(2)分式不等式x-1x-3>0,解析:∵x-1x-3解得x>3或x<1.(3)解一元二次不等式2x2-3x<0.解析:∵2x2-3x=x(2x-3),∴2x2-3x<0可化为x(2x-3)<0由有理数的乘法法则“两数相乘,同号得正”,得,解不等式组①,得0<x<32解不等式组②,无解,.∴不等式2x2-3x<0的解集为0<x<32。
成都市七年级数学下册第九章【不等式与不等式组】复习题(专题培优)
一、选择题1.已知关于x 的不等式组3x 05m x +⎧⎨-⎩<>的所有整数解的和为-9,则m 的取值范围( )A .3≤m <6B .4≤m <8C .3≤m <6或-6≤m <-3D .3≤m <6或-8≤m <-42.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .103.已知点()3,2P a a --关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( ). A . B . C .D .4.对于实数x ,规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x ﹣2]=﹣1,则x 的取值范围为( ) A .0<x ≤1B .0≤x <1C .1<x ≤2D .1≤x <25.不等式()2x 13x -≥的解集是( ) A .x 2≥B .x 2≤C .x 2≥-D .x 2≤-6.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数 答错题数得分 A20 0 100 B18 2 88 C14 6 64 D15570E 9 11 34下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分D .某参赛选手得分可能为负数7.整数a 使得关于x ,y 的二元一次方程组931ax y x y -=⎧⎨-=⎩的解为正整数(x ,y 均为正整数),且使得关于x 的不等式组()1211931x x a ⎧+≥⎪⎨⎪-<⎩无解,则a 的值可以为( )A .4B .4或5或7C .7D .118.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤79.若不等式组11x x m->⎧⎨<⎩无解,那么m 的取值范围是( )A .2m >B .2m <C .2m ≥D .2m ≤10.如果a 、b 两个数在数轴上的位置如图所示,则下列各式正确的是( )A .0a b +>B .0ab <C .0b a -<D .0ab> 11.在数轴上,点A 2现将点A 沿数轴做如下移动,第一次点A 向左移动4个单位长度到达点1A ,第二次将点1A 向右移动8个单位到达点2A ,第三次将点2A 向左移动12个单位到达点3A ,第四次将点3A 向右移动16个单位长度到达点4A ,按照这种规律下去,第n 次移动到点n A ,如果点n A 与原点的距离不少于18,那么n 的最小值是( ) A .7B .8C .9D .10二、填空题12.“鼠去牛来辞旧岁,龙飞凤舞庆明时.”在新年的钟声敲响之际,南开中学初2022级举行了元旦晚会.在晚会前,一、二、三班都组织购买了 A 、B 、C 三类糖果.已知一班分别购买 A 、B 、C 三类糖果各3千克、2千克、5千克,二班分别购买A 、B 、C 三类糖果各 2千克、1千克、4千克,且一班和二班购买糖果的总金额比值为3∶2.若三类糖果单价和为108元,且各单价是低于50元/千克的整数,A 与C 单价差大于25元.则三班分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为______元. 13.已知点()2,3P a a -在第四象限,那么a 的取值范围是________. 14.若关于x 的不等式组0521x m x -<⎧⎨-≤⎩的整数解有且只有4个,则m 的取值范围是:__________. 15.己知不等式组1x x a≤⎧⎨≤⎩的解集是1x ≤,则a 的取值范围是______. 16.若关于x 的不等式x a ≥的负整数解是1,2,3---,则实数a 满足的条件是________. 17.点()1,2P x x -+不可能在第__________象限.18.不等式组()2x 15x 742x 31x 33⎧+>-⎪⎨+>-⎪⎩的解集为______19.已知x ﹣y=3,且x >2,y <1,则x+y 的取值范围是_____. 20.方程组43165x y k x y -=+⎧⎨+=⎩的解x 、y 满足条件0783x y ,则k 的取值范围_____.21.若关于x 的一元一次不等式组21122x a x x ->⎧⎨->-⎩的解集是21x -<<,则a 的取值是__________.三、解答题22.某商店需要购进A 型、B 型两种节能台灯共160盏,其进价和售价如下表所示.(1)若商店计划销售完这批台灯后能获利1100元,问A 型、B 型两种节能台灯应分别购进多少盏(注:获利=售价-进价)?(2)若商店计划投入资金少于4300元,且销售完这批台灯后获利多于1260元,请问有哪几种进货方案?并直接写出其中获利最大的进货方案.23.解不等式组:23332x xxx>-⎧⎪⎨-+≥⎪⎩①②,并把它们的解集表示在数轴上.24.计划对河道进行改造,现有甲乙两个工程队参加改造施工,受条件限制,每天只能由一个工程队施工.若甲工程队先单独施工3天,再由乙工程队单独施工5天,则可以完成550米施工任务:若甲工程队先单独施工2天,再由乙工程对单独施工4天,则可以完成420米的施工任务.(1)求甲、乙两个工程队平均每天分别能完成多少米施工任务?(2)该河道全长6000米,若两队合作工期不能超过90天,乙工程队至少施工多少天?25.解下列不等式(组)(1)221 43x x+-≥(2)273125x xx+>-⎧⎪-⎨≥⎪⎩一、选择题1.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中; 步骤二:将三个相同的玻璃球放入水中,结果水没有满; 步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ). A .10 cm 3以上,20 cm 3以下 B .20 cm 3以上,30 cm 3以下 C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下2.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( ) A .3a >B .3a ≤C .3a <D .3a ≥3.若关于x 的不等式组0122x a x x ->⎧⎨->-⎩只有两个整数解,则a 的取值范围是( )A .21a -≤<-B .21a -≤≤-C .21a -<<-D .21a -<≤-4.若a +b >0,且b <0,则a 、b 、-a 、-b 的大小关系为( ) A .-a <-b <b <aB .-a <b <a <-bC .-a <b <-b <aD .b <-a <-b <a5.下列变形中,不正确的是( ) A .若a>b ,则a+3>b+3 B .若a>b ,则13a>13b C .若a<b ,则-a<-b D .若a<b ,则-2a>-2b.6.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( ) A . B .C .D .7.如果a 、b 表示两个负数,且a b >,则( ) A .1ab> B .1b a> C .11a b> D .1ab <8.不等式325132x x ++≤-的解集表示在数轴上是( )A .B .C .D .9.爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米及以外的地方).已知人员撤离速度是7米/秒,导火索燃烧速度是10.3厘米/秒,为了确保安全,这次爆破的导火索至少为( ) A .100厘米B .101厘米C .102厘米D .103厘米10.下列是一元一次不等式的是( ) A .21x >B .22x y -<-C .23<D .29x <11.某班共有48人,人人都会下棋,会下象棋的人数是会下围棋人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的有( ) A .20人B .19人C .11人或13人D .19人或20人二、填空题12.关于x 的不等式组x 5x a≤⎧⎨>⎩无解,则a 的取值范围是________.13.若()a 1x a 1-<-的解集为x 1>,则a 的取值范围是________.14.若不等式(6)6m x m ->-,两边同除以(6)m -,得1x <,则m 的取值范围为__. 15.若关于x 的不等式0x a -<的正整数解只有3个,则a 的取值范围是________________. 16.若不等式2(x+3)>1的最小整数解是方程2x-ax=3的解,则a 的值为__________________. 17.若关于x 、y 的二元一次方程组23242x y ax y a +=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________.18.定义一种法则“⊗”如下:()()a ab a b b a b >⎧⊗=⎨≤⎩,如:122⊗=,若(25)33m -⊗=,则m 的取值范围是_______.19.已知a >b ,则15a +c _____15b +c (填“>”“<”或“=”). 20.若关于x 的不等式2x ﹣m≥1的解集如图所示,则m =_____.21.方程组43165x y k x y -=+⎧⎨+=⎩的解x 、y 满足条件0783x y ,则k 的取值范围_____.三、解答题22.已知点()39,210A m m --,分别根据下列条件解决问题: (1)点A 在x 轴上,求m 的值;(2)点A 在第四象限,且m 为整数,求点A 的坐标.23.某水果店购买某种水果的进价为18元/千克,在销售过程中有10%的水果损耗,该水果店以a 元/千克的标价出售该种水果. (1)为避免亏本,求a 的最小值.(2)若该水果店以标价销售了70%的该种水果,在扣除10%损耗后,剩下的20%水果按10元/千克的价格售完.为确保销售该种水果所得的利润率不低于20%,求a 的最小值.24.解不等式组:23332x x x x >-⎧⎪⎨-+≥⎪⎩①②,并把它们的解集表示在数轴上.25.解下列一元一次不等式组:211132x x x x >-⎧⎪-⎨-<⎪⎩并把解集表示在数轴上.一、选择题1.已知关于x 的不等式组521x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( )A .a <3B .a ≥3C .a >3D .a ≤32.不等式32x x -≤的解集在数轴上表示正确的是( ) A .B .C .D .3.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是( )A .1x >-B .3x ≤C .13x -≤≤D .13x -<≤4.不等式组3213,23251223x x x x ++⎧≤+⎪⎨⎪->-⎩的解集为( )A .B .C .D .5.不等式组43x x <⎧⎨≥⎩的解集在数轴上表示为( ) A . B .C .D .6.如果a 、b 表示两个负数,且a b >,则( )A .1a b> B .1ba > C .11a b> D .1ab < 7.若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( )A .74a -<<-B .74a -≤≤-C .74a -≤<-D .74a -<≤-8.若关于x 的方程 332x a += 的解是正数,则a 的取值范围是( ) A .23a <B .23a >C .a 为任何实数D .a 为大于0的数9.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤710.不等式组36030x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .11.若不等式组11x x m->⎧⎨<⎩无解,那么m 的取值范围是( )A .2m >B .2m <C .2m ≥D .2m ≤二、填空题12.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是_________.13.已知关于x 的不等式6m x <<的整数解共有3个,则m 的取值范围为_____________. 14.已知关于x 的不等式组010x a x -≥⎧⎨->⎩的整数解共有3个,则a 的取值范围是________.15.若关于x 、y 的二元一次方程组23242x y ax y a +=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________.16.若关于x 的不等式组2()12153xm x 的解集为76x -<<-,则m 的值是______.17.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________.18.关于x 的不等式组0821x m x -≥⎧⎨->⎩有3个整数解,则m 的取值范围是______.19.若不等式25123xx+-≤-的解集中x的每一个值,都能使关于x的不等式3(1)552()x x m x-+>++成立,则m的取值范围是__________.20.已知a为整数,且340218a<+<,则a的值为____________.21.已知关于x的不等式组{321x ax-≥->-的整数解共有5个,则a的取值范围为_________.三、解答题22.解下列不等式组:(1)3(1)51124x xx x-<+⎧⎨-≥-⎩(2)3(2)4 21152x xx x--≥⎧⎪-+⎨>⎪⎩23.一个进行数值转换的运行程序如图所示,从“输入有理数x”到“结果是否大于0”称为“一次操作”(1)下面命题是真命题有①当输入x=3后,程序操作仅进行一次就停止.②当输入x=﹣1后,程序操作仅进行一次就停止.③当输入x为负数时,无论x取何负数,输出的结果总比输入数大.④当输入x<3,程序操作仅进行一次就停止.(2)探究:是否存在正整数x,使程序只能进行两次操作,并且输出结果小于12?若存在,请求出所有符合条件的x的值;若不存在,请说明理由.24.解不等式组并将不等式组的解集表示在数轴上.(1)1223(2)4xx x⎧-≤⎪⎨⎪<-+⎩(2)1232(2)3(1)1 x xx x⎧>-⎪⎨⎪-≤--⎩25.某商场计划经销A、B两种新型节能台灯共50盏,这两种台灯的进价、售价如表所示:(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少购进B种台灯多少盏?。
武汉市七年级数学下册第九章【不等式与不等式组】经典复习题(专题培优)
一、选择题1.已知关于x 的不等式组521x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( )A .a <3B .a ≥3C .a >3D .a ≤32.如图,按下面的程序进行运算,规定:程序运行到“判断结果是否大于28”为一次运算,若运算进行了3次才停止,则x 的取值范围是( )A .24x <≤B .24x ≤<C .24x <<D .24x ≤≤3.不等式组1322<4x x ->⎧⎨-⎩的解集是( )A .4x >B .1x >-C .14x -<<D .1x <-4.下列变形中,不正确的是( ) A .若a>b ,则a+3>b+3 B .若a>b ,则13a>13b C .若a<b ,则-a<-bD .若a<b ,则-2a>-2b.5.如果a b >,可知下面哪个不等式一定成立( ) A .a b ->-B .11a b< C .2a b b +> D .2a ab >6.已知01m <<,则m 、2m 、1m ( ) A .21m m m>>B .21m m m >>C .21m m m>> D .21m m m>> 7.若|65|56x x -=-,则x 的取值范围是( ) A .56x >B .56x <C .56x ≥D .56x ≤8.关于x 的不等式620x x a -≤⎧⎨≤⎩有解,则a 的取值范围是( )A .a <3B .a≤3C .a≥3D .a >39.在数轴上,点A 2A 沿数轴做如下移动,第一次点A 向左移动4个单位长度到达点1A ,第二次将点1A 向右移动8个单位到达点2A ,第三次将点2A 向左移动12个单位到达点3A ,第四次将点3A 向右移动16个单位长度到达点4A ,按照这种规律下去,第n 次移动到点n A ,如果点n A 与原点的距离不少于18,那么n 的最小值是( ) A .7B .8C .9D .1010.若x (x +a )=x 2﹣x ,则不等式ax +3>0的解集是( ) A .x >3B .x <3C .x >﹣3D .x <﹣311.已知关于x 的方程:24263a x xx --=-的解是非正整数,则符合条件的所有整数a 的值有( )种. A .3B .2C .1D .0二、填空题12.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x +⎡⎤=⎢⎥⎣⎦,则x 的取值可以是______________(任写一个). 13.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是3x my m =⎧⎨=+⎩(m 为常数),方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩的解x 、y 满足3x y +>,则m 的取值范围为______. 14.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________. 15.不等式12x -<的正整数解是_______________.16.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________.17.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____. 18.定义[]x 表示不大于x 的最大整数、{}[]x x x =-,例如[]22=,[]2.83-=-,[]2.82=,{}20=,{}2.80.8=,{}2.80.2-=,则满足{}[]2x x =的非零实数x 值为_______.19.关于x 的不等式组460930x x ->⎧⎨-≥⎩的所有整数解的积是__________.20.不等式组12153114xx -⎧≥-⎪⎨⎪-<⎩的所有正整数解为_____.21.方程组24x y kx y +=⎧⎨-=⎩的解满足1x >,1y <,k 的取值范围是:__________.三、解答题22.解下列不等式(组): (1)2132x x-≤; (2)把它的解集表示在数轴上.3(2)41213x x x x --≤⎧⎪+⎨>-⎪⎩23.不等式组3(2)4,21152x x x x --≥⎧⎪-+⎨<⎪⎩的解集为_______.24.解下列不等式或不等式组:(1)22x > (2)452(1)x x +>+(3)32123x xx +>⎧⎪⎨≤⎪⎩ (4)211841x x x x ->+⎧⎨+<-⎩25.某公交公司有A ,B 型两种客车,它们的载客量和租金如下表:湖州五中根据实际情况,计划租用A ,B 型客车共5辆,同时送2016~2017学年度八年级师生到基地校参加社会实践活动,设租用A 型客车x 辆,根据要求回答下列问题:(1)用含x 的式子填写下表:(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若2016~2017学年度八年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.一、选择题1.某商品进价为800元,出售时标价为1200元,后来由于该商品积压,准备打折销售,若要保证利润率不低于5%,则最多可打几折( ) A .6B .7C .8D .92.已知关于x 的不等式组1021x x x a -⎧<⎪⎨⎪+>⎩有且只有一个整数解,则a 的取值范围是( )A .11a -<≤B .11a -≤<C .31a -<≤-D .31a -≤<-3.不等式-3<a≤1的解集在数轴上表示正确的是( ) A . B . C .D .4.不等式组64325x x x -<⎧⎨≥+⎩的解集是( )A .x ≥5B .x ≤5C .x >3D .无解5.不等式组23x x ≥-⎧⎨<⎩的整数解的个数是( )A .4个B .5个C .6个D .无数个6.不等式组3213,23251223x x x x ++⎧≤+⎪⎨⎪->-⎩的解集为( )A .B .C .D .7.不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示正确的是( )A .B .C .D .8.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数 答错题数得分 A20 0 100 B18 2 88 C14 6 64 D15 5 70 E91134下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分D .某参赛选手得分可能为负数9.若a b <,则下列不等式中不正确的是( ) A .11+<+a bB .a b ->-C .22a b --<--D .44a b < 10.不等式组36030x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .11.如果a >b ,那么下列不等式不成立...的是( ) A .0a b ->B .33a b ->-C .1133a b >D .33a b ->-二、填空题12.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是3x my m =⎧⎨=+⎩(m 为常数),方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩的解x 、y 满足3x y +>,则m 的取值范围为______. 13.如果点P (3m +6,1+m )在第四象限,那么m 的取值范围是_____. 14.若不等式0x b x a -<⎧⎨+>⎩的解集为23x <<,则a ,b 的值分别为_______________.15.不等式组233225x x x -≥⎧⎨+>-⎩的解集是__________.16.若关于x 、y 的二元一次方程组23242x y ax y a+=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________.17.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____. 18.若a b >0,cb<0,则ac________0. 19.不等式2x+9>3(x+4)的最大整数解是_____. 20.不等式组20210x x +>⎧⎨-≤⎩的所有整数解的和是_____________21.在实数范围内规定一种新的运算“☆”,其规则是:a ☆b=3a+b ,已知关于x 的不等式:x ☆m>1的解集在数轴上表示出来如图所示.则m 的值是________ .三、解答题22.解不等式:431132x x +-->,并把解集在数轴上表示出来.23.某水果店购买某种水果的进价为18元/千克,在销售过程中有10%的水果损耗,该水果店以a 元/千克的标价出售该种水果. (1)为避免亏本,求a 的最小值.(2)若该水果店以标价销售了70%的该种水果,在扣除10%损耗后,剩下的20%水果按10元/千克的价格售完.为确保销售该种水果所得的利润率不低于20%,求a 的最小值. 24.(1)解方程组26m n m n =⎧⎨+=⎩ (2)解不等式组26015a a +<⎧⎨-≤⎩(3)计算:()33532a a a a ⋅⋅+ (4)计算:()()34++x x25.某企业在疫情复工准备工作中,为了贯彻落实“生命重于泰山,疫情就是命令,防控就是责任”的思想.计划购买300瓶消毒液,已知甲种消毒液每瓶30元,乙种消毒液每瓶18元.(1)若该企业购买两种消毒液共花费7500元,则购买甲、乙两种消毒液各多少瓶?(2)若计划购买两种消毒液的总费用不超过9600元,则最多购买甲种消毒液多少瓶?一、选择题1.某商品进价为800元,出售时标价为1200元,后来由于该商品积压,准备打折销售,若要保证利润率不低于5%,则最多可打几折( ) A .6B .7C .8D .92.不等式()31x -≤5x -的正整数解有( ) A .1个 B .2个C .3个D .4个3.不等式组20240x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .4.不等式组1030x x -≤⎧⎨+>⎩中的两个不等式的解集在同一个数轴上表示正确的是( )A .B .C .D .5.不等式组3213,23251223x x x x ++⎧≤+⎪⎨⎪->-⎩的解集为( )A .B .C .D .6.不等式组10840x x ->⎧⎨-≤⎩的解集在数轴上表示为( )A .B .C .D .7.对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次就停止了,那么x 的取值范围是( )A .822x <B .822x <C .864x <≤D .2264x <≤8.若不等式组11x x m->⎧⎨<⎩无解,那么m 的取值范围是( )A .2m >B .2m <C .2m ≥D .2m ≤9.如果a >b ,那么下列不等式不成立...的是( ) A .0a b ->B .33a b ->-C .1133a b >D .33a b ->-10.如果a 、b 两个数在数轴上的位置如图所示,则下列各式正确的是( )A .0a b +>B .0ab <C .0b a -<D .0ab> 11.已知实数x ,y ,且2<2x y ++,则下列不等式一定成立的是( ) A .x y >B .44x y ->-C .33x y ->-D .22x y > 二、填空题12.已知关于x ,y 的方程组4375x y mx y m +=⎧⎨-=-⎩的解满足不等式2x+y>8,则m 的值是_____.13.不等式21302x --的非负整数解共有__个. 14.已知关于x 的不等式组221x a b x a b -≥⎧⎨-<+⎩的解集为55x -≤<,则ab 的值为___________.15.不等式组63024x x x -⎧⎨<+⎩的解集是__. 16.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________.17.若不等式00x b x a -<⎧⎨+>⎩的解集为23x <<,则a ,b 的值分别为_______________. 18.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____. 19.把方程组2123x y m x y +=+⎧⎨+=⎩中,若未知数x y 、满足0x y +>,则m 的取值范围是_________.20.不等式2x+9>3(x+4)的最大整数解是_____.21.如果不等式组2{223x a x b +≥-<的解集是01x ≤<,那么+a b 的值为 .三、解答题22.解不等式:431132x x +-->,并把解集在数轴上表示出来.23.我国古代民间把正月正、二月二、三月三、五月五、六月六、七月七、九月九这“七重”列为吉庆日;“七”在生活中表现为时间的阶段性,比如一周有“七天”……在数的学习过程中,有一类自然数具有的特性也和“七”有关.定义:对于四位自然数n ,若其千位数字与个位数字之和等于7,百位数字与十位数字之和也等于7,则称这个四位自然数n 为“七巧数”.例如:3254是“七巧数”,因为347+=,257+=,所以3254是“七巧数”; 1456不是“七巧数”,因为167+=,但457+≠,所以1456不是“七巧数”.(1)若一个“七巧数”的千位数字为a ,则其个位数字可表示为______(用含a 的代数式表示);(2)最大的“七巧数”是______,最小的“七巧数”是______;(3)若m 是一个“七巧数”,且m 的千位数字加上十位数字的和,是百位数字减去个位数字的差的3倍,请求出满足条件的所有“七巧数”m .24.解不等式(组),并在数轴上表示解集:(1)解不等式:4x 1x 13-->; (2)解不等式组:3x x 2,12x x 1.3-≥⎧⎪+⎨>-⎪⎩ 25.定义一种新运算“a b ⊗”的含义为:当a b ≥时,a b a b ⊗=+;当a b <时,a b a b ⊗=-.例如:32325⊗=+=,()()22224-⊗=--=-. (1)填空:()21-⊗=________;(2)如果()()3x 732x 2-⊗-=,求x 的值.。
同步复习不等式与不等式组(3)
不等式与不等式组(3)七年级数学同步复习(十一)一、知识要点:1、一元一次不等式组的概念。
二、应用举例:【例1】(07南京试题)不等式组⎩⎨⎧≤--0112x x 的解集是( )。
A 、x ﹥-1 B 、x ﹤-1 C 、x ≤1 D 、-1﹤x ≤12解集在数轴表示如下:∴原不等式组的解集为:-2﹤x ≤1(大小、小大中间夹)。
【例2】不等式组⎩⎨⎧2 x kx 无解,则k 的取值范围是( )。
A 、k =2B 、k ﹥2C 、k ≤2D 、k ≥2分析:根据大大、小小无解集,可得k 是较大的数,2是较小的数(但k 可以等于2)即:k ≥2。
【例3】不等式组⎩⎨⎧≤--0112x x 的整数解是:__________________。
分析:先求出不等式组的解集-1﹤x ≤1,再从中选出整数:0和1。
3、不等式组⎩⎨⎧+++1159m x x x 的解集是x ﹥2,则m 的取值范围是( )。
A 、m ≤2B 、m ≥2C 、m ≤1D 、m ﹥14、(2007潍坊试题)幼儿园新购进的一批玩具分给小朋友,若每人分3件,那么还剩59件;若每人分5件,那么最后一个小朋友分到玩具,但不足4件,则有_____位小朋友,共有______件玩具。
5、(2007杭州试题)暑假小张一家为体验生活,自驾车外出旅游,计划每天的行驶路程相同。
如果汽车每天比原计划多走19公里,那么8天内它的行程就超过2200公里;如果汽车每天比原计划少走12公里,那么行驶同样的路程需要9天多的时间,求这辆车原计划每天行驶多少公里?班级:___________ 姓名:___________ 成绩___________ 【作业:】。
不等式与不等式组复习
c 1 若a b, 则ac bc 2 若ab>c,则b> a 3 若 3a 2a, 则a 0 (4) 若a b, 则a c b c
2 2
5
若a b a, 则b 0
6 8
若a b, c 0, 则a+c>b+c a b 若a<b,c<0,则- c c
5、南方某市的一种出租车起步价是10元(即行驶距离在 5km以内的都要付10元车费).达到或超过5km,每增加 1km,加价1.2元(不足1km部分按1km算).现在小明乘 坐这种出租车从家到学校,支付车费17.2元,你知道小明 家离学校大约多远吗?
• 由于小明支付车费17.2元,已超过了起步价10元,说明 汽车行驶的路程超过了5km,若设小明家到学校的路程 大约为xkm,则此时x既要满足10+1.2(x-5)≤17.2, 又要满足10+1.2(x-5)≥17.2-1.2,即x是两个不等式 的公共解.与方程组类似,这里可以将约束x的两个不等 式组成不等式组来表示同时满足的意义.
实际问题
设未知数,列不等式(组) 数学问题
(不等式或 不等式组)
解 不 等 式 组
检验
实际问题 的解答
数学问题的解
(不等式(组) 的解集)
1、总结不等式性质,一元一次不等式组?
4 、结合实例体会运用不等式解决实际问题 的过程。
1、判断下列命题是否正确:
1 1 7 若a b, 则 a b
x y 若 , 则2 x 3 y 3 2 不等式x 2 x 0的解集是 不等式3x-1 2(12-x)的正整数解是 x>m 若m<n,则不等式组 的解集是 x<n x m 1 若不等式组 无解,则m的取值范围是 x 2m 1 已知不等式(a+2)x+a-1<0的解集是x<2,则a= -3x+4 不等式-1 2的整数解为 5 三角形的三边长分别为3,, a 1, 则a的取值范围是 4 2
章复习 第9章 不等式与不等式组
章复习第9章不等式与不等式组一、不等式1、不等式的概念及分类⑴一般地,用________连接的式子叫做不等式.⑵不等式常分两类:①表示大小关系的不等式;②表示不等关系的不等式.注:①不等号包括“≠”(不等于),“>”(大于),“≥”(大于或等于),“<”(小于),“≤”(小于或等于).在“≥”和“≤”中,只要有一个符号成立,则该不等式成立;②含“≠”的是表示不等关系的不等式,其余的均是表示大小关系的不等式.2、不等式的解、解集与方程相似,我们把使不等式成立的________的值叫做不等式的解.能使不等式成立的未知数的________,叫做不等式的解的集合,简称解集.注:不等式的解是一个固定的值,而不等式的解集是不等式的解的集合,不等式所有的解构成不等式的解集.3、不等式的性质性质1:不等式两边加(或减)同一个____(或____),不等号的方向____,即如果ba>,那么____________.性质2:不等式两边乘(或除以)同一个____,不等号的方向不变.即如果0,>ba,那么________或________.>c性质3:不等式两边乘(或除以)同一个____,不等号的方向改变,即如果0a,那么________或________.b>c,<注:不等式的性质是不等式变形及解不等式的理论依据,其中性质3是重点,也是难点,应特别注意不等号方向的改变.总结:等式的性质与不等式的性质的比较:4、不等式的解集的表示不等式的解集可以在数轴上直观地表示出来,具体表示方法是先确定________:解集包含边界点,则边界点是实心圆点;不包含边界点,则边界点是空心圆圈;再确定________:大向右,小向左.如2≤x在数轴上的表示如下图:>x和1二、一元一次不等式1、一元一次不等式的概念类似于一元一次方程,含有____个未知数,未知数的次数是____的不等式叫做一元一次不等式,它的一般式是________或________,其中ba=/为常数.,a,2、一元一次不等式的解法及步骤解一元一次不等式的一般步骤及常用技巧与解一元一次方程类似.其一般步骤同样是:去____、去____、____、____________和____________.解一元一次不等式各个步骤的根据、做法、注意事项如下:①去分母,根据不等式基本性质2、3.做法:不等式两边乘各分母的________.注意:不等号两边的每一项都要乘各分母的最小公倍数,千万不要漏乘。
期末复习五 不等式与不等式组
【期末复习五】 不等式与不等式组【知识优梳理】1、定义:用 连接的表示大小关系的式子叫不等式。
含一个未知数且未知项的最高次数是 的不等式叫一元一次不等式; 组成一元一次不等式组;2、解和解集:在数轴上表示解集: 用实心圆点, 用空心圆圈, 向正方向; 向负方向。
考点:若不等式5x +2(a +6)>4的解集是x >2,则a 的值是 。
3、不等式的性质:① (用式子表示:若 ,则 ); ② (用式子表示:若 ,则 ); ③ (用式子表示:若 ,则 )。
5、列不等式(组)解应用题:注意到如至少、不少于、不多于、不大于、不小于等词语,选择适当的不等号,只设一个未知数,其余的未知量用所设的未知数表示;常见于方案设计问题。
【例题精分析】例1、用“<”或“>”填空:⑴若a m a n -<-,则m n ; ⑵若a <b <0,则a 1 b1; ⑶若-2a +1<-2b +1,则a b例2、如果关于x 的不等式(a +1)x >a +1的解集为x <1,则a 的取值范围为 。
例3、若不等式组2123x a x b -<⎧⎨->⎩的解集是11x -<<,则(1)(1)a b +-的值等于_______。
例4、已知关于x 的不等式组0321x a x -≥⎧⎨->-⎩的整数解共有3个,求a 的取值范围是____________.例5、⎩⎨⎧=++=+3313y x k y x 的解满足10<+<y x ,求k 的取值范围。
例6、解下列不等式(组),并把解集在数轴上表示出来: ⑴213153212x x ---≥ ⑵513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩ ⑶545112<-<-x例7、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间 8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
【同步练习】1、若不等式x x 228)2(5-≤+,则它的非负整数解为 。
一元一次不等式和一元一次不等式组--复习精讲
例:解下列不等式组:
x 3 4 (1). x 1 1 2
2(x 1) 3x 1 (3). x x 1 4 3
x 3(x 2) 4 (2).1 2x 2x 4
3x 1 5x 4 (4). 1 2 xx 3 3
例:x<5是不等式3x-5<2x的解集,则下列说 法正确的有(
A.1个; B.2个;
B )个。
C.3个;
D.4个.
①5是不等式3x-5<2x的一个解; ②0是不等式3x-5<2x的一个解; ③x<4也是不等式3x-5<2x的解集; ④所有小于4的数都是不等式3x-5<2x的解。
6、解不等式: 求不等式解集的过程
最简不等式组(a<b)
数轴表示
a
a a a b b
解集 x>b
口决 同大取大 同小取小
x>a x>b x<a x<b x>a x<b x<a x>b
b
b
x<a
a<x<b 大小小大取中间 无解
大大小小就无解
16、一元一次不等式的解法:
步骤:(1)解不等式组中的每一个不等式,分别求 出它们的解集;
(2)将每个不等式的解集在同一条数轴上表示出 来,找出它们的公共部分,注意:公共部分可能没 有,了可能是一个点。 (3)根据公共部分写出不等式级一解集,若没有公 共部分,则说明不等式组无解。
甲种货车 乙种货车 方案一
方案二 方案三
2辆
3辆 4辆
6辆
5辆 4辆
(2)方案一所需运费300×2+240×6=2040(元); 方案二所需运费300×3+240×5=2100(元);方案 三所需运费300×4+240×4=2160(元)。所以五灿 应选择方案一运费最少,最少运费是2040元。
中考数学复习之不等式与不等式组
中考数学复习之不等式与不等式组一.选择题(共5小题)1.已知x<y,则下列不等式一定成立的是()A.x﹣5>y﹣5B.﹣2x>﹣2y C.a2x<a2y D.2.在数轴上表示不等式组的解集,正确的是()A.B.C.D.3.若定义一种新的取整符号[],即[x]表示不小于x的最小整数.例如:[2.4]=3,[﹣2.9]=﹣2.则下列结论正确的是()①[﹣3.5]+[2]=﹣1;②[x]+[﹣x]=0;③方程[x]﹣x=的解有无数多个;④当﹣1≤x<1时,则[x﹣1]+[x+1]的值为0、1或﹣2;⑤若[x+3]=2,则x的取值范围﹣2<x≤﹣1.A.①②③B.①③④C.①③⑤D.①④⑤4.我们规定:[m]表示不超过m的最大整数,例如:[3.1]=3,[−3.1]=−4,则关于x和y的二元一次方程组的解为()A.B.C.D.5.若整数a使关于x的方程的解为非负数,且使关于y的不等式组的解集为y<−2,则符合条件的所有整数a的和为()A.20B.21C.27D.28二.填空题(共9小题)6.不等式组的所有整数解的和为.7.有若干糖果要分给小朋友,若每人分3个,则余8个;每人分5个,则最后一个小朋友能分到糖果但个数不足3个,则共有个小朋友.8.今年植树节时,某同学栽种了一棵树,此树的树围(树干的周长)为10cm,已知以后此树树围平均每年增长3cm,若生长x年后此树树围超过90cm,则x满足的不等式为.9.用不等式表示:“x的2倍与1的差小于3”是.10.若不等式组的解集中共有3个整数解,则a的取值范围是.11.“x的2倍与y的和不大于2”用不等式可表示为.12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>94”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是.13.现定义一种新的运算:a*b=a2﹣2b,例如:3*4=32﹣2×4=1,则不等式(﹣2)*x≥0的解集为.14.关于x的不等式组整数解有2个,则a的取值范围是.三.解答题(共6小题)15.(1)解不等式;(2)解不等式组:,并把它的解集在数轴上表示出来.16.某班计划购买两种毕业纪念册,已知购买4本手绘纪念册和1本图片纪念册共需190元,购买2本手绘纪念册和5本图片纪念册共需230元.(1)每本手绘纪念册和每本图片纪念册的价格分别为多少元?(2)该班计划购买手绘纪念册和图片纪念册共50本,总费用不超过1900元,则最少要购买图片纪念册多少本?17.解不等式组,并写出不等式组的整数解.18.求不等式组:的整数解.19.计算:(1);(2)解不等式组:.20.(1)解方程组:;(2)解不等式组:.。
七年级数学《不等式与不等式组》复习题三(附解析)
七年级数学《不等式与不等式组》复习题三(附解析)一、单选题1.甲种蔬菜保鲜适宜的温度是o o 2C~6C ,乙种蔬菜保鲜适宜的温度是o o 3C~8C ,将这两种蔬菜放在一起同时保鲜,适宜的温度是()A.o o 2C~3CB.o o 2C~8CC.o o 3C~6CD.o o 6C~8C2.老师把手中一包棒棒糖准备分给幼儿园小班的小朋友,如果每个小朋友分3个棒棒糖,那么还剩59个;如果前面每一个小朋友分5个棒棒糖,则最后一个小朋友得到了棒棒糖,但不足3个.则老师手中棒棒糖的个数为A.141B.142C.151D.1523.不等式()2216x x ->+的最大整数解是()A.-1B.-2C.0D.14.关于x 的不等式组0723x m x +<⎧⎨-≤⎩恰好有5个整数解,则m 的取值范围是()A.76m -<-≤B.76m --≤≤C.76m -<-≤D.76m -<<-5.如果关于x 的不等式组02443x mx x -⎧>⎪⎪⎨-⎪-<-⎪⎩的解集为4x >,且整数m 使得关于x y 、的二元一次方程组831mx y x y +=⎧⎨+=⎩的解为整数(x y 、均为整数),则符合条件的所有整数m 的和是()A.2-B.2C.6D.106.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数,例如:[]5.8=5,[]10=10,[]=4π--.若[]=6a -,则a 的取值范围是().A.6a ≥-B.65a -≤-<C.65a <<--D.76a -≤-<7.已知关于x 的不等式组()()255133 22x x x t x +⎧->⎪⎪⎨+⎪-<⎪⎩恰有5个整数解,则t 的取值范围是()A.1992t <<B.1992t ≤<C.1992t <≤D.1992t ≤≤8.若关于x 的方程3333ax a xx x x +=----的解为整数,且不等式组2370x x a ->⎧⎨-<⎩无解,则所有满足条件的非负整数a 的和为()A.2B.3C.7D.109.若关于x 的一元一次不等式组3210x x a ->⎧⎨->⎩恰有3个整数解,那么a 的取值范围是()A.21a -<<B.32a -<≤-C.32a -≤<-D.32a -<<-10.在解方程组2278ax by cx y +=⎧⎨+=⎩,时,甲同学正确解得32x y =⎧⎨=⎩,乙同学把c 看错了,而得到26x y =-⎧⎨=⎩,那么a ,b ,c 的值为()A.2a =-,4b =,5c =B.4a =,5b =,2c =-C.5a =,4b =,2c =D.不能确定二、填空题11.如果点P (3m -9,1-m )在第三象限,且m 为整数,则P 点的坐标是______.12.若关于x 的不等式组2223x x x m+⎧≥-⎪⎨⎪<⎩的所有整数解的和是7-,则m 的取值范围是______.13.已知实数a ,b ,满足14a b ≤+≤,01a b ≤-≤且2a b -有最大值,则82021a b +的值是__________.14.已知,关于x 的不等式组122x a a x <+⎧⎪⎨+<⎪⎩有两个整数解,则a 的取值范围是_______.15.不等式组1x x m-⎧⎨⎩><有2个整数解,则m 的取值范围是___16.若30x y z ++=,350x y z +-=,,,x y z 都为非负实数,则542M x y z =++的取值范围是_____.17.已知正数a、b、c 满足a 2+c 2=16,b 2+c 2=25,则k=a 2+b 2的取值范围为_____.18.若关于x 的不等式30{721x m x -<-≤的整数解共有4个,则m 的取值范围_____________19.已知不等式3x -0a ≤的正整数解恰是1,2,3,4,那么a 的取值范围是_________________.20.若不等式组5512x x x m ++⎧⎨-⎩<>的解集是x>1,则m 的取值范围是___________三、解答题21.记()R x 表示正数x 四舍五入后的结果,例如(2.7)3,(7.11)7(9)9R R R ===(1)()R π=_,R =(2)若1132R x ⎛⎫-= ⎪⎝⎭,则x 的取值范围是。
七年级数学《不等式与不等式组》复习题二(附解析)
七年级数学《不等式与不等式组》复习题二(附解析)一、单选题1.一元一次不等式x+1≥2的解在数轴上表示为()A.B.C.D.2.不等式组2x+3>5{3x2<4-的解等于()A.1<x<2B.x>1C.x<2D.x<1或x>2 3.不等式组的最小整数解为()A.1B.2C.5D.64.当x=3时,下列不等式成立的是()A.x+3>5B.x+3>6C.x+3>7D.x+3>85.不等式组211423xx x+>-⎧⎨+>⎩的最大正整数解为()A.1B.2C.3D.46.已知非负数x,y,z满足325234x y z-++==,设32W x y z=-+,则W的最大值与最小值的和为()A.2-B.4-C.6-D.8-7.若关于x的不等式组13231x ax-⎧≥⎪⎨⎪-≤-⎩无解,且关于y的方程2122y ay y++=--的解为正分数,则符合题意的整数a 有()A.1个B.2个C.3个D.4个8.如果对于某一特定范围内的x 的任意允许值,P =|10﹣2x |+|10﹣3x |+|10﹣4x |+|10﹣5x |+…+|10﹣10x |为定值,则此定值是()A.20B.30C.40D.509.已知关于x 、y 的方程组,给出下列说法:①当a =1时,方程组的解也是方程x +y =2的一个解;②当x -2y >8时,15a >;③不论a 取什么实数,2x +y 的值始终不变;④若25y x =+,则4a =-.以上说法正确的是()A.②③④B.①②④C.③④D.②③10.若整数a 使关于x 的不等式组125262x x x a++⎧≤⎪⎨⎪->⎩至少有4个整数解,且使关于x,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数,那么所有满足条件的整数a 的值的和是().A.-3B.-4C.-10D.-14二、填空题11.若关于x ,y 的二元一次方程组2134x y ax y -=-⎧⎨+=⎩的解满足40x y -<,则a 的取值范围是________.12.不等式组113243x x x ->⎧⎨+≥-⎩的解集是__________.13.关于x 的不等式组,22213x bx b-≥⎧⎨-≤⎩无解,则常数b 的取值范围是__________14.已知关于x 的不等式组200x x a +⎧⎨-≤⎩>的整数解共有4个,则a 的最小值为________.15.某商品的成本价为240元,出售时标价360元,由于换季,商店准备打折销售,但要保证利润不低于20%,则最多能打____折.16.对于实数x ,规定[]x 表示不大于x 的最大整数,例如[]1.21=,[]2.53-=-,若[]21x -=-,则x 的取值范围为______.17.如图,在矩形ABCD 中,16 , 6 AB cm AD cm ==.点E 从点D 出发以1 /cm s 的速度向点C 运动,以AE 为一边在AE 的右下方作正方形AEFG .同时垂直于CD 的直线MN 从点C 出发以2 /cm s 的速度向点D 运动,当直线MN 和正方形AEFG 开始有公共点时,点E 运动的时间为__________s18.若不等式(a-2)x>a-2可以变形为x<1,则a 的取值范围为_____.19.将长为4,宽为a (a 大于2且小于4)的长方形纸片按如图①所示的方式折叠并压平,剪上一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去…,若在第n 次操作后,剩下的长方形恰为正方形,则操作终止.当3n =时,a 的值为___________.20.已知关于x 的不等式组255332x t x t x +⎧->⎪⎪⎨+⎪->⎪⎩恰有三个整数解,则t 的取值范围为__________.三、解答题21.已知在平面直角坐标系中,O 为坐标原点,点A 的坐标为(),0a ,点B 的坐标为(),2b ,点C 的坐标为(),c d ,其中a、b、c 满足方程组21223a b c a b c -+=⎧⎨--=⎩.(1)若点C 到x 轴的距离为6,则d 的值为_______.(2)连接AB ,线段AB 沿y 轴方向平移得到线段A B '',平移过程中线段AB 扫过的面积为15,求平移后点B ′的纵坐标;(3)连接AB AC BC 、、,若ABC 的面积小于等于7,求d 的取值范围.22.某商场分别以每盏150元,190元的进价购进A,B 两种的护眼灯,下表是近两天的销售情况.销售日期销售数量(盏)销售收入(元)AB 第一天21680第二天341670(1)求A,B 两种护眼灯的销售价;(2)若超市准备用不超过4900元的金额购进这两种的护眼灯共30盏,求B 护眼灯最多采购多少盏?23.如图,数轴上两点A 、B 对应的数分别是-1,1,点P 是线段AB 上一动点,给出如下定义:如果在数轴上存在动点Q ,满足|PQ |=2,那么我们把这样的点Q 表示的数称为连动数,特别地,当点Q表示的数是整数时我们称为连动整数.(1)在-2.5,0,2,3.5四个数中,连动数有;(直接写出结果)(2)若k 使得方程组321431x y k x y k +=+⎧⎨+=-⎩中的x ,y 均为连动数,求k 所有可能的取值;(3)若关于x 的不等式组263332x x x x a -⎧>-⎪⎪⎨+⎪≤-⎪⎩的解集中恰好有4个连动整数,求这4个连动整数的值及a 的取值范围.24.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.25.阅读下列材料:解答“已知2x y -=,且1x >,0y <,试确定x y +的取值范围”有如下解法:解:因为2x y -=,所以2x y =+,又因为1x >,所以21y +>,所以1y >-,所以10y -<<①,同理:12x <<②,①+②得:1102y x -+<+<+,所以x y +的取值范围是02x y <+<.请仿照上述解法,完成下列问题:(1)已知3x y -=,且2x >,1y <,则x y +的取值范围是多少.(2)已知1y >,1x <-,若x y a -=,求x y +的取值范围(结果用含a 的式子表示).参考答案1.A【分析】先求出不等式的解集,依据解集在数轴上的表示法即可解答.【详解】x+1≥2,x≥2-1,x≥1.由不等号为“≥”,即在数轴上的“1”处为实心点,线的方向为右,故不等式的解集x≥1在数轴上表示为:故选A.2.A因此,解2x+3>5得,x>1;解3x-2<4得,x<2,∴此不等式组的解集为:1<x<2.故选A.3.B【解析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,从而可得最小整数解.解不等式﹣a≥﹣6,得:a≤6,解不等式>5,得:a>1,∴1<a≤6,∴该不等式组的最小整数解为24.A【分析】根据不等式的定义求解即可.【详解】A、x+3=6>5,故A符合题意;B、x+3=6,故B不符合题意;C、x+3=6<7,故C不符合题意;D、x+3=6<8,故D不符合题意;故选:A.5.C【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【详解】解不等式211x+>-得:x>−1,解不等式423+>得:x<4,x x∴不等式组的解集为−1<x<4,∴不等式组的最大正整数解为3,故选:C.6.C 【分析】首先设325234x y z k -++===,求得23x k =-+,32y k =-,45z k =-,又由x ,y ,z 均为非负实数,即可求得k 的取值范围,则可求得W 的取值范围.【详解】解:设325234x y z k -++===,则23x k =-+,32y k =-,45z k =-,x ,y ,z 均为非负实数,∴230320450k k k -+⎧⎪-⎨⎪-⎩,解得5342k ,于是323(23)2(32)(45)88W x y z k k k k =-+=-+--+-=-+,3588888824k ∴-⨯+-+-⨯+ ,即42W -- .W ∴的最大值是2-,最小值是4-,W ∴的最大值与最小值的和为6-,故选:C.7.C 【解析】分析:由不等式组无解确定a 的取值范围,由方程的解是正数确定a 的范围,结合这两个范围及方程的解是正分数确定a 的值.详解:解不等式组13231x ax-⎧≥⎪⎨⎪-≤-⎩,得31x ax≥⎧⎨≤⎩+,因为不等式组无解,所以a+3>1,则a>-2,解方程2122y ay y--++=,得y=42a-,所以4-a>0,则a<4.所以-2<a<4,因为y=42a-是分数,所以a取-2和4之间的奇数,所以a的可以取的值为-1,1,3.故选C.8.B【分析】若P为定值,则化简后x的系数为0,由此可判定出x的取值范围,然后再根据绝对值的性质进行化简.【详解】∵P=|10-2x|+|10-3x|+|10-4x|+…+|10-10x|为定值,∴求和后,P最后结果不含x,亦即x的系数为0,∵2+3+4+5+6+7=8+9+10,∴x的取值范围是:10-7x≥0且10-8x≤0或10-7x≤0且10-8x≥0,解得:54≤x≤107,∴P=(10-2x)+(10-3x)+…+(10-7x)-(10-8x)-(10-9x)-(10-10x)=60-30=30.故选B.9.A【解析】当a=1时,方程x+y=1-a=0,因此方程组的解不是x+y=2的解,故①不正确;通过加减消元法可解方程组为x=3+a,y=-2a-2,代入x-2y>8可解得a>15,故②正确;2x+y=6+2a+(-2a-2)=4,故③正确;代入x、y 的值可得-2a-2=(3+a)2+5,化简整理可得a=-4,故④正确.故选:A 10.D 【分析】根据不等式组求出a 的范围,然后再根据关于x ,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数得到26a -=-或12-,从而确定所有满足条件的整数a 的值的和.【详解】解:125262x x x a++⎧⎪⎨⎪->⎩ ,不等式组整理得:22x x a ⎧⎨>+⎩,由不等式组至少有4个整数解,得到21a +<-,解得:3a <-,解方程组206ax y x y +=⎧⎨+=⎩,得12262x a a y a ⎧=-⎪⎪-⎨⎪=⎪-⎩,又 关于x ,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数,26a ∴-=-或12-,解得4a =-或10a =-,∴所有满足条件的整数a 的值的和是14-.故选:D .11.3a >-【分析】通过已知的方程组得到43x y a -=--,再根据已知条件计算即可;【详解】∵2134x y a x y -=-⎧⎨+=⎩,∴43x y a -=--,又∵40x y -<,∴3<0a --,∴3a ->.故答案为3a ->.12.23x <≤【分析】先分别解出各不等式的解集,再求出其公共解集即可.【详解】解113243x x x ->⎧⎨+≥-⎩①②解不等式①得x>2,解不等式②得3x ≤∴不等式组的解集为23x <≤13.b>-3【分析】先求出不等式的解集,再根据不等式无解可得出b 的取值范围.【详解】22213x b x b -≥⎧⎨-≤⎩①②解不等式①得:22≥+x b 解不等式②得:312+≤b x 所以不等式组的解集为31222++≤≤b b x ∵此不等式无解,∴31222++>b b 解得:3b >-故答案为:3b >-.14.2【解析】解:200x x a +⎧⎨-≤⎩ >①②,解①得:x >﹣2,解②得:x ≤a .则不等式组的解集是﹣2<x ≤a .∵不等式有4个整数解,则整数解是﹣1,0,1,2.则a 的范围是2≤a <3.a 的最小值是2.故答案为:2.15.八【分析】设打了x折,用售价×折扣﹣进价得出利润,根据利润率不低于20%,列不等式求解.【详解】解:设打了x折,由题意得360×0.1x﹣240≥240×20%,解得:x≥8.答:最多打八折.故答案为:八.16.1≤x<2【分析】根据[x]的定义可知,x-3<[x-2]≤x-2,然后求解关于x不等式组即可.【详解】解:根据定义可知:x-1<[x]≤x∴x-3<[x-2]≤x-2∴3121 xx--⎧⎨-≥-⎩<解得:1≤x<2.故答案为1≤x<2.17.10 3【分析】首先过点F作FL⊥C于点L,证明△ADE≌△ELF,进而得出AD=EL,得出当直线MN与正方形AEFG开始有公共点时:DL+CM≥16,进而求出即可.【详解】解:如图,过点F作FL⊥CD于点L,∵在四边形AEFG中,,∠AEF=90°,AE=EF ∴∠AED+∠FEL=90°,∵∠DAE+∠AED=90°∴∠DAE=∠FEL在△ADE和△ELF中DAE FEL D FLE AE EF∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE≌△ELF(AAS)∴AD=EL=6当直线MN和正方形AEFG开始有公共点时,DL+CM≥16∴DE+EL+MC≥16,即t+6+2t≥16解得:t≥10 3所以当经过103秒时,直线MN和正方形AEFG开始有公共点故答案为:10 318.a<2【详解】根据一元一次不等式的解法和基本性质,可由(a-2)x>a-2的解集为x<1,可知a-2<0,解得a<2.故答案为a<2.19.3或125【分析】根据题意,第一次和第二次操作后,通过列不等式并求解,即可得到a 的取值范围;第三次操作后,通过列一元一次方程并求解,即可得到答案.【详解】根据题意,第一次操作,当剩下的长方形宽为:4a -,长为:a 时,得:4a a -<∴2a >当剩下的长方形宽为:a ,长为:4a -时,得:4a a<-∴2a <∵24a <<∴第一次操作,当剩下的长方形宽为:4a -,长为:a ;第二次操作,当剩下的长方形宽为:4a -,长为:()424a a a --=-时,得:424a a -<-解得:83a >∴843a <<当剩下的长方形宽为:24a -,长为:4a -时,得:424a a ->-解得:83a <∴823a <<∵在第n 次操作后,剩下的长方形恰为正方形,且3n =∴第三次操作后,当剩下的正方形边长为:4a -时,得:()4244a a a -=---解得:3a =∵8233<<∴3a =符合题意;当剩下的正方形边长为:24a -时,得:()24424a a a -=---解得:125a =∵128253<<∴125a =符合题意;∴a 的值为:3或125故答案为:3或125.20.3423t -≤<-【分析】先求出不等式组的解集,再根据不等式组恰有三个整数解,结合数轴,分4种情况分析讨论,分别求解即可.【详解】255332x t x t x +⎧->⎪⎪⎨+⎪->⎪⎩①②解不等式①得:352t x >+解不等式②得:32x t<-要使不等式组有解,则35322t t +<-,解得:47t <-此时,329295,32277t t +<->则不等式组的解集为:35322t x t+<<-要使不等式组恰有三个整数解,需分以下4种情况讨论:(1)当不等式组的解集表示在数轴上如图1时,其恰好有2,3,4三个整数解则31522293257t t ⎧≤+<⎪⎪⎨⎪<-≤⎪⎩,解得:823417t t ⎧-≤<-⎪⎪⎨⎪-≤<-⎪⎩,无公共部分,不符合题意(2)当不等式组的解集表示在数轴上如图2时,其恰好有3,4,5三个整数解则325325326t t ⎧≤+<⎪⎨⎪<-≤⎩,解得:423312t t ⎧-≤<-⎪⎪⎨⎪-≤<-⎪⎩,公共部分为3423t -≤<-(3)当不等式组的解集表示在数轴上如图3时,其恰好有4,5,6三个整数解则335426327t t ⎧≤+<⎪⎨⎪<-≤⎩,解得:4233322t t ⎧-≤<-⎪⎪⎨⎪-≤<-⎪⎩,无公共部分,不符合题意(4)当不等式组的解集表示在数轴上如图4时,其恰好有5,6,7三个整数解则32945277328t t ⎧≤+<⎪⎨⎪<-≤⎩,解得:2437522t t ⎧-≤<-⎪⎪⎨⎪-≤<-⎪⎩,无公共部分,不符合题意综上,当3423t -≤<-时,题干中的不等式组恰好有三个整数解故答案为:3423t -≤<-.21.(1)±6;(2)5或-1;(3)1825d -≤≤且45d ≠-【分析】(1)利用点到坐标轴的距离的特点即可得出结论;(2)先找出5a b -=,进而根据平移的性质,得出AA BB ''=,再用面积公式即可求出点B 平移后的坐标;(3)先得出5b a =-,2c a =+,分两种情况,利用面积的和差表示出三角形ABC 的面积,进而建立不等式求解即可.【详解】解:(1)点C 的坐标为(,)c d 且到x 轴的距离为6,6d ∴=,6d ∴=±,故答案为:6±;(2)如图1,设直线BB '交x 轴于点D .21223a b c a b c -+=⎧⎨--=⎩①②,∴①+②得,3315a b -=,5a b ∴-=,5b a ∴=-;5AD a b ∴=-=,①2-⨯②得,336a c -=-,2a c ∴-=-,2c a ∴=+,设平移后B 的对应点(,)B b m ',|2|AA BB m ''∴==-,线段AB 扫过的面积为15,()1525AA B B S AA a b m ''∴=='⨯-=-⨯ ,5m ∴=或1m =-,∴平移后B 点的坐标B '的纵坐标为5或-1.(3)如图2,①当点C 在直线AB 上方时,过点B 作BD x ⊥轴于D ,过点C 作CF x⊥轴交x 轴于E ,BA 的延长线于F ,连接BE .设EF x =,则AEFBEF ABE S S S ∆∆∆=-,∴1112722222x x ⨯⨯=⨯⨯=⨯⨯,45x ∴=,45EF ∴=,45d ∴>-,450d ∴+>,由(2)知,2c a -=,2AE ∴=,7DE AD AE ∴=+=,2BD =,(,)C c d ,||CE d ∴=,ABC ABD ACEBDEC S S S S ∆∆∆∴=--梯形111()222BD CE DE AD BD AE CE =+⨯-⨯-⨯1||)7522||]2d d =+⨯-⨯-⨯1(147||102||)2d d =+--1(45||)2d =+522d =+,ABC ∆ 的面积小于等于7,07ABC S ∆∴<≤,50272d ∴<+≤,425d ∴-<≤;②当点C 在直线AB 下方时,即:45d <-,如图3,过点B 作BD x ⊥轴于D ,过点C 作CF x ⊥轴交x 轴于E ,过点B 作BF CE ⊥于F ,ABC BCF ACEAEFB S S S S ∆∆∆=--梯形()111222CF BF AE BF BD AE CE =⋅-+⋅-⋅1[()]2CF BF AE BF BD AE CE =⋅-+⋅-⋅1[(2)7(27)22()]2d d =-⨯-+⨯--1(54)2d =--522d =--ABC ∆ 的面积小于等于7,07ABC S ∆∴<≤,50272d ∴<--≤,18455d ∴-≤<-,即:d 的取值范围为1825d -≤≤且45d ≠-.22.(1)A 为210元/盏,B 为260元/盏.(2)10盏.【详解】(1)设A 护眼灯的销售价为x 元/盏,B 护眼灯的销售价为y 元/盏,依题意,得:2680341670x y x y +=⎧⎨+=⎩,解得:210260x y =⎧⎨=⎩.答:A 护眼灯的销售价为210元/盏,B 护眼灯的销售价为260元/盏.(2)设采购m 盏B 护眼灯,则采购(30-m)盏A 护眼灯,依题意,得:150(30-m)+190m≤4900,解得:m≤10.答:B 护眼灯最多采购10盏.销售日期销售数量(盏)销售收入(元)A 品牌B 品牌第一天21680第二天34167023.(1)-2.5,2;(2)k =-8或-6或-4;(3)2,1,-1,-2,532a -≤-<【分析】(1)根据连动数的定义即可确定;(2)先表示出x ,y 的值,再根据连动数的范围求解即可;(3)求得不等式的解,根据连动整数的概念得到关于a 的不等式,解不等式即可求得.【详解】解:(1)∵点P 是线段AB 上一动点,点A 、点B 对应的数分别是-1,1,又∵|PQ |=2,∴连动数Q 的范围为:31-Q ≤≤-或13Q ≤≤,∴连动数有-2.5,2;(2)321431x y k x y k +=+⎧⎨+=-⎩①②,②×3-①×4得:=7y k --,①×3-②×2得:5x k =+,要使x ,y 均为连动数,31x -≤≤-或13x ≤≤,解得86-≤≤-k 或42k -≤≤-31y -≤≤-或13y ≤≤,解得64-≤≤-k 或108-≤≤-k ∴k =-8或-6或-4;(3)263332x x x x a -⎧>-⎪⎪⎨+⎪≤-⎪⎩解得:323x x a <⎧⎨≥+⎩,∵解集中恰好有4个解是连动整数,∴四个连动整数解为-2,-1,1,2,∴3232a -<+≤-,∴532a -<≤-∴a 的取值范围是532a -<≤-.25.912a ≤<【分析】解不等式得:3a x ≤,则三个正整数为1,2,3.则34,9123a a ≤<≤<【解析】解不等式3x -a ≤0,得:3a x ≤;因为只有三个正整数解,则34,9123a a ≤<≤<.故答案:912a ≤<.25.(1)1<x+y<5;(2)22a x y a +<+<--.【详解】(1)∵3x y -=,∴3x y =+,又∵2x >,∴321y y +>⇒>-,∴11y -<<①,同理24x <<②,①+②得1241x y -+<+<+,∴x y +的取值范围是15x y <+<;(2)∵x y a -=,∴x a y =+,又∵1x <-,∴11a y y a +<-⇒<--,∴11y a <<--,同理11a x +<<-,∴22a x y a +<+<--,∴x y +的取值范围是22a x y a +<+<--.。
一元一次不等式和一元一次不等式组专题复习
第一章:一元一次不等式和一元一次不等式组专题复习精品复习教学案(一)1、不等式:一般地,用符号 连接的式子叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个 的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的 叫做这个不等式的解的集合,简称这个不等式的解集。
4、求 过程,叫做解不等式。
1、不等式两边都加上(或减去) ,不等号的方向不变。
2、不等式两边都乘以(或除以) ,不等号的方向不变。
3、不等式两边都乘以(或除以) ,不等号的方向改变。
演练一:不等式及不等式的基本性质1、x 与3的和不小于-6,用不等式表示为 ;2、如果a >b,那么下列不等式中不成立的是( ) A . a ―3>b ―3 B . ―3a >―3b C .3a >3bD . ―a <―b 3.若0<k ,则下列不等式中不能成立的是( )A .45-<-k kB .k k 56>C .k k ->-13D .96k k ->-1、一元一次不等式的概念:一般地,不等式中只含有 未知数,未知数的次数是 ,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤: 演练二:一元一次不等式思考:在数轴上如何表示一元一次不等式的解集?1、在数轴上表示不等式x ≥-2的解集,正确的是( )A B C D2、解不等式()32121x x --≥, 3.解不等式652423-≤+-x x x 4、解不等式x x 2131--≥ 5、1312523-+≥-x x ;演练三:一元一次不等式与一元一次方程的联系1.关于x 的不等式12-≤-a x 的解集如图所示 ,则a 的取值是( )A .0B .—3C .—2D .—12.已知不等式x +8>4x +m (m 是常数)的解集是x <3,求m 。
3.关于x 的方程2x+3k=1的解是负数,则x 的取值范围是多少?1、一元一次不等式组的概念:几个一元一次不等式 ,就组成了一个一元一次不等式组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式与不等式组专题复习(一)不等式考点1:不等式的定义 知识点:1.不等式:用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式。
(像a+2≠a-2这样用“ ≠”号表示不等关系的式子也是不等式。
)2.常见不等式的基本语言有:①x 是正数,则x >0; ②x 是负数,则x <0; ③x 是非负数,则x ≥0; ④x 是非正数,则x ≤0; ⑤x 大于y ,则x -y >0; ⑥x 小于y ,则x -y <0; ⑦x 不小于y ,则x ≥ y ; ⑧x 不大于y ,则x ≤ y 。
例1.下列式子哪些是不等式?哪些不是不等式?为什么? -2<5 x+3>6 4x-2y ≤0 a-2b a+b ≠c 5m+3=8 8+4<7 考点2:不等式的解集 知识点:1.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
2.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
例1.判断下列数中哪些是不等式 的解:76 , 73 , 79 , 80, 74.9 , 75, 75.1, 90 , 60—————————————————————————————————— 变式练习:1.下列说法正确的是( )A. x=3是2x+1>5的解B. x=3是2x+1>5的唯一解C. x=3不是2x+1>5的解D. x=3是2x+1>5的解集 2.在下列表示的不等式的解集中,不包括-5的是 ( ) A.x ≤ 4 B.x ≥ -5 C.x ≤ -6 D.x ≥ -7 考点3:不等式解集在数轴上的表示方法 知识点:1.用数轴表示不等式的解集的步骤: ①画数轴; ②定边界点; ③定方向.2.用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画;有等号(≥ ,≤)画实心点, 无等号(>,<)画空心圆.例1.图中表示的是不等式的解集,其中错误的是( ) A 、x ≥-2 B 、x <1 C 、x ≠、x <0变式练习:1.不等式2≤x 在数轴上表示正确的是( )5032>x 0-1-2A .B .C .D . 2.写出数轴上所表示的解集:1) 2)所表示的解集为x 所表示的解集为x 考点4:不等式的性质 知识点:1、不等式的性质1:不等式的两边加上(或减去)同一个数(或式子),不等号的方向不变,用式子表示:如果a>b ,那么a ±c>b ±c .2、不等式的性质2:不等式的两边乘以(或除以)同一正数,不等号的方向不变,用式子表示:如果a > b ,c>0,那么ac > bc 或 a c > bc.3、不等式的性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,用式子表示:a>b ,c<0,那么,ac < bc 或a c < bc.例1.用a >b ,用“<”或“>”填空:⑴ a +2 b +2 ⑵ 3a 3b ⑶ -2a -2b ⑷ a -b 0 ⑸ -a -4 -b -4 ⑹ a -2 b -2; 变式练习: 1.不等式 -21x > 1 的解集是 ( ) A.x>-21 B.x>-2 C.x<-2 D.x< -21 2.在二元一次方程12x+y= 8中,当 y<0 时,x 的取值范围是 ( ) A. x <32 B. x >- 32 C. x > 32 D. x <- 323.设P=2()a a b c -+-,Q=2()a a ab ac --+,则P 与Q 的关系是( )A. P=QB. P >QC. P <QD. 互为相反数4.不等式 2x> 3 - x 解集为5..若关于x 的方程kx – 1 = 2x 的解为正实数,则k 的取值范围是6.解下列不等式,并将其解集在数轴上表示出来:2134560 2 1 3 4 5 6(1) x - 3 ≤-2x + 3 ; (2)213-y ≥ 6510+y - 17.已知不等式5x -2 < 6x +1的最小正整数解是方程 3x - 23ax = 6的解,求 a 的值。
(二)一元一次不等式考点1:一元一次不等式的定义 知识点:1.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
例1.下列不等式中,属于一元一次不等式的是( ) A.4>1 B.3x-24<4 C.x1<2 D.4x-3<2y-7 变式练习:1.不等式-x >3的解集是( )A.x >-3B.x <-3C.x <3D.x >3 考点2:解一元一次不等式知识点:解一元一次不等式的一般步骤:(1)去分母(根据不等式的性质2); (2)去括号(根据去括号法则); (3)移项(根据不等式的性质1 ); (4)合并(根据合并同类项的法则);(5)系数化为1(根据不等式的性质2或性质3).例1.不等式x+1>2x-4的解集是( )A.x<5B.x>5C.x<1D.x>1 变式练习:1.一元一次不等式x-1≥0的解集在数轴上表示正确的是( )2.解不等式2(x-1)-3<1,并把它的解集在数轴上表示出来.3.不等式4-3x≥2x-6的非负整数解有( )A.1个B.2个C.3个D.4个4.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是( )A.a>0B.a<0C.a>-1D.a<-1考点3:一元一次不等式的应用知识点:列不等式解应用题的一般步骤:(1)审题:弄清题意及题目中的数量关系;(2)设未知数,可直接设也可间接设;(3)列出不等式;(4)解不等式,并验证解的正确性;(5)写出答案.例1.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5 %,则至多可打()A.6折B.7折C.8折D.9折变式练习:1.某射箭运动员在一次比赛中前6次射击共击中52环,如果他要打破89环(10次射击,每次射击最高中10环)的记录,则他第7次射击不能少于( )A.6环B.7环C.8环D.9环2.有3人携带会议材料乘坐电梯,这3人的体重共210 kg.毎捆材料重20 kg.电梯最大负荷为1 050 kg,则该电梯在此3人乘坐的情况下最多能搭载__________捆材料.3.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?(三)一元一次不等式组考点1:一元一次不等式组及其解集 知识点:1.含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.(判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.)2.不等式组的解集:一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集,解不等式组就是求它的解集 设 a > b图1 图2图3 图4 总结:同大取大;同小取小;大小小大中间找,大大小小解不了例1.不等式组⎩⎨⎧≤-<+5148x x x 的解集是 ( )A. x ≤ 5B.- 3 < x ≤ 5C. 3 < x ≤ 5D.x < -3例2.不等式组的解集在数轴上可表示为( )A 、B 、C 、D 、变式练习:1.不等式组⎩⎨⎧>-<-0302x x 的正整数解是( )A.0和1B.2和3C.1和3D.1和22.在平面直角坐标系中,若点P (m - 3 ,m+1)在第二象限,则m 的取值范围是 ( )A.-1 < m < 3B.m > 3C.m < - 1D.m > -13.不等式组⎩⎨⎧+>+<+1159m x x x 的解集是 x > 2 ,则m 的取值范围是 ( )A.m ≤ 2B.m ≥ 2C.m ≤ 1D.m > 14.在平面直角坐标系中,若点P ()421--x x ,在第四象限,则x 的取值范围是( )A .1>xB .2<xC .21<<xD .无解5.解不等式组,并把解集在数轴上表示出来(1) ⎩⎨⎧+<->-2241x x x (2) ⎪⎩⎪⎨⎧>≤--x x x x 221-58)23(6.若关于x 的不等式组⎪⎩⎪⎨⎧++>++>++.3)14453;0312a x a x x x (恰有三个整数解,求实数a 的取值范围.考点2:一元一次不等式组的应用 知识点:列不等式解应用题的基本步骤:①审题;②设未知数;③列不等式;④解不等式;⑤检验并写出答案.例1.一种灭虫药粉30kg ,含药率是 ,现在要用含药率较高的同种灭虫药粉50kg 和它混合,使混合后含药率大于30%而小于35%,则所用药粉的含药率x 的范围是( )A .15%<x<28%B .15%<x<35%C .39%<x<47%D .23%<x<50%变式练习:1.韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A、B两个出租车队,A队比B队少3辆车,若全部安排乘A队的车,每辆坐5人,车不够,每辆坐6人,有的车未满;若全部安排B队的车,每辆车4人,车不够,每辆坐5人,•有的车未满,则A队有出租车()A.11辆B.10辆C.9辆D.8辆2.把价格为每千克20元的甲种糖果8千克和价格为每千克18元的乙种糖果若干千克混合,要使总价不超过400元,且糖果不少于15千克,所混合的乙种糖果最多是多少?最少是多少?3.某商店需要购进甲、乙两种商品共160件,其进价的售价如下表(注:获利= 售价 - 进价)若商店计划销售完这批商品后,能获得1100元,问甲、乙两种商品应分别购进多少件?若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案。