《计算机数学基础》(一)――离散数学期末复习参考

《计算机数学基础》(一)――离散数学期末复习参考
《计算机数学基础》(一)――离散数学期末复习参考

《计算机数学基础》(一)――离散数学期末复习参考

一、关于期末考试

1.本学期的结业考核由形成性考核和期末考核构成。形成性考核由平时作业成绩构成,占结业考核成绩的20%, 期末考核成绩占结业考核成绩的80%。

2.期末考核实行全国统一考核,根据本课程考试说明,由中央电大统一命题,统一考核时间,制定统一评分标准。开办试点的地方电大组织考核。

期末考核的考核内容和要求以考核说明为准;采用闭卷笔试,试卷满分100分;时限120分钟。

试题类型及分数:单项选择题和填空题,分数约占25%。解答与计算题,分数约占56%;证明题,分数约占19%。

3, 考核试卷分数分布:第1编数理逻辑约30分,第2编集合论约30分,第3编图论约25分,第4编代数系统约15。

4. 易、中、较难题目在试卷中占的比例是4:4:2。

二、各章重点考核内容

第1章命题逻辑

1.命题联结词真值真值表简单命题符号化

2. 命题公式永真式永假式可满足式

3. 公式等值演算(必须掌握公式基本等值式)

4. 求范式(用各种方法求合取范式、析取范式,尤其是主析取范式,主合取范式等)

5. 掌握逻辑推理的方法。

第2章谓词逻辑

1. 谓词量词个体词个体域变元(约束变元、自由变元) 简单命题符号化

2. 判别简单谓词公式的类型(永真式、永假式、可满足式)

3. 求前束范式

4. 有限个体域中,求给定解释下的公式真值。

第3章集合及其运算

1.集合元素全集空集幂集

2. 集合的关系与运算

3. 有序对和笛卡儿积

第4章关系与函数

1. 二元关系及其表示方法――集合方法、矩阵和图

2.关系的运算和复合关系、逆关系

3.二元关系的性质 (5条性质)

4. 等价关系(等价类)与偏序关系 (哈斯图极大(小)元最大(小 )元

5. 函数复合函数单射满射和双射,求反函数

第5章图的基本概念

1. 图结点边有向图无向图简单图多重图完全图子图与生成子图结点度数握手定理及其推论

2. 通路通路的长度初级(简单)通路回路初级(简单)回路点割集与割点边割集与桥连通图强(单测、弱)连通

3. 关联矩阵邻接矩阵

第6章几种特殊图

1. 欧拉通路(回路) 欧拉图哈密顿通路(回路) 哈密顿图

2. 平面图面的次数平面图相关定理(定理6~8)

3. 树无向树有向树最小生成树根树最优树二叉树

第7章群

1. 代数运算以及运算性质单位元、逆元, 代数系统,

2. 半群群及其性质子群

3. 循环群交换群n元置换及置换群

4. 群的同态与同构

第8章其它代数系统

1. 环与域,环

. 2. 格有界格有余格分配格

3. 布尔代数

三、各章基本问题

第1章命题逻辑

1. 命题符号化,是否命题判断或求真值。

2. 命题公式赋值,及类型判别。

3. 命题公式等值判别或证明。方法有真值表法、等值演算法和主范式法.

4. 求范式和主范式。

5. 蕴含式(推理理论)证明:

方法有:真值表法、等值演算法、主析取范式法、

构造证明法――直接法、附加前提证明法和反证法。

第2章谓词逻辑

1. 命题符号化。

2. 求辖域、约束变元、自由变元。

3. 给定解释求谓词公式的真值(多为个体域有限的情形)。

4. 判断谓词公式是否重言式(用代换实例)、永假式?

5. 求前束范式。

第3章集合及其运算

1. 求集合表达式(列举法或描述法)。

2. 判断集合与元素、集合与集合的关系,用∈,?,?,?,??

3. 求幂集。

4. 包含或相等的化简或证明。

5. 求笛卡儿积,或某些等式证明。

第4章二元关系与函数

1. 求关系的表达式,关系矩阵、关系图,Dom(R),Ran(R).

2. 验证或证明关系的性质。

3. 关系计算:求?,?,-,~,⊕

4. 求复合关系、逆关系及其矩阵。

5. 求自反闭包或对称闭包。

6. 验证或证明关系R是等价关系或偏序关系。

7. 作偏序关系的哈斯图,求极大(小)元、最大(小)元。

8. 验证是否是函数,是满射、单射、双射?

第5章图的基本概念

1. 图G与G=互求。

2. 判断简单图、多重图、完全图。

3. 求子图或生成子图。

4. 求结点度数或用握手定理求结点数,或判断是否度数序列。

5. 判断是否同构,主要用必要条件判断不同构。会作2或3个结点非同构的生成子图。

6. 用定理1(握手定理)或2以及推理进行推理或计算。

7. 求图中通路、回路、长度或通路、回路的数目(主要用定理8)

8.判断是否连通、强连通、单侧连通或弱连通。

9. 求点割集、割点和边割集、割边(比较简单的图)。

10. 求有向图的邻接矩阵和可达矩阵。

第6章几种特殊的图

1.判断或作欧拉图,求欧拉通路、回路。

2. 判断或作哈密顿图,求哈密顿通路、回路,说明不是哈密顿图。

3. 判断是否可平面图,将可平面图改画为平面图。

4. 求连通平面图的面、边界和次数。

5. 用定理6,7作某些证明或计算。如求二元完全树中树叶个数与分支点数之关系。

6. 判断是否树。

7. 求树的结点与边的关系。

8. 求最小生成树和权。

第7章群

1. 验证代数运算f在A上封闭,即是代数系统。

2. 验证代数运算有结合律,交换律等。

3. 验证代数运算f,g有无分配律,吸收律等。

4. 求运算的单位元,逆元.。

5. 判断是否半群、群、交换群、循环群,求生成元和循环群的子群。.

7. 在群中进行计算、化简等。

8. 求复合置换、逆置换等。

9. 证明群同态、同构,找同态(同构)映射。

第8章 其它代数系统

1. 验证是否为环?

2. 给出偏序集,判断是否为格?

3. 在格中进行计算、化简或证明等。

4. 布尔代数式的化简、求值或证明.

四、自我练习题

一、单项选择题

1. 给定无向图如图1所示,下面给出的顶点 集的子集中,不是点割集的为( ) (A) {b ,d } (B) {d } (C) {a ,c } (D) {e ,g }

2. 无向完全图K 3的不同构的生成子图有( )个. (A) 6 (B) 5 (C) 4 (D) 3

3. 在自然数集合N 上,下列运算可结合的是( ) A.),max(y x y x =* B.y x y x +=*2 C.22y x y x +=* D. y x y x -=*

4. 设N 为自然数集合,在下面4种运算下不构成代数系统的是( )

(A) x οy = x +y -2xy (B) x οy = x +y (C) x οy = x ?y (D) x οy = |x |+|y | (其中,+、—分别为普通加法和减法)

5.

2

所示,是格的为( )

图2

二、填空题

6. 若命题变元P ,Q ,R 赋值为(1,0,1),则命题公式G =)())((Q P R Q P ∨?∨→∧的真值是

7. 设N (x ):x 是自然数,Z (y );y 是整数,则命题“自然数都是整数,而有的整数不是自然数”符号化为

8. 设A ,,B 为任意集合,命题A -B =??A=B 的真值为 .

9. 设A ,B 为有限集,且|A|=m ,|B|=n ,那末A 与B 间存在双射,当且仅当 .

10. 在有向图的邻接矩阵中,第i 行元素之和,第j 列元素之和分别为 .

三、化简解答题

11. 做命题公式))(()(P Q P Q P ∨∧→→的真值表,并判断该公式的类型.

12.化简集合表达式:((A ?B ?C )?(A ?C ))-((C ?(C -B )-A )

13. (1)将命题公式)(P R Q P →?∧∨?化为只含?和∧的尽可能简单的等值式.

(2) 求谓词公式))(())((a f R x Q P x ∨→?的真值.

其中P :4>3,Q (x ):x >1,R (x ):x ≤2,f (0)=0,f (4)=4.a :4.

个体域D ={0,4}.

四、计算解答题

14. (1) 设R 和S 是集合A ={1,2,3}上的二元关系,

f b

图1

R ={<1,2>,<3,1>} S ={<1,2>,<2,1>,<3,3>}

求R ?S ,写出它的矩阵M R ?S .

(2) 求布尔表达式c b c b a c b a E ++?+=)(),,(的对偶式,并求当a ,b ,c 取值0,0,1时,E (a ,b ,c )以及其对偶式的真值。

15. 指出谓词公式)(),())(),()((x S y x xH x P z x G x F x ∧?∧∨→?中?x 和?x 的辖域,

16. 已知带权图G ,如图3所示.试求图G 的 最小生成树,并计算该生成树的权.

17. 设简单连通无向图G 有12条边,G 中有1度 结点2个,2度结点2个,4度结点3个,其余结点度 数不超过3.求G 中至少有多少个结点.试作一个满足 该条件的简单无向图. 图3

五、证明题

18. 证明如果R 和S 是非空集合A 上的等价关系,则S R ?也是A 上的等价关系.

19. 设R *是非0实数集,在R *上定义集合S 为

},00{*R b a b a S ∈??

????= 证明 (S ,*)是代数系统,满足结合律,交换律,存在单位元,S 的每个元素有逆元。其中*是矩阵的乘法运算.

五、自我练习题解答

一、单项选择题

1. B

2. C

3. A

4. A

5. D

二、填空题

6. 1

7. ?x (N (x )→Z (x ))∧?x (Z (x )∧?N (x ))

8. 0

9. m =n .

10. 结点v i 的出度和结点v j 的入度

三、化简解答题

11. . 命题公式的真值表

12. ((A ?B ?C )?(A ?C ))-((C ?(C -B )?~A )

=(A ?C )-(C ?~A )(两次用吸收律)

=((A ?C )?(~C ?A )

=(A ?~C )?(C ?~C)?A ?(A ?C )

=(A ?~C )???A =A

13. (1))(P R Q P →?∧∨?

)()(P R Q P ∨∧?∧??

)()(R P Q P ?∧??∧?∧??

不惟一.

(2) ))(())((a f R x Q P x ∨→?

=))4(()))4(())0(((f R Q P Q P ∨→∧→

=00)11()01(?∨→∧→

四、计算解答题

14. (1) R ?S = {<1,2>,<3,1>}?{<1,2>,<2,1>,<3,3>}=}2,3,1,1{><><

????

??????=?010000001S R M (2) 110)11(10)100()1,0,0(=++?=++?+=E

c b c b a c b a E ++?+=)(),,(的对偶式为c b c b a ??+?)(, 其真值是010110)100(=??=??+?

15. ?x 的辖域为:F (x )→G (x ,z )∨P (x )

?x 的辖域为:H(x ,y )

x 既是约束变元,也是自由变元,约束出现4次,自由出现1次.y 是自由变元,自由出现1次.. z 是自由变元,自由出现1次.

)()))),(((x xP y x f Q y x ?→??

))3()2())),3((())),2(((P P y f yQ y f yQ ∨→?∧??

10))3,2()2,2(())3,3()2,3((∨→∨∧∨?Q Q Q Q

11)10()10(?→∨∧∨?

16. 做法如下:

①选边1; ②选边2;

③选边3; ④选边5; ⑤选边7

最小生成树为{1,2,3,5,7}.如图4 中粗线所示.

权数为18. 图4

17. 设图G 有x 个结点,有握手定理

2?1+2?2+3?4+3?(x -2-2-3)≥12?2

271821243≥-+=x

x ≥9

图G 至少有9个结点. 图5 满足条件的图如图5所示.

五、证明题

18. ① S R x x S x x R x x A x ?>∈?<>∈<>∈<∈?,,,,,,所以S R ?有自反性; ②,,A y x ∈?因为R ,S 是对称的,

S y x R y x S R y x >∈<∧>∈?<,,,

S x y R x y S R >∈<∧>∈

S R x y ?>∈?<,

所以,R ?S 是对称的.

③ A z y x ∈?,,,因为R ,S 是传递的,

S R z y S R y x ?>∈<∧?>∈<,,

S z y R z y S y x R y x >∈<∧>∈<∧>∈<∧>∈?<,,,, S z y S y x R z y R y x >∈<∧>∈<∧>∈<∧>∈?<,,,,

S R z x S z x R z x S R ?>∈?<>∈<∧>∈

所以,S R ?是传递的.

总之,R ?S 是等价关系.

19. 首先证*在S 上封闭.任取S 中的元素??

??????????y x b a 00,00,其中a ,b ,x ,y ∈R *.

S by ax y x b a ∈??????=??????*?????

?000000,因为ax ,by ∈R *.即*在S 上封闭.且有 ??????=??????*??????by ax y x b a 000000=??

????*??????b a y x 0000 即运算*满足交换律。 任取S 中的元素??

????????????????d c y x b a 00,00,00,其中a ,b ,x ,y ,c ,d ∈R *,有 ??

????=????????????=??????????????????byd axc d c by ax d c y x b a 0000*0000*)00*00(??????=????????????=?????????????????

?byd axc yd xc b a d c y x b a 0000*00)00*00(*00 可见,*满足结合律. 设单位元为E =??????y o x 0,任取S 中的元素??

????b a 00, 有 ??

????=????????????=??????=??????=????????????yb xa b a y x b a by ax y x b a 0000*00000000*00 得到???==b by a ax ,由a ,b 的任意性,得x=1,y=1,有E =??

????1001∈S,即E 是S 上关于运算*的单位元。

任取S 中的元素??????b a 00如果其逆元为X =??

????y x 00,应有 ??????b a 00*??????y x 00=??????b a 00*??????y x 00=??

????1001 得到???==1

1by ax ,因为a ,b 不为0,得b y a x 1,1==。显然x ,y 不为0,即x ,y ∈R *, ?????

???????y x 1001∈S ,它是??????b a 00的逆元。S 的每个元素都有逆元,

(完整版)离散数学实验指导书及其答案

实验一命题逻辑公式化简 【实验目的】加深对五个基本联结词(否定、合取、析取、条件、双条件)的理解、掌握利用基本等价公式化简公式的方法。 【实验内容】用化简命题逻辑公式的方法设计一个表决开关电路。 实验用例:用化简命题逻辑公式的方法设计一个 5 人表决开关电路,要求 3 人以上(含 3 人)同意则表决通过(表决开关亮)。 【实验原理和方法】 (1)写出5人表决开关电路真值表,从真值表得出5 人表决开关电路的主合取公式(或主析取公式),将公式化简成尽可能含五个基本联结词最少的等价公式。 (2)上面公式中的每一个联结词是一个开关元件,将它们定义成 C 语言中的函数。 (3)输入5人表决值(0或1),调用上面定义的函数,将5人表决开关电路真值表的等价公式写成一个函数表达式。 (4)输出函数表达式的结果,如果是1,则表明表决通过,否则表决不通过。 参考代码: #include int vote(int a,int b,int c,int d,int e) { // 五人中任取三人的不同的取法有10种。 i f( a&&b&&c || a&&b&&d || a&&b&&e || a&&c&&d || a&&c&&e || a&&d&&e || b&&c&&d || b&&c&&e || b&&d&&e || c&&d&&e) return 1; else return 0; } void main() { i nt a,b,c,d,e; printf(" 请输入第五个人的表决值(0 或1,空格分开):"); scanf ("%d%d%d%d%d",&a,&b,&c,&d,&e); i f(vote(a,b,c,d,e)) printf(" 很好,表决通过!\n"); else printf(" 遗憾,表决没有通过!\n"); } // 注:联结词不定义成函数,否则太繁 实验二命题逻辑推理 【实验目的】加深对命题逻辑推理方法的理解。【实验内容】用命题逻辑推理的方法解决逻辑

离散数学第五版 模拟试题 及答案

《离散数学》模拟试题3 一、填空题(每小题2分,共20分) 1. 已知集合A ={φ,1,2},则A得幂集合p(A)=_____ _。 2. 设集合E ={a, b, c, d, e}, A= {a, b, c}, B = {a, d, e}, 则A∪B =___ ___, A∩B =____ __,A-B =___ ___,~A∩~B =____ ____。 3. 设A,B是两个集合,其中A= {1, 2, 3}, B= {1, 2},则A-B =____ ___, ρ(A)-ρ(B)=_____ _ _。 4. 已知命题公式R Q P G→ ∧ ? =) (,则G的析取范式为。 5. 设P:2+2=4,Q:3是奇数;将命题“2+2=4,当且仅当3是奇数。”符号化 ,其真值为。 二、单项选择题(选择一个正确答案的代号填入括号中,每小题4分,共16分。) 1. 设A、B是两个集合,A={1,3,4},B={1,2},则A-B为(). A.{1} B. {1, 3} C. {3,4} D. {1,2} 2. 下列式子中正确的有()。 A. φ=0 B. φ∈{φ} C. φ∈{a,b} D. φ∈φ 3. 设集合X={x, y},则ρ(X)=()。 A. {{x},{y}} B. {φ,{x},{y}} C. {φ,{x},{y},{x, y}} D. {{x},{y},{x, y}} 4. 设集合A={1,2,3},A上的关系R={(1,1),(2,2),(2,3),(3,3),(3,2)}, 则R不具备(). 三、计算题(共50分) 1. (6分)设全集E=N,有下列子集:A={1,2,8,10},B={n|n2<50 ,n∈N},C= {n|n可以被3整除,且n<20 ,n∈N},D={n|2i,i<6且i、n∈N},求下列集合:(1)A∪(C∩D) (2)A∩(B∪(C∩D)) (3)B-(A∩C) (4)(~A∩B) ∪D 2. (6分)设集合A={a, b, c},A上二元关系R1,R2,R3分别为:R1=A×A, R2 ={(a,a),(b,b)},R3 ={(a,a)},试分别用 定义和矩阵运算求R1·R2 ,22R,R1·R2 ·R3 , (R1·R2 ·R3 )-1 。 3.(6分)化简等价式(﹁P∧(﹁Q∧R))∨(Q∧R)∨(P∧R). 4.(8分) 设集合A={1,2,3},R为A上的二元关系,且 M R= 写出R的关系表达式,画出R的关系图并说明R的性质. 5. (10分)设公式G的真值表如下. 试叙述如何根据真值表求G的 主析取范式和主合取范式,并 写出G的主析取范式和主合取范式. 1 0 0 1 1 0 1 0 0

(完整版)离散数学试卷及答案

离散数学试题(A卷答案) 一、(10分)求(P↓Q)→(P∧?(Q∨?R))的主析取范式 解:(P↓Q)→(P∧?(Q∨?R))??(?( P∨Q))∨(P∧?Q∧R)) ?(P∨Q)∨(P∧?Q∧R)) ?(P∨Q∨P)∧(P∨Q∨?Q)∧(P∨Q∨R) ?(P∨Q)∧(P∨Q∨R) ?(P∨Q∨(R∧?R))∧(P∨Q∨R) ?(P∨Q∨R)∧(P∨Q∨?R)∧(P∨Q∨R) ? M∧1M ? m∨3m∨4m∨5m∨6m∨7m 2 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解设设P:王教授是苏州人;Q:王教授是上海人;R:王教授是杭州人。则根据题意应有: 甲:?P∧Q 乙:?Q∧P 丙:?Q∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为:

((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?'R 。由定理4.15和由定理4.16得sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。 综上可知,tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 四、(15分)集合A ={a ,b ,c ,d ,e }上的二元关系R 为R ={}, (1)写出R 的关系矩阵。 (2)判断R 是不是偏序关系,为什么? 解 (1) R 的关系矩阵为: ??? ??? ? ? ? ?=100001100010100 10110 11111 )(R M (2)由关系矩阵可知,对角线上所有元素全为1,故R 是自反的;ij r +ji r ≤1,故R 是反对称的;可计算对应的关系矩阵为:

离散数学实验报告

离散数学实验报告(实验ABC) 专业班级 学生姓名 学生学号 指导老师 完成时间

目录 第一章实验概述..................................... 错误!未定义书签。 实验目的....................................... 错误!未定义书签。 实验内容....................................... 错误!未定义书签。 实验环境....................................... 错误!未定义书签。第二章实验原理和实现过程........................... 错误!未定义书签。 实验原理....................................... 错误!未定义书签。 建立图的邻接矩阵,判断图是否连通 ............ 错误!未定义书签。 计算任意两个结点间的距离 ................... 错误!未定义书签。 对不连通的图输出其各个连通支 ................ 错误!未定义书签。 实验过程(算法描述)........................... 错误!未定义书签。 程序整体思路 ............................... 错误!未定义书签。 具体算法流程 ................................ 错误!未定义书签。第三章实验数据及结果分析........................... 错误!未定义书签。 建立图的邻接矩阵并判断图是否连通的功能测试及结果分析错误!未定义书签。 输入无向图的边 .............................. 错误!未定义书签。 建立图的连接矩阵 ............................ 错误!未定义书签。 其他功能的功能测试和结果分析................... 错误!未定义书签。 计算节点间的距离 ............................ 错误!未定义书签。 判断图的连通性 .............................. 错误!未定义书签。 输出图的连通支 .............................. 错误!未定义书签。 退出系统 .................................... 错误!未定义书签。第四章实验收获和心得体会........................... 错误!未定义书签。

离散数学试卷及答案一

一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有 一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。 1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( ) A.汉密尔顿回路 B.欧拉回路 C.汉密尔顿通路 D.初级回路 2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( ) A.10 B.12 C.16 D.14 3.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( ) A.b∧(a∨c) B.(a∧b)∨(a’∧b) C.(a∨b)∧(a∨b∨c)∧(b∨c) D.(b∨c)∧(a∨c) 4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( ) A.<{1},·> B.〈{-1},·〉 C.〈{i},·〉 D.〈{-i},·〉 5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交 运算,下列系统中是代数系统的有( ) A.〈Z,+,/〉 B.〈Z,/〉 C.〈Z,-,/〉 D.〈P(A),∩〉 6.下列各代数系统中不含有零元素的是( ) A.〈Q,*〉Q是全体有理数集,*是数的乘法运算 B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算 C.〈Z,ο〉,Z是整数集,ο定义为xοxy=xy,?x,y∈Z D.〈Z,+〉,Z是整数集,+是数的加法运算 7.设A={1,2,3},A上二元关系R的关系图如下: R具有的性质是 A.自反性 B.对称性 C.传递性 D.反自反性 8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( ) A.R∪I A B.R C.R∪{〈c,a〉} D.R∩I A 9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的 等价关系,R应取( ) A.{〈c,a〉,〈a,c〉} B.{〈c,b〉,〈b,a〉} C.{〈c,a〉,〈b,a〉} D.{〈a,c〉,〈c,b〉} 10.下列式子正确的是( ) A. ?∈? B.??? C.{?}?? D.{?}∈? 11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x

离散数学试卷及答案(2)

一、填空 20% (每小题2分) 1、 P :你努力,Q :你失败。“除非你努力,否则你将失败”的翻译为 ;“虽然你努力了,但还是失败了”的翻译为 。 2、论域D={1,2},指定谓词P 则公式),(x y yP x ??真值为 。 2、 设S={a 1 ,a 2 ,…,a 8},B i 是S 的子集,则由B 31所表达的子集是 。 3、 设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则R= (列举法)。 R 的关系矩阵M R = 。 5、设A={1,2,3},则A 上既不是对称的又不是反对称的关系R= ; A 上既是对称的又是反对称的关系R= 。 6、设代数系统,其中A={a ,b ,c}, 则幺元是 ;是否有幂等 性 ;是否有对称性 。 7、4阶群必是 群或 群。 8、下面偏序格是分配格的是 。

9、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件是 。 10、公式R Q P Q P P ?∧∨?∧∧?∨)(())(( 的根树表示为 。 二、选择 20% (每小题2分) 1、在下述公式中是重言式为( ) A .)()(Q P Q P ∨→∧; B .))()(()(P Q Q P Q P →∧→??; C .Q Q P ∧→?)(; D .)(Q P P ∨→ 。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为( )。 A .0; B .1; C .2; D .3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A .3; B .6; C .7; D .8 。 4、 设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A .4; B .5; C .6; D .9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为

离散数学实验报告--四个实验!!!

《离散数学》 课程设计 学院计算机学院 学生姓名 学号 指导教师 评阅意见 提交日期 2011 年 11 月 25 日

引言 《离散数学》是现代数学的一个重要分支,也是计算机科学与技术,电子信息技术,生物技术等的核心基础课程。它是研究离散量(如整数、有理数、有限字母表等)的数学结构、性质及关系的学问。它一方面充分地描述了计算机科学离散性的特点,为学生进一步学习算法与数据结构、程序设计语言、操作系统、编译原理、电路设计、软件工程与方法学、数据库与信息检索系统、人工智能、网络、计算机图形学等专业课打好数学基础;另一方面,通过学习离散数学课程,学生在获得离散问题建模、离散数学理论、计算机求解方法和技术知识的同时,还可以培养和提高抽象思维能力和严密的逻辑推理能力,为今后爱念族皮及用计算机处理大量的日常事务和科研项目、从事计算机科学和应用打下坚实基础。特别是对于那些从事计算机科学与理论研究的高层次计算机人员来说,离散数学更是必不可少的基础理论工具。 实验一、编程判断一个二元关系的性质(是否具有自反性、反自反性、对称性、反对称性和传递性) 一、前言引语:二元关系是离散数学中重要的内容。因为事物之间总是可以 根据需要确定相应的关系。从数学的角度来看,这类联系就是某个集合中元素之间存在的关系。 二、数学原理:自反、对称、传递关系 设A和B都是已知的集合,R是A到B的一个确定的二元关系,那么集合R 就是A×B的一个合于R={(x,y)∈A×B|xRy}的子集合 设R是集合A上的二元关系: 自反关系:对任意的x∈A,都满足∈R,则称R是自反的,或称R具有自反性,即R在A上是自反的?(?x)((x∈A)→(∈R))=1 对称关系:对任意的x,y∈A,如果∈R,那么∈R,则称关系R是对称的,或称R具有对称性,即R在A上是对称的? (?x)(?y)((x∈A)∧(y∈A)∧(∈R)→(∈R))=1 传递关系:对任意的x,y,z∈A,如果∈R且∈R,那么∈R,则称关系R是传递的,或称R具有传递性,即R在A上是传递的? (?x)(?y)(?z)[(x∈A)∧(y∈A)∧(z∈A)∧((∈R)∧(∈R)→(∈R))]=1 三、实验原理:通过二元关系与关系矩阵的联系,可以引入N维数组,以数 组的运算来实现二元关系的判断。 图示:

自考离散数学试题及答案

一、单项选择题(本大题共15小题,每小题1分,共15分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.下列句子不是.. 命题的是( D ) A .中华人民共和国的首都是北京 B .张三是学生 C .雪是黑色的 D .太好了! 2.下列式子不是.. 谓词合式公式的是( B ) A .(?x )P (x )→R (y ) B .(?x ) ┐P (x )?(?x )(P (x )→Q (x )) C .(?x )(?y )(P (x )∧Q (y ))→(?x )R (x ) D .(?x )(P (x ,y )→Q (x ,z ))∨(?z )R (x ,z ) 3.下列式子为重言式的是( ) A .(┐P ∧R )→Q B .P ∨Q ∧R →┐R C .P ∨(P ∧Q ) D .(┐P ∨Q )?(P →Q ) 4.在指定的解释下,下列公式为真的是( ) A .(?x )(P (x )∨Q (x )),P (x ):x =1,Q (x ):x =2,论域:{1,2} B .(?x )(P (x )∧Q (x )),P (x ):x =1,Q (x ):x =2,论域: {1,2} C .(?x )(P (x ) →Q (x )),P (x ):x >2,Q (x ):x =0,论域:{3,4} D .(?x )(P (x )→Q (x )),P (x ):x >2,Q (x ):x =0,论域:{3,4} 5.对于公式(?x ) (?y )(P (x )∧Q (y ))→(?x )R (x ,y ),下列说法正确的是( ) A .y 是自由变元 B .y 是约束变元 C .(?x )的辖域是R(x , y ) D .(?x )的辖域是(?y )(P (x )∧Q (y ))→(?x )R (x ,y ) 6.设论域为{1,2},与公式(?x )A (x )等价的是( ) A .A (1)∨A (2) B .A (1)→A (2) C .A (1)∧A (2) D .A (2)→A (1) 7.设Z +是正整数集,R 是实数集,f :Z +→R , f (n )=log 2n ,则f ( ) A .仅是入射 B .仅是满射 C .是双射 D .不是函数 8.下列关系矩阵所对应的关系具有反对称性的是( ) A .???? ??????001110101 B .??????????101110001 C .??????????001100100 D .???? ??????001010101 9.设R 1和R 2是集合A 上的相容关系,下列关于复合关系R 1?R 2的说法正确的是( ) A .一定是等价关系 B .一定是相容关系

离散数学试题与答案

试卷二试题与参考答案 一、填空 1、 P:您努力,Q:您失败。 2、 “除非您努力,否则您将失败”符号化为 ; “虽然您努力了,但还就是失败了”符号化为 。 2、论域D={1,2},指定谓词P P (1,1) P (1,2) P (2,1) P (2,2) T T F F 则公式x ??真值为 。 3设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则 R= (列举法)。 R 的关系矩阵M R = 。 4、设A={1,2,3},则A 上既不就是对称的又不就是反对称的关系 R= ;A 上既就是对称的又就是反对称的关系R= 。 5、设代数系统,其中A={a,b,c}, 则幺元就是 ;就是否有幂等 性 ;就是否有对称性 。 6、4阶群必就是 群或 群。 7、下面偏序格就是分配格的就是 。 8、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件就是 。 * a b c a b c a b c b b c c c b

二、选择 1、在下述公式中就是重言式为( ) A.)()(Q P Q P ∨→∧; B.))()(()(P Q Q P Q P →∧→??; C.Q Q P ∧→?)(; D.)(Q P P ∨→。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为 ( )。 A.0; B.1; C.2; D.3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A.3; B.6; C.7; D.8 。 4、设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A.4; B.5; C.6; D.9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为 则R 具有( )性质。 A.自反性、对称性、传递性; B.反自反性、反对称性; C.反自反性、反对称性、传递性; D.自反性 。 6、设 ο,+ 为普通加法与乘法,则( )>+<ο,,S 就是域。 A.},,3|{Q b a b a x x S ∈+== B.},,2|{Z b a n x x S ∈== C.},12|{Z n n x x S ∈+== D.}0|{≥∧∈=x Z x x S = N 。 7、下面偏序集( )能构成格。

离散数学实验报告()

《离散数学》实验报告 专业网络工程 班级 姓名 学号 授课教师 二 O 一六年十二月

目录 实验一联结词的运算 实验二根据矩阵的乘法求复合关系 实验三利用warshall算法求关系的传递闭包实验四图的可达矩阵实现

实验一联结词的运算 一.实验目的 通过上机实验操作,将命题连接词运算融入到C语言的程序编写中,一方面加强对命题连接词运算的理解,另一方面通过编程实现命题连接词运算,帮助学生复习和锻炼C语言知识,将理论知识与实际操作结合,让学生更加容易理解和记忆命题连接词运算。二.实验原理 (1) 非运算, 符号: ,当P=T时,P为F, 当P=F时,P为T 。 (2) 合取, 符号: ∧ , 当且仅当P和Q的真值同为真,命题P∧Q的真值才为真;否则,P∧Q的真值为假。 (3) 析取, 符号: ∨ , 当且仅当P和Q的真值同为假,命题P∨Q的真值才为假;否则,P∨Q的真值为真。 (4) 异或, 符号: ▽ , 当且仅当P和Q的真值不同时,命题P▽Q的真值才为真;否则,P▽Q的真值为真。 (5) 蕴涵, 符号: →, 当且仅当P为T,Q为F时,命题P→Q的真值才为假;否则,P→Q 的真值为真。 (6) 等价, 符号: ?, 当且仅当P,Q的真值不同时,命题P?Q的真值才为假;否则,P→Q的真值为真。 三.实验内容 编写一个程序实现非运算、合取运算、析取运算、异或运算、蕴涵运算、等价运算。四.算法程序 #include void main() { printf("请输入P、Q的真值\n"); int a,b; scanf("%d%d",&a,&b); int c,d; if(a==1) c=0; else c=1; if(b==1) d=0;

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

离散数学期末试卷A卷及答案

《离散数学》试卷(A 卷) 一、 选择题(共5 小题,每题 3 分,共15 分) 1、设A={1,2,3},B={2,3,4,5},C={2,3},则C B A ⊕?)(为(C )。 A 、{1,2} B 、{2,3} C 、{1,4,5} D 、{1,2,3} 2、下列语句中哪个是真命题 ( A ) A 、如果1+2=3,则4+5=9; B 、1+2=3当且仅当4+5≠9。 C 、如果1+2=3,则4+5≠9; D 、1+2=3仅当4+5≠9。 3、个体域为整数集合时,下列公式( C )不是命题。 A 、)*(y y x y x =?? B 、)4*(=??y x y x C 、)*(x y x x =? D 、)2*(=??y x y x 4、全域关系A E 不具有下列哪个性质( B )。 A 、自反性 B 、反自反性 C 、对称性 D 、传递性 5、函数612)(,:+-=→x x f R R f 是( D )。 A 、单射函数 B 、满射函数 C 、既不单射也不满射 D 、双射函数 二、填充题(共 5 小题,每题 3 分,共15 分) 1、设|A|=4,|P(B)|=32,|P(A ?B)|=128,则|A ?B|=??2???.

2、公式)(Q P Q ?∨∧的主合取范式为 。 3、对于公式))()((x Q x P x ∨?,其中)(x P :x=1, )(x Q :x=2,当论域为{0,1,2}时,其真值为???1???。 4、设A ={1,2,3,4},则A 上共有???15????个等价关系。 5、设A ={a ,b ,c },B={1,2},则|B A |= 8 。 三、判断题(对的填T ,错的填F ,共 10 小题,每题 1 分,共计10 分) 1、“这个语句是真的”是真命题。 ( F ) 2、“张刚和小强是同桌。”是复合命题。 ( F ) 3、))(()(r q q p p ∧?∧→?∨是矛盾式。 ( T ) 4、)(T S R T R S R ??????。 ( F ) 5、恒等关系具有自反性,对称性,反对称性,传递性。 ( T ) 6、若f 、g 分别是单射,则g f ?是单射。 ( T ) 7、若g f ?是满射,则g 是满射。 ( F ) 8、若A B ?,则)()(A P B P ?。 ( T ) 9、若R 具有自反性,则1-R 也具有自反性。 ( T ) 10、B A ∈并且B A ?不可以同时成立。 (F ) 四、计算题(共 3 小题,每题 10 分,共30 分) 1、调查260个大学生,获得如下数据:64人选修数学课程,94人选修计算机课程,58人选修商贸课程,28人同时选修数学课程和商贸课程,26人同时选修数学课程和计算机课程,22人同时选修计算机课程和商贸课程,14人同时选修三门课程。问 (1)三门课程都不选的学生有多少? (2)只选修计算机课程的学生有多少?

离散数学期末试卷及答案

一.判断题(共10小题,每题1分,共10分) 在各题末尾的括号内画 表示正确,画 表示错误: 1.设p、q为任意命题公式,则(p∧q)∨p ? p ( ) 2.?x(F(y)→G(x)) ? F(y)→?xG(x)。( ) 3.初级回路一定是简单回路。( ) 4.自然映射是双射。( ) 5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。( ) 6.群的运算是可交换的。( ) 7.自然数集关于数的加法和乘法构成环。( ) 8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。( ) 9.设A={a,b,c},则A上的关系R={,}是传递的。( ) 10.设A、B、C为任意集合,则A?(B?C)=(A?B)?C。( ) 二、填空题(共10题,每题3分,共30分) 11.设p:天气热。q:他去游泳。则命题“只有天气热,他才去游泳”可符号 化为。 12.设M(x):x是人。S(x):x到过月球。则命题“有人到过月球”可符号 化为。 13.p?q的主合取范式是。 14.完全二部图K r,s(r < s)的边连通度等于。 15.设A={a,b},,则A上共有个不同的偏序关系。 16.模6加群中,4是阶元。 17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。. 18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度

列为。 19.n阶无向简单连通图G的生成树有条边。 20.7阶圈的点色数是。 三、运算题(共5小题,每小题8分,共40分) 21.求?xF(x)→?yG(x,y)的前束范式。 22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。 23.设A={a,b,c,d,e,f},R=I A?{,},则R是A上的等价关系。求等价类[a]R、[c]R及商集A/R。 24.求图示带权图中的最小生成树,并计算最小生成树的权。 25.设R*为正实数集,代数系统< R*,+>、< R*,·>、< R*,/>中的运算依次为普通加法、乘法和除法运算。试确定这三个代数系统是否为群?是群者,求其单位元及每个元素的逆元。 四、证明题(共3小题,共20分) 26 (8分)在自然推理系统P中构造下述推理的证明: 前题:p→(q∨r),?s→?q,p∧?s 结论:r 27 (6分)设是群,H={a| a∈G∧?g∈G,a*g=g*a},则是G的子群 28.(6分)设G是n(≥3)阶m条边、r个面的极大平面图,则r=2n-4。

离散数学实验一

实验报告 (2013 / 2014 学年第一学期) 课程名称离散数学 实验名称利用真值表法求取主析取范式 以及主合取范式的实现 实验时间2013 年10 月23 日指导单位计算机学院、软件学院 指导教师 学生姓名班级学号 学院(系) 计算机、软件 专业软件工程 学院

实验报告 实验名称利用真值表法求取主析取范式 指导教师 以及主合取范式的实现 实验类型验证实验学时 4 实验时间2013.10.23 一、实验目的和要求 1、编程实现用真值表法求取含三个以内变量的合式公式的主析取范式和主合取范式。 2、要求: 1)从屏幕输入含三个以内变量的合式公式(其中联结词按照从高到底 的顺序出现) 2)规范列出所输合式公式的真值表 3)给出相应主析取和主合取范式

二、实验内容 1.可用字符数组a记录输入的合式公式(其中'&'代表与,'|'代表或,'~' 代表非,'>'代表单条件,'='代表双条件) 2.多重循环显示真值表(1表示T,0表示F,先1后0)并对公式进行相 应赋值得数组b 3.函数递归计算各种赋值情况下b的取值 4.联接词运算符定义

三、实验设计及代码 1、求取真值表 void truetable(){ /*求真值表函数*/ char s1[30],s2[30],s3[30],s4[30]; int n,i,j,k,m; printf("您要计算真值表!\n"); printf("***************** 输入要计算的表达式(A~Z,a~z) ****" "************ \n"); printf("(其中'&'代表与 '|'代表或 '~'代表非 '>'代表单条件 " "'='代表双条件)\n"); gets(s4); printf(" \n您输入要计算的表达式为:%s \n",s4); n=got(s1, s4); if(!n) {printf("输入有误!\n");return;} m = (int)pow(2,n); printf("计算真值表如下:\n"); for(j=0;j<(int)strlen(s1);j++){ printf("%c ",s1[j]); } printf(" %s\n",s4); for(j=0;j

《离散数学》(上)试卷(A卷)及参考答案

安徽大学20 09 — 20 10 学年第 1 学期 《 离散数学 》考试试卷(A 卷) (时间120分钟) 院/系 专业 姓名 学号 一、单项选择题(每小题2分,共20分) 1. 设:P 天没下雪,:Q 我去镇上,则命题“天正在下雪,我没去镇上”可符号化为( D ) A.Q P ?→?; B. P Q ?→?; C.Q P ?∧; D. Q P ?∧?。 2.下列命题是重言式的是( C ) A.)()(P Q Q P →∧→; B. )()(Q P P Q P ???∧; C. )(Q P Q P →→∧; D. Q P R Q P ∧?∧?∨→))((。 3. 设解释R 如下:论域D 为实数集,a=0, f(x,y)=x-y, A(x,y):x<><>,下列结论不正确的是 ( ) A 、1 ({3}){}f c -=; B 、1(3)f c -=; C 、({}){3}f c =; D 、()3f c =。 6. 设I 为整数集合,则I 上的二元关系}4|||,{=-><=y x y x R 具有( B ) A.自反性和对称性; B.反自反性和对称性; C.反自反性和传递性; D.反对称性和传递性。 7. 设R 为非空集合A 上的关系R 的逆关系,则下列结论不成立的是( D ) A.若R 为偏序,则R 为偏序; B.若R 为拟序,则R 为拟序; C.若R 为线序,则R 为线序; D.若R 为良序,则R 为良序。 8. 设1π和2π是非空集合A 的划分,则下列结论正确的是( B ) A. 1π细分21ππ?; B. 1π细分21ππ+; C. 非空集合A 的划分12ππ 细分1π; D. 1π细分非空集合A 的划分12ππ 。

离散数学试卷及答案

填空10% (每小题 2 分) 1、若P,Q,为二命题,P Q 真值为0 当且仅当。 2、命题“对于任意给定的正实数,都存在比它大的实数” 令F(x):x 为实数,L(x, y) : x y 则命题的逻辑谓词公式为。 3、谓词合式公式xP(x) xQ(x)的前束范式为。 4、将量词辖域中出现的和指导变元交换为另一变元符号,公式其余的部分不变,这种方法称为 换名规则。 5、设x 是谓词合式公式A的一个客体变元,A的论域为D,A(x)关于y 是自由的,则被称为存 在量词消去规则,记为ES。 选择25% (每小题分) 1、下列语句是命题的有()。 A、明年中秋节的晚上是晴天; C、xy 0 当且仅当x 和y 都大于0; D 、我正在说谎。 2、下列各命题中真值为真的命题有()。 A、2+2=4当且仅当3是奇数; B、2+2=4当且仅当 3 不是奇数; C、2+2≠4 当且仅当3是奇数; D、2+2≠4当且仅当 3 不是奇数; 3、下列符号串是合式公式的有() A、P Q ; B、P P Q; C、( P Q) (P Q); D、(P Q) 。 4、下列等价式成立的有( )。 A、P QQ P ; B、P(P R) R; C、P (P Q) Q; D 、P (Q R) (P Q) R。 5、若A1,A2 A n和B为 wff ,且A1 A2 A n B 则 ( )。 A、称A1 A2 A n 为 B 的前 件; B 、称 B 为A1,A2 A n 的有效结论

C 、 x(M (x) Mortal (x)) ; D 、 x(M(x) Mortal (x)) 8、公式 A x(P(x) Q(x))的解释 I 为:个体域 D={2} ,P(x) :x>3, Q(x) :x=4则 A 的 真 值为( ) 。 A 、 1; B 、 0; C 、 可满足式; D 、无法判定。 9、 下列等价关系正确的是( )。 A 、 x(P(x) Q(x)) xP(x) xQ(x); B 、 x(P(x) Q(x)) xP(x) xQ(x); C 、 x(P(x) Q) xP(x) Q ; D 、 x(P(x) Q) xP(x) Q 。 10 、 下列推理步骤错在( )。 ① x(F(x) G(x)) P ② F(y) G(y) US ① ③ xF(x) P ④ F(y) ES ③ ⑤G(y) T ②④I ⑥ xG(x) EG ⑤ A 、②; B 、④; C 、⑤; D 、⑥ 逻辑判断 30% 1、 用等值演算法和真值表法判断公式 A ((P Q) (Q P)) (P Q) 的类型。 C 、当且仅当 A 1 A 2 A n D 、当且仅当 A 1 A 2 A n B F 。 6、 A ,B 为二合式公式,且 B ,则( )。 7、 A 、 A C 、 A B 为重言式; B 、 B ; E 、 A B 为重言式。 人总是要死的”谓词公式表示为( )。 论域为全总个体域) M (x ) : x 是人; Mortal(x) x 是要死的。 A 、 M (x) Mortal (x) ; B M (x) Mortal (x)

离散数学试卷及答案(17)

一、判断正误20% (每小题2分) 1、设A.B. C是任意三个集合。 (1)若A∈B且B?C,则A?C。() (2)若A?B且B∈C,则A?C。() (3)若A?B且B∈C,则A?C。() (4)A) ( ) ( ) (C A B A C B ⊕ = ⊕。() (5)(A–B)?C=(A?C)-(B?C)。() 2、可能有某种关系,既不是自反的,也不是反自反的。() 3、若两图结点数相同,边数相等,度数相同的结点数目相等,则两图是同构的。() 4、一个图是平面图,当且仅当它包含与K 3, 3 或K 5 在2度结点内同构的子图。() 5、代数系统中一个元素的左逆元并一定等于该元素的右逆元。() 6、群是每个元素都有逆元的半群。() 二、8% 将谓词公式)) , ( ) ( ) ( ) (( )) , ( ) ( )( (z y Q z y P y y x Q x P x? ∧ ? → → ?化为前束析取范式与前束合取范式。 三、8% 设集合A={a,b,c,d}上的关系R={,,,}写出它的关系矩阵和关系图,并用矩阵运算方法求出R的传递闭包。 四、9% 1、画一个有一条欧拉回路和一条汉密尔顿回路的图。 2、画一个有一条欧拉回路,但没有一条汉密尔顿回路的图。 3、画一个有一条欧拉回路,但有一条汉密尔顿回路的图。

五、10% 证明:若图G是不连通的,则G的补图G 是连通的。 六、10% 证明:循环群的任何子群必定也是循环群。 七、12% 用CP规则证明: 1.F A F E D D C B A →?→∨∧→∨,。 2.?∨??∨?(()()())()()((x P x x Q x P x )()x Q x 。 八、10% 用推理规则证明下式: 前提: ))()()(()),()()(())()()(((y W y M y y W y M y x S x F x ?∧?→?→∧? 结论:?→?)()((x F x S ))(x 九、13% 若集合X={(1,2),(3,4),(5,6),……} }|,,,{12212211y x y x y x y x R +=+>><><<= 1、证明R 是X 上的等价关系。 2、求出X 关于R 的商集。 一、 填空 20%(每小题2分)