北师版八年级中心对称
最新北师大版八年级下册数学【教案】 中心对称图形
教学时间课题中心对称图形课型新授课教学目标知识和能力理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用.过程和方法复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质.情感态度价值观让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.教学重点中心对称的两条基本性质及其运用.教学难点让学生合作讨论,得出中心对称的两条基本性质.教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、复习引入(老师口问,学生口答)1.什么叫中心对称?什么叫对称中心?2.什么叫关于中心的对称点?3.请同学随便画一三角形,以三角形一顶点为对称中心,•画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论.(每组推荐一人上台陈述,老师点评)(老师)在黑板上画一个三角形ABC,分两种情况作两个图形(1)作△ABC一顶点为对称中心的对称图形;(2)作关于一定点O为对称中心的对称图形.第一步,画出△ABC.第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′和△A′B′C′,如图1和用2所示.(1) (2)从图1中可以得出△ABC与△A′B′C是全等三角形;分别连接对称点AA′、BB′、CC′,点O在这些线段上且O平分这些线段.下面,我们就以图2为例来证明这两个结论.证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′∴△AOB≌△A′OB′∴AB=A′B′同理可证:AC=A′C′,BC=B′C′∴△ABC≌△A′B′C′(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O•旋转180•°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O 是线段AA′的中点.同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.因此,我们就得到1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.例1.如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO、BO、CO并延长,取与它们相等的线段即可得到.解:(1)连结AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.(2)同样画出点B和点C的对称点E和F.(3)顺次连结DE、EF、FD.则△DEF即为所求的三角形.例2.(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B•′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).二、巩固练习教材.三、应用拓展例3.如图等边△ABC内有一点O,试说明:OA+OB>OC.分析:要证明OA+OB>OC,必然把OA、OB、OC转为在一个三角形内,应用两边之和大于第三边(两点之间线段最短)来说明,因此要应用旋转.以A为旋转中心,•旋转60°,便可把OA、OB、OC转化为一个三角形内.解:如图,把△AOC以A为旋转中心顺时针方向旋转60°后,到△AO′B•的位置,则△AOC≌△AO′B.∴AO=AO′,OC=O′B又∵∠OAO′=60°,∴△AO′O为等边三角形.∴AO=OO′在△BOO′中,OO′+OB>BO′即OA+OB>OC四、归纳小结(学生总结,老师点评)本节课应掌握:中心对称的两条基本性质:1.关于中心对称的两个图形,对应点所连线都经过对称中心,•而且被对称中心所平分;2.关于中心对称的两个图形是全等图形及其它们的应用.作业设计必做选做教学反思。
北师大版八年级数学下册课件-中心对称
中心对称与中心对称图形的联系与区分
区分:
中心对称指两个全等图形的相互位置关系, 中心对称图形指一个图形本身成中心对称.
联系:
如果将中心对称图形的两个图形看成一个整 体,则它们是中心对称图形.
如果将中心对称图形对称的部分看成两个图 形,则它们成中心对称.
讲授新课
讲授新课
我们平时见过的几何图形中,有哪些是 中心对称图形?并指出对称中心.
O
讲授新课
注意:
平行四边形不是轴对称图形! 是A中心对称图形D
O
B
C
课堂小结
请同学们试着小结本节课
讲授新课
A
O
B C
C1 B1
A1
讲授新课
A
C1
B1
O
B
(1)关于中心对称C 的两个图形是全A等1 形;
(2)关于中心对称的两个图形,对称点所连线段 都经过对称中心,而且被对称中心平分.
讲授新课
作图
(1)如图,选择点O为对称中心,画出点A关 于点O的对称点A′;
A
O
A′
画法:连接AO并延长到A′,使OA′=OA,得到点 A的对称点A′.
北师版 八年级 下册
第三章 图形的平移和旋转
3 中心对称
讲授新课
讲授新课
讲授新课
中心对称与轴对A称的联系与区分C1 B1
B
轴对称
O
C
A1
中心对称
1 有一条对称轴——直线 有一个对称中心——点
2 图形沿轴对折(翻转180°) 图形绕中心旋转180°
3 翻转后和另一个图形重合 旋转后和另一个图形重合
3. 顺次连接A′、B′、C′各点.
北师大版数学八年级下册3.3《中心对称》教学设计
北师大版数学八年级下册3.3《中心对称》教学设计一. 教材分析北师大版数学八年级下册3.3《中心对称》是学生在学习了平面几何的基本概念和性质之后的内容。
本节课主要介绍中心对称的概念,性质及其在实际问题中的应用。
通过学习,学生能够理解中心对称的定义,掌握中心对称的性质,并能运用中心对称解决一些几何问题。
二. 学情分析学生在学习本节课之前,已经学习了平面几何的基本概念和性质,具备了一定的几何思维和解决问题的能力。
但是,对于中心对称这一概念,学生可能比较陌生,需要通过实例和练习来理解和掌握。
同时,学生可能对于如何运用中心对称解决实际问题存在一定的困难。
三. 教学目标1.知识与技能:理解中心对称的定义,掌握中心对称的性质,能够运用中心对称解决一些几何问题。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的几何思维和解决问题的能力。
3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和积极向上的学习态度。
四. 教学重难点1.重点:中心对称的定义和性质。
2.难点:如何运用中心对称解决实际问题。
五. 教学方法1.讲授法:通过讲解中心对称的定义和性质,引导学生理解和掌握。
2.案例分析法:通过分析实际问题,引导学生运用中心对称解决几何问题。
3.小组讨论法:通过小组讨论,引导学生交流思想,共同解决问题。
六. 教学准备1.教具:多媒体课件、几何图形、黑板。
2.学具:学生手册、练习册。
七. 教学过程1.导入(5分钟)通过多媒体课件,展示一些生活中的中心对称现象,如旋转门、时钟等,引导学生观察和思考,引出中心对称的概念。
2.呈现(10分钟)讲解中心对称的定义和性质,引导学生理解和掌握。
3.操练(10分钟)通过一些练习题,让学生运用中心对称解决几何问题,巩固所学知识。
4.巩固(10分钟)让学生分组讨论,分析实际问题,运用中心对称解决。
引导学生交流思想,共同解决问题。
5.拓展(10分钟)通过一些综合性的练习题,提高学生的解题能力,拓展学生的思维。
北师大版数学八年级下册3.3《中心对称》教案
北师大版数学八年级下册3.3《中心对称》教案一. 教材分析《中心对称》是北师大版数学八年级下册第3.3节的内容,本节主要让学生了解中心对称的概念,理解中心对称图形的性质,并学会运用中心对称解决一些实际问题。
教材通过实例引入中心对称的概念,然后引导学生探究中心对称图形的性质,最后通过一些练习题巩固所学知识。
二. 学情分析学生在学习本节内容前,已经学习了平面几何的基本概念,如点、线、角等,并掌握了一些基本的几何性质。
同时,学生也学习了图形的轴对称,对对称概念有一定的理解。
但是,中心对称与轴对称有所不同,学生可能需要一定的时间来理解和掌握。
三. 教学目标1.让学生了解中心对称的概念,理解中心对称图形的性质。
2.培养学生运用中心对称解决实际问题的能力。
3.培养学生合作探究的学习精神,提高学生的几何思维能力。
四. 教学重难点1.中心对称的概念和性质。
2.运用中心对称解决实际问题。
五. 教学方法采用问题驱动法、合作探究法、案例教学法等,引导学生通过实例认识中心对称,探究中心对称图形的性质,并运用中心对称解决实际问题。
六. 教学准备1.准备一些中心对称的实例,如圆、平行四边形等。
2.准备一些中心对称图形的性质的练习题。
3.准备一些实际问题,如在实际图形中寻找中心对称等。
七. 教学过程1.导入(5分钟)通过展示一些实例,如圆、平行四边形等,引导学生观察这些图形的特征,让学生初步认识中心对称。
2.呈现(10分钟)呈现中心对称的定义和性质,引导学生理解和记忆。
3.操练(10分钟)让学生通过练习题,运用中心对称的性质解决问题,巩固所学知识。
4.巩固(5分钟)通过一些实际问题,让学生运用中心对称解决实际问题,加深对中心对称的理解。
5.拓展(5分钟)引导学生思考中心对称在实际生活中的应用,让学生学会学以致用。
6.小结(5分钟)让学生总结本节课所学的内容,加深对中心对称的理解。
7.家庭作业(5分钟)布置一些有关中心对称的练习题,让学生课后巩固所学知识。
北师大版八年级下册数学《3.3 中心对称》教案
北师大版八年级下册数学《3.3 中心对称》教案一. 教材分析北师大版八年级下册数学《3.3 中心对称》一课,是在学生已经掌握了平面几何的基本知识,图形变换的基础知识上进行的一课。
本节课主要让学生了解中心对称的概念,理解中心对称的性质,能运用中心对称解决一些简单的问题。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识,图形变换的基础知识,对图形变换有一定的理解。
但是,对于中心对称的概念和性质,以及如何运用中心对称解决实际问题,可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解中心对称的概念,通过实际操作,让学生感受中心对称的性质,提高学生解决实际问题的能力。
三. 教学目标1.了解中心对称的概念,理解中心对称的性质。
2.能运用中心对称解决一些简单的问题。
3.培养学生的观察能力,动手操作能力,提高学生解决实际问题的能力。
四. 教学重难点1.中心对称的概念和性质。
2.如何运用中心对称解决实际问题。
五. 教学方法采用问题驱动法,引导学生通过观察,操作,思考,总结中心对称的概念和性质。
通过实例,让学生了解如何运用中心对称解决实际问题。
六. 教学准备1.教学PPT。
2.中心对称的图片和实例。
3.练习题。
七. 教学过程1.导入(5分钟)通过展示一些图片和实例,如蜜蜂的蜂窝,让学生观察并思考:这些图形有什么共同的特点?引导学生发现这些图形都是中心对称的,从而引出中心对称的概念。
2.呈现(10分钟)讲解中心对称的概念,以及中心对称的性质。
通过PPT展示中心的定义,对称点的定义,对称性质的证明等,让学生理解和掌握中心对称的概念和性质。
3.操练(10分钟)让学生分组进行动手操作,每组选择一个中心,画出中心对称的图形。
然后,让学生观察和分析中心对称的性质,如对称点的坐标关系,对称图形的形状等。
4.巩固(10分钟)让学生解决一些实际问题,如已知一个图形的一个点,求这个图形的另一个点等。
通过这些问题,让学生运用中心对称的知识,提高解决问题的能力。
八年级数学北师大版初二下册--第三单元 3.3《中心对称》(第二课时)课件
知1-讲
例2 如图,在下列图形中,中心对称图形有( C ) A.1个 B.2个 C.3个 D.4个
导引:这些图形绕某一点旋转一定角度都能与原图形完 全重合,但旋转180°后能与原图形重合的有3个, 只有最后一个图形不重合.
总结
知1-讲
正多边形图案是否为中心对称图形的识别方法: 边数为偶数的正多边形图案是中心对称图形,
知识点 1 中心对称图形的定义
知1-导
问题
(1)如图,将线段AB绕它的中点旋转180°,你 有什么发现?
A
B
可以发现:线段AB绕它的中点旋转180°后与 它BCD 绕它的两条对角线的交点O旋
转180°,你有什么发现?
A
D
O
B
C
Y 可以发现: ABCD 绕它的两条对角线的交点O旋
第三章 图形的平移与旋转
3.3 中心对称
第2课时 中心对称图形
1 课堂讲解 2 课时流程
中心对称图形的定义 中心对称图形的性质 中心对称图形的作图
逐点 导讲练
课堂 小结
作业 提升
我们上节课学习了中心对称的相关知识,中心对 称是指两个图形的关系,而把这两个图形看作一个整 体是什么图形呢?是我们这节课所要学习的中心对称 图形.
相应地,与边数为偶数的正多边形具有类似的特 征的图形是中心对称图形;边数为奇数的正多边 形或具有类似的特征的图形一定不是中心对称图 形.
1 下列哪些图形是中心对称图形?
知1-练
解:中心对称图形有(1)(2)(3).
(来自《教材》)
知1-练
2 下面扑克牌中,哪些牌的牌面是中心对称图形?
解:第一张和第三张牌的牌面是中心对称图形.
(2)本题还有其他分割方法,请分割试一试.
北师大版八年级下册3中心对称教学设计
北师大版八年级下册3中心对称教学设计一、教学目标1.掌握3中心对称的概念。
2.了解3中心对称的性质和应用。
3.能够运用3中心对称的方法解决几何问题。
4.培养观察能力和创新思维,提高数学素养和综合素质。
二、教学内容1.3中心对称的定义和性质。
2.3中心对称的判定方法。
3.3中心对称的应用——构造对称图形。
4.3中心对称的延伸——与平移、旋转的关系。
三、教学方法1.探究法:通过引导学生提出问题,自主探究3中心对称的概念和性质。
2.演示法:通过板书、ppt等形式演示3中心对称的判定方法和应用。
3.课堂练习:通过个人和小组练习,巩固3中心对称的概念和判定。
4.开放式探究:通过开放式问题引导学生深入思考3中心对称与其他几何变换的关系。
四、教学过程1. 导入环节1.教师引导学生回顾对称的概念和性质。
2.教师提出问题:“大家有没有想过一个点对称到另一个点的影射是如何实现的?”3.学生讨论后,教师引导学生思考3中心对称的概念和性质,并引入下一环节。
2. 探究环节1.将4个点分别标在坐标系的四个象限上,以原点为第一个中心,以第一象限的点为第二个中心,以第四象限的点为第三个中心。
2.学生分别计算这4个点分别关于三个中心的坐标,并观察关系。
3.教师引导学生思考3中心对称的性质,并总结出3中心对称的定义。
3. 演示环节1.教师演示3中心对称的判定方法,并进行实例解析。
2.教师演示3中心对称的应用——构造对称图形,并进行实例解析。
4. 练习环节1.学生个人和小组练习3中心对称的判定方法和应用。
2.教师纠正练习中学生的错误,并进行讲解和解析。
5. 拓展环节1.教师提出开放性问题,引导学生深入思考3中心对称与其他几何变换的关系。
2.学生小组讨论并汇报成果。
6. 总结环节1.教师对3中心对称的概念、性质、判定方法和应用进行总结。
2.学生总结本节课的学习内容和心得体会。
五、教学评价1.教师通过教学反复强调概念和性质,巩固学生对3中心对称的理解。
数学北师大版八年级下册《中心对称》教学设计
北师大版八年级下册3.3《中心对称》教学设计一、教学目标:☆知识与技能:了解中心对称、中心对称图形的概念,探索它的基本性质.☆过程与方法经历有关中心对称的观察、操作、欣赏和设计的过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念.☆情感态度价值观发现生活中的数学美,欣赏自然界的中心对称图形;二、教学重点:了解中心对称、中心对称图形的概念,探索它的基本性质教学难点:在参与活动中发展学生观察问题、分析问题、解决问题的科学探究能力;三、教学时间:( 1学时)四、教学过程一、【复习引入】:[活动过程]:1.通过几何画板的动画演示,带领学生回顾旋转的定义以及性质;2.提出问题:当旋转哪些特殊角度会使旋转前后图形有特殊的位置关系?师生互动引出课题;[活动目的]:利用几何画板的演示,教师的提问、追问让学生体会中心对称与旋转之间的从属关系,为后续学习做铺垫;二、【探究新知】☞知识点1:两成中心对称★两图形成中心对称定义:关于这个点对称或中心对称[活动过程]:教师提问:图中两组图形通过怎样的图形变换能够重合?师生互动后利用几何画板演示总结定义,引导学生找出定义中的关键词;[活动目的]:引入定义以后,通过学生找关键词,体会成中心对称是旋转的一种特殊情况;☞知识点2:探索成中心对称两图形的性质★动手画图,探究中心对称的性质请自己画一个图形,选取一个旋转中心,把所画的图形绕旋转中心旋转180°,连接旋转前后一组对应点,你发现了什么?再选几组对应点试一试,并与同伴交流。
★中心对称的性质:[活动过程]:教师提出问题,引导学生通过小组合作画出旋转以后的图形,通过小组作品的展示,总结两图形成中心对称的性质,教师通过几何画板演示,以及学生说理进一步验证,最后学生动手画图;[活动目的]:通过学生的动手操作,经历探索性质的过程,通过几何画板直观演示,加深对性质的认识,最后通过推理证明,让学生感受数学的严谨性,在学生小组合作过程中,培养学生的团队意识.☞知识点3:中心对称图形先独立观察,再小组交流归纳:中心对称图形:[设计过程]:教师提出问题:通过怎样的变换图形能与原图形重合?师生互动总结定义,通过两组练习题进行训练,加深学生对中心对称图形的认识,并进一步举例我们所学过的平面图形中的中心对称图形.[活动目的]:通过几何画板直观演示认识定义,在总结定义关键词时,教师引导学生对比其与两图形成中心对称的区别与联系,发展学生类比学习的意识,通过练习、举例进一步加深学生对知识的理解.☞知识点4:旋转对称图形观看微视频,学习旋转对称图形定义[设计过程]:1.学生自主学习微课,了解旋转对称图形定义;2.举例说明旋转对称图形与中心对称图形之间的联系;[活动目的]:学习新知识的过程中,对比其与中心对称图形的联系,了解二者之间的从属关系,加深对中心对称图形的认识,发展类比学习的意识;三、【效果检测】1.下列图形中,中心对称图形有个个个个2.下列四个图形中,既是轴对称图形又是中心对称图形的是 ( )A. B. C. D.3与成中心对称,下列结论中不成立的是4为对称中心,若的长为.第3题第4题5如图,在平面直角坐标系中,点的坐标分别为Ⅰ请在图中画出与成中心对称;Ⅱ直接写出(1)中的三个顶点坐标.知者加速;我们把图(1)称作正六边形的基本图,将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图(2),图(3(n).(1)将图(n)放在直角坐标系中,设其中第一个基本图的对称中心的坐标为(2)图(n)的对称中心的横坐标为.[活动过程]:学生学习完主要知识后是否达成了本节课的学习目标呢?教师通过效果检测来掌握.同时效果检测完成后教师应及时公布答案,组织学生通过“小组互帮进行对组内学习有困难的同学进行个别帮扶”,及时解决组内个别同学存在的问题.[活动目的]:通过学生自学、小组互帮、教师个别点拨等方式使学生养成独立思考、合作交流、反思质疑的学习习惯,再此过程中教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.四、【自主建网】★1.通过本节课的学习:你有哪些收获与感悟?2.展示两图形成轴对称实例,体会二者之间联系;[活动过程]:学生回答,教师引导,串联本节课所学知识点;类比轴对称,体会二者之间的联系与区别,发展学生类比学习的意识;【因人作业】必做题:课本84页 ----1,2,3选做题:课本84页-----4[设计说明]:通过因人作业的设置,让不同层次的学生都能学有所获,能享受到成功的喜悦.。
八年级数学上中心对称图形课件北师大版
中心对称图形与几
04
何变换的关系
中心对称与平移变换的关系
总结词
中心对称图形在平移变换下保持不变
详细描述
中心对称图形在平移变换下,其形状 和大小保持不变,只是位置发生了移 动。平移变换不会改变中心对称图形 的对称中心和对称轴。
中心对称与旋转变换的关系
总结词
中心对称图形在旋转变换下保持不变
详细描述
中心对称图形的作
03
图
作中心对称点
总结词
通过已知点作中心对称点的方法
详细描述
首先确定中心对称点与已知点的连线,然后通过中心点作这条连线的 垂线,最后在垂线上取与中心点等距的新点作为中心对称点。
总结词
作中心对称点在几何作图中的应用
详细描述
在几何作图中,通过作中心对称点可以方便地找到与已知图形关于某 点对称的新图形,从而简化作图过程。
详细描述
如果一个图形绕着某一点旋转180度后能够与自身重合,则该图形是中心对称图 形。
通过对称点判定中心对称图形
总结词
关于某点成对称
详细描述
如果一个图形中任意一点关于某点对称,都能找到另一对称点在图形上,则该图 形是中心对称图形。
通过对称轴判定中心对称图形
总结词
关于某轴成对称
详细描述
如果一个图形关于某条直线对称,即图形上任意一点关于该直线对称,都能找到另一对称点在图形上,则该图形 是中心对称图形。
中心对称图形的应用
在几何作图中,利用中心对称 性质可以方便地画出与已知图 形关于某点或某条直线对称的 图形。
在图案设计中,中心对称图形 可以创造出具有美感的图案。
在解决数学问题时,利用中心 对称性质可以简化问题,提高 解题效率。
北师大版八年级下册数学《3.3 中心对称》教学设计
北师大版八年级下册数学《3.3 中心对称》教学设计一. 教材分析《3.3 中心对称》是北师大版八年级下册数学的一节重要内容。
本节课主要介绍了中心对称的定义、性质及其在实际问题中的应用。
教材通过丰富的图片和实例,引导学生探究中心对称的规律,培养学生的空间想象能力和抽象思维能力。
二. 学情分析八年级的学生已经掌握了基本的平面几何知识,具备了一定的逻辑思维和空间想象能力。
但学生在学习过程中,可能对中心对称的概念和性质理解不够深入,需要教师通过实例和讲解,帮助学生更好地理解和掌握。
三. 教学目标1.理解中心对称的定义和性质;2.能够识别和判断中心对称图形;3.学会运用中心对称解决实际问题;4.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.中心对称的定义和性质;2.中心对称图形在实际问题中的应用。
五. 教学方法1.情境教学法:通过丰富的图片和实例,激发学生的学习兴趣,引导学生主动探究中心对称的规律;2.问题驱动法:教师提出问题,引导学生思考和讨论,加深对中心对称的理解;3.合作学习法:学生分组讨论和操作,培养学生的团队协作能力;4.归纳总结法:教师引导学生总结中心对称的性质和应用,提高学生的归纳能力。
六. 教学准备1.教学课件:制作精美的课件,展示中心对称的图片和实例;2.教学道具:准备一些中心对称的图形,如圆、六边形等;3.练习题:设计一些有关中心对称的练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的中心对称现象,如闹钟、蜜蜂等,引导学生关注中心对称的概念。
2.呈现(10分钟)介绍中心对称的定义和性质,通过实例讲解,让学生初步理解中心对称的概念。
3.操练(10分钟)学生分组讨论,找出教材中的中心对称图形,并说明其性质。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)出示一些有关中心对称的练习题,让学生独立完成,检查对中心对称知识的掌握情况。
5.拓展(10分钟)引导学生思考中心对称在实际问题中的应用,如设计图案、解决几何问题等。
北师大版数学八年级下册中心对称课件
A. 2
B. 4
A
C. 6
D. 8
D O
B
当堂小结
中 中 概念 旋转角是 180°
心 心 性质 对应点的连线经过对称中心,且
对对
被对称中心平分
称 和
称 作图 作中心对称图形; 找出对称中心
中 心 对
称 图
中 定义 绕着某一点旋转 180° 能与本身重
心
合的一个图形
对 称
性质
经过对称中心的直线把原图形分 成面积相等的两部分
A
O
顺次连接 E,B',C',D',A. D'
图与形五边EB形'CA'DB'CAD就E是成以中点心O对为称对的称图中形心. 、C'
C
D E B'
议一议 视察图,这些图形有什么共同特征?你还能举出一些 类似的图形吗?
把一个图形绕某一个定点旋转 180°,如果旋转后 的图形能和本来的图形重合,那么这个图形叫做中心 对称图形,这个定点就是对称中心.
活动探究
C
(1) 对应点到旋转中心 A 的距离是否相等?
B O● B′
A′
OA = OA′、OB = OB′、OC = OC′. 相等. C′
(2) 对应点与旋转中心所连线段的夹角是否等于旋转角? ∠AOA′ = ∠BOB′ = ∠COC′ = 180°. 相等.
(3) 旋转前、后的图形全等?△ABC≌△A′B′C′. 全等.
想一想 (1) 在你所学过的平面图形中,哪些图形是中心对称图形? (2) 在上面例题中,图形 ABCDEB'C'D' 是中心对称图形 吗?
边数是偶数的正多边形都是中心对称图形 图形 ABCDEB'C'D' 是中心对称图形
八年级下册数学北师大版第一章
八年级下册数学北师大版第一章1. 中心对称定义:如果一个图形绕某一点旋转180度,能与另一个图形重合,则这两个图形为中心对称图形。
性质:中心对称图形必定是旋转180度后重合的图形。
2. 中心对称图形定义:一个图形绕某一点旋转180度能够与自身重合,则这个图形叫做中心对称图形。
性质:中心对称图形的所有点都关于某一点对称。
3. 轴对称与轴对称图形定义:如果一个图形沿着某条直线对折,两侧的图形能完全重合,则这个图形称为轴对称图形。
性质:轴对称图形的对称轴两侧的图形是全等的。
4. 轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
如果两个图形关于某直线对称,那么它们的对应线段(或延长)相等。
如果两个图形关于某直线对称,那么它们的对应角相等。
5. 全等三角形定义:两个三角形能够完全重合,则这两个三角形称为全等三角形。
性质:全等三角形的对应边相等,对应角相等。
6. 三角形全等的判定边边边(SSS):如果两个三角形的三边分别相等,那么这两个三角形全等。
边角边(SAS):如果两个三角形的两边及其夹角分别相等,那么这两个三角形全等。
角边角(ASA):如果两个三角形的两角及其夹边分别相等,那么这两个三角形全等。
角角边(AAS):如果两个三角形的两角及其对边分别相等,那么这两个三角形全等。
7. 直角三角形全等的判定斜边直角边(HL):如果两个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等。
8. 角的平分线性质角的平分线上的点到这个角的两边的距离相等。
9. 平行四边形定义:两组相对边平行或相等的四边形叫做平行四边形。
性质:对边平行、对角相等、对角线互相平分。
10. 矩形、菱形、正方形定义:有一个角是直角的平行四边形叫做矩形;一组邻边相等的平行四边形叫做菱形;有一个角是直角的菱形叫做正方形。
性质:矩形、菱形、正方形都是特殊的平行四边形,它们都具有平行四边形的所有性质,此外还有各自特殊的性质。
八年级数学上中心对称图形课件北师大版
中心对称经常出现在自然界和建筑设计中,它给人们带来美感和和谐。
中心对称在设计中的应用
中心对称可以用于设计标志、艺术作品和装饰品等,增加无限的创意和吸引力。
练习与实践
1
练习题1 :判断图形是否中心对称,如果是,写出对称中
2
练习题2 :完成给定中心对称图形
在给定的图形中,使用对称中心将其折叠完成中心对称图形的绘制。
3
实践案例:设计一个中心对称的对称图案
发挥你的创意,设计一个具有中心对称性的图案,给人们带来视觉上的愉悦。
小结与评价
本课程的主要内容回顾
在本课程中,我们学习了中 心对称的概念、性质以及在 几何、生活和设计中的应用。
课程学习效果的评价
通过课程的学习,我们对中 心对称有了更深入的了解, 并能运用它解决实际问题。
学习下一步的建议与计 划
希望大家能继续加强对中心 对称的理解,并将其应用于 更多领域,发现数学的美妙。
可以通过折叠图形或通过判断是否存在对称中 心来确定一个图形是否中心对称。
中心对称的基本性质
中心对称的图形具有对称性,通过对称中心可 以将图形的各部分对应起来。
中心对称与轴对称的区别
中心对称使用一个点作为对称中心,轴对称使 用一条直线作为对称轴。
中心对称的应用
中心对称在几何图形中的应用
中心对称可以帮助我们判断图形的性质和计算图形的面积、周长等。
八年级数学上中心对称图 形课件北师大版
欢迎大家来到八年级数学上中心对称图形课件北师大版。在这个课件中,我 们将学习中心对称的概念、应用以及练习与实践。准备好迎接数学的美妙世 界吧!
中心对称的概念
什么是中心对称
中心对称是指一个图形可以通过一个点作为对 称中心,将图形折叠后,两侧完全重合。
北师大八年级上册中心对称图形
“中心对称图形”案例宜都市外国语学校范鸿【课题】义务教育课程标准实验教科书数学(北师大版)八年级上册第四章第8节一、教案目标:(—)知识与技能:1.经历观察、发现、探究中心对称图形关概念和基本性质的过程.2.了解中心对称图形及基本性质,掌握平行四边形也是中心对称图形。
3.理解中心对称图形的概念及基本性质,判断中心对称图形,能说出判断的理由。
(二)情感与态度目标:让学生感受中心对称图形的旋转之美,积累审美的经验,体会中心对称图形的基本性质在实践中的应用。
学生勤于动手、乐于探究,发展学生实践应用能力和创新精神成为可行。
二.教材分析:由于中心对称图形形状匀称美观,所以很多建筑物和工艺品上常采用这种图形作装饰图案。
又因为具有中心对称图形形状的物体,能够在所在平面内绕对称中心平稳地旋转,所以在生产中旋转的零部件的形状常设计成中心对称图形。
让学生感受旋转变换的思想,学会运用旋转的思想来解决生活的图形问题,感受图形的旋转之美。
采取从学生最熟悉的实际问题情境入手的方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。
所有新知识的学习都以对相关具体问题情境的探索作为开始,它们是学生了解与学习这些新知识的有效方法,同时也活跃了课堂气氛,激发学生的学习兴趣。
通过创设问题情境,学生获得的答案将是丰富的。
在交流归纳时,他们感觉到,自己在活动中“研究”的成果,对最终形成规范、正确的结论是有贡献的,从而激发他们更加注意学习方式和“研究”方式。
这也是对他们从事科学研究的情感态度的培养。
学生勤于动手、乐于探究,发展学生实践应用能力和创新精神成为可行。
通过学生自己的观察、发现、总结、归纳,进一步理解中心对称图形及其特点,发展空间观念,突出了数学课堂教案中的探索性。
从而培养了学生观察、概括能力,让学生尝到了成功的喜悦,激发了学生的发现思维的火花。
对于抽象的概念教案,要关注概念的实际背景与形成过程,加强数学与生活的联系,力求让学生采取发现式的学习方式,通过“想一想”、“议一议”、“动一动”等多种活动形式,帮助学生克服记忆概念的学习方式。
北师大版八年级数学(下册).3中心对称(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“中心对称在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
举例解释:
对于对称中心的确定,可以让学生通过折叠图形、观察对称点的方法来寻找对称中心,通过动手操作来降低理解难度。
在应用中心对称性质解决几何问题时,教师应提供多个不同难度的例题,逐步引导学生如何将性质应用到问题中,以突破难点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《中心对称》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过图形通过某个点旋转180度后与原图形完全重合的情况?”(如镜子中的反射)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同
一、教学内容
本节课选自北师大版八年级数学(下册)第三章“图形的变换”中的第3节“中心对称”。教学内容主要包括以下两个方面:
1.中心对称的概念:介绍中心对称的定义,使学生理解中心对称的性质,并能够识别和绘制中心对称图形。
2.中心对称的性质与判定:探讨中心对称图形的性质,如对称点的特征、对称轴的性质等;掌握中心对称的判定方法,并能运用到实际问题中。
2.提升学生的逻辑推理能力:引导学生从特殊到一般,通过实例探究、归纳总结中心对称的性质与判定方法,培养学生的逻辑思维和推理能力。
3.增强学生的几何直观:让学生在观察、操作中心对称图形的过程中,体会几何图形之间的关系,提高几何直观和几何审美。
北师大版八年级数学下册第三章图形的平移和旋转---中心对称课件
三、知识探究二
视察下图,这些图形有什么共同特征?你还能举出 一些类似的图形吗?
共同点:(1)都绕一点旋转了180度; (2)都与原图形完全重合.
中心对称图形 把一个图形绕某个点旋转180°,如果旋转后
的图形能与本来的图形重合,那么这个图形叫做中 心对称图形,这个点叫做它的对称中心.
注意:任意经过对称中心的直线把 原图形分成全等的两部分
北师大版 八年级下册
3.3 中心对称
一、预习检测 1. 下面哪些图形是中心对称图形?
(1) 、(2) 、(3)
2.下面扑克牌中,哪些牌的牌面是中心对称图形?
(1) 、(3)
一、复习导入
在平面内,将一个图形绕一个定点按某个方向转动 一个角度,这样的图形运动称旋转.这个定点称为旋转 中心,转动的角称为旋转角。
中心对称与中心对称图形的联系
中心对称
中心对称图形
区分
联系
两个全等图形的相 互位置关系
一个图形本身成 中心对称
成中心对称的两个图形看成一个整体,则
它们是中心对称图形.
中心对称图形对称的部分看成两个图形,
则它们成中心对称.
想一想
我们平时见过的几何图形中,有哪些是 中心对称图形?并指出对称中心.
怎样的多边形是中心对称图形?
画的图形绕旋转中心旋转180º.连接旋转前后一
组对应点,你发现了什么?再选几组对应点试一
试,并与同伴交流.
B´
C´ O .
A D
D´ A´
B
C
活动小结: 中心对称的性质:成中心对称的两个图形中,
对应点所连线段经过对称中心,且被对称中心平分.
B´ C´
A
O.
D
2024北师大版数学八年级下册3.3《中心对称》教案
2024北师大版数学八年级下册3.3《中心对称》教案一. 教材分析《中心对称》是北师大版数学八年级下册第3章第3节的内容。
本节主要介绍中心对称的概念,性质以及中心对称图形的判定。
通过学习,学生能够理解中心对称的定义,掌握中心对称的性质,并能运用中心对称解决实际问题。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生观察、思考、归纳的能力。
二. 学情分析八年级的学生已经学习了平面几何的基本概念和性质,对图形的变换有一定的了解。
但中心对称的概念和性质较为抽象,学生可能难以理解。
因此,在教学过程中,教师需要借助实物和图形,引导学生从直观的角度去理解和掌握中心对称的概念和性质。
三. 教学目标1.理解中心对称的概念,掌握中心对称的性质。
2.能够运用中心对称解决实际问题。
3.培养学生的观察能力、思考能力和归纳能力。
四. 教学重难点1.中心对称的概念和性质。
2.中心对称图形的判定。
五. 教学方法1.情境教学法:通过实物和图形,引导学生从直观的角度去理解和掌握中心对称的概念和性质。
2.问题驱动法:教师提出问题,引导学生思考和探讨,激发学生的学习兴趣。
3.合作学习法:学生分组讨论,共同完成任务,培养学生的团队协作能力。
六. 教学准备1.准备相关实物的图片和图形,如圆、矩形等。
2.准备中心对称的判定题目。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)利用实物和图形,如圆、矩形等,引导学生观察和思考:这些图形有什么共同的特点?它们是如何通过某种变换得到的?2.呈现(10分钟)介绍中心对称的定义和性质,引导学生从直观的角度去理解和掌握中心对称的概念和性质。
3.操练(10分钟)学生分组讨论,共同完成中心对称图形的判定题目。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)教师提出问题,引导学生思考和探讨:中心对称的概念和性质在日常生活中有哪些应用?学生分享自己的观点和实例。
5.拓展(10分钟)教师引导学生运用中心对称解决实际问题,如设计图案、解决几何题目等。
3.3中心对称-北师大版八年级数学下册教学设计
教学设计方案一、教学重点1、理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;2、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;二、进门测辨别轴对称图形中心对称图形三、课堂落实要点一、中心对称和中心对称图形1.中心对称图形:把一个图形绕着中心旋转180°后能与自身重合,这种图形叫做中心对称图形,这个中心叫做对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.2.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形成中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合.3.中心对称与中心对称图形的区别与联系:要点二、关于原点对称的点的坐标特征关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.要点三、中心对称、轴对称、旋转对称1.中心对称图形与旋转对称图形的比较:2.中心对称图形与轴对称图形比较:要点诠释:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.1.如图是我国几家银行的标志,其中即是轴对称图形又是中心对称图形的有 ( )A.2个 B.3个 C.4个 D.5个【答案】A【解析】中心对称图形要求绕中心旋转180°与原图形重合。
中国银行、中国工商银行两个图形绕中心旋转180°能与原图形重合,所以选A.【总结升华】中心对称的关键是:旋转180°之后可以与原来的图形重合.举一反三【变式】如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A.M或O或N B.E或O或C C.E或O或N D.M或O或C【答案】A2.如图,△ABC与△DEF关于点O对称,请你写出两个三角形中的对称点,相等的线段,相等的角.【思路点拨】利用中心对称的定义及性质直接写出即可.【答案与解析】解:对称点为:A和D、B和E、C和F;相等的线段有AC=DF、AB=DE、BC=EF;相等的角有:∠A=∠D,∠B=∠E,∠C=∠F.【总结升华】本题考查了中心对称的性质及定义,中心对称的两个图形的对应角相等,对应边的比相等.类型二、作图3. 已知:如图甲,试用一条直线把图形分成面积相等的两部分(至少三种方法).【答案与解析】【总结升华】解决这类问题时,关键是将图形转化成两个中心对称图形(如果原图形本身就是中心对称图形,则直接过对称中心作直线即可),再由两点确定一条直线,过两个对称中心画直线即满足条件.举一反三【变式】(北京某中学期中)物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.(1)你认为平行四边形的重心位置在哪里?请说明理由;(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).【答案】(1)平行四边形的重心是两条对角线的交点.如图,平行四边形ABCD是中心对称图形,对角线的交点O是对称中心,经过点O与对边相交的任何一条线段都以点O为中点(如图中线段PQ),因此点O是各条线段的公共重心,也是平行四边形ABCD的重心.(2)把模板分成两个矩形,连接各自的中心;把模板重新分成两个矩形,得到连接各自中心的第二条线段,点G即为该模板的重心.四、课堂练习1. 选出下列图形中的中心对称图形( )A.①②B.①③C.②③D.③④2.如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等,其中正确的有()A.1个 B.2个 C.3个 D.4个3.在线段、等腰梯形、平行四边形、矩形、菱形、正方形、等边三角形中,既是轴对称图形,又是中心对称图形的图形有( )A.3个B.4个C.5个D.6个4.下列说法正确的是( )A.两个会重合的三角形一定成轴对称B.两个会重合的三角形一定成中心对称C.成轴对称的两个图形中,对称线段平行且相等D.成中心对称的两个图形中,对称线段平行(或在同一条直线上)且相等5.下列英语单词中,是中心对称图形的是()A.SOSB.CEOC.MBAD.SAR6.在下列四种图形变换中,本题图案不包含的变换是( )①中心对称②旋转③轴对称④平移A.①② B.②③C.③④D.①④7.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点的坐标为________.8.将五个边长都为3cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和是cm2.9.绕一定点旋转180°后与原来图形重合的图形是中心对称图形,正六边形就是这样的图形.小明发现将正六边形绕着它的中心旋转一个小于180°的角,也可以使它与原来的正六边形重合,请你写出小明发现的一个旋转角的度数:_____________________.10.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是_____.11.如图所示,△ABC中,∠BAC=120°,∠DAE=60°,AB=AC,△AEC绕点A旋转到△AFB的位置;∠FAD=__________,∠FBD=__________.12.如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形0ABC绕点O旋转180°旋转后的图形为矩形OA1B1C1,那么点B1的坐标为_____________.五、查漏补缺中心对称图形的判断六、课后落实同步习题完成课堂练习1.【答案】B;2.【答案】D;【解析】解:中心对称的两个图形全等,则①②④正确;对称点到对称中心的距离相等,故③正确;故①②③④都正确.故选D.3.【答案】B【解析】既是轴对称图形,又是中心对称图形的图形有线段、矩形、菱形、正方形.4.【答案】D5.【答案】A【解析】是中心对称图形的是A,故选A.6.【答案】D【解析】旋转180°与原图像不能重合,所以①是错误的;平移应该是整个图形通过平移得到新图形,所以④是错误的.7.【答案】(4,0);【解析】8.【答案】9;【解析】解:由中心对称的性质和正方形的性质得,一个阴影部分的面积等于正方形的面积的,所以,四块阴影面积的总和正好等于一个正方形的面积,∵五个正方形的边长都为3cm,∴四块阴影面积的总和为9(cm2),故答案为:9.9.【答案】60°或120°.【解析】正六边形的中心角是360°÷6=60°,所以旋转角是60°的倍数即可.10.【答案】【解析】准确的画图将为我们研究问题提供较好的思维切入点,据题意,画示意图.由图可知,P3与P2关于y轴对称,因此只须求得P2坐标,而我们可以发现△OP0P2为含60°角的直角三角形,所以可以知道,.11.【答案】60°;60°.【解析】因为△AEC绕点A旋转到△AFB的位置,所以△AEC≌△AFB,即∠FAB=∠EAC,∠ACB=∠FBA,又因为∠BAC=120°,∠DAE=60°,所以∠FAD=∠BAD +∠FAB=∠BAD+∠EAC =120°-60°=60°;所以∠FBD=∠ABC+∠FBA=∠ABC+∠ACB=180°-120°=60°.12.【答案】(-2,-1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正方形是中心对称图形吗?正方形绕两条对角线 的交点旋转多少度能与原来的图形重合?能由此 验证正方形的一些特殊性质吗?
旋转 2700
正方形是中心对称图形吗?正方形绕两条对角线 的交点旋转多少度能与原来的图形重合?能由此 验证正方形的一些特殊性质吗?
旋转 3600
正方形是中心对称图形吗?正方形绕两条对角线 的交点旋转多少度能与原来的图形重合?能由此 验证正方形的一些特殊性质吗?
能够互相重合的点叫做对称点。如:
A与A1,B与B1, C与C1 。
A C1 B1
O
B
C
A1
在平面内,一个图形绕某个点旋转1800,如 果旋转前后的图形互相重合,那么这个图形
叫做中心对称图形,这个点叫做它的对
称中心。
定理1 关于中心对称的两个图形是全等形。
定理2 中心对称图形对称点的连线通过对称 中心,并且被对称中心平分。
ABCDEFGH I J KLM
NOPQRSTUVWXYZ
试 一试
如图,点O是正六边形ABCDEF的中心。
C
600或其 整数倍。
D E
B A
F
直线AD,BE,CF 以及AB,BC,CD 的垂直平分线都是 这个正六边形的对 称轴。
(1)找出这个轴对称图形的对称轴。
(2)这个正六边形绕点O行四边形是中心对称图形吗?如果是,请找 出它的对 称中心,并设法验证你的结论。 (2)根据上面的过程,你能验证平行四边形的哪些 性质?
O
(1)平行四边形是中心对称图形,对称中心是两条对 角线的交点。 (2)能验证平行四边形的对边相等、对角相等、对角线互 相平分等性质。
(3)在平行四边形、矩形、菱形、 正方形、梯形、等腰梯形中,哪些 图形是具有轴对称性?哪些图形是 中心对称图形?
北师版八年级中心对称
(1)下面这些图形有什么共同的特征? (2)你能将这些图形绕其上的一点旋转
1800,使旋转前后的图形完全重合吗?
(1)
(2)
(3)
(4)
定义:如果一个图形绕一个点旋转180°后 ,能够和另一个图形互相重合,那么这两个图形 关于这个点对称或中心对称。
这个点叫做它的对称中心。
旋转 nx900
正方形是中心对称图形;它绕两条对角线的交点 旋转900或其整数倍,都能与原来的图形重合,因此, 可以验证正方形的四边相等、四角相等、对角线互相 垂直平分等性质。
2、下列哪个图形是中心对称图形?
第一个和第三个是中心对称图形。
拓展演练
1、在26个英文大写正体字母中,哪些字母是 中心对称图形?
(3)如果换成其他的正多边形呢?能得到一般的结论吗?
一般地,绕正n边形的中心旋转3600/n或其整数倍都能与原来 的图形重合。
正三角形是中心对称图形吗?正五边形 呢?正六边形呢?……
边数为偶数的正多边形都是中心对称图形。
轴对称图形与中心对称图形的比较
轴对称图形与中心对称图形的比较
A
C1
B1
O
B
C
A1
轴对称
中心对称
1 有一条对称轴——直线 有一个对称中心——点
2 图形沿轴对折(翻转180°) 图形绕中心旋转180°
3 翻转后和另一个图形重合 旋转后和另一个图形重合
携手共进,齐创精品工程
Thank You
世界触手可及
议一议
(1)举出生活中的一些中心对称图形。 (2)下面的扑克牌中,哪些牌面是中心对称图形?
1、正方形是中心对称图形吗?正方形绕两条对角 线的交点旋转多少度能与原来的图形重合?能由 此验证正方形的一些特殊性质吗?
旋转 900
正方形是中心对称图形吗?正方形绕两条对角线 的交点旋转多少度能与原来的图形重合?能由此 验证正方形的一些特殊性质吗?