数的整除知识图

合集下载

01-第一章-数的整除-六年级(上)-知识点汇总-沪教版

01-第一章-数的整除-六年级(上)-知识点汇总-沪教版

第一章数的整除1.1 整数和整除的意义1、在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2、在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数3、零和正整数统称为自然数4、正整数、负整数和零统称为整数5、整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a1.2 因数和倍数1、如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的因数2、倍数和因数是相互依存的3、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4、一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3 能被2, 5整除的数1、个位数字是0,2,4,6,8的数都能被2整除2、整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3、在正整数中(除1外),与奇数相邻的两个数是偶数4、在正整数中,与偶数相邻的两个数是奇数5、个位数字是0,5的数都能被5整除6、0是偶数1.4 素数、合数与分解素因数1、只含有因数1及本身的整数叫做素数或质数2、除了1及本身还有别的因数,这样的数叫做合数3、1既不是素数也不是合数4、奇数和偶数统称为正整数,素数、合数和1统称为正整数5、每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6、把一个合数用素因数相乘的形式表示出来,叫做分解素因数7、分解素因数方法:树枝分解法、短除法1.5 公因数与最大公因数1、几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数2、如果两个整数只有公因数1,那么称这两个数互素数3、把两个数公有的素因数连乘,所得的积就是这两个数的最大公因数4、如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5、如果两个数是互素数,那么这两个数的最大公因数是11.6 公倍数与最小公倍数1、几个数公有的倍数,叫做这几个数的公倍数2、几个数中最小的公因数,叫做这几个数的最小公倍数3、求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数4、如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数如果两个数是互素数,那么这两个数的最小公倍数是两个数的乘积试试你的身手!一:填空题(每空1分,共22分)1.3.6÷2=1.8,(能,不能)说2整除2.8。

六年级数学总复习数的整除知识分享

六年级数学总复习数的整除知识分享

偶数×奇数 =(偶数 )
第五页,共21页。
5. 质数(zhìshù)和合数
质数(:zhìsh只ù)有1和它本身两个约数
(素数()sù shù)
合数 : 除了1和它本身还有别的约数
1: 不是质数也不是合数
最小的质数是 : 2
最小的合数是 : 4
第六页,共21页。
ቤተ መጻሕፍቲ ባይዱ 6. 质因数和分解(fēnjiě)质因数
第四页,共21页。
4. 偶数(ǒu shù)和奇数
一个(yī ɡè)自,不然是数(bù shi)奇数就是偶数
偶数: 能被2整除的数叫做偶数 奇数 : 不能被2整除的数叫做奇数
最小的偶数是 :0 最小的奇数是 :1
偶数±偶数 =(偶数) 奇数±奇数 =( 偶数)
偶数±奇数 =(奇数)
偶数×偶数 =(偶数 ) 奇数×奇数 =( 奇数 )
1 不是质数
A.30=1 × 2 ×3 ×5
B.2 ×3 ×5=30
书写格式不符
C.30=2 ×3×5
第七页,共21页。
7. 最大公因数和最小公倍数
公因数,最大公因数 : 几个(jǐ ɡè)数公有的,叫因做数(jiàozuò)这几个数的;公因数 其中最大的一个(yī ɡè)叫做这几个数的最大公.因数
)。
5、相邻两个质数的和最小是(
)。
6 、在 0~ 20 中,奇数有(
),偶数有( ),
质数有( ),合数有(
), 2的倍数有(
),3的倍数有(
), 5的倍数有(


第十二页,共21页。
7、A 和B 都是自然数,且 A÷ B=7 ,那么(An与à mBe的) 最大
公因数是( ),最小公倍数是(

整除关系基础知识

整除关系基础知识

整除关系基础知识:被2 整除特性:偶数被3 整除特性:一个数字的每位数字相加能被3 整除,不能被3 整除说明这个数就不被3 整除。

如:377 , 3 + 7 + 7 =17 , 17 除3 等于2 ,说明377 除3 余2 。

15282 , 1 + 5 + 2 + 8 + 2 =18 , 18 能被3 整除,说明15282 能被3整除被4 和25 整除特性:只看一个数字的末2 位能不能被4 整除。

275016 , 16 能被4 整除说明275016 能被4 整除。

被5 整除特性:末尾是O 或者是5 即可被整除。

被6 整除特性:兼被2 和3 整除的特性。

被7 整除特性:一个数字的末三位划分,大的数减去小的数除以7 , 能整除说明这个数就能被7 整除。

如:1561575 末3 位划分1561 ︱ 578 大的数字减小的数即1561 - 578 = 983 ,983 /7 = 140 余3 说明1561578 除7 余3 。

被8 和125 整除特性:看一个数字的未3 位。

96624 96︱624 624/8 = 78 说明这个数能被整除。

被9 整除特性:即被3 整除的特性。

如23568 , 2 + 3 + 5 十6 + 8 = 24 , 24 /9 =2 余6 ,说明这个数不能被9 整除,余数是6 。

被11 整除特性:奇数位的和与偶数位的和之差,能被11 整除。

如8956257 , 间隔相加分别是8 + 5 + 2 + 7 = 22 , 9 + 6 + 5 =20 。

在相减22—20 =2 , 2 /11 余2 ,说明这个数8956257 不能被11 整除,余数是2 。

熟悉掌握后做以下练习(遇到做不来的题目,不要急于看答黝:1 上海真题:下列四个数都是六位数,X 是比10 小的自然数,丫是零,一定能同时被2 、3 、5 整除的数是多少?( )A . XXXYXXB . XYXYXYC . XYYXYYD . XYYXYX 答案:B【解析』能被5 整除的末尾是0 或者5 ,同时这个六位数能被2 整除,所以末尾肯定是0 。

数的整除知识点总结

数的整除知识点总结

一. 数的分类第一种分法 : 树状图 韦恩图整数第二种分法 整数第三种分法: 正整数一些关于数的结论:是最小的自然数,-1是最大的负整数,1是最小的正整数2.没有最大的整数,没有最小的负整数,没有最大的正整数3.正整数、负整数、整数的个数都是无限的二.整除1.整除定义概念:整数a 除以整数b,如果除得的商是整数而余数为零,我们就说a 能被b 整除;或者说b 能整除a注意点:一定要看清楚谁被谁整除或谁整除谁,这里的a相当于被除数,b 相当于除数2.整除的条件:1.除数、被除数都是整数2.被除数除以除数,商是整数而且余数为零注意点:区分整除与除尽:整除是特殊的除尽如正方形是特殊的长方形一样,即a 能被b 整除,则a 一定能被b 除尽,反之则不一定即a 能被b 除尽,则a 不一定能被b 整除;如4÷2=2, 4既能被2除尽,也能被2整除;4÷5=, 4能被5除尽,却不能说4能被5整除三.因数与倍数1.因数与倍数的定义:整数a能被整数b整除,a 就叫做b的倍数,b就叫做a的因数约数;注意点:1.因数和倍数是相互依存的,不能简单的说某个数是因数,某个数是倍数;如:6÷3=2,不能说6是倍数,3是因数;要说6是3的倍数,3是6的因数;2.因数与倍数是建立在整除的基础上的,所以如4÷=20,一般是不说4是的倍数,是4的因数;2.因数与倍数的特点:一个整数的因数中最小的因数是1,最大的因数是它本身;一个数的倍数中最小的倍数是这个数本身,没有最大的倍数;因数的个数是有限的,都能一一列举出来,倍数的个数是无限的;3.求一个数因数的方法:利用积与因数的关系一对一对找,找出哪两个数的乘积等于这个数,那么这两个数就是这个数的因数;如16=1×16=2×8=4×4,那么16的因数就有1、2、4、8、16,计算时一定不要忘了1和这个数本身都是它的因数,注意按照一定的顺序以防遗漏;4.求一个数倍数的方法:这个数本身分别乘以1、2、3、4、5……即正整数得到的积就是这个数的倍数;若用n表示所有的正整数,则2的倍数可表示为2n, 5的倍数可表示为5n四.能被2、5、3整除的数的特点1.能被2整除的数即2的倍数个位上的数字是0、2、4、6、8,反之,个位上的数字是0、2、4、6、8的数也能被2整除2.能被5整除的数即5的倍数个位上的数字是0、5,反之,个位上的数字是0、5的数都能被5整除3.能被3整除的数即3的倍数各个位数上的数字之和是3的倍数,反之,各个位数上的数字之和是3的倍数的数都能被3整除4.能被2、5同时整除的数的个位数字都是0,个位数字为0的数也能被10整除,能被10整除的数一定能被2或5其中的一个或两个同时整除;五.奇数、偶数1.奇数与偶数的定义:能被2整除的整数叫做偶数,不能被2整除的整数叫做奇数;按照能否被2整除来划分奇数与偶数2.奇数个位数上的数的特点:1、3、5、7、9偶数个位数上的数的特点:0、2、4、6、83.在连续的正整数中除1外,与奇数相邻的两个数是偶数,与偶数相邻的两个数是奇数4.相邻的奇数或偶数数字相差2,奇数可用2n-1或2n+1表示,偶数可用2n表示;5.奇数与偶数加法和乘法的运算特点奇数+奇数=偶数偶数+偶数=偶数奇数+偶数=奇数奇数×奇数=奇数偶数×偶数=偶数奇数×偶数=偶数利用此结论可检验一些运算是否正确,同时也要注意结论的逆向运用,如偶数奇数可拆成哪些奇数或偶数的和、积六.素数、合数1.素数与合数定义:一个正整数如果只有1和它本身两个因数,这样的数叫做素数质数,如果除了1和它本身以外还有别的因数,这样的数叫做合数;注意点:1.素数与合数的分类方法是根据它们因数的个数来分的,素数只有2个因数1和本身,合数至少有三个因数;任何一个数除1外都有1和它本身两个因数;2. 1既不是素数也不是合数;3.最小的素数是2,最小的合数是42.素数与奇数的联系和区别奇数不一定都是素数;√1既不是素数也不是合数,9、15等是奇数但是合数所有素数都是奇数; ×2是素数,但2是偶数3.合数与偶数的联系与区别合数不一定都是偶数;√9、15等都是合数,但它们是奇数偶数都是合数; ×2是偶数但2是素数注意:判断题对的要说明原因,错的要举出反例;七.素因数与分解素因数1.素因数与分解素因数的定义:每个合数都可以写成几个素数相乘的形式,其中每个素数都是这个合数的因数,叫做这个合数的素因数;把一个合数用素因数相乘的形式表示出来,叫做分解素因数;注意:1.求一个数的素因数时,先把这个数分解素因数,有几个素因数就写几个;如24=2×2×2×3,则素因数是2、2、2、3,而不是2、32.因数与素因数的区别:因数可以是素数或合数,素因数一定是素数;一个数的素因数一定是这个数的因数,因数的个数一定比素因数的个数多;2.分解素因数的方法树枝分解法:过程中注意不要漏写乘号,分解要彻底,直到没有合数出现,也不能出现1.要分解的合数写在等号左边,把它的素因数用相乘的形式写在等号右边,再把这几个素因数按从小到大的顺序排列;短除法:1.先用一个能整除这个合数的素数去除通常从最小的开始,偶数肯定先用2除,奇数一般从3开始一个个带入验算2.得出的商如果是合数,再按照上面的方法继续除下去,直到得出的商是素数为止;3.然后把各个除数和最后的商按从小到大的顺序写成连乘的形式;3.由一个数分解素因数求这个数的因数12=2×2×3,素因数是2、2、3,除1外由单个的素因数组成因数有2、3,由两个素因数组成的因数有2×2=4,2×3=6,由三个素因数组成的因数有2×2×3=12,所以12的因数有1、2、3、4、6、12.4. 由一个数分解素因数求这个数因数的个数1所有素因数都相同时,因数的个数是它素因数的个数+1,如8=2×2×2,素因数是2、2、2,则8的因数的个数是它素因数的个数+1,即4个2素因数不完全相同时,因数的个数是每个素因数个数+1后相乘的积,如12=2×2×3,素因数2的个数是2,素因数3的个数是1,则12的因数的个数是2+1×1+1=6八.公因数与最大公因数1.公因数与最大公因数定义:几个数公有的因数,叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数.2.互素定义:如果两个整数只有公因数1,那么称这两个数互素;如8和9注意:互素是两个数之间,素数是指一个数,互素的两个数的最大公因数就是1.两个互素的数未必都是素数; √8和9互素,但8和9都是合数两个不同的素数一定互素. √若缺少“不同的”,则错,因为3和3都是素数但不互素3. 求两个数最大公因数的方法:1 一般方法:写出两个数所有的因数,再找出它们共同的最大的因数2 分解素因数的方法:把这两个数分解素因数,再找出相同的素因数,把它们所有的公有的素因数相乘,所得的积就是它们的最大公因数;3 短除法:先用这两个数公有的素因数去除一般从最小的素因数开始,得出的商如果是合数,再按照上面的方法继续除下去,直到两个数互素为止,这两个数的最大公因数就是左侧的除数的乘积. 类比用短除法分解素因数的方法4. 两个整数中,如果某个数是另一个数的因数,那么这个数就是这两个数的最大公因数;如果这两个数互素,那么它们的最大公因数就是1.九.公倍数和最小公倍数1.公倍数与最小公倍数定义:几个整数公有的倍数叫做它们的公倍数,其中最小的一个叫做它们的最小公倍数.2.求两个数最小公倍数的方法:1一般方法:从小到大分别依次写出几个这两个数的倍数,再找出它们共同的最小的倍数2分解素因数的方法: 把这两个数分解素因数,再找出相同的素因数,再取各自剩余的素因数,将这些数连乘所得的积,就是这两个数的最小公倍数.3短除法: 先用这两个数公有的素因数去除一般从最小的素因数开始,得出的商如果是合数,再按照上面的方法继续除下去,直到两个数互素为止,这两个数的最小公倍数就是左侧的除数与底部商的乘积.注意点:1.用短除法求两个数的最大公因数和最小公倍数时,过程都相同,只是最后写结论时注意需要乘哪些数.2.求两个数的最大公因数和最小公倍数,先判断这两个数是否存在因数倍数关系或互素关系,存在因数倍数关系时,最大公因数就是较小的那个数,最小公倍数就是较大的那个数;两数互素时,最大公因数就是1,最小公倍数就是它们的乘积.3.两个整数的公倍数一定能被这两个数整除.十.求三个整数的最大公因数和最小公倍数拓展1求三个整数的最大公因数:同样也是三种方法,只需找出三个数共同的因数,最大的因数就是最大公因数.注意与三个数的最小公倍数区分2求三个整数的最小公倍数:一般方法:写出三个数的倍数,再找出最小公倍数.分解素因数法:分别分解素因数,先找出三个数共同的素因数,再找出每两个数公有的素因数,再取各自剩余的素因数,把这些素因数连乘所得的积就是这三个数的最小公倍数.短除法:先用三个数公有的素因数去除直到三个数没有公有的素因数,再用其中两个数公有的素因数去除,直到除得的三个商两两互素为止即三对互素数。

数的整除规律

数的整除规律

学而思 85723332/82624855/87716307 五年级QQ 交流群126795196知识点讲解:数的整除规律1) 2系列:能被2和5整除的数要看个位,能被4和25整除的要看末两位,能被8和125整除的要看末三位.请大家想想为什么?我们以被8整除看末三位为例证明以上两个系列的性质,假设一个多位数为是nm dcba 则还可以表示为:0001000nm dcba nm d cba nm d cba =+=⨯+ ,由于81000所以8000nm d ,因此只要cba 能被8整除该数就一定能被8整除 2) 3系列:能被3和9整除只需看各位数字之和能否被3和9整除,为什么?我们以三位数abc 为例来证明被9整除只需看各位数字之和这一性质,如:()()10010999abc a b c a b a b c =++=++++显然()999a b +是9的倍数,因此只要()a b c ++即各个数位数字之和能被9整除那么这三位数abc 就能被9整除,反之亦然.推广到任意位数的自然数,该证明方法仍然成立,请大家自己尝试一下.3) 7,11,13系列:被7、11、13整除的判别方法:看多位数的末三位和前面部分之差能否被7、11、13整除.为什么呢?仔细观察我们会发现711131001⨯⨯=,比1000大1,由此可以有如下证明:假设一个多位数为是nm dcba ,有:0001000nm dcba nm d cba nm d cba =+=⨯+ = ()10011001nm d nm d cba nm d nm d cba ⨯-+=⨯-- ,由于1001是7、11、13的倍数,故只要()nm d cba - 能被7、11、13整除即可.4) 特别的,我们还有另外一种判别能否被11整除的性质,就是看奇数位数字之和与偶数位数字之和的差能否被11整除,这个定理也是可以证明的,我们以简单的三位数abc 来说明:()()1001099119911abc a b c a b a b c a b a c b =++=++-+=+++-显然()9911a b +是11的倍数,因此只要()a c b +-是11的倍数,那么这三位数abc 就能被11整除,反之亦然.例题讲解例1 试说明一个5位数,原序数与反序数的差一定是99的倍数(如:12367为原序数,那么它对应的反序数为76321,它们的差6395499646=⨯是99的倍数)【分析】设原序数为abcde,则反序数为edcba,则abcde-edcba1000010001001010000100010010()()a b c d e e d c b a=++++-++++=+--a b d e99999909909999()=+--a b d e991011010101因为等式的右边能被99整除,所以abcde-edcba能被99整除【例2】一位后勤人员买了72本笔记本,可是由于他吸烟不小心,火星落在帐本上,把这笔帐的总数烧去两个数字.帐本是这样的:72本笔记本,共□67.9□元(□为被烧掉的数字),请把□处数字补上,并求笔记本的单价.【分析】把□67.9□元作为整数□679□分.既然是72本笔记本的总线数,那就一定能被72整除,又因为7289=⨯,(8,9)1=.所以8|□679□,9|□679□.8|□679□,根据能被8整除的数的特征,8|79□,通过计算个位的□2=.又9|□6792,根据能被9整除的数的特征,9|(□6792++++),显然前面的□应是3.所以这笔帐笔记本的单价是:367.9272 5.11÷=(元)【例3】一个五位数恰好等于它各位数字和的2007倍,则这个五位数是多少?【分析】设五位数为abcde,则由题意得:()2007=++++⨯,因为2007是9的倍数,则这abcde a b c d e个五位数一定是9的倍数,所以各位数字和也一定是9的倍数.()++++的和可以从9、a b c d e⨯=(要注意数字和为9)本例不成立;类似地:18、27、36、45进行试值.2007918063⨯=,⨯=,不成立,20074590315⨯=,成立;2007367225220071836126⨯=,成立;20072754189不成立.所以只有两解:20071836126⨯=,成立.⨯=,成立;20072754189【例4】一些四位数,百位数字都是3,十位数字都是6,并且他们既能被2整除又能被3整除.甲是这样四位数中最大的,乙是最小的,则甲乙两数的千位数字和个位数字(共四个数字)的总和是多少?【分析】根据条件□36□是6的倍数,即□36□既是2也是3的倍数,甲是最大的,所以甲的千位数字是9,要想是6的倍数且尽量大那么它的个位就得是6;乙是最小的,所以乙的千位数字是1,要想是6的倍数且尽量小那么它的个位就得是2.综上,甲乙两数千位数字和个位数字的总和是:961218+++=.【例5】(第六届“走进美妙的数学花园"趣味数学解题技能展示大赛初赛)1872a a是2008的倍数.a=_________【分析】因为2008能被8整除,所以1872a a,既能被4整除,又能被8整除.根据能被4整除的数的特学而思85723332/82624855/87716307 五年级QQ交流群126795196征——后两位能被4整除,1a=,3,5,7,9;再根据能被8整除的数的特征——后三位能被8整除,可得1a=a=,5,9.分别代入知9作业:1.173□是一个四位数.数学老师说:“我在其中的方框内中先后填入3个数字,所得到的3个四位数:依次可被9,11,6整除.”问:数学老师先后填入的3个数字的和是多少?[答案]:192.在两位数中,能被其各位数字之和整除,而且除得的商恰好是4的有几个?[答案]12、24、36、483.两个四位数275A和275B相乘,要使它们的乘积能被72整除,求A和B.[答案]A=4;B=2学而思85723332/82624855/87716307 五年级QQ交流群126795196。

六年级06讲数的整除与分拆

六年级06讲数的整除与分拆

11、电视他要播出一部30集电视连续剧,若要每天安排播出的集数互不相等,则该电视连续剧最多可以播几天?2、 若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每只盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去,在把盒子重排了一下。

小聪回来,仔细查看,没有发现有人动过小球和盒子。

问:一共有多少只盒子?3、 机器人从自然数1开始由小到大按如下规则进行染色:凡能表示为两个不同合数之和的自然数都染成红色,不符合上述要求的自然数染成黄色(比如23可表示成两个不同合数15和8之和,23要染红色;1不能表示为两个不同合数之和,1染黄色)。

问:要染成红色的数由小到大数下去,第2000个数是多少?4、 在整数中,有用2个以上的连续自然数的和来表达一个整数的方法。

例如9:9=4+5,9=2+3+4,9有两个用2以上连续自然数的和来表达它的方法 (1)请写出只有3种这样的表示方法的最小自然数。

(2)请写出只有6种这样的表示方法的最小自然数。

5、 如果把任意n 个连续自然数相乘,其积的个位数字只有两种可能,那么n 是多少? 6、 如果四个两位质数a,b,c,d 两两不同,并且满足,等式a+b=c+d 。

那么,(1)a+b 的最小可能值是多少? (2)a+b 的最大可能值是多少?7.如果某整数同时具备如下3条性质: ①这个数与l的差是质数; ②这个数除以2所得的商也是质数; ③这个数除以9所得的余数是5. 那么我们称这个整数为幸运数.求出所有的两位幸运数.8、在555555的约数中,最大的三位数是多少?9、从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形。

按照上面的过程不断地重复,最后剪得正方形的边长是多少毫米?10、已知存在三个小于20的自然数,它们的最大公约数是1,并且两均不互质。

数字整除知识点总结

数字整除知识点总结

数字整除知识点总结1. 整除的定义设a, b是两个不全为0的整数,当且仅当存在一个整数c使得a = b * c时,称b整除a,记作b | a。

这里c就是整除时的商。

例如,6整除12,记作6 | 12,因为12 = 6 * 2。

整除的定义可以简单总结为:当且仅当存在一个整数c使得b * c = a时,b整除a。

这里c 就是整除时的商。

2. 整除的性质(1)自整除性:任何整数都能被1整除,并且0不能被任何数整除。

(2)传递性:设a, b, c是整数,如果a整除b,b整除c,那么a也整除c。

(3)整除的基本性质:如果a整除b且a整除c,则a整除(mb + nc),其中m, n是任意整数。

(4)偶数与奇数的整除性:如果一个数能被2整除,则称其为偶数;如果一个数不能被2整除,则称其为奇数。

偶数能被2整除,奇数不能被2整除。

另外,如果一个数能被4整除,则称其为4的倍数。

3. 整除的判定方法(1)整除的判定法则:a整除b,当且仅当b是a的倍数。

也就是说,如果存在一个整数c使得b = a * c,那么a整除b。

(2)整除的判定规律:如果一个整数能被另一个整数整除,那么这两个整数的除数一定是其公约数。

(3)整除的判定定理:对于整数a, b, c,如果a整除b且a整除c,则a整除(b + c)和(b - c)。

这是因为b = a * m,c = a * n,则b + c = a * (m + n),b - c = a * (m - n)。

4. 整除的应用(1)公因数与最大公因数:对于两个整数a, b,a的约数是指能整除a的数,b的约数是指能整除b的数。

a, b的公因数是指既是a的约数又是b的约数的数;a, b的最大公因数是指a, b的公因数中最大的那个数。

(2)互质数与最小公倍数:如果两个整数的最大公因数是1,则这两个数称为互质数。

两个数的最小公倍数是指能同时整除这两个数的最小的正整数。

(3)整除的运算性质:整除运算具有传递性、交换性、结合性等基本运算性质。

数的整除知识点总结

数的整除知识点总结

数的整除知识点总结一、整除的概念。

1. 定义。

- 在整数除法中,如果商是整数而没有余数,我们就说被除数能被除数整除,或者说除数能整除被除数。

例如,15÷3 = 5,我们就说15能被3整除,或者说3能整除15。

2. 整除的表示方法。

- 若整数a除以非零整数b,商为整数,且余数为零,我们就说a能被b整除(或说b能整除a),记作ba。

二、数的整除特征。

1. 能被2整除的数的特征。

- 个位数字是0、2、4、6、8的整数能被2整除。

例如12、34、560等都能被2整除。

2. 能被3整除的数的特征。

- 一个数各位数字之和能被3整除,这个数就能被3整除。

例如123,各位数字之和为1 + 2+3 = 6,6能被3整除,所以123能被3整除。

3. 能被5整除的数的特征。

- 个位数字是0或5的整数能被5整除。

如10、15、205等都能被5整除。

4. 能被9整除的数的特征。

- 一个数各位数字之和能被9整除,这个数就能被9整除。

例如279,各位数字之和为2+7 + 9=18,18能被9整除,所以279能被9整除。

5. 能被11整除的数的特征。

- 把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么原来这个数就一定能被11整除。

例如132,奇位数字之和为1+2 = 3,偶位数字是3,它们的差为0,0是11的倍数,所以132能被11整除。

三、整除的性质。

1. 传递性。

- 如果ab且bc,那么ac。

例如,如果3能整除6,6能整除18,那么3能整除18。

2. 可加性。

- 如果ab且ac,那么a(b + c)。

例如,5能整除10,5能整除15,那么5能整除10 + 15=25。

3. 可减性。

- 如果ab且ac,那么a(b - c)。

例如,7能整除21,7能整除14,那么7能整除21-14 = 7。

奥数——数的整除特征

奥数——数的整除特征

数的整除特征★知识要点1、如果一个数的个位数字能被2或5整除,则这个数能被2或5整除。

2、如果一个数的末两位数字能被4或25整除,则这个数就能被4或25整除。

3、如果一个数的末三位数字能被8或125整除,则这个数就能被8或125整除。

4、如果一个数的各位数字之和能被3或9整除,则这个数就能被3或9整除。

5、如果一个自然数的奇数位上数字和与偶数位上数字和的差(大数减小数)能被11整除,那么这个数就能被11整除。

6、被7、11、13整除数的特征:如果一个自然数的末三位数字所表示的数与末三位前的数字所表示的数之差(大数减小数)能被7、11或13整除,那么这个数就能被7,11或13整除。

★典型例题例1、在□内填上适当的数,使五位数5874□能被2整除,这样的五位数有多少个?例2、在□内填上适当的数,使六位数69547□能被4或25整除。

例3、在□内填上适当的数,使五位数31□26能被3或9整除。

例4、在865后面补上3个数字,组成一个六位数,使它能被3,4,5整除,且使这个数值尽可能地大。

例5、在五位数15□8□的□内填什么数字,才能使它既能被3整除,又含有因数5?例6、根据被11整除的数的特征,判别下列数中哪几个能被11整除:3434 3443 52019 68868例7、判断2146455311能否被7,11或13整除?课堂练习1、在□内填上适当的数,使四位数139□能被5整除,这样的四位数有哪几个?2、在□内填上适当的数,使七位数7132□20能被8整除。

3、判断下列哪些数能被25整除,哪些能被125整除?能被125整除的数一定能被25整除吗?反之能被25整除的数一定能被125整除吗?750 765 2775 6325 1500 10004、根据被3和9整除的数的特征,用“去三法”或“或九法”判别下列数中哪些数能被3整除,哪些能被9整除。

请仔细观察能被9整除的数一定能被3整除吗?反之能被3整除的数一定能被9整除吗?请牢记这个规律!5646 49257 25341 87203 56142365、在358后面补上3个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能地小。

数的整除A基础版

数的整除A基础版

数的整除A知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。

【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b 与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m 为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲例题1 975935972⨯⨯⨯□,要使这个连乘积的最后4个数字都是0,那么在方框内最小应填什么数?例题2在方框中填上两个数字,可以相同也可以不同,使4□32□是9的倍数. 请随便填出一种,并检查自己填的是否正确。

数的整除知识点总结教学提纲

数的整除知识点总结教学提纲

数的整除知识'.数的分类第一种分法:树状图韦恩图第二种分法整数自然数整数负整数*正奇数f -----------------正偶数1 L L.J正整数整数厂奇数厂「第三种分法:厂整数/~厂-X ( ---- 1----素数合数1—丿J < J一些关于数的结论正整数1.0是最小的自然数,-1是最大的负整数,1是最小的正整数2.没有最大的整数,没有最小的负整数,没有最大的正整数3. 正整数、负整数、整数的个数都是无限的二.整除1. 整除定义(概念):整数a除以整数b,如果除得的商是整数而余数为零,我们就说a能被b整除;或者说b能整除a注意点:一定要看清楚谁被谁整除或谁整除谁,这里的a相当于被除数,b相当于除数2. 整除的条件:1•除数、被除数都是整数2被除数除以除数,商是整数而且余数为零注意点:区分整除与除尽:整除是特殊的除尽(如正方形是特殊的长方形一样),即a能被b整除,则a一定能被b除尽,反之则不一定(即a能被b除尽,则a不一定能被b整除)。

女口4^2=2, 4既能被2除尽,也能被2整除;4廿=0.8, 4能被5除尽,却不能说4能被5整除三.因数与倍数1•因数与倍数的定义:整数a能被整数b整除,a就叫做b的倍数,b就叫做a 的因数(约数)。

注意点:1•因数和倍数是相互依存的,不能简单的说某个数是因数,某个数是倍数。

如:6七=2,不能说6是倍数,3是因数;要说6是3的倍数,3是6的因数。

2•因数与倍数是建立在整除的基础上的,所以如4P.2=20, —般是不说4是0.2的倍数,0.2是4的因数。

2•因数与倍数的特点:一个整数的因数中最小的因数是1最大的因数是它本身。

一个数的倍数中最小的倍数是这个数本身,没有最大的倍数。

因数的个数是有限的,都能一一列举出来,倍数的个数是无限的。

3. 求一个数因数的方法:利用积与因数的关系一对一对找,找出哪两个数的乘积等于这个数,那么这两个数就是这个数的因数。

沪教版数学六上第1章1.1~1.3数的整除-知识点

沪教版数学六上第1章1.1~1.3数的整除-知识点

数学六上第1章1.1~1.3数的整除-知识点1、正整数、负整数和零统称为整数,其中,零和正整数统称为自然数。

★一些结论:①没有最大的自然数/整数/正整数,有最大的负整数,是-1 ;②没有最小的整数/负整数,有最小的正整数,是1 ;有最小的自然数,是0 。

③0不是正整数,也不是负整数,是正与负的“分界”。

2、整除的条件:①除数、被除数都是整数;②商是整数而且余数为零。

★注意:在沪教六上,整除约定在正整数范围内考虑。

3、在除尽中,被除数、除数和商都不一定为整数,只要商不是循环小数,都是除尽。

所以,整除是特殊的除尽。

4、整除a÷b的两种表述:①a能被b整除,②b能整除a 。

在上述整除中,a是b的倍数,b是a的因数(也称为约数)。

5、因数和倍数是相互依存的,不能单独存在。

这里包含两层意思:①在讲倍数和因数时,只能说谁是谁的倍数或者谁是谁的因数,不能说谁是因数,谁是倍数;②如果a是b的倍数,那么b一定是a 的因数,反之,如果a是b 的因数,那么b一定是a的倍数。

6、求一个数的因数:列乘法算式,有序地写出该数的所有两个数乘积的乘法算式,乘法算式中的所有因数就是该数的因数。

例:12= 1×12 = 2×6 = 3×4 ,所以,12的因数有:1,2,3,4,6,12 。

7、求一个数的倍数:用这个数,依次与正整数相乘。

8、一个数的因数的个数有限,最小的是1 ,最大的是它本身。

一个数的倍数的个数无限,最小的是它本身,没有最大的倍数。

9、因数和倍数的性质:①任何一个整数都是它本身的倍数,也是它本身的因数。

②1 是任何一个整数的因数,任何整数都是1的倍数。

③0 是所有非零整数的倍数,但通常我们只考虑正倍数,不考虑0 。

10、能被2整除的数(偶数),个位是0,2,4,6,8 ;不能被2整除的数(奇数),个位数字是1,3,5,6,9 。

★0也是偶数,没有最大的偶数,也没有最大的奇数。

小学五年级奥数:数的整除知识点汇总+例题解析

小学五年级奥数:数的整除知识点汇总+例题解析

小学五年级奥数:数的整除知识点汇总+例题解析.DOC数的整除问题,内容丰富,思维技巧性强。

它是小学数学中的重要课题,也是小学数学竞赛命题的内容之一。

一、基本概念和知识1.整除——约数和倍数例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b 能整除a)。

记作b|a.否则,称为a不能被b整除,(或b不能整除a),记作ba。

如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的约数。

例如:在上面算式中,15是3的倍数,3是15的约数;63是7的倍数,7是63的约数。

2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。

即:如果c|a,c|b,那么c|(a±b)。

例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。

性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。

性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。

即:如果b|a,c|a,且(b,c)=1,那么bc|a。

例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。

性质4:如果c能整除b,b能整除a,那么c能整除a。

即:如果c|b,b|a,那么c|a。

例如:如果3|9,9|27,那么3|27。

3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

奥数数的整除讲义,理解练习含答案解析

奥数数的整除讲义,理解练习含答案解析

数的整除(1)性质、特征、奇偶性【知识要点】:整除性质:(1)如果数a、b都能被c整除,那么它们的和(a+b )或差(a - b)也能被c整除。

(2)如果数a能被自然数b整除,自然数b能被自然数c整除,则数a 必能被数c整除。

(3)若干个数相乘,如其中有一个因数能被某一个数整除,那么,它们的积也能被这个数整除。

(4)如果一个数能被两个互质数中的每一个数整除,那么,这个数能被这两个互质数的积整除。

反之,若一个数能被两个互质数的积整除,那么这个数能分别被这两个互质数整除。

整除特征:(1)若一个数的末两位数能被4 (或25 )整除,则这个数能被4 (或25)整除。

(2)若一个数的末三位数能被8 (或125 )整除,则这个数能被8 (或125 )整除。

(3)若一个数的各位数字之和能被3 (或9)整除,则这个数能被3 (或9)整除。

(4 )若一个数的奇数位数字和与偶数数字和之差(以大减小)能被11整除,则这个数能被11整除。

(5)若一个数的末三位数字所表示的数与末三位以前的数字所表示的数之差(大数减小数)能被7 (或13)整除,则这个数能被7 (或13)整除。

奇偶性:(1 )奇数土奇数=偶数(2)偶数土偶数=偶数(3 )奇数土偶数=奇数(4)奇数X奇数=奇数(5)偶数X偶数=偶数(6)奇数X偶数=偶数(7)奇数一奇数=奇数(8)•••【典型例题】例1 :」个三位数能被3整除,去掉它的末尾数后,所得的两位数是17的倍数,这样的三位数中,最大是几?例2 : 1〜200这200个自然数中,能被6或8整除的数共有多少个?例3 :任意取出1998个连续自然数,它们的总和是奇数还是偶数?例4 :有“ 1”,“2”,“3”,“4”四张卡片,每次取出三张组成三位数,其中偶数有多少个?例5如果41位数芳…299…9能被7整除,那么中间方格内的数字杲几?【精英班】屏20“【竞赛班】例6 :某市举办小学生数学竞赛,共20道题,评分标准是:答对一题给5分,不答一题给1分,答错一题倒扣1分,如果1999 人参赛,问参赛同学的总分是奇数还是偶数?【课后分层练习】1、判断306371A组:入门级能否被7整除?能否被13整除?2、abcabc能否被7、11和13整除?3、六位数7E36F5 是1375的倍数,求这个六位数。

第二讲数的整除(2)

第二讲数的整除(2)

第二讲数的整除(2)第二讲数的整除(2)【典型例题1】一个素数的3倍与另一个素数的2倍之和是100,求这两个素数。

解析:100是一个偶数,一个素数的2倍必定是偶数,则另一个素数的3倍也应为偶数,则这个素数应为2,另一个素数为1006472-=点评:此题对应的方法,分析易错点,考查知识点,注意点【知识点】1、素数和合数一个数,如果只有1和它本身两个因数,这样的数叫做素数,也叫质数.一个数,如果除了1和它本身以外还有别的因数,这样的数叫合数.分解素因数把一个合数用素因数相乘的形式表示出来,叫做分解素因数【基本习题限时训练】1填空:在正整数中,既不是素数也不是合数的数是________,既是素数又是偶数的数是____________。

【解】在正整数中,既不是素数也不是合数的数是1,既是素数又是偶数的数是22 在14=2×7中,2和7都是14的()。

(A)素数(B)互素数(C)素因数(D)公因数【解】C3 将下列各数分解素因数,并用连乘的形式表示结果。

(1)48;(2)120 【解】(1)4822223=;(2)12022235=。

4、39、47、57、83中为素数的有()(A) 39,47 (B) 47,57 (C)57,97 (D)47,83 【解】D5、12的素因数是()(A)1,2,3,4 (B)2,3 (C)2,2,3 (D)1,2,3,4,6,12 【解】C6、下列分解素因数正确的是()(A)42=2×21 (B)48=1×2×2×2×2×3(C)24=4×6 (D)62=2×31【解】D7、下列说法中正确的是()(A)自然数包括素数和合数两类 (B)不存在最小的素数(C)1既不是素数,也不是合数(D)2是最小的合数【解】C8、两个素数相乘的积一定是()(A)奇数(B)偶数(C)素数(D)合数【解】D9、根据要求填空:在1,2,9,21,43,51,59,64这八个数中,(1)是奇数又是素数的数是();(2)是奇数不是素数的数是();(3)是素数而不是奇数的数是();(4)是合数而不是偶数的数是();(5)是合数而不是奇数的数是().【解】(1)43,59 (2)1,9,21,51 (3)2 (4)9,21,51(5)6410、把下列各数写成几个素因数乘积的形式.(1)18;(2)35;(3)45.【解】(1)18=2×3×3 (2)35=5×7 (3)45=3×3×511、把以下各数分解素因数(1)189;(2)72;(3)238;(4)338.【解】(1)189=3×3×3×7(2)72=2×2×2×3×3(3)238=2×7×17(4)338=2×13×1312、将20写成两个质数之和,这两个质数最大乘积是多少?【解】20=3+17=7+13 7×13=91 因此这两个质数的积最大是91.【拓展题】2、一个素数,是两个数字组成的两位数,两个数字之和是8,两个数字之差是2,那么这个素数是几?解析:解法一因为(8+2)÷2=5 (8-2)÷2=3 所以这个两位数是35或53,又因为这个数是素数,所以35不符合题意.解法二设这个两位数中,其中一个数字为x,那么另一个数字为(8-x).由题意得:x-(8-x)=2 解得 x=3 另一个数字 8-x=5 所以这个两位数是35或53,又因为这个数是素数,所以35不符合题意.点评:此题介绍了考查了素数的概念,并介绍了方程思想。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在复习数的整除时,笔者提供了一个缺少部分概念的可填充的基图,让学生根据自己的知识经验,先把基图填充完整,再对基图扩容。
基图如下:
填充后的概念图如下:
扩容后的概念图如下:
3、用图——自觉运用概念图策略
研究人员发现,在学习中使用概念图的学生,在较长一段时间以后,其知识的保持超过不用概念图学习的学生,且知识面也比用死记硬背来学习的学生宽,更能解决问题。研究人员还发现,当学生试图用概念图
除法
除不尽除尽
整除
约数
倍数
能被2、5、3整除的数的特征
公约数
公倍数
最大公约数最小公倍数
1质数
合数
质因数分解质因数
非0自然数约数的个数互质数
是互质数的五种特殊情形
短除法(分解质因数法)
缩数法辗转相除法特殊数分解质因数法)
扩数法
偶数奇数
能被4、25整除的数的特征能被8、125整除的数
相关文档
最新文档