第10讲一次函数-课前准备

合集下载

第10讲 一次函数

第10讲  一次函数
考点·梳理知识点
2019·数学·中考
第10讲 一次函数
总目录
回首页
课前准备
回归教材
人教版:八下第十九章P86~P109. 北师版:八上第四章P79~P101、 第五章P123~128.
2019·数学·中考
第10讲 一次函数
总目录
回首页
课前准备
思维导图
2019·数学·中考
第10讲 一次函数
总目录
D

[解析]∵一次函数y=-x-1中k=-1<0,∴y随x的增大而减 小.又y1<y2<y3,∴x1>x2>x3.故选D.
2019·数学·中考
第10讲 一次函数
总目录
回首页
课堂讲义
焦点1
一次函数的图象和性质
变式训练
1.已知P1(x1,y1),P2(x2,y2)是一次函数y=1/3x+2图
象上的两点,下列判断中,正确的是(
2019·数学·中考
第10讲 一次函数
总目录
回首页
课前准备
考点3
用待定系数法求一次函数表达式
2.常见类型 (1)已知两点坐标确定表达式; (2)已知两组函数对应值确定表达式;
(3)通过直线与平移规律确定函数表达式.
2019·数学·中考
第10讲 一次函数
总目录
回首页
课前准备
考点3
用待定系数法求一次函数表达式
0时,求自变量x的值.
2019·数学·中考
第10讲 一次函数
总目录
回首页
课前准备
考点5
用函数观点看方程(组)与不等式
2.一次函数与一元一次不等式 解关于x的一元一次不等式kx+b>0或kx+b< 0(k≠0)相当于某个一次函数y=kx+b的函数值大于

一次函数性质市公开课获奖教案省名师优质课赛课一等奖教案

一次函数性质市公开课获奖教案省名师优质课赛课一等奖教案

一次函数性质教案一、教学目标通过本节课的教学,学生应能够:1. 理解一次函数的定义和性质。

2. 能够根据给定的函数式确定一次函数的图像。

3. 掌握一次函数的斜率和截距的计算方法。

4. 能够应用一次函数的性质解决实际问题。

二、教学重点与难点教学重点:一次函数的定义、性质和应用。

教学难点:一次函数斜率和截距的计算方法。

三、教学准备教师准备:课件、黑板、书籍等。

学生准备:课本、笔记本。

四、教学过程1. 导入引入:通过提问激发学生思考。

教师:大家知道什么是一次函数吗?一次函数有哪些性质?学生:一次函数是形如y = ax + b的函数,性质有斜率和截距等。

教师:非常好!那么今天我们就来学习一次函数的性质和应用。

2. 理论讲解(1)一次函数的定义教师:一次函数是指具有形如y = ax + b的函数,其中a和b都是常数,且a≠0。

请注意,a的值决定了函数的斜率,b的值决定了函数的截距。

接下来,我们分别来讲解一次函数的斜率和截距。

(2)斜率的计算方法教师:一次函数的斜率是指函数图像上任意两点间的纵坐标变化量与横坐标变化量的比值。

具体计算方法如下:设直线上两点A(x1, y1)和B(x2, y2),则斜率k = (y2 - y1) / (x2 -x1)。

特别地,当x2 = x1时,斜率为0。

(3)截距的计算方法教师:一次函数的截距是指函数图像与坐标轴的交点。

具体计算方法如下:当x = 0时,y = a * 0 + b = b,因此截距为b。

3. 实例讲解教师:接下来,我们通过一些实例来加深对一次函数斜率和截距的理解。

请大家仔细观察以下例题。

例题1:已知一次函数y = 3x + 2,求其斜率和截距。

解析:根据一次函数的定义和性质,我们可以得知斜率为3,截距为2。

例题2:已知一次函数的图像过点(1, -1),斜率为2,求函数的表达式。

解析:根据斜率的计算方法,我们可以得到函数为y = 2x + b。

将点(1, -1)代入得到-1 = 2 * 1 + b,解得b = -3,因此函数表达式为y = 2x - 3。

第10讲-一次函数的图象与性质(课件)-2024年中考数学一轮复习讲练测(全国通用)全文编辑修改

第10讲-一次函数的图象与性质(课件)-2024年中考数学一轮复习讲练测(全国通用)全文编辑修改


C.一、三、四
D.二、三、四
【详解】解:∵正比例函数 = ( ≠ 0)的函数值随的增大而减小,
∴ < 0,∴− > 0,2 < 0,
∴一次函数 = − + 2的图象所经过第一,三,四象限,故选:C.
【对点训练1】(2022·河南南阳·统考三模)若一元二次方程x2−4x+4m=0有两个相等的实数根,则
y=kx+b(k≠0)探索并理解k>0和k<0时图象的变
化情况.
➢ 会运用待定系数法确定一次函数的表达式.
稿定PPT
命题预测
一次函数的图象与性质是中考数学中比较重要
的一个考点,也是知识点牵涉比较多的考点.各
地对一次函数的图象与性质的考察也主要集中在
一次函数表达式与平移、图象的性质、图象与方
程不等式的关系以及一次函数图象与几何图形面
y=kx+b中b=0时,y=kx,所以说正比例函数是一种特殊的一次函数.
一次函数的一般形式:y=kx+b(k,b是常数,k≠0).
考点一 一次函数的相关概念
1. 一次函数一般形式的特征:1)k≠0; 2)x的次数为1; 3)常数b可以取任意实数.
2. 正比例函数是一次函数,但是一次函数不一定是正比例函数.
y随x的增大而减少
y
y
y
y
y
图象
x
O
经过象限
与y轴交点位置
x
O
x
x
O
O
b>0
b=0
b<0
b>0
一、二、三
一、三
一、三、四
一、二、四
y
x
O
b=0

一次函数的图像和性质教案

一次函数的图像和性质教案

一次函数的图像和性质教案一、教学目标1. 让学生理解一次函数的概念,掌握一次函数的表示方法。

2. 让学生能够绘制一次函数的图像,理解图像的性质。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学重点1. 一次函数的概念及表示方法。

2. 一次函数图像的性质。

三、教学难点1. 一次函数图像的性质的理解和应用。

四、教学准备1. 教学课件或黑板。

2. 练习题。

五、教学过程1. 引入:通过生活中的实例,如购物时商品的价格,引出一次函数的概念。

2. 讲解:讲解一次函数的定义,举例说明一次函数的表示方法,如y=2x+3。

3. 演示:通过课件或黑板,演示一次函数的图像,让学生观察图像的形状和特点。

4. 讲解:讲解一次函数图像的性质,如直线、斜率、截距等。

5. 练习:让学生绘制一些一次函数的图像,并分析其性质。

7. 作业:布置一些有关一次函数图像和性质的练习题,巩固所学知识。

8. 课后反思:教师对本节课的教学进行反思,看学生对一次函数图像和性质的理解程度,为下一节课的教学做好准备。

六、教学拓展1. 引导学生思考:一次函数在实际生活中的应用,如交通费用计算、物体运动速度与时间的关系等。

2. 让学生尝试解决一些与一次函数相关的生活问题,培养学生的应用能力。

七、课堂小结2. 强调一次函数在实际生活中的应用,激发学生学习兴趣。

八、课后作业1. 完成练习册上的一次函数相关习题。

2. 选择一个生活中的实例,运用一次函数的知识进行分析和解答。

九、教学反思1. 教师反思本节课的教学效果,观察学生对一次函数的理解程度和运用能力。

2. 根据学生的实际情况,调整教学方法和策略,为下一节课的教学做好准备。

十、教学评价1. 对学生的课堂表现、作业完成情况进行评价,了解学生对一次函数知识的掌握程度。

2. 通过课后访谈、问卷调查等方式,了解学生对一次函数图像和性质的理解程度及应用能力。

3. 根据评价结果,针对学生的薄弱环节进行有针对性的辅导,提高学生的数学素养。

一次函数应用习题课教案人教版

一次函数应用习题课教案人教版
2.拓展要求:
-鼓励学生利用课后时间进行自主学习和拓展,加深对一次函数应用的理解。
-学生可以选择阅读材料进行深入阅读,理解一次函数在实际生活中的应用。
-学生可以选择观看视频资源,通过视频了解一次函数的图像解析和实际应用。
-学生可以尝试解决一些实际问题,运用一次函数的知识进行建模和求解。
-学生可以与同学进行讨论和交流,分享自己的理解和解决问题的方法。
2.4实物教具:使用实物教具,如直尺、三角板等,让学生直观地了解一次函数的图像特点,增强学生的空间想象力。
2.5练习软件:运用练习软件,如在线习题库,让学生在课堂上实时检测自己的学习效果,及时巩固知识点。
2.6教学反馈:通过教学反馈,了解学生在学习过程中的需求和困惑,及时调整教学策略,提高教学效果。
2.学生的学习兴趣、能力和学习风格:八年级的学生对数学应用题通常比较感兴趣,特别是那些与实际生活相关的问题。他们在解决数学问题时,通常更倾向于直观和形象化的方法。在学习风格上,他们可能更习惯于通过实践和互动来学习,而不是仅仅通过理论知识的讲解。
3.学生可能遇到的困难和挑战:在应用一次函数解决实际问题时,学生可能会遇到以下困难:
2.7评价机制:建立合理的评价机制,如学生互评、教师评价等,鼓励学生积极参与课堂活动,提高学生的自主学习能力。
通过以上教学方法与手段的运用,旨在提高本节课的教学质量,激发学生的学习兴趣,培养学生的数学建模能力和实际问题解决能力。
教学流程
(一)课前准备(预计用时:5分钟)
学生预习:
发放预习材料,引导学生提前了解一次函数的应用学习内容,标记出有疑问或不懂的地方。
引导学生分析错误原因,避免类似错误再次发生。
(五)拓展延伸(预计用时:3分钟)

一次函数的图像教案

一次函数的图像教案

一次函数的图像教案教案:一次函数的图像一、教学目标:1. 学生理解一次函数的定义和特征;2. 学生能够根据一次函数的函数式和关键点画出函数的图像;3. 学生能够根据图像找出一次函数的函数式和关键点。

二、教学准备:1. 教师准备一些一次函数的函数式和关键点,以及对应的图像;2. 教师准备白板/黑板、彩色粉笔/白板笔。

三、教学内容及过程:Step 1:引入话题(5分钟)教师通过回顾线性函数的概念,引出一次函数的概念,并解释一次函数的定义和特征:一次函数的函数式为y = kx + b,其中k、b为常数,k是斜率,表征函数图像的倾斜程度;b是截距,表征函数图像与y轴的交点。

Step 2:展示图像(10分钟)教师依次展示几个一次函数的函数式和对应的图像,要求学生观察图像的特点,并简单描述图像的特征。

例如:y = 2x + 1,y = -3x + 2等。

Step 3:通过函数式画图(15分钟)教师选取一个一次函数的函数式,例如y = 2x + 1,提醒学生注意斜率和截距的含义,然后引导学生根据函数式画出对应的图像。

教师提醒学生考虑以下步骤:1. 确定截距:将x = 0代入函数式,求得y的值,找到图像与y轴的交点;2. 确定斜率:由于斜率表示了图像的倾斜程度,可以通过求取两个点的纵坐标之差与横坐标之差的比值来得到。

教师通过示范的方式,将函数式y = 2x + 1画出来,并与学生一起讨论改变函数式对图像的影响。

Step 4:通过关键点画图(15分钟)教师将一次函数的关键点的概念引入,解释关键点是指图像上的重要点,包括图像与坐标轴的交点,以及图像上的极值点等。

教师提醒学生考虑以下步骤:1. 确定截距:将x = 0代入函数式,求得y的值,找到图像与y轴的交点;2. 确定斜率:由于斜率表示了图像的倾斜程度,可以通过求取两个关键点的纵坐标之差与横坐标之差的比值来得到。

3. 找到其他关键点:通过确定更多的关键点,来描绘出更完整的图像。

一次函数的图像和性质教案3篇

一次函数的图像和性质教案3篇

一次函数的图像和性质教案1课型:新授教学目标:一、知识与技能目标(1)能根据一次函数的图象和函数关系式,探索并理解一次函数的性质;(2)进一步理解正比例函数图象和一次函数图象的位置关系;(3)探索一次函数的图象在平面直角坐标系中的位置特征。

二、过程与方法目标通过组织学生参与由一次函数的图象来揭示函数性质的探索活动,培养学生观察、比较、抽象和概括的能力,培养学生用数形结合的思想方法探索数学问题的能力。

三、情感、态度与价值观目标通过师生共同探讨,体现数学学习充满着探索性和创造性,感受共同合作取得成功的快乐。

教学重点:一次函数图象的性质。

教学难点:通过图形探求性质以及分析图形的位置特征。

课前准备:本节课为了帮助同学们能正确理解函数的增减性,更清楚、快捷地通过图象探究函数的某些特征。

教师在课前准备好多媒体课件,并选择在多媒体教室完成本节课的教学任务。

【教学过程设计】一、创设情景,引导探究(1)复习一次函数图象的画法师:上节课我们了解了一次函数图象,并学习了图象的画法。

同学们能画出函数y=2x+4和y=-x-3的图象吗?说说看,如何画?生:能。

因为一次函数的图象是一直线,所以,我可以过(1,6)和(0,4)两点画直线y=2x+4。

过(1,-)、(0,-3)两点画直线y=-x-3。

师:很好。

还有不同的取点法吗?生:有,可经过(-2,0)和(0,4),画直线y=2x+4;经过(-2,0)和(0,-3)画直线-x-3。

师:大家说说看,哪一种取法更好呢?众:乙的方法好。

师:对。

我们可以针对函数中不同的k和b的值,灵活取值。

教师要求学生画出这两函数的图象。

【设计说明】:通过对两函数图象画法的讨论,引导学生得出简捷画法,并为后面新知识的研究作一些伏笔。

(2)探究一次函数的增减性师:教师用多媒体呈现给大家一幅画面。

图画上有两个一次函数的图象,而背景是一座山,两一次函数的图象正好对应着背景图中的上山和下山的路线,教师在课件中设计一个人从左边上山顶,并继续下山到右边山脚,并把这一活动来回放两遍给学生看,继而引导学生思考。

《一次函数的图象》word教案 (公开课)2022年北师大版 (10)

《一次函数的图象》word教案 (公开课)2022年北师大版 (10)

教学目标:1.了解一次函数的图象是一条直线, 能熟练作出一次函数的图象.2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.3.函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.教学重、难点重点:初步了解作函数图象的一般步骤:列表、描点、连线.难点:理解一次函数的代数表达式与图象之间的一一对应关系.教法及学法指导:本节课我运用多媒体演示教学手段,力求直观,高效,使本节课有趣、形象、事半功倍.在教学中注重培养学生的画图能力,主要是培养学生的看图、识图能力,培养思维能力.指导学生根据概念的直观表象,归纳出概念的性质,运用类比、归纳、数形结合等方法,培养学生分析问题、解决问题的能力.对于学生我采用自主探究、合作交流式教学,学生通过一些不同的问题,讨论、归纳,在与老师之间的交流中学习知识,体验学习的快乐,让学生更有时机体验自己与他人的想法,从而掌握知识.课前准备:多媒体课件,三角板等教具准备.教学过程:一、创设情境,引入新课师:我们已经认识了一次函数和正比例函数,现在老师这里有一题要考考同学们,请看题:〔课件演示〕一天,小明以80米/分的速度去上学,请问小明离家的距离S 〔米〕与小明出发的时间t 〔分〕之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?〔t ≥0〕生:S =80t ,是一次函数也是正比例函数.师:很好!下面的图象能表示上面问题中的S 与t 的关系吗?生:能.师:我们说,上面的图象是函数S =80t 〔t ≥0〕的图象,这就是我们今天要学习的主要Ot 〔分〕S 〔米〕1内容:一次函数的图象的特殊情况即正比例函数的图象.教师板书课题4.3一次函数的图象〔1〕设计意图:通过学生比拟熟悉的生活情景,让学生在写函数关系式和认识图象的过程中,初步感受函数与图象的联系,激发其学习的欲望.效果:学生通过对上述情景的分析,初步感受到函数与图象的联系,激发了学生的求知欲望,感受图象的价值.二、合作交流,探究新知探究一:函数图象的定义:自学课本83页并能用自己的语言归纳函数图象概念.师:什么叫做函数的图象呢?你能用语言表达吗?生:把一个函数的自变量x 与对应的因变量y 的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.学生边说,老师边板书“函数的图象〞的概念并附属说明如一次函数2y x =,当1=x 时,对应2=y .那么我们可在直角坐标系内描出点〔1,2〕,再给x 另一值,对应又一个y .又可在直角坐标系内描出一个点来,所有这些点组成的图形叫2y x =的图象. 由此可知道:函数的图象是满足函数表达式所有的点的集合师:下面我们就通过具体的例子来真切的认识认识正比例函数图象的“真面目.〞探究二:正比例函数图象的画法例1 请作出正比例函数y=2x 的图象.解:1.列表: x … -2 -1 0 12 … y=2x … -4 -2 02 4 … 说明:(1)列表时教师要问学生x ,y 的取值范围是什么,并引导学生一般情况下x ,y 取哪些值最适宜.还要强调:应注意左右还有无数组数,因此左右应加省略号.(2)列表后教师追问学生列表的目的是什么,让学生明确列表是为了找自变量x 与因变量y 对应值.2.描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.(-2,-4) 〔-1,-2〕 〔0,0〕 〔1,2〕 〔2,4〕说明:描点要注意x的值作为横坐标,y的值作为纵坐标.3.连线:把这些点依次连结起来,得到y=2x的图象.说明:连线要注意按x的值从小到大的顺序连接.并由学生完成作图.y=2x 2.描点3.连线师:正比例函数图象的形状是什么?生:是一条直线.师:由例1我们发现作一个函数的图象需要哪些步骤?(小组内合作交流体会,教师巡视课堂,随时点拨,诱导学生的思维朝向“教学目标〞.) 师:请小组代表发言说自己小组的感受.〔学生边说老师边板书〕三大步:列表,描点,连线.师:如何列表?x如何取值?生:在函数关系式y=2x中,x的取值范围是全体实数〔包括正数、负数和0〕,为了方便画图,应用整数.设计意图:通过本环节的学习,让学生明确作一个函数图象的一般步骤,能做出一个函数的图象,同时感悟正比例函数图象是一条直线.三、动手操作,深化探究做一做〔1〕作出正比例函数y =-3x 的图象.〔2〕在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y =-3x .〔学生独立画图,教师巡视并及时纠正学生画图中的错误,比方将直线画成线段〕 设计意图:做一做“作出正比例函数y=-3x 的图象〞,意在让学生进一步熟悉如何作一个正比例函数的图象,同时要求学生在作这个函数的图象时,尽量准确,为后面研究函数与图象的对应关系和得出一次函数的图象是一条直线作好铺垫和准备.师:请同学们以小组为单位,讨论下面的问题,把得出的结论写出来.〔1〕满足关系式y =-3x 的x ,y 所对应的点〔x ,y 〕都在正比例函数y =-3x 的图象上吗?〔2〕正比例函数y =-3x 的图象上的点〔x ,y 〕都满足关系式y =-3x 吗?〔3〕正比例函数y=kx 的图象有什么特点?由学生讨论上面的问题.生1:满足关系式的x ,y 所对应(),x y 都在图像上.例如:满足关系式2x =,6y =-即〔2,-6〕就在图像上.满足关系式1x =-,3y =即〔-1,3〕也在图像上等等. 生2:图像上的点都满足关系式,例如:图像上的点〔-2,6〕即当x =-2时y =6就满足关系式,图像上的点(1,-3)即x=1,y =-3也满足关系式,等等.师:大家有什么发现?生3:图像与关系式是对应的.生4:正比例函数的关系式与它的图像是对应的. 师:大家说得非常正确.师生共同概括:由上面的讨论我们知道:正比例函数的代数表达式与图象是一一对应的,即满足正比例函数的代数表达式的x ,y 所对应的点〔x ,y 〕都在正比例函数的图象上;正比例函数的图象上的点〔x ,y 〕都满足正比例函数的代数表达式.正比例函数y=kx 的图象是一条直线,以后可以称正比例函数y=kx 的图象为直线y=kx .设计意图:教师对每位答案正确的学生都给予积极的评价和鼓励,进一步调动学生的积极性.通过三个问题的思考与解决,明确正比例函数的图象是一条直线,建立正比例函数的代数表达式与图象之间的“一一对应〞关系,培养了学生小组“合作探究〞的能力和“数形结合〞的意识这就突破了难点.议一议师:既然我们得出正比例函数y=kx的图象是一条直线.那么在画正比例函数图象时有没有什么简单的方法呢?生:因为“两点确定一条直线〞,所以画正比例函数y=kx的图象时可以只描出两个点就可以了.因为正比例函数的图象是一条过原点〔0,0〕的直线,所以只需再确定一个点就可以了,通常过〔0,0〕,〔1,k〕作直线.师:好!下面我们就用两点法作出函数图象.例2 在同一直角坐标系内作出y=x,y=3x,y=-12x,y=-4x的图象.解:1.列表x 0 1y=x 0 1y=3x 0 3y=-12x0 -12y= 4x0 -42.描点:过点〔0,0〕和〔1,1〕作直线,那么这条直线就是y=x的图象.过点〔0,0〕和〔1,3〕作直线,那么这条直线就是y=3x的图象.过点〔0,0〕和〔1,-12〕作直线,那么这条直线就是y=-12x的图象.过点〔0,0〕和〔1,-4〕作直线,那么这条直线就是y=-4x的图象.3.连线.设计意图:做一做“作出这几个正比例函数的图象〞,意在让学生进一步熟悉如何作一个正比例函数的图象,同时要求学生通过这几个函数的图象,分析正比例函数图象的性质,以及k的绝对值大小与直线倾斜程度的关系.效果:学生通过作出正比例函数的图象,明确了作函数图象的一般方法.在探究函数与图象的对应关系中加深了理解,并能很快地作出正比例函数的图象.议一议师:请大家先独思考立,再互相交流得出结论.上述四个函数中,随着x的增大,y的值分别如何变化?〔教师走进学生中间,对学生进行鼓励. 对于学生说的不透、不清的问题进行及时引导.学生四个人一组进行讨论交流,将自己确定的结论自己写在练习本上.不能确定的结论同组进行讨论.〕讨论结束,各小组交流得到的结论:生1:y=x , y=3x的图象从左向右是上升的,由此我想k>0时,y的值随x的增大而增大.生2:y= -0.5x, y=-4x的图象从左向右是下降的,由此我想k<0时,y的值随x的增大而减小.师:同学们分析的很好,通过上面的讨论你认为正比例函数y=kx图象有何特点?〔在表扬学生的观察力同时,鼓励学生大胆发言,并留给学生一点思考时间.〕生3:我发现当k>0时,函数图象位于第一、三象限内.如y=x ,y=3x的图象.生4:〔抢答〕当k <0时,函数图象位于第二、四象限内.如 y= -0.5x , y=-4x 的图象.生5:正比例函数y=kx 的图象是经过原点〔0,0〕的一条直线.师:大家都很有见解,从不同的角度,分析了正比例函数的图像和性质.师生总结出结论:在正比例函数y=kx 中,当k >0时,图象在第一、三象限,y 的值随着x 值的增大而增大(即从左向右观察图象时,直线是向上倾斜的);当k <0时, 图象在第二、四象限,y 的值随着x 值的增大而减小 (即从左向右观察图象时,直线是向下倾斜的).〔教师用多媒体展现正比例函数图象的性质.〕 函数 图象 k 大致图象所经象限 函数值变化正比例函数 直线 0k >一、三 y 随x 的增大而增大0k <二、四y 随x 的增大而减小设计意图:通过观察正比例函数图象,归纳概括正比例函数图象特征,探索正比例函数的主要性质.这样的设计能够调动学生学习的积极性,增强学生对知识的理解,同时也培养了学生的观察、归纳能力和合作交流能力.〕请你进一步思考:〔1〕正比例函数y=x 和y=3x 中,随着x 值的增大y 的值都增加了,其中哪一个增加得更快?你能说明其中的道理吗?〔2〕正比例函数y =-12x 和y=-4x 中,随着x 值的增大y 的值都减小了,其中哪一个减小得更快?你是如何判断的?生1:正比例函数y=x ,当x 增加1时y 增加1,而y=3x 中,当x 增加1时y 增加3,所以y=3x 增加得更快.x y O x y O生2:正比例函数y =-12x ,当x 增加1时y 减少12,而y=-4x 中,当x 增加1时y 减少4,所以y=-4x 减少得更快.师生结合图像总结得出:k 越大,直线越靠近y 轴.四、稳固练习,深化理解1.在同一直角坐标系中分别作出y =13x 与y =-3x 的图象. 设计意图:让学生熟练正比例函数图象的作法.2.以下哪一些点在函数y =-5x 的图象上?〔1,5〕、〔-1,5〕、(0.5,)、(-5,1)提示:逐个带入关系式试一下就可以发现〔-1,5〕(0.5,)这个点满足关系式,所以它在函数图象上.设计意图:通过这个题可以进一步印证“函数关系式和函数图象〞的“一 一对应〞关 系,给学生留下较深的印象.师生归纳:满足一次函数表达式的一组x 、y 所对应的点的坐标〔x 、y 〕就在函数图象上,函数图象上的点的坐标都会满足一次函数表达式.3.对于函数x y 3-=的两个确定的值1x 、2x 来说,当21x x <时,对应的函数值1y 与2y 的关系是( )A. 21y y <B. 21y y =C. 21y y >D. 无法确定设计意图:是明确正比例函数图象的性质,要注意自变量的取值范围.效果:学生通过练习,进一步熟练了正比例函数图象的作法,对正比例函数和正比例函数图象的一般特征有了清楚的认识.五、课时小结,回归系统师:本节课我们通过对正比例函数图象的研究的学习,你有哪些收获?还有那些迷惑? 大家回忆一下本节课所学的内容〔可以借助于板书对本节课所学的进行“梳理〞〕.生1:函数与图象之间是一一对应的关系;生2:正比例函数的图象是一条经过原点的直线;生3:作正比例函数图象时,只取原点外的另一个点,就能很快作出.生4:k >0时,函数图象位于第一、三象限内,y 的值随着x 值的增大而增大(即从左向右观察图象时,直线是向上倾斜的);当k<0时, 图象在第二、四象限, y的值随着x值的增大而减小 (即从左向右观察图象时,直线是向下倾斜的).设计意图:让学生在回忆的过程中,进一步加深对正比例函数图象的理解,同时对本节所学知识有一个总结性的认识.效果:学生通过对本节学习的回忆和小结,对所学知识更清楚,抓住了重点,明确了关键.六、课堂检测,矫正评价1.正比例函数5y x=-的图象位于象限,y随着x的增大而 .2.函数y=kx的函数值随x的增大而增大,那么函数的图象经过〔〕A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限3.写出一个具体的y随x的增大而减小的一次函数解析式____4.画出以下正比例函数图象.(1)y=4x; (2) y=-13x.七、布置作业,稳固知识必做题:课本P85 第2题.选做题:课本P85 第4题.设计意图:作业分层,让能力不同的每个学生都能各有所得.板书设计§一次函数的图像〔1〕函数图象的定义:把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.作函数图象的步骤:〔1〕列表〔2〕描点〔3〕连线图像特征:一条直线例1练习:教学设计反思成功之处:本节内容是学生利用数形结合的思想去研究正比例函数的图象,对函数与图象的对应关系有点陌生.在教学过程中我通过提供学生熟悉的生活素材作情景,激发了学生的学习兴趣,对函数与图象的对应关系让学生动手去实践,去发现,对正比例函数的图象是一条直线应让学生自己得出.在得出结论之后,让学生能运用“两点确定一条直线〞,很快作出正比例函数的图象.培养了学生“数形结合〞的意识,开展了合作探究和总结概括的能力.在稳固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力.缺乏之处:由于本节课容量今后应加强细节的设计和全面考虑.学生的讨论与合作学习还需加强,讨论问题还不够深入,多数时间还是以个别答复为主,不会的没有足够的耐心去“等待花开〞,虽然个别答复非常精彩,但仍需注意“让每一个学生都得到开展〞.[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

2024《一次函数》说课稿范文

2024《一次函数》说课稿范文

2024《一次函数》说课稿范文今天我说课的内容是《一次函数》,下面我将从以下几个方面进行阐述。

一、说教材1、《一次函数》是高中数学必修一的内容。

它是在学生已经学习了代数基础知识并掌握了一些常见的函数相关概念的基础上进行教学的,是数学领域中的重要知识点。

2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的数学基础,我制定了以下三点教学目标:①认知目标:了解一次函数的定义、性质和图像特征,掌握函数图象的绘制方法。

②能力目标:培养学生分析和解决实际问题的能力,提高学生的数学建模能力。

③情感目标:培养学生对数学的兴趣,增强学生对数学学习的信心。

二、说教法学法在教学一次函数时,我将采用启发式教学法、探究式学习法和案例分析法相结合的教法。

通过引导学生提出问题、进行实际操作以及分析实例,培养学生的探究精神和自主学习能力。

三、说教学准备在教学过程中,我将使用多媒体教具展示函数的图象和实例,以直观呈现教学素材,增强学生的学习兴趣,提高教学效果。

四、说教学过程新课标要求教学活动是师生共同参与、互动交流的过程,因此我设计了以下教学环节。

环节一、导入新课我将通过引导学生回顾一元一次方程的知识,引出一次函数的概念,并且提问一次函数与一元一次方程的关系,激发学生的思考和探究欲望。

同时,我会根据学生的回答,引导他们思考一次函数的定义和性质。

环节二、探究新知我将通过引导学生观察一次函数的图象特征来探究它的性质。

首先,我会示范绘制一次函数的图象,并向学生解释绘制的过程和方法。

然后,我会给学生一些实例,让他们自己尝试绘制函数的图象,并对绘制结果进行对比分析。

环节三、案例分析我将给学生一些实际问题,让他们运用一次函数的知识进行分析和求解。

通过具体实例的分析,帮助学生理解一次函数在解决实际问题中的应用,培养他们的数学建模能力。

环节四、练习巩固我会设计一些练习题,让学生巩固所学的知识。

练习题包括计算函数值、求解方程、分析图象等多种形式,既能帮助学生巩固基本概念和运算技巧,又能提高他们的思维能力和解决问题的能力。

高中数学教学备课教案一次函数与二次函数

高中数学教学备课教案一次函数与二次函数

高中数学教学备课教案一次函数与二次函数高中数学教学备课教案【教案一】一次函数与二次函数教学目标:1. 理解一次函数和二次函数的基本概念与性质;2. 掌握一次函数和二次函数的图像、方程和解析式的关系;3. 能够在实际问题中应用一次函数和二次函数进行建模和求解;4. 培养学生的抽象思维和数学推理能力。

教学准备:1. 教师准备:教学课件、教学素材、教学工具等;2. 学生准备:教科书、笔记本、作业本等。

教学步骤:【第一步】引入(时间:5分钟)教师通过引导学生回顾一次函数和二次函数的概念和性质,让学生对本次课程的内容有初步的了解和认知。

【第二步】讲解一次函数(时间:15分钟)1. 教师通过教学课件和示例图像,讲解一次函数的定义、特征及其图像的性质;2. 教师引导学生利用一次函数的特点,分析实际问题中的线性关系,并通过具体例子进行实际应用。

【第三步】练习与讨论(时间:20分钟)1. 学生个人练习:学生进行一次函数的练习题,在解题过程中加深对一次函数的理解;2. 小组讨论:学生分组进行讨论,分享解题思路和方法,从而提高学生的综合能力和合作意识;3. 教师答疑与点评:教师主持讨论,解答学生提出的问题,并对学生的答案进行点评。

【第四步】讲解二次函数(时间:20分钟)1. 教师通过教学课件和示例图像,讲解二次函数的定义、特征及其图像的性质;2. 教师引导学生分析二次函数图像与一次函数图像的异同,引导学生猜测二次函数的性质。

【第五步】练习与讨论(时间:20分钟)1. 学生个人练习:学生进行二次函数的练习题,在解题过程中加深对二次函数的理解;2. 小组讨论:学生分组进行讨论,分享解题思路和方法,从而培养学生的合作能力;3. 教师答疑与点评:教师主持讨论,解答学生提出的问题,并对学生的答案进行点评。

【第六步】实际应用(时间:15分钟)1. 教师引导学生通过一次函数和二次函数建立数学模型,并应用到实际问题中;2. 学生通过实际案例,分析解决问题的方法与步骤,加深对一次函数和二次函数的应用理解。

一次函数试讲教案

一次函数试讲教案

一次函数试讲教案教案标题:一次函数试讲教案教学目标:1. 理解一次函数的定义和特征。

2. 掌握一次函数的图像、斜率和截距的关系。

3. 能够在实际问题中应用一次函数进行解决。

教学重点:1. 一次函数的定义和特征。

2. 一次函数的图像、斜率和截距的关系。

教学难点:1. 能够在实际问题中应用一次函数进行解决。

教学准备:1. 教师准备:PPT、黑板、白板、笔等。

2. 学生准备:教材、笔、纸等。

教学过程:一、导入(5分钟)1. 教师通过一个简单的问题或实例引起学生对一次函数的兴趣,如:小明每天骑自行车去学校,他发现自行车的速度和他骑的时间有关系,你能推测出这个关系是什么吗?二、讲解(15分钟)1. 教师通过PPT或黑板向学生介绍一次函数的定义和特征,包括函数的表达式为y=ax+b,其中a和b为常数,a称为斜率,b称为截距。

2. 教师通过图像展示一次函数的特点,解释斜率和截距对图像的影响。

三、练习(20分钟)1. 学生根据教师提供的一次函数表达式,画出对应的图像,并标注出斜率和截距。

2. 学生根据给定的斜率和截距,写出对应的一次函数表达式。

3. 学生通过实际问题,应用一次函数进行解决,如:小明每天骑自行车去学校,已知他花费30分钟骑行5公里,求他的速度。

四、总结(10分钟)1. 教师与学生一起总结一次函数的定义和特征,以及斜率和截距对图像的影响。

2. 教师强调一次函数在实际问题中的应用。

五、拓展(5分钟)1. 学生自主拓展,寻找更多实际问题,并应用一次函数进行解决。

教学反思:通过本堂课的教学,学生能够理解一次函数的定义和特征,掌握一次函数的图像、斜率和截距的关系,并能够在实际问题中应用一次函数进行解决。

教学过程中,教师通过引入问题和实例,激发学生的学习兴趣;通过图像展示和练习,帮助学生深入理解一次函数的特点;通过总结和拓展,巩固学生的知识并拓宽应用领域。

同时,教师还应注意在教学过程中注重学生的参与和思考,激发他们的学习动力。

2020年中考数学1轮专题复习课件-第3章第10讲一次函数PPT课件

2020年中考数学1轮专题复习课件-第3章第10讲一次函数PPT课件

1.(2018·湖南湘西州)一次函数y=x+2的图象与y轴
的交点坐标为( A )
A.(0,2)
B.(0,-2)
C.(2,0)
D.(-2,0)
2.一次函数y=2x+b(b<0)的图象可能是( A )
3.(2019·广西河池)函数y=x-2的图象不经过
(B )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
4.待定系数法: 一设二代三解四写.
4.如果一个正比例函数的图象经过点(2,-1),那 么这个正比例函数的解析式为___y_=__-__12_x___.
5.一元一次方程与一次函数的联系: 求一元一次方程的解就是求其对应的一次函数与x 轴交点的横坐标.
5.函数 y=-2x-1 的图象与 x 轴的交点坐标为 _-__21_,__0______,与 y 轴的交点坐标为__(0_,__-__1_)__.
1.一次函数的定义:形如y=kx+b(k,b是常数, k≠0),那么y叫做x的一次函数.特别地,如果y=kx(k是 常数,k≠0),那么y叫做x的正比例函数.
1.有下列函数:①y=x;②y=12x-1;③y=1.5x; ④y=-3x2.其中__①__②__③____是一次函数,__①__③____是正
B组 能力提升
7.(2019·江苏扬州)若点P在一次函数y=-x+4的
图象上,则点P一定不在( C )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
8.(2019·内蒙古通辽)如图,直线y=kx+b(k≠0)经 过点(-1,3),则不等式kx+b≥3的解集为( D )
A.x>-1 B.x<-1 C.x≥3 D.x≥-1
A.k<2

北师大版 八年级上册 课题:《一次函数》复习课教学设计

北师大版 八年级上册 课题:《一次函数》复习课教学设计

北师大版八年级上册课题:《一次函数》复习课教学设计一. 教材分析《一次函数》是北师大版八年级上册数学第二章的内容,主要介绍了函数的概念、一次函数的定义、图像和性质。

本节课的教学内容是对一次函数的复习,通过复习使学生掌握一次函数的基本概念、图像和性质,提高学生解决实际问题的能力。

二. 学情分析学生在之前的学习中已经掌握了函数的概念和一次函数的基本知识,但部分学生对一次函数的图像和性质理解不够深入,解决实际问题的能力有待提高。

此外,学生的数学基础和学习兴趣存在差异,因此在教学过程中需要关注学生的个体差异,激发学生的学习兴趣。

三. 教学目标1.知识与技能:通过对一次函数的复习,使学生掌握一次函数的基本概念、图像和性质,提高学生解决实际问题的能力。

2.过程与方法:通过复习课的教学,培养学生自主学习、合作交流的能力,提高学生的数学思维能力。

3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的数学素养,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:一次函数的基本概念、图像和性质。

2.难点:一次函数在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例引入一次函数,激发学生的学习兴趣。

2.启发式教学法:引导学生通过自主学习、合作交流,发现一次函数的性质。

3.案例教学法:通过解决实际问题,培养学生应用一次函数的能力。

4.反馈评价法:及时了解学生的学习情况,调整教学策略。

六. 教学准备1.教学课件:制作一次函数的复习课件,包括一次函数的基本概念、图像和性质。

2.教学案例:准备一些实际问题,用于巩固一次函数的应用。

3.作业布置:提前布置一次函数的相关作业,了解学生的掌握情况。

七. 教学过程1.导入(5分钟)通过生活实例引入一次函数,激发学生的学习兴趣。

例如,讲解购物时打折优惠的问题,引导学生发现折扣率与价格之间的关系是一次函数。

2.呈现(10分钟)呈现一次函数的基本概念、图像和性质,让学生回顾和巩固一次函数的知识。

北师大版八年级数学上册《一次函数》教案

北师大版八年级数学上册《一次函数》教案

北师大版八年级数学上册《一次函数》教案一、教学目标首先我们希望同学们能够理解一次函数的基本概念,对于八年级的学生来说,我们不仅仅是记住这个概念,更希望同学们能真正明白一次函数是什么,它的特点是什么。

我们希望同学们能够主动思考,从实际生活中找到一次函数的例子,真正体会到数学与实际生活的联系。

1. 知识与技能:本节课我们将要学习一次函数,提到函数大家可能会觉得是个听起来很高大上的内容。

但实际上函数与我们日常的生活息息相关,这次我们要深入了解一次函数的基础知识,为后续的数学学习打下坚实的基础。

一次函数是数学中的基础概念之一,通过本节学习,学生应明确掌握一次函数的定义和表现形式。

简单来说一次函数就是自变量和因变量之间呈现一种线性关系的函数。

这种线性关系可以通过一个方程式来表示,例如大家熟悉的ykx+b。

其中k是斜率,表示函数的增减性;b是截距,表示函数与y轴的交点。

掌握了这两个要素,就等于掌握了理解一次函数的关键。

学习一次函数,不仅仅是记住定义和公式那么简单。

更重要的是,要掌握函数的性质和应用。

通过本章节的学习,学生将了解一次函数的单调性、图象(是一条直线)等关键特性。

这些都是在解决实际问题时会用到的关键知识点,掌握了这些性质,就意味着具备了利用数学工具解决实际问题的能力。

同学们将会发现,数学原来可以这么有趣和实用!学习的最终目的是应用,在本节课的最后阶段,我们将通过一些具体的例子,让学生尝试将所学知识应用到实际问题中去。

比如日常生活中的距离、速度和时间的关系问题,或者是更为复杂的实际应用场景,比如水电费的计算等。

通过这些实际应用,让学生更加深刻地理解一次函数的重要性和实用性。

相信同学们一定能在实践中感受到数学的魅力!2. 过程与方法:我们先来回顾一下之前学过的知识,比如线性方程,这样可以帮助我们更好地理解一次函数的概念。

通过实例引出一次函数,让学生感受到一次函数在生活中的实际应用,增加学生的学习兴趣。

专题:一次函数的图像与坐标轴围成的图形面积问题

专题:一次函数的图像与坐标轴围成的图形面积问题

专题:一次函数的图像与坐标轴围成的图形面积问题1、填空:一次函数y=0.5x+2的图像与x轴的交点;与y轴的交点;一次函数y=-x-1的图像与x轴的交点为;与y轴的交点;2、直线y=0.5x+2与直线y=-x-1的交点;3、过点〔2,0〕〔0,4〕的直线解析式;例1:直线y=3x-6,1)画出函数图像,并求出一次函数图像与两坐标轴围成的三角形面积2)求直线y=-x-1与y轴围成的三角形面积;3)求直线y=-x-1与x轴围成的三角形面积;1、求直线y=x-2与直线y=-2x+4与x 轴围成的三角形面积?2、作业:直线y =4x -2与直线y =-x +13及x 轴所围成的三角形的面积?3、作业:求直线y =2x -7,直线1122y x =-+与y 轴所围成三角形的面积.例2一次函数的图像过点B〔0,4〕且与两坐标轴围成的三角形面积为4,求此一次函数的解析式?变形1:直线y=kx-4与两坐标轴所围成的三角形面积等于4,求直线解析式;变形2:一次函数的图像经过点A〔2,0〕,且与两坐标轴围成的三角形面积为4,求此一次函数的解析式?例3:一次函数图像交于x轴于点A〔6,0〕,与正比例函数图像交于点B,且点B在第一象限,其横坐标是4,假设△ABO的面积等于15,求这个正比例函数和一次函数的解析式?稳固练习:直线L1经过点A〔-1,0〕与点B〔2,3〕,另一条直线L2经过点B,且与x轴相交于点p〔m,0〕假设假设△APB的面积等于3,求m值和L1、L2的解析式?X直线y=x+3的图像与x轴、y轴交于A、B两点,直线L经过原点,与线段AB 交于点C,把△AOB的面积分成1:1两局部,求直线L的解析式;X直线y=x+3的图像与x轴、y轴交于A、B两点,直线L经过原点,与线段AB 交于点C,把△AOB的面积分成2:1两局部,求直线L的解析式;X一次函数y=kx+b的图像经过M〔-1,1〕和B〔0,2〕设该图像与x轴交于点A,问在x轴上是否存在点P,使△ABP为等腰三角形,假设存在,求出符合条件得点P,假设不存在说明理由。

一次函数的图像和性质(初中数学教学PPT课件)

一次函数的图像和性质(初中数学教学PPT课件)

课前准备
一次函数的图象与性质
回首页
6.下列直线与一次函数y=-2x+1的图象平行的直线
是( B )
A.y=2x+1
B.y=-2x-1
C.y=-2x+1 D.y=-12x+2
课堂讲义
一次函数的图象和性质
回首页
样题1 若点(x1,y1),(x2,y2),(x3,y3)都是一次函数y=-x-1图象
上的点,并且y1<y2<y3,则下列各式中正确的是( D )
k≠0) b<0
第一、二、四 象限
y随x的 增大
而减小
第二、四象限
第二、三、四 象限
课前准备
一次函数的图象与性质
回首页
两条直线的位置与系数的关系
设直线 与 的表达式分别为 :
:
则它们的位置关系可由系数决定:
(1)
, b1 b2 ;
与 平行
(2)


与 重合
课前准备
一次函数的图象与性质
回首页
回首页
2.(2012·江西)已知一次函数y=kx+b(k≠0)经过 (2,-1),(-3,4)两点,则它的图象不经过第 三 象限.
谢谢各位的聆听!
课前准备
一次函数的图象与性质
回首页
函数
图像
性质Biblioteka 经过象限变化规律y=kx+
b>0
b(k,
b为常 k>0 b=0 数,且
k≠0) b<0
第一、二、三象 限
第一、三象限
y随x的 增大
而增大
第一、三、四象限
课前准备
一次函数的图象与性质

制定一次函数学习计划教案

制定一次函数学习计划教案

本文将介绍如何制定一份高效的一次函数学习计划教案。

一次函数是初中数学中一个重要的概念,也是学生学习数学的基础。

因此,制定一次函数学习计划教案对于初中数学老师来说非常重要。

一、确定目标在制定一次函数学习计划教案之前,首先需要明确的是学生需要达到的目标。

目标的设定是制定一份高效的学习计划的前提。

一般来说,一次函数的学习目标应该分为以下几个方面:1.掌握一次函数的概念和基本性质(包括斜率、截距等)。

2.掌握一次函数的图像特征(包括斜率和截距的意义、图像的上下移动等)。

3.能够用一次函数描述实际问题并进行解决(包括应用一次函数求解问题的方法、分析问题、构建模型等)。

二、选择教材一次函数的学习教材可以选用多种,在这里我们以初中数学的教材为例。

初中数学教材一般将一次函数的学习分为几个阶段,包括:1.探究斜率的概念和意义。

2.掌握截距的概念和意义。

3.了解一次函数的计算方法以及公式的推导。

4.掌握一次函数图像的基本形态和特征。

5.应用一次函数求解实际问题。

在选择教材的时候,教师应该结合自己的实际情况,选择权威性较高、针对性较好的教材。

三、制定课程目录根据目标和教材,教师可以制定一份课程目录。

课程目录应该包含以下几个方面:1.课程名称、学时、教学目标、内容以及辅助教材等。

2.知识点的层次和逻辑关系。

3.重难点、易错点,及相应解决办法。

4.考核要求及评价标准。

制定课程目录应该依据学生实际情况,既不要太过简洁,也不要过于繁琐。

四、进行课前准备在进行一次函数学习之前,教师需要对课程内容进行深入细致的准备。

具体地说,教师需要做到以下几点:1.对课程目录进行逐一审查,并对每个知识点进行深入学习。

2.准备课堂教学所需的练习题、课件、实验材料等。

3.掌握学生学习的进度和情况,制定相应的教学计划。

在课前准备中,教师需要有一个全面的了解,以保证教学顺利进行。

五、授课过程成功的教学过程需要体现教学的整体性、层次性和系统性。

教师应该在授课过程中注重以下几点:1.创造良好的教学气氛,调动学生学习的积极性。

初二第10讲 一次函数(一)

初二第10讲 一次函数(一)

第十讲 一次函数学案(一)一、知识梳理知识点:1、掌握函数及一次函数的概念及图像;2、掌握一次函数的性质,并能求解有关实际问题;3、会用待定系数法求一次函数的解析式。

(一)、函数及一次函数的有关概念1、函数:在某个变化过程中,有两个变量x 和y,如果对于变量x 在它范围内的每一个确定的值,变量y 都有唯一确定的值与它对应,那么我们称y 是x 的函数,x 是自变量。

2、函数有三种表示方法,即解析法、列表法和图像法.3、函数自变量取值范围是指使函数值有意义的自变量取值范围。

4、一次函数的定义:形如y=kx+b (k 、b 为常数,且k ≠0)的函数叫做一次函数。

(1)、当b=0而k ≠0时,一次函数变为y=kx (k 是常数,且k ≠0),叫做正比例函数。

正比例函数是一次函数,但一次函数不一定是正比例函数; (2)、当k=0时,y=b,不是一次函数,它是常函数。

(3)、求一次函数的解析式就是求常数K 和b ,有两种方法:①、待定系数法②、根据实际应用问题列出一次函数的解析式。

(二)一次函数的图像1、一次函数通过列表、描点、连线画出来的图像是一条直线,因此我们也把一次函数y=kx+b(k ≠0)的图像叫做直线y=kx+b.2、一次函数图像的画法:用取两点A (kb-,0),B (0,b )画直线的方法画图像 3、一次函数y=kx+b 中的k 叫做直线的斜率,b 叫做直线在y 轴上的截距,kb-叫做直线在x 轴上的截距;4、一次函数图像的平移:一次函数中,自变量x 增加或减少,图像就左、右平移,其法则是:左加右减;函数值y 增加或减少,图像就上、下平移,其法则是:上加下减,反之亦然。

性质 表达式 几种特殊函数 一次函数 图像概念图像法 描点法 解析法 用待定系数法求解析式函数 表示方法 列表法(三)、一次函数的性质二、典例精讲1、 根据函数的定义识别函数例1、(1)下列关系式中的两个变量不是函数关系的是( ) ①)0(≥=x x y ②)0(≥±=x x y ③x y = ④x y 2=(2).下列函数中与x y =表示同一函数的是( )A.x y =B.xx y 2= C.2)(x y = D.33x y =(3).下列各图给出了变量x 与y 之间的函数是( )2、求自变量取值范围 例2、(1)、求下列函数的自变量x的取值范围:①、y=-30x+120 ②、2)3(--=x y③、32--=x x y ④、3521----=x xx y(2).汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,•则汽车距天津的路程S (千米)与行驶时间t (时)的函数关系式是 .自变量t 的取值范围是 .3、 已知自变量求函数值,已知函数值求自变量例3.已知函数23-=x y ,(1)当23-=x 时,函数23-=x y 的函数值为 . (2).当函数值23-=y 时,自变量x 的值为 . 跟踪训练:1. 若y 与x 的关系式为y=30x-6,当x=13时,y 的值为( )A .5B .10C .4D .-4k ﹤0 b ﹤0k ﹤0 b=0k ﹤0 b ﹥0k ﹥0 b ﹤0 k ﹥0 b=0k ﹥0 b ﹥0b ﹥0图像在第一、二、三象限b ﹤0图像在第二、三、四象限b ﹥0图像在第一、二、四象限k ﹤0(y 随x 增大而减少) b=0 图像在第二、四象限 b ﹤0图像在第一、三、四象限k ﹥0(y 随x 增大而增大) b=0 图像在第一、三象限x y o Ax y o B xyo Dx yo C2、如图的四个图象中,不表示某一函数图象的是( )3. 在函数132-+=x x y 中,自变量x 的取值范围是_______________.4.矩形周长为18cm ,它的面积S (cm 2)与它一边长x (cm )之间的函数关系式是( )A .(9)(09)S x x x =-<<B .(9)(09)S x x x =+<≤C .(18)(09)S x x x =-<≤D .(18)(09)S x x x =+<<5. 某礼堂共有25排座位,第一排有20个座位,后面每一排都比前一排多1•个座位, 每排的座位数m 与这排的排数n 的函数关系式为 ,自变量n•的取值范围是 . 上题中,在其他条件不变的情况下,请探究下列问题:① 当后面每一排都比前一排多2个座位时,则每排的座位数m 与这排的排数n•的函数 关系式是______________(1≤n ≤25,且n 是正整数) ②当后面每一排都比前一排多3个座位、4个座位时,则每排的座位数m•与这排的排数 n 的函数关系式分别是___________,___________(1≤n ≤25,且n•是正整数)③某礼堂共有P 排座位,第一排有a 个座位,后面每一排都比前一排多b 个座位,每排的座位数m 与这排的排数n 的函数关系式是 ,自变量n 的取值范围是 ___. 4、考查一次函数的定义(注意k 的取值范围) 例4、已知函数4)4(552-++-=+-m mx x m y m m , 当m=____时,它是一次函数, 当m=____时,是正比例函数.跟踪训练:(1)、已知关系式y=-mx+m 2-m, 当m=_____时,y 是x 的正比例函数。

逐字稿高中数学教案

逐字稿高中数学教案

逐字稿高中数学教案
教学内容:代数
主要目标:学生能够掌握一次函数的概念、图像和性质,能够灵活运用代数方法解决相关
问题。

教学重点:一次函数的性质、图像、方程、不等式。

教学难点:理解一次函数的概念和性质。

教学准备:课件、板书、教材、学生练习册、笔、纸等。

教学过程:
一、导入(5分钟)
教师引导学生回顾上节课所学的代数知识,让学生思考:一次函数在生活中的应用有哪些?
二、讲解(10分钟)
1. 引导学生理解一次函数的概念:y=kx+b。

2. 讲解一次函数的性质:斜率k的意义、与x轴和y轴的交点。

3. 讲解一次函数的图像:直线的特点、不同斜率对图像的影响。

三、练习(15分钟)
1. 让学生完成相关练习,巩固一次函数的性质和图像。

2. 让学生练习求解一次函数的方程和不等式。

四、拓展(10分钟)
1. 利用一次函数解决实际问题:如工资问题、运动问题等。

2. 让学生尝试探究一次函数的变形:如y=ax+b。

五、总结(5分钟)
教师总结本节课的重点和难点,让学生进行思考总结。

六、作业布置(5分钟)
1. 布置相关作业,巩固学生对一次函数的理解。

2. 布置学生课外拓展任务,如查阅相关资料或实际应用问题。

教学反思:
本节课的教学过程中,学生的参与度较高,能够积极思考和解决问题。

但在练习中发现部分学生对一次函数的概念和图像理解不够深入,需要加强训练和巩固。

下节课将更加注重知识的延伸和应用,激发学生学习的兴趣和能动性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档