等比数列解题技巧(终极收藏版)

合集下载

高三等比数列知识点

高三等比数列知识点

高三等比数列知识点解析数学作为一门重要的学科,在高中阶段占据着至关重要的地位。

而在数学学科中,等比数列与等差数列是高三学生最常接触的数列类型之一,且对学生的数学思维与分析能力有着较大的考验。

在本文中,我们将对高三等比数列的基本概念、性质和解题技巧进行详细论述。

一、等比数列的基本概念等比数列是指一个数列中,从第二个数起,每一个数都是前一个数乘以同一个常数得到的。

例如,数列1,2,4,8,16就是一个等比数列,公比为2。

在等比数列中,每个数与它的前一个数之比是相等的,这个比值叫做公比。

并且,公比的绝对值大于1时,数列的绝对值会呈现出递增的趋势;而公比的绝对值在0到1之间时,则数列的绝对值会呈现出递减的趋势。

二、等比数列的性质1. 前n项和公式等比数列的前n项和公式为Sn=a1*(1-q^n)/(1-q),其中a1为首项,q为公比,n为项数。

这个公式可以帮助我们求解等比数列前n项和,其中的(1-q^n)部分是通过公比的n次幂来表示的。

需要注意的是,当公比q等于1时,前n项和公式会退化为等差数列的前n项和公式Sn=n*a1。

2. 通项公式等比数列的通项公式为an=a1*q^(n-1),其中a1为首项,q为公比,n为项数。

通过通项公式,我们可以方便地求得等比数列中任意一项的值。

如果已知首项和公比,通过代入数值即可计算出对应的项数的数值。

3. 其他重要性质(1)对于任意等比数列,首项与公比的乘积等于第二项与公比的乘积,即a1 * q = a2。

这个性质是由等比数列的定义所确定的。

(2)等比数列任意两项的比值都是相等的。

这个性质在解题过程中有着很大的应用价值,可以帮助我们确定未知量的值。

三、等比数列的解题技巧1. 确定题目所给信息和所求结论在解题过程中,首先要仔细阅读题目,理解题目所给的条件和所要求的结果。

通过明确题目的要求,可以更加有目的地进行解题,在遇到复杂问题时能够有针对性地选择合适的方法。

2. 掌握运用前n项和公式和通项公式在解决关于等比数列的问题时,掌握前n项和公式和通项公式是必不可少的。

归纳与技巧:等比数列及其前n项和(含解析)

归纳与技巧:等比数列及其前n项和(含解析)

归纳与技巧:等比数列及其前n 项和基础知识归纳1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *,q 为非零常数). (2)等比中项:如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列{a n }的常用性质(1)在等比数列{a n }中,若m +n =p +q =2r (m ,n ,p ,q ,r ∈N *),则a m ·a n =a p ·a q =a 2r . 特别地,a 1a n =a 2a n -1=a 3a n -2=….(2)在公比为q 的等比数列{a n }中,数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列,公比为q k ;数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时q ≠-1); a n =a m q n-m.基础题必做1.(教材习题改编)等比数列{a n }中,a 4=4,则a 2·a 6等于( ) A .4 B .8 C .16D .32解析:选C a 2·a 6=a 24=16.2.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =( )A .4·⎝⎛⎭⎫32nB .4·⎝⎛⎭⎫23nC .4·⎝⎛⎭⎫32n -1D .4·⎝⎛⎭⎫23n -1 解析:选C (a +1)2=(a -1)(a +4)⇒a =5, a 1=4,q =32,故a n =4·⎝⎛⎭⎫32n -1. 3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=( ) A .64 B .81 C .128D .243解析:选A q =a 2+a 3a 1+a 2=2,故a 1+a 1q =3⇒a 1=1,a 7=1×27-1=64.4. 在等比数列{a n }中,若a 1=12,a 4=4,则公比q =________;a 1+a 2+…+a n =________.解析:a 4=a 1q 3,得4=12q 3,解得q =2,a 1+a 2+…+a n =12(1-2n )1-2=2n -1-12.答案:2 2n -1-125. 等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________. 解析:∵S 3+3S 2=0,∴a 1+a 2+a 3+3(a 1+a 2)=0, ∴a 1(4+4q +q 2)=0. ∵a 1≠0,∴q =-2. 答案:-2解题方法归纳1.等比数列的特征(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q 也是非零常数. (2)由a n +1=qa n ,q ≠0并不能立即断言{a n }为等比数列,还要验证a 1≠0. 2.等比数列的前n 项和S n(1)等比数列的前n 项和S n 是用错位相减法求得的,注意这种思想方法在数列求和中的运用.(2)在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形导致解题失误.等比数列的判定与证明典题导入[例1] 已知数列{a n }的前n 项和为S n ,且a n +S n =n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{a n }的通项公式.[自主解答] (1)证明:∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1, ∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12.∵首项c 1=a 1-1,又a 1+a 1=1, ∴a 1=12,c 1=-12.又c n =a n -1,故{c n }是以-12为首项,12为公比的等比数列.(2)由(1)可知c n =⎝⎛⎭⎫-12·⎝⎛⎭⎫12n -1=-⎝⎛⎭⎫12n , ∴a n =c n +1=1-⎝⎛⎭⎫12n.在本例条件下,若数列{b n }满足b 1=a 1,b n =a n -a n -1(n ≥2),证明{b n }是等比数列. 证明:∵由(2)知a n =1-⎝⎛⎭⎫12n , ∴当n ≥2时,b n =a n -a n -1 =1-⎝⎛⎭⎫12n -⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1 =⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n .又b 1=a 1=12也符合上式,∴b n =⎝⎛⎭⎫12n . ∵b n +1b n =12,∴数列{b n }是等比数列.解题方法归纳等比数列的判定方法(1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a na n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式可写成a n =c ·q n (c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.以题试法1. 已知函数f (x )=log a x ,且所有项为正数的无穷数列{a n }满足log a a n +1-log a a n =2,则数列{a n }( )A .一定是等比数列B .一定是等差数列C .既是等差数列又是等比数列D .既不是等差数列又不是等比数列解析:选A 由log a a n +1-log a a n =2,得log a a n +1a n =2=log a a 2,故a n +1a n=a 2.又a >0且a ≠1,所以数列{a n }为等比数列.等比数列的基本运算典题导入[例2] 设等比数列{a n }的前n 项和为S n ,已知a 2=6,6a 1+a 3=30,求a n 和S n . [自主解答] 设{a n }的公比为q ,由题设得⎩⎪⎨⎪⎧ a 1q =6,6a 1+a 1q 2=30.解得⎩⎪⎨⎪⎧ a 1=3,q =2或⎩⎪⎨⎪⎧a 1=2,q =3.当a 1=3,q =2时,a n =3×2n -1,S n =3×(2n -1); 当a 1=2,q =3时,a n =2×3n -1,S n =3n -1.解题方法归纳1.等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.2.在使用等比数列的前n 项和公式时,应根据公比q 的情况进行分类讨论,切不可忽视q 的取值而盲目用求和公式.以题试法2.已知数列{a n }是公差不为零的等差数列,a 1=2,且a 2,a 4,a 8成等比数列. (1)求数列{a n }的通项公式; (2)求数列{3a n }的前n 项和.解:(1)设等差数列{a n }的公差为d (d ≠0). 因为a 2,a 4,a 8成等比数列, 所以(2+3d )2=(2+d )·(2+7d ), 解得d =2.所以a n =2n (n ∈N *).(2)由(1)知3a n =32n ,设数列{3a n }的前n 项和为S n , 则S n =32+34+…+32n =9(1-9n )1-9=98(9n -1).等比数列的性质典题导入[例3] (1) 在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( )A.12 B.32C .1D .-32(2)设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3等于( ) A .1∶2 B .2∶3 C .3∶4D .1∶3[自主解答] (1)因为a 3a 4a 5=3π=a 34,所以a 4=3π3.log 3a 1+log 3a 2+…+log 3a 7 =log 3(a 1a 2…a 7)=log 3a 74 =7log 33π3=7π3,故sin(log 3a 1+log 3a 2+…+log 3a 7)=32. (2)由等比数列的性质:S 3,S 6-S 3,S 9-S 6仍成等比数列,于是(S 6-S 3)2=S 3·(S 9-S 6), 将S 6=12S 3代入得S 9S 3=34.[答案] (1)B (2)C解题方法归纳等比数列与等差数列在定义上只有“一字之差”,它们的通项公式和性质有许多相似之处,其中等差数列中的“和”“倍数”可以与等比数列中的“积”“幂”相类比.关注它们之间的异同有助于我们从整体上把握,同时也有利于类比思想的推广.对于等差数列项的和或等比数列项的积的运算,若能关注通项公式a n =f (n )的下标n 的大小关系,可简化题目的运算.以题试法3.(1) 已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5D .-7(2) 已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n )D.323(1-2-n ) 解析:(1)选D 法一:由题意得⎩⎪⎨⎪⎧a 4+a 7=a 1q 3+a 1q 6=2,a 5a 6=a 1q 4×a 1q 5=a 21q 9=-8,解得⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,故a 1+a 10=a 1(1+q 9)=-7.法二:由⎩⎪⎨⎪⎧ a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎪⎨⎪⎧ a 4=-2,a 7=4或⎩⎪⎨⎪⎧a 4=4,a 7=-2.则⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,故a 1+a 10=a 1(1+q 9)=-7. (2)选C ∵a 2=2,a 5=14,∴a 1=4,q =12,a n a n +1=⎝⎛⎭⎫122n -5. 故a 1a 2+a 2a 3+…+a n a n +1=8⎝⎛⎭⎫1-14n 1-14=323(1-4-n ).1.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q 为( ) A .-12 B .1C .-12或1D.14解析:选C 当q =1时,满足S 3=3a 1=3a 3. 当q ≠1时,S 3=a 1(1-q 3)1-q =a 1(1+q +q 2)=3a 1q 2,解得q =-12,综上q =-12或q =1.2. 设数列{a n }满足:2a n =a n +1(a n ≠0)(n ∈N *),且前n 项和为S n ,则S 4a 2的值为( )A.152 B.154 C .4D .2解析:选A 由题意知,数列{a n }是以2为公比的等比数列,故S 4a 2=a 1(1-24)1-2a 1×2=152.3. 公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10=( ) A .4 B .5 C .6D .7解析:选B ∵a 3·a 11=16,∴a 27=16.又∵等比数列{a n }的各项都是正数,∴a 7=4. 又∵a 10=a 7q 3=4×23=25,∴log 2a 10=5.4.已知数列{a n },则“a n ,a n +1,a n +2(n ∈N *)成等比数列”是“a 2n +1=a n a n +2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:选A 显然,n ∈N *,a n ,a n +1,a n +2成等比数列,则a 2n +1=a n a n +2,反之,则不一定成立,举反例,如数列为1,0,0,0,…5. 各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( ) A .80 B .30 C .26D .16解析:选B 设S 2n =a ,S 4n =b ,由等比数列的性质知: 2(14-a )=(a -2)2,解得a =6或a =-4(舍去), 同理(6-2)(b -14)=(14-6)2,所以b =S 4n =30.6.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的等比数列,则m n =( )A.32 B.32或23C.23D .以上都不对解析:选B 设a ,b ,c ,d 是方程(x 2-mx +2)(x 2-nx +2)=0的四个根,不妨设a <c <d <b ,则a ·b =c ·d =2,a =12,故b =4,根据等比数列的性质,得到c =1,d =2,则m =a +b =92,n =c +d =3,或m =c +d =3,n =a +b =92,则m n =32或m n =23.7.已知各项不为0的等差数列{a n },满足2a 3-a 27+2a 11=0,数列{b n}是等比数列,且b 7=a 7,则b 6b 8=________.解析:由题意可知,b 6b 8=b 27=a 27=2(a 3+a 11)=4a 7,∵a 7≠0,∴a 7=4,∴b 6b 8=16. 答案:168. 等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,则对任意的n ∈N *,都有a n+2+a n +1-2a n =0,则S 5=________.解析:由题意知a 3+a 2-2a 1=0,设公比为q ,则a 1(q 2+q -2)=0.由q 2+q -2=0解得q =-2或q =1(舍去),则S 5=a 1(1-q 5)1-q=1-(-2)53=11.答案:119. 已知{a n }是公比为2的等比数列,若a 3-a 1=6,则a 1=________;1a 21+1a 22+…+1a 2n=________.解析:∵{a n }是公比为2的等比数列,且a 3-a 1=6,∴4a 1-a 1=6,即a 1=2,故a n =a 12n-1=2n ,∴1a n =⎝⎛⎭⎫12n ,1a 2n =⎝⎛⎭⎫14n ,即数列⎩⎨⎧⎭⎬⎫1a 2n 是首项为14,公比为14的等比数列, ∴1a 21+1a 22+…+1a 2n =14⎝⎛⎭⎫1-14n 1-14=13⎝⎛⎭⎫1-14n . 答案:2 13⎝⎛⎭⎫1-14n 10.设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列. (1)求数列{a n }的通项公式; (2)求a 1+a 3+…+a 2n +1.解:(1)∵S 1=a 1=1,且数列{S n }是以2为公比的等比数列,∴S n =2n -1, 又当n ≥2时,a n =S n -S n -1=2n -2(2-1)=2n -2.∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2.(2)a 3,a 5,…,a 2n +1是以2为首项,以4为公比的等比数列, ∴a 3+a 5+…+a 2n +1=2(1-4n )1-4=2(4n -1)3.∴a 1+a 3+…+a 2n +1=1+2(4n -1)3=22n +1+13.11.设数列{a n }的前n 项和为S n ,其中a n ≠0,a 1为常数,且-a 1,S n ,a n +1成等差数列. (1)求{a n }的通项公式;(2)设b n =1-S n ,问:是否存在a 1,使数列{b n }为等比数列?若存在,求出a 1的值;若不存在,请说明理由.解:(1)依题意,得2S n =a n +1-a 1.当n ≥2时,有⎩⎪⎨⎪⎧2S n =a n +1-a 1,2S n -1=a n -a 1.两式相减,得a n +1=3a n (n ≥2). 又因为a 2=2S 1+a 1=3a 1,a n ≠0,所以数列{a n }是首项为a 1,公比为3的等比数列. 因此,a n =a 1·3n -1(n ∈N *). (2)因为S n =a 1(1-3n )1-3=12a 1·3n -12a 1,b n =1-S n =1+12a 1-12a 1·3n .要使{b n }为等比数列,当且仅当1+12a 1=0,即a 1=-2.所以存在a 1=-2,使数列{b n }为等比数列.12. 已知等差数列{a n }的前5项和为105,且a 10=2a 5. (1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中不大于72m 的项的个数记为b m .求数列{b m }的前m 项和S m .解:(1)设数列{a n }的公差为d ,前n 项和为T n , 由T 5=105,a 10=2a 5, 得⎩⎨⎧5a 1+5×(5-1)2d =105,a 1+9d =2(a 1+4d ),解得a 1=7,d =7.因此a n =a 1+(n -1)d =7+7(n -1)=7n (n ∈N *). (2)对m ∈N *,若a n =7n ≤72m ,则n ≤72m -1. 因此b m =72m -1.所以数列{b m }是首项为7,公比为49的等比数列, 故S m =b 1(1-q m )1-q =7×(1-49m )1-49=7×(72m -1)48=72m +1-748.1.若数列{a n }满足a 2n +1a 2n=p (p 为正常数,n ∈N *),则称数列{a n }为“等方比数列”.甲:数列{a n }是等方比数列;乙:数列{a n }是等比数列,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 若a 2n +1a 2n =p ,则a n +1a n =±p ,不是定值;若a n +1a n =q ,则a 2n +1a 2n=q 2,且q 2为正常数,故甲是乙的必要不充分条件.2. 设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =________.解析:法一:S 4=S 2+a 3+a 4=3a 2+2+a 3+a 4=3a 4+2,将a 3=a 2q ,a 4=a 2q 2代入得, 3a 2+2+a 2q +a 2q 2=3a 2q 2+2,化简得2q 2-q -3=0,解得q =32(q =-1不合题意,舍去). 法二:设等比数列{a n }的首项为a 1,由S 2=3a 2+2,得 a 1(1+q )=3a 1q +2.①由S 4=3a 4+2,得a 1(1+q )(1+q 2)=3a 1q 3+2.②由②-①得a 1q 2(1+q )=3a 1q (q 2-1).∵q >0,∴q =32. 答案:323.已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *).(1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式. 解:(1)证明:依题意S n =4a n -3(n ∈N *),n =1时,a 1=4a 1-3,解得a 1=1.因为S n =4a n -3,则S n -1=4a n -1-3(n ≥2),所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1,整理得a n =43a n -1. 又a 1=1≠0,所以{a n }是首项为1,公比为43的等比数列. (2)因为a n =⎝⎛⎭⎫43n -1,由b n +1=a n +b n (n ∈N *),得b n +1-b n =⎝⎛⎭⎫43n -1.可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-⎝⎛⎭⎫43n -11-43=3·⎝⎛⎭⎫43n -1-1(n ≥2), 当n =1时也满足,所以数列{b n }的通项公式为b n =3·⎝⎛⎭⎫43n -1-1.1. 已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1 B.⎝⎛⎭⎫32n -1 C.⎝⎛⎭⎫23n -1 D.12n -1 解析:选B ∵S n =2a n +1,∴当n ≥2时,S n -1=2a n ,∴a n =S n -S n -1=2a n +1-2a n ,∴3a n =2a n +1,∴a n +1a n =32. 又∵S 1=2a 2,∴a 2=12,∴a 2a 1=12, ∴{a n }从第二项起是以32为公比的等比数列, ∴S n =a 1+a 2+a 3+…+a n =1+12⎣⎡⎦⎤1-⎝⎛⎭⎫32n -11-32=⎝⎛⎭⎫32n -1. ( 也可以先求出n ≥2时,a n =3n -22n -1,再利用S n =2a n +1,求得S n =⎝⎛⎭⎫32n -1 )2.等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列.(1)求{a n }的公比q ;(2)若a 1-a 3=3,求S n .。

等比数列知识点归纳总结图文

等比数列知识点归纳总结图文

等比数列知识点归纳总结图文在数学中,等比数列是一种特殊的数列。

它是指从第二项开始,每一项与它的前一项的比相等的数列。

本文将对等比数列的相关知识点进行归纳总结,并以图文形式展示,帮助读者更好地理解和掌握等比数列的概念和性质。

1. 等比数列的定义等比数列是指从第二项开始,每一项与它的前一项的比相等的数列。

设等比数列的首项为a,公比为r,数列的通项公式为an=a×r^(n-1)。

其中,n表示数列中的第n项。

2. 等比数列的性质(1)通项公式:等比数列的通项公式是an=a×r^(n-1),其中a表示首项,r表示公比,n表示项数。

(2)前n项和公式:等比数列的前n项和公式是Sn=a×(1-r^n)/(1-r),其中a表示首项,r表示公比,n表示项数。

(3)比值性质:等比数列中,任意两项的比值都为常数,即an/an-1=r。

(4)倒数性质:等比数列中,任意两项互为倒数,即an与1/an-1互为倒数。

3. 等比数列的图文示例下面通过图文形式对等比数列进行示例,以加深对等比数列的理解和记忆。

(插入示例图片)图1是一个等比数列的示例图,首项a=2,公比r=3/2。

根据等比数列的通项公式an=a×r^(n-1),我们可以计算出数列的前几个项如下:a1=2a2=2×(3/2)^1=3a3=2×(3/2)^2=4.5a4=2×(3/2)^3=6.75...由此可见,该数列每一项与前一项的比相等,且比值为3/2。

(插入示例图片)图2展示了等比数列的前n项和的计算过程,首项a=10,公比r=0.5。

根据等比数列的前n项和公式Sn=a×(1-r^n)/(1-r),我们可以计算出数列的前几项和如下:S1=10S2=10×(1-(0.5)^2)/(1-0.5)=15S3=10×(1-(0.5)^3)/(1-0.5)=19.5S4=10×(1-(0.5)^4)/(1-0.5)=21.75...可以看出,数列的前n项和随着项数的增加而增加。

高中数学等比数列知识点总结归纳

高中数学等比数列知识点总结归纳

高中数学等比数列知识点总结归纳
等比数列是指一个数列中,从第二项开始,每一项都等于前一项乘上同一个常数d,记作数列{an}或{an},其中a1为首项,d为公比。

等比数列的通项公式
等比数列的通项公式为an=a1 * d^(n-1),其中an为数列的第n项,a1为首项,d为公比。

等比数列的前n项和
等比数列的前n项和Sn的计算方法有两种:
1. 若公比d≠1,则Sn=a1 * (1 - d^n)/(1-d);
2. 若公比d=1,则Sn=n * a1。

等比数列性质
1. 若公比d>1,则数列递增;
2. 若公比d<1,则数列递减;
3. 若公比d=1,则数列恒为常数列;
4. 若公比d=0,则数列除首项外全部为0;
5. 如果数列中有无穷项存在,则d的绝对值小于1。

等比数列的应用
等比数列在实际生活中有着很广泛的应用,例如:
1. 货币利率的计算;
2. 科学实验中的指数增长或衰减过程;
3. 基因变异与进化过程的研究;
4. 人口增长模型等。

以上是高中数学中等比数列的基本知识点总结归纳,希望对您有所帮助。

等比数列求和公式记忆方法

等比数列求和公式记忆方法

等比数列求和公式记忆方法嘿,咱今天就来唠唠等比数列求和公式的记忆方法。

你想想啊,等比数列就像是一群按规律排好队的小精灵。

那求和公式呢,就是抓住这些小精灵的魔法咒语。

咱可以把等比数列想象成一个不断堆积的金字塔。

最下面那层的数量就是首项,然后每往上一层,数量就按照等比的规律变化。

那求和不就是把这些层的数量都加起来嘛。

比如说,首项是 1,公比是 2,那这个金字塔就一层一层地堆起来啦。

第一层 1 个,第二层 2 个,第三层 4 个,第四层 8 个……这么一看,是不是有点感觉啦?再打个比方,这就好比你去收集邮票,第一天收集了一张,第二天是第一天的两倍,也就是两张,第三天又是第二天的两倍,就是四张,依次类推。

那你要算一共收集了多少邮票,不就是在找这个求和公式嘛。

还有哦,我们可以把公式里的各个部分都和生活中的东西联系起来。

首项就像是你出发的起点,公比呢,就是你前进的速度或者变化的幅度。

那求和不就是你最终到达的目的地嘛。

你问我为啥要这么费劲去记这个公式?哎呀,这可重要啦!等比数列在好多地方都用得着呢。

就像你走路得知道往哪儿走,怎么个走法一样。

要是没记住这个公式,那不就像在迷宫里瞎转悠嘛,找不到出口呀!那怎么能记得牢牢的呢?多做几道题呀!就像你学骑自行车,光知道理论不行,得上去骑几圈才熟练呀。

每次做题的时候,就把那个金字塔、邮票啥的在脑子里过一遍,这不就记住啦。

而且啊,你还可以和同学互相考考,看谁记得更清楚。

这就像比赛一样,多有意思呀!咱可别小瞧了这个等比数列求和公式,它就像是一把钥匙,能打开好多知识的大门呢。

你想想,以后学更难的数学知识,要是连这个都没掌握好,那不是要抓瞎啦?所以呀,大家一定要好好记住这个公式哦。

别嫌麻烦,多想想那些有趣的比喻,多做做练习,肯定能记得牢牢的。

相信我,等你熟练掌握了这个公式,你会觉得数学的世界更加精彩呢!加油吧!。

初三数学等比数列应用题解决技巧

初三数学等比数列应用题解决技巧

初三数学等比数列应用题解决技巧数学是一门重要的学科,在初三阶段,学生们开始接触更加深入的数学知识,其中等比数列是数学中的重要概念之一。

学习等比数列的应用题解决技巧对于学生的数学能力提升具有重要意义。

本文将介绍初三等比数列应用题解决的一些技巧和方法,帮助学生更好地掌握这一知识点。

一、理解等比数列的定义和性质在解决等比数列应用题之前,首先要对等比数列的定义和性质有一个清晰的了解。

等比数列是指一个数列中的每一项与它的前一项的比都相等的数列。

根据等比数列的定义,我们可以得到以下性质:1. 任意一项与它的前一项的比称为公比,用q表示;2. 第n项可以表示为首项与公比的n-1次幂的乘积;3. 等比数列的前n项和可以表示为首项与公比的n次幂减1的商除以公比减1。

二、应用题解决技巧1. 建立等式在解决等比数列应用题时,首先要建立等式,将问题中的已知条件和未知数用代数符号表示出来。

根据题目中的信息和等比数列的性质,可以建立出相应的等式。

2. 利用等式解题利用建立的等式,可以运用代数运算的方法求解等比数列应用题。

根据等比数列的性质,可以将问题转化为一元一次方程或二次方程等,然后通过解方程的方法求解未知数。

3. 注意条件限制在解决等比数列应用题时,要仔细阅读题目,注意题目中给出的条件限制。

有时候题目中会对等比数列中的项数、首项或公比进行限制,需要将这些限制条件考虑在内,找出符合要求的解。

4. 审题和画图有些等比数列应用题需要进行逻辑思考,可以先审题,弄清楚问题的意思和要求,理清思路后再进行解题。

在解决过程中,绘制图形有时可以帮助我们更好地理解问题,并且有助于解决一些复杂的题目。

三、解题示例为了更好地理解等比数列应用题的解题技巧,我们来看一个具体的解题示例。

【例题】某公司的年度销售额从第一年开始以等比数列的形式增长,第一年的销售额是100万元,公比为1.5。

问第n年的销售额是多少?【解题步骤】Step 1:根据题目中的信息,建立等式。

2024年等比数列知识点总结与典型例题精华版

2024年等比数列知识点总结与典型例题精华版

等比数列知识点总结与经典例题1、等比数列的定义:,称为公比()()*12,nn a q q n n N a -=≠≥∈0且q 2、通项公式:,首项:;公比:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠1a q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)假如成等比数列,那么叫做与的等差中项,即:或,,a A b A a b 2A ab=A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个((2)数列是等比数列{}n a 211n n n a a a -+⇔=⋅4、等比数列的前项和公式:n n S (1)当初,1q =1n S na =(2)当初,1q ≠()11111n n n a q a a qS qq--==--(为常数)11''11n n n a aq A A B A B A q q=-=-⋅=---,,','A B A B 5、等比数列的判定措施:(1)用定义:对任意的,都有为等比数列n 11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,(2)等比中项:为等比数列21111(0){}n n n n n n a a a a a a +-+-=≠⇔(3)通项公式:为等比数列()0{}n n n a A B A B a =⋅⋅≠⇔6、等比数列的证明措施:依据定义:若或为等比数列()()*12,nn a q q n n N a -=≠≥∈0且1{}n n n a qa a +=⇔7、等比数列的性质:(2)对任何,在等比数列中,有。

*,m n N ∈{}n a n m n m a a q -=(3)若,则。

尤其的,当初,得 *(,,,)m n s t m n s t N +=+∈n m s t a a a a ⋅=⋅2m n k +=2n m k a a a ⋅=注:12132n n n a a a a a a --⋅=⋅=⋅⋅⋅等差和等比数列比较:经典例题透析类型一:等比数列的通项公式例1.等比数列中,, ,求.{}n a 1964a a ⋅=3720a a +=11a 思绪点拨:由等比数列的通项公式,通过已知条件可列出有关和的二元方程组,解出和1a q 1a ,可得;或注意到下标,能够利用性质可求出、,再求.q 11a 1937+=+3a 7a 11a 等差数列等比数列定义da a n n =-+1)0(1≠=+q q a a nn 递推公式da a n n +=-1;mda a n m n +=-q a a n n 1-=;mn m n q a a -=通项公式dn a a n )1(1-+=11-=n n q a a (0,1≠q a )中项2kn k n a a A +-+=(0,,* k n N k n ∈))0( k n k n k n k n a a a a G +-+-±=(0,,* k n N k n ∈)前n 项和)(21n n a a nS +=dn n na S n 2)1(1-+=()⎪⎩⎪⎨⎧≥--=--==)2(111)1(111q q qa a qq a q na S n n n 重要性质),,,,(*q p n m N q p n m a a a a qp n m +=+∈+=+),,,,(*q p n m N q p n m a a a a qp n m +=+∈⋅=⋅解析:法一:设此数列公比为,则q 8191126371164(1)20(2)a a a a q a a a q a q ⎧⋅=⋅=⎪⎨+=+=⎪⎩由(2)得:..........(3) 241(1)20a q q +=∴.10a >由(1)得: , ∴ ......(4)421()64a q =418a q =(3)÷(4)得:, 42120582q q +==∴,解得或422520q q -+=22q =212q =当初,,;22q =12a =1011164a a q =⋅=当初,,.212q =132a =101111a a q =⋅=法二:∵,又,193764a a a a ⋅=⋅=3720a a += ∴、为方程的两实数根,3a 7a 220640x x -+= ∴ 或⎩⎨⎧==41673a a ⎩⎨⎧==16473a a ∵, ∴或.23117a a a ⋅=271131a a a ==1164a =总结升华:①列方程(组)求解是等比数列的基本措施,同时利用性质能够减少计算量;②解题过程中详细求解时,要设法降次消元,常常整体代入以达降次目标,故较多变形要用除法(除式不为零).举一反三:【变式1】{an }为等比数列,a 1=3,a9=768,求a 6。

等差等比数列的公式与技巧

等差等比数列的公式与技巧

第13讲等差、等比数列的公式与方法(一)知识归纳:1 .概念与公式:①等差数列:1° .定义:若数列{a n}满足a ni-a n=d(常数),则{a n}称等差数列;2通项公式:a n =a i (n-1)d = a k (n- k)d; 3° .前n项和公式:公式:S n』a1an)=na1n(n「)d.2 2②等比数列:a1° .定义若数列{a n}满足亠丄q (常数),则{a n}称等比数列;2° .通a n项公式:a n - a1q - a k q ,3 .前n 项和公式:S n - - (q^1),当1 -q 1-qq=1 时S n = n &1.2 .简单性质:①首尾项性质:设数列{a*}: Qaa, ,a n,1 °•若{a n}是等差数列,则a1■ a n= a2■a n = a3■a n ^ ='';2 .右{a n}是等比数列,则&1,a n = a?,a n4 = *3 a n.②中项及性质:.设a, A , b成等差数列,则A称a、b的等差中项,且2:设a,G,b成等比数列,则G称a、b的等比中项,且G二-.ab.③设p、q、r、s为正整数,且p r s,1 ° .若{a n}是等差数列,则a p +a q =a「+a$;2° .若{a n}是等比数列,则a p a q =a r a s;④ 顺次n 项和性质:n 2n 3nn 2d 的等差数1 ° .若{a n }是公差d 的等差数列,则 a a k , z a k , a a k 组成公差为k 二k :n 1 k 3 1列;n2n3n2 ° .若{a n }是公差q 的等比数列,则v ak,'a k , 7 a k 组成公差为q n 的等比数kJ k m 1 k :n 1列•(注意:当q=— 1, n 为偶数时这个结论不成立)⑤ 若{a n }是等比数列,2则顺次n 项的乘积:a 1a^ a n ,a n 1a n 2…a 2n ,a 2n 1a 2n a 3n 组成公比这q n 的等比数列•⑥ 若{a n }是公差为d 的等差数列,1 ° .若n 为奇数,则S n 二na 中且S 奇-S 偶 = a 中 (注:a 中指中项,即a^ = a n d ,而S 奇、S 偶指所有奇数项、所有偶数项的和);2。

初中数学知识归纳等比数列与指数函数题的解题思路与方法

初中数学知识归纳等比数列与指数函数题的解题思路与方法

初中数学知识归纳等比数列与指数函数题的解题思路与方法初中数学知识归纳:等比数列与指数函数题的解题思路与方法在初中数学中,等比数列与指数函数是重要的数学概念,涉及到许多与实际问题相关的解题思路与方法。

本文将就等比数列和指数函数的题目解题思路与方法进行归纳总结,并提供一些例题进行讲解。

一、等比数列的解题思路与方法等比数列是一种具有相同公比的数列,其通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数。

在解题过程中,我们常常需要求等比数列的首项、公比、项数以及前n项和。

1. 求首项、公比与项数a) 已知首项a1、末项an和项数n,可以通过等式an = a1 * r^(n-1)求解公比r。

b) 已知首项a1、项数n和公比r,可以通过等式an = a1 * r^(n-1)求解末项an。

c) 已知末项an、项数n和公比r,可以通过等式an = a1 * r^(n-1)求解首项a1。

2. 求前n项和等比数列的前n项和Sn可以通过以下公式求解:Sn = a1 * (r^n - 1) / (r - 1)下面通过一个例题来说明等比数列的解题思路与方法:例题:已知等比数列的首项a1 = 2,公比r = 3,求前4项的和。

解题思路与方法:根据前述公式可知,等比数列前n项和Sn = a1 * (r^n - 1) / (r - 1)。

将已知数据代入公式,可得:Sn = 2 * (3^4 - 1) / (3 - 1) = 2 * (81 - 1) / 2 = 2 * 80 / 2 = 80因此,该等比数列前4项的和为80。

二、指数函数题的解题思路与方法指数函数是一种以底数为实数的指数幂形式表达的函数,其中指数可以是整数、分数或者实数。

在初中数学中,我们常常遇到求解指数函数的值以及指数方程的问题。

1. 指数函数的值设指数函数为f(x) = a^x,则对于任意的实数x,我们可以通过计算得到f(x)的值。

高中数学等比数列解题技巧

高中数学等比数列解题技巧

高中数学等比数列解题技巧等比数列是高中数学中常见的一种数列形式,它具有重要的数学性质和广泛的应用。

在解题过程中,我们可以运用一些技巧来简化计算和推导,提高解题效率。

本文将介绍一些高中数学等比数列解题技巧,并通过具体的题目进行说明,帮助高中学生和他们的父母更好地理解和掌握这些技巧。

一、等比数列的通项公式在解题过程中,我们首先需要了解等比数列的通项公式。

对于等比数列$a_1,a_2, a_3, \ldots$,如果公比为$r$,首项为$a_1$,那么第$n$项可以表示为:$$a_n = a_1 \cdot r^{n-1}$$这个公式是等比数列解题的基础,我们可以通过它来求解各种等比数列问题。

例如,已知等比数列的首项$a_1=2$,公比$r=3$,求第$n$项的值。

根据通项公式,我们可以得到:$$a_n = 2 \cdot 3^{n-1}$$这样,我们就可以通过代入$n$的值来求解任意项的值。

二、等比数列的性质除了通项公式外,等比数列还具有一些重要的性质,我们可以利用这些性质来简化计算和推导。

1. 任意两项的比值相等对于等比数列$a_1, a_2, a_3, \ldots$,任意两项$a_n$和$a_m$的比值都相等,即:$$\frac{a_n}{a_m} = \frac{a_1 \cdot r^{n-1}}{a_1 \cdot r^{m-1}} = \frac{r^{n-1}}{r^{m-1}} = r^{n-m}$$这个性质在解题过程中经常用到,可以帮助我们快速计算等比数列中任意两项的比值。

例如,已知等比数列的首项$a_1=2$,公比$r=3$,求第3项和第5项的比值。

根据性质,我们可以得到:$$\frac{a_3}{a_5} = r^{3-5} = r^{-2} = \frac{1}{r^2} = \frac{1}{9}$$2. 等比数列的前$n$项和等比数列的前$n$项和可以表示为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$表示前$n$项和,$a_1$表示首项,$r$表示公比。

等比数列的通项及前n项和性质7大题型总结 (解析版)--2024高考数学常考题型精华版

等比数列的通项及前n项和性质7大题型总结  (解析版)--2024高考数学常考题型精华版

等比数列的通项及前n 项和性质7大题型总结【考点分析】考点一:等比数列的基本概念及公式①等比数列的定义:q a a n n =-1(或者q a ann =+1).②等比数列的通项公式:m n m n n q a q a a --⋅=⋅=11.③等比中项:若三个数a ,A ,b 成等比数列,则A 叫做a 与b 的等比中项,且有ab A =2(Aba A =).④等比数列的前n 项和公式:()()⎪⎩⎪⎨⎧≠--=--==1111)1(111q q q a a qqa q na S n nn 考点二:等比数列的性质①通项下标和性质:在等比数列{}n a 中,当+=+m n p q 时,则q p n m a a a a ⋅=⋅.特别地,当t n m 2=+时,则2t n m a a a =⋅.②等比数列通项的性质:11-=n n qa a ,所以等比数列的通项为指数型函数.③等比数列前n 项和的常用性质:()qaq q a q q a S n n n -+--=--=1111111,即r kq S n n +=,其中0=+r k 【题型目录】题型一:等比数列的基本运算题型二:等比中项及性质题型三:等比数列通项下标的性质及应用题型四:等比数列前n 项片段和的性质及应用题型五:等比数列前n 项和的特点题型六:等比数列的单调性题型七:等比数列新文化试题【典型例题】题型一:等比数列的基本运算【例1】在各项为正的递增等比数列{}n a 中,1261356421a a a a a a =++=,,则n a =()A .12n +B .12n -C .132n -⨯D .123n -⨯【例2】数列{}n a 中,12,m n m n a a a a +==,若177121022k k k a a a ++++++=- ,则k =()A .5B .6C .7D .17所以1111772222k k ++-=-,故6k =.故选:B​.【例3】已知等比数列{}n a 的各项均为正数,且133520,5a a a a +=+=,则使得121n a a a < 成立的正整数n 的最小值为()A .8B .9C .10D .11【例4】各项为正数且公比为q 的等比数列{}n a 中,2a ,32a ,1a 成等差数列,则54a 的值为()A B C D 【例5】已知等比数列{}n a 的前n 项和为n S ,若0n a >,公比1q >,3520a a +=,2664a a =,则6S =()A .31B .36C .48D .63【例6】若数列{}n a 满足121n n a a +=-,则称{}n a 为“对奇数列”.已知正项数列{}1n b +为“对奇数列”,且12b =,则n b =()A .123n -⨯B .12n -C .12n +D .2n【答案】D【分析】根据题意可得()11211n n b b ++=+-,进而可得{}n b 为等比数列,再求得通项公式即可.【详解】由题意得()11211n n b b ++=+-,所以12n n b b +=,又12b =,所以{}n b 是首项为2,公比为2的等比数列,所以1222n nn b -=⨯=.故选:D .【例7】已知等比数列{}n a :1-,2,4-,8,…,若取此数列的偶数项246,,a a a ,…组成新的数列{}n b ,则8b 等于()A .102B .102-C .152D .82【答案】C【分析】由题可得()12n n a -=--,进而即得.【详解】由题可得()()11122n n n a --=-⨯-=--,所以()151516822a b =--==.故选:C.【例8】已知{}n a 是首项为1的等比数列,n S 是{}n a 的前n 项和,且3698S S =,则5S =()A .31B .3116C .31或5D .3116或5【例9】已知数列{}n a 满足12a =,21n n a a +=,则数列{}n a 的通项公式为n a =()A .21n -B .12n -C .122n -D .2n 【答案】C【分析】将21n n a a +=两边同时取常用对数,即可得数列{}lg n a 是以lg 2为首项,2为公比的等比数列,从而求得数列{}n a 的通项公式.【例10】已知各项都为正数的等比数列{}n a 满足7652a a a =+,存在两项m a ,n a 14a =,则122n m n+++的最小值为()A .118+B .2615C .74D .2815【答案】B 【解析】【分析】根据等比数列的知识求得,m n 的关系式,结合基本不等式求得122n m n+++的最小值.【详解】因为7652a a a =+,所以2q =或1q =-,又0n a >,所以2q =.14a =14a =,所以6m n +=,则()28m n ++=,()2121212112282m n n m n m n m n +++⎛⎫+=++=⋅++ ⎪+++⎝⎭()22121822m m n n m nm n +⎡⎤+=+++⎢⎥++⎣⎦()22113131828m n m n ⎛+⎛⎫ =+++≥++ ⎪ +⎝⎭⎝118+=,由()222m nm n+=+可得取等号时)2n m =+,但,m n *∈N ,无解;又6m n +=,经检验1m =且5n =时有最小值2615.故选:B【例11】设等比数列{}n a 的前n 项和为n S ,且29a =,3136S a -=.(1)求{}n a 的通项公式;(2)若3log n n n b a a =+,求数列{}n b 的前n 项和n T .【例12】已知等差数列{}n a 的前n 项和为510,9,100n S a S ==.(1)求{}n a 的通项n a ;(2)设数列{}n b 满足:{}2,n an n b b =的前n 项和为n T ,求使200n T <成立的最大正整数n 的值.【答案】(1)21n a n =-;(2)4.【分析】(1)利用1,a d 表示题干条件,求解即可得解;(2)先证明{}n b 是等比数列,利用等比数列求和公式求解n T ,解不等式即可.(1)由题意,设等差数列{}n a 的首项为1a ,公差为d ,又5109,100a S ==,【题型专练】1.在公比q 为整数的等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若1418a a +=,2312a a +=,则下列说法错误的是()A .=2q B .数列{}+2n S 是等比数列C .数列{}lg n a 是公差为2等差数列D .8510S =2.已知数列{}n a 中,11a =,12nn n a a +=⋅,*N n ∈,则下列说法正确的是()A .22a =B .434a a -=C .{}2n a 是等比数列D .12122n n n a a +-+=3.(2022·福建省龙岩第一中学高二阶段练习)在正项等比数列{}n a 中,若存在两项,(,N*)m n a a m n ∈,使得14a =,且3212a a a =+,则19m n+的最小值为()A .114B .83C .103D .1454.(2022·全国·模拟预测(文))设{}n a 是等比数列,且123a a +=,236+=a a ,则56a a +=()A .12B .24C .32D .48【答案】D【分析】根据{}n a 是等比数列,且满足123a a +=,236+=a a ,计算出其通项公式n a ,然后代入56a a +计算即可.【详解】{}n a 是等比数列,设其公比为q ,则由123a a +=,236+=a a 得:121232(1)3(1)6a a a q a a a q +=+=⎧⎨+=+=⎩,解得112a q =⎧⎨=⎩,12n n a -\=,45562248a a ∴+=+=.故选:D.5.(2022·山东泰安·三模)已知数列{}n a 满足:对任意的m ,*n ∈N ,都有m n m n a a a +=,且23a =,则20a =()A .203B .153C .103D .53【答案】C 【解析】【分析】由递推关系判断数列{}n a 为等比数列,再由等比数列通项公式求20a .【详解】因为对任意的m ,*n ∈N ,都有m n m n a a a +=,所以112a a a =,11n n a a a +=,又23a =,所以1a =,所以11n na a a +=,所以数列{}n a 是首项为1a ,公比为1a 的等比数列,所以()()1111n nn a a a a -=⋅=,所以()2010201=3a a =,故选:C.6.(2022·河南省叶县高级中学模拟预测(文))已知数列{}n a 为等比数列,1272a a +=,2336a a +=,则4a =______.7.已知等比数列{}n a 的公比1q >,4a a +=,3a =2n a =___________.8.设等比数列{}n a 的前n 项各为n S ,已知11a =,23S =,则3S =___________.9.已知等比数列{}n a 的前n 项和为n S ,132a a +=,244a a +=,则5S =______.10.已知在正项等比数列{}n a 中1323,,22a a a 成等差数列,则20222021a a =+__________.故答案为:9.11.正项等比数列{}n a 中,1=1a ,534a a =.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .【答案】(1)12n n a -=,(2)=6m 【分析】(1)设{}n a 的公比为q ,由题设得1n n a q -=.根据534a a =列方程,解出q 即可得出结果.(2)由(1)的结果可求出n S ,将63m S =代入求解即可.(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =或=2q ,{}n a 为正项等比数列,所以=2q .故12n n a -=.(2)由(1)得=2q ,∴则21n n S =-. 63m S =,∴264m =,解得=6m .12.已知公比小于1的等比数列{}n a 满足2420a a +=,38a =.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和,若100n n S a >,求n 的最小值.题型二:等比中项及性质【例1】三个实数成等差数列,首项是9,若将第二项加2、第三项加20可使得这三个数依次构成等比数列{}n a ,则3a 的所有取值中的最小值是()A .49B .36C .4D .1【答案】D【分析】设原来的三个数为9、9d +、92d +,根据题意可得出关于d 的等式,解出d 的值,即可得解.【详解】设原来的三个数为9、9d +、92d +,由题意可知,19a =,211a d =+,3292a d =+,且2213a a a =,所以,()()2119229d d +=+,即241400d d +-=,解得10d =或14-.则3a 的所有取值中的最小值是292141-⨯=.故选:D.【例2】若a ,b ,c 为实数,数列1,,,,25--a b c 是等比数列,则b 的值为()A .5B .5-C .5±D .13-【答案】B【分析】根据等比数列的性质求得b 的值.【详解】设等比数列的公比为q ,所以()210b q =-⋅<,根据等比数列的性质可知()()212525b =-⨯-=,解得5b =-.故选:B【例3】已知等差数列{}n a 的公差是2,若1a ,3a ,4a 成等比数列,则2a 等于()A .6-B .4-C .8-D .10-【答案】A【分析】利用等比中项,结合等差数列通项公式列方程求解即可.【详解】解:因为等差数列{}n a 的公差为2,且1a ,3a ,4a 成等比数列,所以2314a a a =,即()()()2222224a a a +=-+,解得26a =-,故选:A【例4】已知等比数列{}n a 满足10a >,公比1q >,且1220211220221,1a a a a a a <> ,则()A .20221a >B .当2021n =时,12n a a a 最小C .当1011n =时,12n a a a 最小D .存在1011n <,使得12n n n a a a ++=【例5】设2log3,lg x,81log2三个数成等比数列,则实数x=______.【例6】已知公差不为0的等差数列{}n a中,11a=,4a是2a和8a的等比中项.(1)求数列{}n a的通项公式:(2)保持数列{}n a中各项先后顺序不变,在k a与1(1,2,)ka k+= 之间插入2k,使它们和原数列的项构成一个新的数列{}n b,记{}n b的前n项和为n T,求20T的值.【答案】(1)n a n=,(2)2101【分析】(1)设数列{}n a的公差为d,根据等比中项列出方程求得d即可得到通项公式.(2)由题意计算出k a在{}n b中对应的项数,然后利用分组求和即可.(1)设数列{}n a的公差为d,因为4a是2a和8a的等比中项,则()()()2242811137a a a a d a d a d=⋅⇒+=++且11a=则1d=或0d=(舍)【题型专练】11-1+的等比中项是()A B .C .D .2±2.若四个正数a b c d ,,,成等差数列,x 是a 和d 的等差中项,是b 和c 的等比中项,则x 和的大小关系为()A .x y >B .x y≥C .x y<D .x y≤3.若不为1的正数a ,b ,c 依次成公比大于1的等比数列,则当1x >时,log a x ,log b x ,log c x ().A .依次成等差数列B .依次成等比数列C .各项的倒数依次成等差数列D .各项的倒数依次成等比数列4.已知等差数列{}n a 的前n 项利为n S ,若9S ,5a ,1成等比数列,且20400S ≥,则{}n a 的公差d 的取值范围为______.5.已知等差数列{}n a 的公差为3-,且3a 是1a 和4a 的等比中项,则15a =__________.【答案】30-【分析】将1a 和公差代入等式,求解1a ,写出通项公式n a ,代入15n =,可求出结果.【详解】解:因为3a 是1a 和4a 的等比中项,且公差为3-,所以21111(6)(9)12a a a a -=-⇒=,所以1515330n a n a =-⇒=-.故答案为:30-.6.已知1,,4a --成等差数列,1,,4b --成等比数列,则ab =____________.又由1,,4b --成等比数列,可得2(1)(4)4b =-⨯-=,解得2b =±,所以5ab =±.故答案为:5±.7.若依次成等差数列的三个实数a ,b ,c 之和为12,而a ,b ,2c +又依次成等比数列,则a =______.【答案】2或8【分析】由题意列出方程组,即可求得答案.【详解】由题意可得2212(2)b a c a b c b a c =+⎧⎪++=⎨⎪=+⎩,整理得210160a a -+=,解得2a =或8a =,故答案为:2或88.在3和9之间插入两个正数后,使前三个数成等比数列,后三个数成等差数列,则这两个正数之和为()A .1132B .1114C .1102D .10【答案】B【解析】不妨设插入两个正数为,a b ,即3,,,9a b ∵3,,a b 成等比数列,则23a b=,,9a b 成等差数列,则92a b+=即2392a b a b ⎧=⎨+=⎩,解得92274a b⎧=⎪⎪⎨⎪=⎪⎩或33a b =-⎧⎨=⎩(舍去)则4511144a b +==故选:B .题型三:等比数列通项下标的性质及应用【例1】已知数列{}n a 是等比数列,数列{}n b 是等差数列,若1611a a a ⋅⋅=-16117b b b π++=,则3948tan1bb a a +-⋅的值是()A .B .1-C .D3【例2】已知{}n a 为等比数列,47562,8a a a a +==-,则10a =()A .1或8B .1-或8C .1或8-D .1-或8-【例3】设{}n a 是由正数组成的等比数列,公比2q =,且30123302a a a a ⋅= ,那么36930a a a a = ()A .102B .202C .162D .152【答案】B【分析】根据等比数列的性质,设14728A a a a a = ,25829B a a a a = ,36930C a a a a = ,则A ,B ,C 成等比数列,然后利用等比中项的性质可求得答案【详解】设14728A a a a a = ,25829B a a a a = ,36930C a a a a = ,则A ,B ,C 成等比数列,公比为10102q =,且2B A C =⋅,由条件得302A B C ⋅⋅=,所以3302B =,所以102B =,所以102022C B =⋅=.故选:B【例4】等比数列{}n a 满足*0,n a n N >∈且23233(2)nn a a n -⋅=≥,则当1n ≥时,logn a-+++=1221L ()A .(21)2n n -B .()222n n-C .22n D .22n n-【例5】在各项均为正数的等比数列{}n a 中,11168313225a a a a a a ++=,则113a a 的最大值是__.【例6】已知等比数列{}n a 各项均为正数,且满足:101a <<,1718171812a a a a +<+<,记n n a a a T 21=,则使得1n T >的最小正数n 为()A .36B .35C .34D .33【例7】在正项等比数列{}n a 中,44a =,则()A .358a a +≥B .3514a a +的最小值为1C .2611242aa-⎛⎫⎛⎫⋅≥ ⎪ ⎪⎝⎭⎝⎭D 4【答案】AB【分析】AB 选项,先根据等比数列的性质得到432516a a a ==,再利用基本不等式进行求解,C 选项,先得到226416a a a ==,结合指数运算及指数函数单调性和基本不等式进行求解;D 选项,平方后利用基本不等式,【例8】在等比数列{}n a 中,1234516a a a a a ++++=,314a =,则a a a a a ++++=______.【题型专练】1.已知递增等比数列{}n a ,10a >,2464a a =,1534a a +=,则6a =()A .8B .16C .32D .642.在等比数列{}n a 中,472a a +=,298a a =-,则110a a +=()A .5B .7C .-5D .-7当4724a a =-⎧⎨=⎩时,解得1312a q =⎧⎨=-⎩,()1039111112187a a a q a =+=+⨯-=-=-+;故选:D3.等比数列{}n a 中,0n a >且243546225a a a a a a ++=,则35a a +=_______【答案】5【解析】利用等比数列下标和的性质可知22243465,a a a a a a ==,再进行化简即可求解出结果.【详解】2435462a a a a a a ++ ()222335535225a a a a a a =++=+=,又 等比数列{}n a 中,0n a >,355a a ∴+=,故答案为:5.【点睛】本题考查等比数列下标和性质的运用,难度一般.已知{}n a 是等比数列,若()*2,,,,m n p q t m n p q t N +=+=∈,则有2m n p q t a a a a a ⋅=⋅=.4.若等比数列{}n a 中的5a ,2019a 是方程2430x x -+=的两个根,则31323332023log log log log a a a a ++++ 等于()A .20243B .1011C.20232D .10125.已知等比数列{}n a 的公比为q ,其前n 项之积为n T ,且满足11a >,2021202210a a ->,2021202201a <-,则()A .1q >B .2020202210a a -<C .2021T 的值是n T 中最大的D .使1n T <成立的最小正整数n 的值为40426.两个公比均不为1的等比数列{}{},n n a b ,其前.n 项的乘积....分别为,n n A B ,若552b =,则99B =()A .512B .32C .8D .2【点睛】(1)本题主要考查等比数列的性质,意在考查学生对该知识的掌握水平和分析推理能力.(2)等比数列{}n a 中,如果m n p q +=+,则m n p q a a a a = ,特殊地,2m p q =+时,则2·m p q a a a =,m a 是p q a a 、的等比中项.7.已知数列{}n a 为等差数列,{}n b 为等比数列,{}n a 的前n 项和为n S ,若16113a a a π++=,1598b b b =,则()A .1111S π=B .210461sin2a ab b +=C .3783a a a π++=D .374b b +≥8.若等比数列{}n a 的各项均为正数,且210101013101110122e a a a a ⋅+⋅=,则122022ln ln ln a a a +++= ___________.【答案】2022【分析】根据等比数列的性质化简得到210111012e a a =,由对数的运算即可求解.【详解】因为{}n a 是等比数列,所以210101013101110121011101222e a a a a a a ⋅+⋅=⋅=,即210111012e a a ⋅=,所以()1011202212202212202210111012ln ln ln ln ln 2022a a a a a a a a lne ++⋅⋅⋅+====故答案为:20228.在正项等比数列{}n a 中,若35727a a a =,则931log i i a ==∑___________.【答案】9【解析】先由35727a a a =,利用性质计算出53a =,然后利用对数的运算性质计算931log i i a =∑即可.【详解】∵{}n a 为正项等比数列,∴若m n p q +=+都有m n p qa a a a =∴2192837465==a a a a a a a a a ==又35727a a a =,∴3527,a =即53a =,∴2192837465==9a a a a a a a a a ===∴93333311289log log log log log i i a a a a a =++++=∑ ()()()()31932833734635log log log log log a a a a a a a a a =++++33333log 9log 9log 9log 9log 3=++++=2+2+2+2+1=9故答案为:9【点睛】等差(比)数列问题解决的基本方法:基本量代换和灵活运用性质.题型四:等比数列前n 项片段和的性质及应用【例1】已知等比数列{}n a 的前n 项和为n S ,110=S ,1330=S ,=40S ()A .﹣51B .﹣20C .27D .40【答案】D【分析】由{an }是等比数列可得S 10,S 20﹣S 10,S 30﹣S 20,S 40﹣S 30成等比数列,列方程组,从而即可求出S 40的值.【详解】由{an }是等比数列,且S 10=1>0,S 30=13>0,得S 20>0,S 40>0,且1<S 20<13,S 40>13所以S 10,S 20﹣S 10,S 30﹣S 20,S 40﹣S 30成等比数列,即1,S 20﹣1,13﹣S 20,S 40﹣13构成等比数列,∴(S 20﹣1)2=1×(13﹣S 20),解得S 20=4或S 20=﹣3(舍去),∴(13﹣S 20)2=(S 20﹣1)(S 40﹣13),即92=3×(S 40﹣13),解得S 40=40.故选:D .【例2】设等比数列{}n a 中,前n 项和为n S ,已知83=S ,67S =,则789a a a ++等于()A .18B .18-C .578D .558【例3】若等比数列{}n a 的前n 项和为n S ,22S =46S =+,则78a a +=()A .32+B .32+C .16+D .16+【例4】已知各项均为正数的等比数列{}n a 的前n 项和为n S ,若2-,10S ,20S 成等差数列,则20102S S -=______,3020S S -最小值为______.【答案】28【分析】根据等差中项可求出201022S S -=;利用10S ,1200S S -,3020S S -成等比数列,结合基本不等式可得3020S S -最小值.【详解】因为2-,10S ,20S 成等差数列,所以102022S S =-+,所以201022S S -=,【例5】(2022·全国·高二课时练习)关于等差数列和等比数列,下列四个选项中正确的有()A .若数列{}n a 的前n 项和2n S an bn c =++(a ,b ,c 为常数),则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等比数列C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,…仍为等差数列D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,…仍为等比数列【答案】BC【分析】由n S 得n a ,进而可判断A 和B ;由等差数列的性质判断C ;举反例判断D.【详解】根据题意,依次分析选项:对于选项A :因为2n S an bn c =++,11a S a b c ==++,当2n ≥时,()()()221112n n n a S S an bn c a n b n c a n b a -⎡⎤=-=++--+-+=⋅+-⎣⎦,所以()(),12,2n a b c n a a n b a n ⎧++=⎪=⎨⋅+-≥⎪⎩,所以只有当0c =时,数列{}n a 成等差数列,故A 错误;对于选项B :因为122n n S +=-,112a S ==,当2n ≥时,()()1122222n n n n n n a S S +-=-=---=,当1n =时,1122a ==,符合上式,所以2n n a =,则数列{}n a 成等比数列,故B 正确;对于选项C :数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,L 是公差为2n d (d 为{}n a 的公差)的等差数列,故C 正确;对于选项D :令()1nn a =-,则2S ,42S S -,64S S -,L 是常数列0,0,0, ,显然不是等比数列,故D 错误.故选:BC.【题型专练】1.等比数列{}n a 的前n 项和为n S ,若812S =,2436S =,则16S =()A .24B .12C .24或-12D .-24或12【答案】A【分析】根据等比数列片段和性质得到方程,求出16S ,再检验即可;【详解】解:因为等比数列{}n a 的前n 项和为n S ,所以8S ,168S S -,2416S S -成等比数列,因为812S =,2436S =,所以()()21616121236S S -=⨯-,解得1624S =或1612S =-,因为816880S S q S -=>,所以160S >,则1624S =.故选:A2.已知各项为正的等比数列的前5项和为3,前15项和为39,则该数列的前10项和为()A .B .C .12D .15【答案】C【分析】利用等比数列的性质可得()()210551510S S S S S -=×-,代入数据即可得到答案【详解】解:由等比数列的性质可得51051510,,S S S S S --也为等比数列,又5153,39S S ==,故可得()()210551510S S S S S -=×-即()()210103339S S -=-,解得1012S =或109S =-,因为等比数列各项为正,所以1012S =,故选:C3.若等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则()A .AB C+=B .2B AC=C .()22A B C A B +=+D .()()A C AB B A -=-S 4.设等比数列{}n a 的前n 项和为n S ,若23S =,621S =,则84S =()A .83B .133C .5D .75.设n S 是等比数列{}n a 的前n 项和,若33S =,则3S S =+______.题型五:等比数列前项和的特点【例1】在数列{}n a 中,1n n a ca +=(c 为非零常数),且其前n 项和23n n S k -=+,则实数k 的值为()A .1-B .13-C .19D .19-【例2】已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值是A .4B .2C .2-D .4-【例3】已知等比数列{}n a 的前n 项和为13n n S t +=+,则数列的通项公式n a =______________.【题型专练】1.一个等比数列的前n 项和为(12)2nn S λλ=-+⋅,则λ=()A .1-B .1C .2D .32.等比数列{}n a 的前n 项和23nn S m =+⨯,则m =()A .2-B .2C .1D .1-【答案】A【分析】求出数列的通项公式,根据通项公式确定参数的值.【详解】116a S m ==+,当2n ≥时,1143n n n n a S S --=-=⨯,因为{}n a 是等比数列,所以11436m -⨯=+,得2m =-,所以A 正确.故选:A.3.记n S 为等比数列{}n a 的前n 项和,已知11a =,1n n S a t +=+,则t =_______.题型六:等比数列的单调性【例1】等比数列满足如下条件:①10a <;②数列{}n a 单调递增,试写出满足上述所有条件的一个数列的通项公式n a =________.【例2】设{}n a 是公比为q 的等比数列,则“1q >”是“20222023a a <”的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【答案】D【例3】已知等比数列{}n a ,下列选项能判断{}n a 为递增数列的是()A .10a >,01q <<B .10a >,0q <C .10a <,1q =D .10a <,01q <<【例4】(2022·全国·高二课时练习多选题)关于递增等比数列{}n a ,下列说法正确的是().A .当10a >时,1q >B .当10a >时,0q <C .当10a <时,01q <<D .11nn a a +<【答案】AC【题型专练】1.设等比数列{}n a 的首项为1a ,公比为q ,则{}n a 为递增数列的充要条件是()A .10a >,1q >B .10a <,01q <<C .1lg 0a q >D .1lg 0a q <【答案】C【分析】分析可知0q >,分10a <、10a >两种情况讨论,结合递增数列的定义求出对应的q 的取值范围,即可得出结论.【详解】因为11n n a a q -=,若0q <,则数列{}n a 为摆动数列,与题意不符,所以,0q >.①若10a <,则对任意的N n *∈,0n a <,由1n n n a a a q +<=可得1q <,即01q <<;②若10a >,则对任意的N n *∈,0n a >,由1n n n a a a q +<=可得1q >,此时1q >.所以,{}n a 为递增数列的充要条件是10a >,1q >或10a <,01q <<,当10a >,1q >时,lg 0q >,则1lg 0a q >;当10a <,01q <<时,lg 0q <,则1lg 0a q >.因此,数列{}n a 为递增数列的充要条件是1lg 0a q >.故选:C.2.在等比数列{}n a 中,公比是q ,则“1q >”是“()*1N n n a a n +>∈”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】D【分析】根据等比数列的单调性举出反例,如11a =-,再根据充分条件和必要条件的定义即可得出答案.【详解】解:当11a =-时,则1n n a q -=-,因为1q >,所以1n n q q ->,所以1n n q q --<-,故()*1N n n a a n +<∈,所以1q >不能推出()*1N n n a a n +>∈,当11a =-时,则1n n a q -=-,由()*1N n n a a n +>∈,得1n n q q -->-,则1n n q q -<,所以01q <<,所以()*1N n n a a n +>∈不能推出1q >,所以“1q >”是“()*1N n n a a n +>∈”的既不充分也不必要条件.故选:D.3.(2022·河南·新蔡县第一高级中学高二阶段练习(理))已知等比数列{}n a 的公比为q .若{}n a 为递增数列且10a <,则()A .1q <-B .10q -<<C .01q <<D .1q >【答案】C【分析】根据题设等比数列的性质,结合等比数列通项公式确定公比q 的范围即可.【详解】由题意,11n n a a q -=,又10a <,∴要使{}n a 为递增数列,则0q >,当01q <<时,{}n a 为递增数列,符合题设;当1q >时,{}n a 为递减数列,符合题设;故选:C.题型七:等比数列新文化试题【例1】十九世纪下半叶,集合论的创立奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]平均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第一次操作;再将剩下的两个区间120,,,1 33⎡⎤⎡⎤⎢⎢⎥⎣⎦⎣⎦分别平均分为三段,并各自去掉中间的区间段,记为第二次操作:…;如此这样.每次在上一次操作的基础上,将剩下的各个区间分别平均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”,若去掉的各区间长度之和不小于45,则需要操作的次数n 的最小值为()(参考数据:lg 20.3010=,lg30.4771=)A .4B .5C .6D .7【答案】A 【解析】【分析】利用题中的条件,分别计算出每一次操作去掉的区间的长度,结合对数不等式即可解出.【详解】第一次操作去掉的区间长度为13,第二次操作去掉两个长度为19的区间,长度和为29,第三次操作去掉四个长度为127的区间,长度和为427, ,第n 次操作去掉12n -个长度为13n 的区间,长度和为123n n -,于是进行了n 次操作后,所有去掉的区间长度之和为1122213933nn n n S -⎛⎫=+++=-⎪⎝⎭,由题意可知,24135n⎛⎫-≥ ⎪⎝⎭,即21lg lg 35n ≤,解得 3.97n =,又n 为整数,所以需要操作的次数n 的最小值为4.故选:A.【例2】北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【例3】1883年,德国数学家康托提出了三分康托集,亦称康托尔集.下图是其构造过程的图示,其详细构造过程可用文字描述为:第一步,把闭区间[0,1]平均分成三段,去掉中间的一段,剩下两个闭区间1 [0,] 3和2[,1]3;第二步,将剩下的两个闭区间分别平均分为三段,各自去掉中间的一段,剩下四段闭区间:1 [0, 9,21 [,] 93,27[,] 39,8[,1]9;如此不断的构造下去,最后剩下的各个区间段就构成了三分康托集.若经历n步构造后,20212022不属于剩下的闭区间,则n 的最小值是().A .7B .8C .9D .10【答案】A 【解析】20212022不属于剩下的闭区间,20212022属于去掉的开区间经历第1步,剩下的最后一个区间为2[,1]3,经历第2步,剩下的最后一个区间为8,19⎡⎤⎢⎥⎣⎦,……,经历第n 步,剩下的最后一个区间为1113n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,,去掉的最后开区间为1112,133n n ⎛⎫⎛⎫⎛⎫-⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由120111121320223n n ⎛⎫⎛⎫-⨯<<- ⎪ ⎪⎝⎭⎝⎭化简得4044320223n n ⎧>⎨<⎩,解得7n =故选:A【例4】我国古代数学著作《九章算术》中有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织出的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天织布多少?”这个问题体现了古代对数列问题的研究.某数学爱好者对于这道题作了以下改编:有甲、乙两位女子,需要合作织出40尺布.两人第一天都织出一尺,以后几天中,甲女子每天织出的布都是前一天的2倍,乙女子每天织出的布都比前一天多半尺,则两人完成织布任务至少需要()A .2天B .3天C .4天D .5天因为22()32n f n n n ++=+在0n >上单调递增,当5n =时,7(5)25152168164f =++=>,而6(4)1612292164f =++=<,故2232()164n n n f n +++=≥的解为5,N n n ≥∈,故至少需要5天,故选:D .【例5】费马数是以法国数学家费马命名的一组自然数,具有形式为221(n+记做)n F ,其中n 为非负数.费马对0n =,1,2,3,4的情形做了检验,发现这组费马公式得到的数都是素数,便提出猜想:费马数是质数.直到1732年,数学家欧拉发现52521F =+为合数,宣布费马猜想不成立.数列{}n a 满足()2log 1n n a F =-,则数列{}n a 的前n 项和n S 满足2020n S >的最小自然数是()A .9B .10C .11D .12【题型专练】1.已知一个蜂巢里有1只蜜蜂,第1天,它飞出去找回了4个伙伴;第2天,5只蜜蜂飞出去,各自找回了4个伙伴,……按照这个规律继续下去,第20天所有的蜜蜂都归巢后,蜂巢中一共有蜜蜂()A .420只B .520只C .20554-只D .21443-只【答案】B【解析】第一天一共有5只蜜蜂,第二天一共有2555⨯=只蜜蜂,……按照这个规律每天的蜜蜂数构成以为5首项,公比为5的等比数列则第n 天的蜜蜂数1555n n n a -=⨯=第20天蜜蜂都归巢后,蜂巢中共有蜜蜂数205故选:B .2.数学源于生活,数学在生活中无处不在!学习数学就是要学会用数学的眼光看现实世界!1906年瑞典数学家科赫构造了能够描述雪花形状的图案,他的做法如下:从一个边长为2的正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边,分别向外作正三角形,再去掉底边(如图①、②、③等).反复进行这一过程,就得到雪花曲线.不妨记第(1,2,3,)n n =⋅⋅⋅个图中的图形的周长为n a ,则5a =()A .2569B .25627C .51227D .51281【答案】C【解析】【分析】根据题图规律确定第n 个图边的条数及其边长,并写出其通项公式,再求第5个图的周长.【详解】由图知:第一个图有3条边,各边长为2,故周长132a =⨯;第二个图有12条边,各边长为23,故周长22123a =⨯;第三个图有48条边,各边长为29,故周长32489a =⨯;……所以边的条数是首项为3,公比为4的等比数列,则第n 个图的边有134n -⋅条,边长是首项为2,公比为13的等比数列,则第n 个图的边长为112(3n -⋅,故4451512342()327a =⨯⨯⨯=.故选:C3.中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔仔细算相还”.其大意为:“有一人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则下列说法正确的是()A .该人第五天走的路程为14里B .该人第三天走的路程为42里C .该人前三天共走的路程为330里D .该人最后三天共走的路程为42里4.北京2022年冬奥会开幕式用“一朵雨花”的故事连接中国与世界,传递了“人类命运共同体”的理念.“雪花曲线”也叫“科赫雪花”,它是由等边三角形三边生成的科赫曲线组成的,是一种分形几何.图1是长度为1的线段,将图1中的线段三等分,以中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉得到图2,这称为“一次分形”;用同样的方法把图2中的每条线段重复上述操作,得到图3,这称为“二次分形”;L .依次进行“n 次分形()*n ∈N ”.规定:一个分形图中所有线段的长度之和为该分形图的长度.若要得到一个长度不小于40的分形图,则n 的最小值是()(参考数据lg 30.477≈,lg20.301≈)A .11B .12C .13D .14【答案】C【解析】【分析】分析可知“n 次分形”后线段的长度为43n⎛⎫ ⎪⎝⎭,可得出关于n 的不等式,解出n 的取值范围即可得解.【详解】图1的线段长度为1,图2的线段长度为43,图3的线段长度为243⎛⎫ ⎪⎝⎭,L ,“n 次分形”后线段的长度为43n⎛⎫ ⎪⎝⎭,所以要得到一个长度不小于40的分形图,只需满足4403n ⎛⎫ ⎪⎝≥⎭,则4lg lg4012lg23n ≥=+,即()2lg2lg312lg2n -≥+,解得12lg210.60212.82lg2lg30.6020.477n ++≥≈--,所以至少需要13次分形.故选:C.5.十九世纪下半叶,集合论的创立奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]平均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第一次操作;再将剩下的两个区间120,,,133⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦分别平均分为三段,并各自去掉中间的区间段,记为第二次操作:…;如此这样.每次在上一次操作的基础上,将剩下的各个区间分别平均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”,若去掉的各区间长度之和不小于45,则需要操作的次数n的最小值为()(参考数据:lg20.3010=,lg30.4771=)A.4B.5C.6D.76.毕达哥拉斯树是由古希腊数学家毕达哥拉斯根据勾股定理画出来的一个可以无限重复的图形,因为重复数次后的形状好似一棵树,所以被成为毕达哥拉斯树,也叫“勾股树”.毕达哥拉斯树的生长方式如下:以边长为1的正方形的一边作为斜边,向外做等腰直角三角形,再以等腰直角三角形的两直角边为边向外作正方形,得到2个新的小正方形,实现了一次生长,再将这两个小正方形各按照上述方式生长,如此重复下去,设第n次生长得到的小正方形的个数为na,则数列{}n a的前n项和n S=___________.【答案】122n +-##122n +-+7.(多选题)如图,1P 是一块半径为1的圆形纸板,在1P 的左下端前去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小半圆(其直径为前一个前掉半圆的半径)得图形3P ,4,,,n P P ,记纸板n P 的周长为n L ,面积为n S ,则下列说法正确的是()A .37142L π=+B .31132S π=C .1111222n n n L π-+⎡⎤⎛⎫⎛⎫=-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦D .1212n n n S S π++=-【答案】ABD【解析】【分析】观察图形,分析剪掉的半圆的变化,纸板n P 相较于纸板1n P -()2n ≥剪掉了半径为112n -的半圆,再分别写出n L 和n S 的递推公式,从而累加得到通项公式再逐个判断即可【详解】根据题意可得纸板n P 相较于纸板1n P -()2n ≥剪掉了半径为112n -的半圆,故1111122222n n n n L L π---=-⨯+⨯,即112122n n n n L L π----=-,故12L π=+,2110122L L π-=-,3221122L L π-=-,4332122L L π-=- (112122)n n n n L L π----=-,累加可得1210121112......222222n n n L ππππ--⎛⎫⎛⎫=+++++-++ ⎪ ⎪⎝⎭⎝⎭1111112222111122n n ππ--⎛⎫-- ⎪⎝⎭=++---1211222n n π--⎛⎫=-+ ⎝⎭,所以132171421222L ππ⎛⎫=-+ ⎪⎝⎭=+,故A 正确,C 错误;又1211122n n n S S π--⎛⎫=- ⎪⎝⎭,故1212n n n S S π---=-,即1212n n n S S π++=-,故D 正确;又12S π=,2132S S π-=-,3252S S π-=-...1212n n n S S π---=-,累加可得3521 (2222)n n S ππππ-=----111841214n ππ-⎛⎫- ⎪⎝⎭=--211132n π-⎛⎫=+ ⎪⎝⎭,故31132S π=正确,故B 正确;故选:ABD。

等比数列求和的方法

等比数列求和的方法

等比数列求和的方法等比数列是一种特殊的数列,其每一项与前一项的比值都相等。

求等比数列的和可以使用两种方法:通项公式法和求和公式法。

一、通项公式法:等比数列的通项公式为An=A1*r^(n-1),其中An表示数列的第n项,A1表示数列的首项,r表示公比,n表示数列的项数。

要求等比数列的和,可以先求得等比数列的通项公式,然后将所有项相加。

例如,对于等比数列{2,4,8,16,32},首项A1=2,公比r=2,项数n=5,可以求得第n项An=2*2^(n-1)。

将所有项相加,即求和公式为S=A1*(1-r^n)/(1-r)。

使用通项公式法求解等比数列求和的步骤如下:1.确定数列的首项A1,公比r和项数n。

2.使用通项公式An=A1*r^(n-1)求得数列的通项。

3.将所有项相加得到等比数列的和。

例如:求和等比数列{3,6,12,24,48}的和。

步骤1:首项A1=3,公比r=2,项数n=5步骤2:使用通项公式An=A1*r^(n-1)得到数列的通项,An=3*2^(n-1)。

步骤3:将所有项相加得到等比数列的和,S=A1*(1-r^n)/(1-r)=3*(1-2^5)/(1-2)=3*(1-32)/(1-2)=3*(-31)/(-1)=93因此,等比数列{3,6,12,24,48}的和为93二、求和公式法:使用求和公式法可以直接求得等比数列的和,不需要先求出通项公式。

使用求和公式法求解等比数列求和的步骤如下:1.确定数列的首项A1,公比r和项数n。

2.使用求和公式S=A1*(1-r^n)/(1-r)求得等比数列的和。

例如:求和等比数列{3,6,12,24,48}的和。

步骤1:首项A1=3,公比r=2,项数n=5步骤2:使用求和公式S=A1*(1-r^n)/(1-r)=3*(1-2^5)/(1-2)=3*(1-32)/(1-2)=3*(-31)/(-1)=93因此,等比数列{3,6,12,24,48}的和为93综上所述,等比数列的求和方法有两种:通项公式法和求和公式法。

等比数列解题技巧

等比数列解题技巧

等比数列解题技巧
满足的数列,求通项用累加(消项)法,满足的数列,求通项用累乘(消项)法,若数列{an}满足a1=a,an+1=pan+q(a,p,q 为常数)求通项常用待定系数法构造等比数列。

解等差(比)数列有关习题时要注意抓住“基本元”,即将问题转化为首项a1,公差d (或公比q)的方程(组)或不等式(组)去处理。

等比数列简介
等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。

这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。

其中{an}中的每一项均不为0。

注:q=1时,an为常数列。

等比数列在生活中也是常常运用的。

如:银行有一种支付利息的方式——复利。

即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。

按照复利计算本利和的公式:本利和=本金×(1+利率)^存期。

其实类似的还有零存整取、整存整取等银行储蓄借贷,甚至还可以延伸到生物界的细胞细胞分裂。

等比数列怎么学最好的方法

等比数列怎么学最好的方法

等比数列怎么学最好的方法
学习等比数列的最佳方法包括以下几个步骤:
1. 了解等比数列的定义:等比数列是指一个数列中,从第二项起,每一项与前一项的比值保持不变。

通常用字母a 表示首项,r 表示公比。

2. 理解等比数列的性质:等比数列有一些特点,比如,任意项与它前面的对应项的比值都是相等的,某一项等于前一项乘以公比等等。

3. 学习等比数列的通项公式:等比数列的通项公式是一个描述数列中任意一项与首项和公比之间关系的公式。

它可以用来计算任意项的值。

4. 解决等比数列的问题:通过应用通项公式,你可以解决与等比数列相关的各种问题,比如求某一项的值、求总和等等。

5. 练习题目:通过解决练习题目,你可以进一步理解和巩固等比数列的概念和运算技巧。

多做一些有挑战性的题目,可以提高你的技能。

6. 探索实际应用:等比数列在许多实际问题中都有应用。

你可以尝试解决一些与等比数列相关的实际问题,来加深对它的理解和运用。

总之,学习等比数列最好的方法是理解概念、学习公式,并通过大量的练习和实
际应用来巩固知识。

初中数学复习如何解决等比数列的问题

初中数学复习如何解决等比数列的问题

初中数学复习如何解决等比数列的问题等比数列是数学中常见的一种数列形式,解决等比数列的问题需要我们熟练掌握一些相关的知识和方法。

下面将着重介绍如何解决初中数学复习中的等比数列问题。

一、等比数列的定义等比数列是指数列中的每一项与前一项的比值都相等的数列。

对于等比数列a₁, a₂, a₃, …, an,其通项公式为an = a₁ * rⁿ⁻¹,其中a₁为首项,r为公比,n为项数。

公比不为0。

二、等比数列的性质1. 公比为正数时,等比数列是单调的;2. 公比为1时,等比数列是等差数列;3. 公比的绝对值小于1时,等比数列的绝对值逐项递增或递减,收敛于一个确定的数。

三、等比数列问题的解法1. 求公比:①若已知首项a₁和第n项an的值,可用公式r = an / a₁来求解;②若已知首项a₁和第二项a₂的值,可用公式r = a₂ / a₁来求解。

2. 求通项公式:①若已知首项a₁和公比r的值,可直接写出通项公式an = a₁ *rⁿ⁻¹;②若已知首项a₁和第n项an的值,可通过求公比r后,再代入公式来求解。

3. 求前n项和:①若公比r等于1,即等比数列为等差数列,可直接利用等差数列求和公式Sn = (a₁ + an) * n / 2来求解;②若公比r不等于1,可通过公式Sn = a₁ * (rⁿ - 1) / (r - 1)来求解。

4. 求项数n:已知首项a₁、公比r和第n项an,可通过公式n = logₐ (an / a₁) / logₐ(r)来求解,其中logₐ表示以a为底的对数。

四、例题解析例1:已知等比数列的首项a₁为2,公比r为3,求该等比数列的前5项数值及前5项和。

解:根据首项和公比可写出等比数列的通项公式an = 2 * 3ⁿ⁻¹。

将n分别取1、2、3、4、5代入公式,计算可得前5项数值为2、6、18、54、162。

前5项和Sn = 2 + 6 + 18 + 54 + 162 = 242。

等比数列知识点总结及题型归纳(汇编)

等比数列知识点总结及题型归纳(汇编)

等比数列知识点总结及题型归纳1、等比数列的定义:()()*12,n n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式: ()11110,0n n n n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q 推广:n m n m n n n m n m m ma a a a qq q a a ---=⇔=⇔= 3、等比中项: (1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A ab =±注意:同号的两个数才有等比中项,并且它们的等比中项有两个(2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅4、等比数列的前n 项和n S 公式:(1)当1q =时,1n S na =(2)当1q ≠时,()11111n n n a q a a q S q q--==-- 11''11n n n a a q A A B A B A q q=-=-⋅=---(,,','A B A B 为常数) 5、等比数列的判定方法: (1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列 (2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列(3)通项公式:()0{}n n n a A BA B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法: 依据定义:若()()*12,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。

(3)若*(,,,)m n s t mn s t N +=+∈,则n m s t a a a a ⋅=⋅。

求等比数列通项公式的常用方法

求等比数列通项公式的常用方法

求等比数列通项公式的常用方法等比数列的通项公式是研究等比数列的性质与其前n 项和的基础,也是研究数列问题的基石,所以等比数列通项公式的求法在等比数列的研究中占有重要的地位,下文就介绍求等比数列通项公式的常用方法.一.定义法:先根据条件判断该数列是不是等比数列,若是等比数列则又等比数列定义直接求它的通项公式.例1.求下列数列的通项公式5,-15,45,-135,405,-1512…解:所给的数列是等比数列,且是首项为5,公比为-3。

所以通项1)3(5--⋅=n n a二.公式法:如果数列是等比数列,只要知道首项与公比,就可以根据等比数列的通顶公式11n n a a q -=来求。

例2:数列{}n a 为等比数列,若1231237,8a a a a a a ++==,求通项n a解,由已知得321238a a a a ==(利用等比数列的性质)22a ∴=,1237,a a a ++=2227a a a q q ∴++= 即2250q q +-=22520q q ∴-+=,解得2q =或12q = 当2q =时,得11a =,12n n a -∴= 当12q =时,得14a =,32n n a -∴= 评:等比数列的通项公式有时为了需要,不一定非得由1a 与q 来表示,也可以用其他项来相互表示如n m n m a a q -=例3:已知等比数列{}n a 中,3103,384a a ==,则该数列的通项n a =解: 103103,a a q -=∴71033841283a q a ===2,q ∴=∴33332n n n a a q --==⨯ 注:此类题目都会很醒目的出现等比数的字眼,目的求首项与公比,当然求首项和公比可灵活一些,如用等比数列的性质以及变换式n m n m a a q -=.三.递推关系式法:给出了递推公式求通项,常用方法有两种:(一)是配常数转化为等比数列,从而再求通项例4.已知数列{}n a 中11=a ,121+=+n n a a ,求通项公式n a解:由已知得:)1(211+=++n n a a ,∴2111=+++n n a a ∴数列{}1+n a 是首项为211=+a ,公比为2的等比数列 ∴n n n a a 22)1(111=+=+-.即12-=n n a .评:对于)(1q p r qa pa n n ≠+=+形式的递推关系式,可以配常数,即)()(1k a q k a p n n +=++,pq r k -=这里从而转化为等比数列,再求通项。

等比数列及其前n项和知识点讲解+例题讲解(含解析)

等比数列及其前n项和知识点讲解+例题讲解(含解析)

等比数列及其前n 项和一、知识梳理1.等比数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列.数学语言表达式:a n a n -1=q (n ≥2,q 为非零常数).(2)如果三个数a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,其中G =2.等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n -1; 通项公式的推广:a n =a m q n -m .(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q .3.等比数列的性质已知{a n }是等比数列,S n 是数列{a n }的前n 项和. (1)若k +l =m +n (k ,l ,m ,n ∈N *),则有a k ·a l =a m ·a n . (2)相隔等距离的项组成的数列仍是等比数列,即a k , a k +m ,a k +2m ,…仍是等比数列,公比为q m .(3)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n .证明:(1)当q ≠-1且q ≠0时,A a a a a S n n =++++=...321,n n n n n n n n n n n Aq q a q a q a a a a a S S =+++=++++=-+++ (2123212)n n n n n n n n n n n Aq q a q a q a a a a a S S 222221332221223......=+++=++++=-+++所以S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n(2)当q= -1时,<1>、当n 为奇数时,1a S n=,132,0a S S n n ==1120a a S S n n -=-=-, 11230a a S S n n =-=-所以S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n<2>、当n 为偶数时,032===n n n S S S ,S n ,S 2n -S n ,S 3n -S 2n不能构成等比数列小结:1.若数列{a n }为等比数列,则数列{c ·a n }(c ≠0),{|a n |},{a 2n},⎩⎨⎧⎭⎬⎫1an 也是等比数列. 2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0. 3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)等比数列公比q 是一个常数,它可以是任意实数.( ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 解析 (1)在等比数列中,q ≠0.(2)若a =0,b =0,c =0满足b 2=ac ,但a ,b ,c 不成等比数列. (3)当a =1时,S n =na .(4)若a 1=1,q =-1,则S 4=0,S 8-S 4=0,S 12-S 8=0,不成等比数列.答案 (1)× (2)× (3)× (4)×2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( ) A.-12B.-2C.2D.12解析 由题意知q 3=a 5a 2=18,即q =12.答案 D3.在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________.解析 设该数列的公比为q ,由题意知, 243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81. 答案 27,814.(2019·天津和平区质检)已知等比数列{a n }满足a 1=1,a 3·a 5=4(a 4-1),则a 7的值为( ) A.2B.4C.92D.6解析 根据等比数列的性质得a 3a 5=a 24,∴a 24=4(a 4-1),即(a 4-2)2=0,解得a 4=2.又∵a 1=1,a 1a 7=a 24=4,∴a 7=4. 答案 B5.(2018·北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( )A.32f B.322fC.1225fD.1227f解析 由题意知十三个单音的频率依次构成首项为f ,公比为122的等比数列,设此数列为{a n },则a 8=1227f ,即第八个单音的频率为1227f . 答案 D6.(2015·全国Ⅰ卷)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.解析 由a n +1=2a n ,知数列{a n }是以a 1=2为首项,公比q =2的等比数列,由S n =2(1-2n )1-2=126,解得n =6.答案 6考点一 等比数列基本量的运算【例1】 (1)(2017·全国Ⅲ卷)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________.(2)等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________.解析 (1)由{a n }为等比数列,设公比为q .由⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3,得⎩⎪⎨⎪⎧a 1+a 1q =-1,①a 1-a 1q 2=-3,② 显然q ≠1,a 1≠0,②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.(2)设数列{a n }首项为a 1,公比为q (q ≠1),则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=74,S 6=a 1(1-q 6)1-q=634,解得⎩⎨⎧a 1=14,q =2, 所以a 8=a 1q 7=14×27=32.答案 (1)-8 (2)32规律方法 1.等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.2.等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q 1-q.【训练1】 (1)等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4=( ) A.9B.15C.18D.30(2)(2017·北京卷)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析 (1)设数列{a n }的公比为q (q >0),则⎩⎪⎨⎪⎧2S 3=2(a 1+a 1q +a 1q 2)=8a 1+3a 1q ,a 1q 3=16, 解得q =2,a 1=2,所以S 4=2(1-24)1-2=30.(2){a n }为等差数列,a 1=-1,a 4=8=a 1+3d =-1+3d ,∴d =3,∴a 2=a 1+d =-1+3=2.{b n }为等比数列,b 1=-1,b 4=8=b 1·q 3=-q 3,∴q =-2,∴b 2=b 1·q =2,则a 2b 2=22=1.答案 (1)D (2)1考点二 等比数列的判定与证明【例2】 已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1, 得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n ,由a 1≠0,λ≠0得a n ≠0,所以a n +1a n=λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1. (2)解 由(1)得S n =1-⎝ ⎛⎭⎪⎫λλ-1n.由S 5=3132,得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.解得λ=-1.【训练2】 (2019·广东省级名校联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4.(1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n . (1)证明 因为a n =S n -S n -1(n ≥2), 所以S n -2(S n -S n -1)=n -4(n ≥2), 则S n =2S n -1-n +4(n ≥2),所以S n -n +2=2[S n -1-(n -1)+2](n ≥2), 又由题意知a 1-2a 1=-3, 所以a 1=3,则S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2等比数列. (2)解 由(1)知S n -n +2=2n +1, 所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n=4(1-2n )1-2+n (n +1)2-2n =2n +3+n 2-3n -82.考点三 等比数列的性质及应用【例3】 (1)等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( ) A.12B.10C.8D.2+log 35(2)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( ) A.40B.60C.32D.50解析 (1)由等比数列的性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,所以a 5a 6=9,则原式=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=10.(2)数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是首项为4,公比为2的等比数列,则S 9-S 6=a 7+a 8+a 9=16,S 12-S 9=a 10+a 11+a 12=32,因此S 12=4+8+16+32=60. 答案 (1)B (2)B【训练3】 (1)(2019·菏泽质检)在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的值是( ) A.-2B.- 2C.± 2D.2(2)(一题多解)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=________.解析 (1)根据根与系数之间的关系得a 3+a 7=-4, a 3a 7=2,由a 3+a 7=-4<0,a 3a 7>0, 所以a 3<0,a 7<0,即a 5<0, 由a 3a 7=a 25,得a 5=-a 3a 7=- 2.(2)法一 由等比数列的性质S 3,S 6-S 3,S 9-S 6仍成等比数列,由已知得S 6=3S 3,∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,S 9=7S 3,∴S 9S 6=73.法二 因为{a n }为等比数列,由S 6S 3=3,设S 6=3a ,S 3=a (a ≠0),所以S 3,S 6-S 3,S 9-S 6为等比数列,即a ,2a ,S 9-S 6成等比数列,所以S 9-S 6=4a ,解得S 9=7a ,所以S 9S 6=7a 3a =73.答案 (1)B (2)73数学运算——等差(比)数列性质的应用1.数学运算是指在明析运算对象的基础上,依据运算法则解决数学问题的素养.本系列数学运算主要表现为:理解数列问题,掌握数列运算法则,探究运算思路,求得运算结果.通过对数列性质的学习,发展数学运算能力,促进数学思维发展.2.数学抽象是指能够在熟悉的情境中直接抽象出数学概念和规则,能够在特例的基础上归纳形成简单的数学命题,能够在解决相似的问题中感悟数学的通性通法,体会其中的数学思想.类型1 等差数列两个性质的应用 在等差数列{a n }中,S n 为{a n }的前n 项和: (1)S 2n -1=(2n -1)a n ;等差中项)(2)设{a n }的项数为2n ,公差为d ,则S 偶-S 奇=nd .【例1】 (1)等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m =________.(2)一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则数列的公差d =________.解析 (1)由a m -1+a m +1-a 2m =0得2a m -a 2m =0,解得a m =0或2.又S 2m -1=(2m -1)(a 1+a 2m -1)2=(2m -1)a m =38, 显然可得a m ≠0,所以a m =2.代入上式可得2m -1=19,解得m =10.(2)设等差数列的前12项中奇数项和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5. 答案 (1)10 (2)5类型2 等比数列两个性质的应用在等比数列{a n }中,(1)若m +n =p +q (m ,n ,p ,q ∈N *),则a n ·a m =a p ·a q ;(2)当公比q ≠-1时,S n ,S 2n -S n ,S 3n -S 2n ,…成等比数列(n ∈N *).【例2】 (1)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )A.6B.5C.4D.3(2)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( )A.18B.-18C.578D.558 解析 (1)数列{lg a n }的前8项和S 8=lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 1·a 8)4=lg(a 4·a 5)4=lg(2×5)4=4.(2)因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18,所以a 7+a 8+a 9=18.答案 (1)C (2)A类型3 等比数列前n 项和S n 相关结论的活用(1)项的个数的“奇偶”性质:等比数列{a n }中,公比为q . 若共有2n 项,则S 偶∶S 奇=q .(2)分段求和:S n +m =S n +q n S m (q 为公比).【例3】 (1)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.(2)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为________. 解析 (1)由题意,得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160, 所以q =S 偶S 奇=-160-80=2. (2)设等比数列{a n }的公比q ,易知S 3≠0.则S 6=S 3+S 3q 3=9S 3,所以q 3=8,q =2.所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,其前5项和为1-⎝ ⎛⎭⎪⎫1251-12=3116.答案 (1)2 (2)3116三、课后练习1.已知等比数列{a n }的各项均为正数且公比大于1,前n 项积为T n ,且a 2a 4=a 3,则使得T 1>1的n 的最小值为( )A.4B.5C.6D.7 解析 ∵{a n }是各项均为正数的等比数列,且a 2a 4=a 3,∴a 23=a 3,∴a 3=1.又∵q >1,∴a 1<a 2<1,a n >1(n >3),∴T n >T n -1(n ≥4,n ∈N *),T 1<1,T 2=a 1·a 2<1,T 3=a 1·a 2·a 3=a 1a 2=T 2<1,T 4=a 1a 2a 3a 4=a 1<1,T 5=a 1·a 2·a 3·a 4·a 5=a 53=1,T 6=T 5·a 6=a 6>1,故n 的最小值为6. 答案 C 2.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( )A.(3n -1)2B.12(9n -1)C.9n -1D.14(3n -1)解析 ∵a 1+a 2+…+a n =3n -1,n ∈N *,n ≥2时,a 1+a 2+…+a n -1=3n -1-1,∴当n ≥2时,a n =3n -3n -1=2·3n -1,又n =1时,a 1=2适合上式,∴a n =2·3n -1,故数列{a 2n }是首项为4,公比为9的等比数列.因此a 21+a 22+…+a 2n =4(1-9n )1-9=12(9n -1). 答案 B 3.(2019·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 25,且S 4+S 12=λS 8,则λ=______.解析 ∵{a n }是等比数列,a 3a 11=2a 25,∴a 27=2a 25,∴q 4=2,∵S 4+S 12=λS 8,∴a 1(1-q 4)1-q +a 1(1-q 12)1-q =λa 1(1-q 8)1-q, ∴1-q 4+1-q 12=λ(1-q 8),将q 4=2代入计算可得λ=83.答案 834.已知数列{a n }满足a 1=1,a n +1=2a n +λ(λ为常数).(1)试探究数列{a n +λ}是不是等比数列,并求a n ;(2)当λ=1时,求数列{n (a n +λ)}的前n 项和T n . 解 (1)因为a n +1=2a n +λ,所以a n +1+λ=2(a n +λ). 又a 1=1,所以当λ=-1时,a 1+λ=0,数列{a n +λ}不是等比数列, 此时a n +λ=a n -1=0,即a n =1; 当λ≠-1时,a 1+λ≠0,所以a n +λ≠0, 所以数列{a n +λ}是以1+λ为首项,2为公比的等比数列, 此时a n +λ=(1+λ)2n -1,即a n =(1+λ)2n -1-λ.(2)由(1)知a n =2n -1,所以n (a n +1)=n ×2n , T n =2+2×22+3×23+…+n ×2n ,① 2T n =22+2×23+3×24+…+n ×2n +1,② ①-②得:-T n =2+22+23+…+2n -n ×2n +1=2(1-2n )1-2-n ×2n +1=2n +1-2-n ×2n +1=(1-n )2n +1-2. 所以T n =(n -1)2n +1+2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等比数列解题技巧
类似地,等比等差数列常用公式有:
11n n a a q -= ①
n m n m a a q -= ②
11 (1)(1)(1)1n n n na q S a q S q q =⎧⎪=-⎨=≠⎪-⎩
③ 对应的性质:
1. r p n m +=+则 r p n m a a a a ⋅=⋅.
2. p n m 2=+ 则 2
p n m a a a =⋅. (等比中项)
3. =⋅=⋅=⋅--23121n n n a a a a a a .
4. m S 、m -m 2S 、2m -m 3S 等比.
先说明一下,等比数列的求解没有什么简便的方法,题目的求解相对于等差数列会不太直观,而且有时会麻烦的多.原因如下:等差数列对于加减法的运算比较容易,但对乘除法的运算会变得麻烦了;等比数列则刚好相反,对于乘除运算比较容易,但对于加减法就会比较复杂了.一般试题中加减法出现的次数比乘除法多,所以这就会导致等差数列比较好算,而等比数列比较难算了.
一般在计算等比数列的习题中,我们只需要简单地套用公式就能计算出结果,但运算可能会比较繁琐.所以我们可以这样安慰自己,没办法,这就是唯一的办法,虽然繁琐,但是能算出结果。

相关文档
最新文档