第六章离子聚合

合集下载

高分子科学-第6章 阴阳离子聚合详解

高分子科学-第6章 阴阳离子聚合详解

(iii)有机金属化合物:
ቤተ መጻሕፍቲ ባይዱ
有机金属化合物是最常用的阴离子聚合引发剂。多为 碱金属的有机金属化合物(如丁基锂),Ca和Ba的有机金 属化合物也具引发活性,但不常用。
BuLi + H2C CH X
Bu CH2 CH Li+ X
有机金属化合物的活性与其金属的电负性有关,金属的电 负性越小,活性越高。 活性次序: RK>RNa>Rli>RMg>RAl (iv)格氏试剂: 烷基镁由于其C-Mg键极性弱,不能直接引发阴离子聚合, 但制成格氏试剂后使C-Mg键的极性增大,可以引发活性较大 的单体聚合。
3
离子聚合的特点

单体选择性高;


聚合条件苛刻;
聚合速率快,需在低温下进行;

反应介质对聚合有很大影响。
聚合机理和动力学研究不够成熟
一些重要的聚合物,如丁基橡胶、异戊橡胶、聚甲 醛、聚氯醚等只能通过离子聚合得到。
4
离子聚合的应用:
理论上,有较强的控制大分子链结构的能力, 通过离子聚合可获得“活性聚合物”,可以有目 的的分子设计,合成具有预想结构和性能的聚合 物;

以KNH2 -液氨体系为例:
自由阴离子方式引 发聚合反应
形成单阴离子
14
(ii)醇盐、酚盐:
醇(酚)盐一般先让金属与醇(酚)反应制得醇(酚) 盐,然后再加入聚合体系引发聚合反应。如:
2 Na + 2 CH3OH → 2 CH3ONa + H2
CH3O-Na+ + H2C CH X H3CO CH2 CH Na+ X
第六章
离子聚合
1
6.1 引言

高分子化学6-离子聚合-阴离子聚合

高分子化学6-离子聚合-阴离子聚合

二、阴离子聚合引发剂
对于吸电子取代基的烯类单体,按其反应能力, 可以排为四组:
CN A 组 CH2 C(CN)2 > CH2 C COOC2H5 > CH2 CHNO2 >>
B 组 CH2 CHCN > CH2 C(CH3)CN > CH2 CHCCH3 >>
CH3
O
C 组 CH2 CH
> CH2 C
Na + CH2 CH
CH2 CH
CH2 CH Na+
自由基末端偶合二聚后形成双阴离子:
2 CH2 CH
CH2 CH Na+
Na+
CH CH2 CH2 CH Na+
双向引发聚合
1.链引发(3)碱金属络合引发--电子间接转移引发
钠—萘体系:利用碱金属在某些溶剂中能够生成 有机络合物并降低其电子转移活化能的特点。
>>
COOCH3 D 组 CH2 CHCH CH2
COOCH3 > CH2 CH
CH3 > CH2 C
C6H5
C6H5
二、阴离子聚合引发剂
表 常见阴离子聚合单体和引发剂的反应活性
单体活性类别
单体
高活性A 次高活性B 中活性C 低活性D
硝基乙烯 偏二氰基乙烯
丙烯腈 甲基丙烯腈
丙烯酸甲酯 甲基丙烯酸甲酯
A
苯乙烯
非极性共轭烯烃
丁二烯
B
甲基丙烯酸甲酯 丙烯酸甲酯
丙烯腈
C 甲基丙烯腈
极性单体
活 性
甲基乙烯酮
硝基乙烯
高活性单体
亚甲基丙二酸二乙酯 D - 氰基丙烯酸乙酯

高分子化学-离子聚合

高分子化学-离子聚合

第六章离子聚合论述题1. 丁基锂和萘钠是阴离子聚合的常用引发剂,试说明两者引发机理和溶剂的选择有何差别。

2. 甲基丙烯酸甲酯分别在苯、四氢呋喃、硝基苯中用萘钠引发聚合。

试问在哪一种溶剂中的聚合速率最大?3. 应用活性阴离子聚合来制备下列嵌段共聚物,试提出加料次序方案。

a.(苯乙烯)x—(甲基丙烯腈)yb.(甲基苯乙烯)x—(异戊二烯)y—(苯乙烯)zc.(苯乙烯)x—(甲基丙烯酸甲酯)y—(苯乙烯)x4. 试从单体、引发剂、聚合方法及反应的特点等方面对自由基、阴离子和阳离子聚合反应进行比较。

5. 将下列单体和引发剂进行匹配。

说明聚合反应类型并写出引发反应式。

单体:(1)CH2=CHC6H5(2)CH2=C(CN)2(3)CH2=C(CH3)2(4)CH2=CHO(n-C4H9)(5)CH2=CHCl(6)CH2=C(CH3)COOCH3引发剂:(1)(C6H5CO2)2(2)(CH3)3COOH+Fe2+(3)萘-Na(4)BF3+H2O6. 在离子聚合反应过程中,能否出现自动加速效应?为什么?7. 何为活性聚合物?为什么阴离子聚合可以实现活性聚合?计算题1. 用n-丁基锂引发100 g苯乙烯聚合,丁基锂加入量恰好是500分子,如无终止,苯乙烯和丁基锂都耗尽,计算活性聚苯乙烯链的数均分子量。

2. 将1.0×10-3 mol萘钠溶于四氢呋喃中,然后迅速加入2.0 mol苯乙烯,溶液的总体积为1 L。

假如单体立即混合均匀,发现2000 s内已有一半单体聚合。

计算聚合2000 s和4000 s时的聚合度。

3. 将苯乙烯加到萘钠的四氢呋喃溶液中,苯乙烯和萘钠的浓度分别为0.2 mol⋅L-1和1×10-3 mol⋅L-1。

在25℃下聚合5 s,测得苯乙烯的浓度为1.73×10-3 mol⋅L-1。

试计算:a.增长速率常数b.10s的聚合速率c.10s的数均聚合度4. 在搅拌下依次向装有四氢呋喃的反应器中加入0.2 mol n-BuLi和20 kg苯乙烯。

第六章离子聚合

第六章离子聚合

第六章离子聚合一、名称解释1. 阳离子聚合:增长活性中心为带正电荷的阳离子的连锁聚合。

2. 活性聚合:当单体转化率达到100%时,聚合仍不终止,形成具有反应活性聚合物(活性聚合物)的聚合叫活性聚合。

3. 化学计量聚合:阴离子的活性聚合由于其聚合度可由单体和引发剂的浓度定量计算确定,因此也称为化学计量聚合。

4. 开环聚合:环状单体在引发剂作用下开环,形成线形聚合物的聚合反应。

5. Ziegler-Natta引发剂:Zigler-Natta引发剂是一大类引发体系的统称,通常有两个组份构成:主引发剂是Ⅳ~Ⅷ族过渡金属化合物。

共引发剂是Ⅰ~Ⅲ族的金属有机化合物。

6. 配位聚合:单体与引发剂经过配位方式进行的聚合反应。

具体的说,采用具有配位(或络合)能力的引发剂、链增长(有时包括引发)都是单体先在活性种的空位上配位(络合)并活化,然手插入烷基—金属键中。

配位聚合又有络合引发聚合或插入聚合之称。

7. 定向聚合:任何聚合过程(包括自由基、阳离子、阴离子、配位聚合)或任何聚合方法(如本体、悬浮、乳液和溶液等),只要它是经形成有规立构聚合物为主,都是定向聚合。

定向聚合等同于立构规整聚合。

二、选择题1. 下列单体中哪一种最容易进行阳离子聚合反应---------------------------------------------( B )A.CH2=CH2B.CH2=CHOCH3C.CH2=CHCl D.CH2=CHNO22. 下列哪种物质不能作为阳离子聚合的引发剂------------------------------------------------(B )A.正碳离子盐B.有机碱金属C.质子酸D.Lewis酸3. 四氢呋喃可以进行下列哪种聚合---------------------------------------------------------( C )A.自由基聚合B.阴离子聚合C.阳离子聚合D.配位聚合4. 在无终止的阴离子聚合中,阴离子无终止的原因是(C )A 阴离子本身比较稳定B 阴离子无双基终止而是单基终止C 从活性链上脱出负氢离子困难D 活化能低,在低温下聚合5. 合成聚合物的几种方法中,能获得最窄相对分子质量分布的是( A )A 阴离子聚合B 阳离子聚合C 自由基聚合D自由基共聚合6. 能引发苯乙烯阴离子活性聚合,并且聚合度等于两倍的动力学链长的是(D)A. BuLiB. AIBNC. AlCl3+H2OD. 萘+钠7. 制备分子量分别较窄的聚苯乙烯,应该选择(B)A阳离子聚合B阴离子聚合反应C配位聚合反应D自由基聚合反应8. 按阴离子聚合反应活性最大的单体是(A)A α-氰基丙烯酸乙酯B 乙烯C 甲基丙烯酸甲酯D乙酸乙烯酯9. 高密度聚乙烯与低密度聚乙烯的合成方法不同,若要合成高密度聚乙烯所采用的引发剂是( B )A. BuLiB. TiCl4-AlR3C. BF3+H2OD. BPO10. Ziegler-Natta引发剂引发丙烯聚合时,为了控制聚丙烯的分子量,最有效的办法是(D)A 增加引发剂的用量B适当降低反应温度C适当增加反应压力D加入适量氢气11. 合成顺丁橡胶所用的引发剂为(D)A BPOB BuLiC Na + 萘D TiI+AlEt312. 鉴定聚丙烯等规度所用的试剂是(D)A 正庚烷B正己烷C 正辛烷D沸腾的正庚烷13. 能采用阳离子、阴离子与自由基聚合的单体是(B)A、MMAB、StC、异丁烯D、丙烯腈14. 在高分子合成中,容易制得有实用价值的嵌段共聚物的是(B)A配位阴离子聚合;B阴离子活性聚合;C自由基共聚合15 阳离子聚合最主要的链终止方式是(B)A向反离子转移;B向单体转移;C自发终止16能引发丙烯酸负离子聚合的引发剂是(A)A丁基锂B三氯化铝C过氧化氢17 取代苯乙烯进行阳离子聚合反应时,活性最大的单体是(A)A对甲氧基苯乙烯B对甲基苯乙烯C对氯苯乙烯D间氯苯乙烯18 在具有强溶剂化中进行阴离子聚合反应时,聚合速率随反离子的体积增大而(B)A增加B下降C不变D无规律变化19 用强碱引发己内酰胺进行阴离子聚合反应时存在诱导期,消除的方法是(C)A加入过量的引发剂B适当提高温度C加入少量乙酸酐D适当加压20 为了得到立构规整的1.4-聚丁二烯,1,3 –丁二烯可采用( D)聚合。

高分子化学第四版6-离子聚合

高分子化学第四版6-离子聚合

6.2.6 活性阴离子聚合动力学
阴离子聚合的特征:聚合前引发剂全部转变成
活性中心,各活性中心活性相同,以相同的
速度同时引发单体增长,增长过程中无引发
反应和终止反应,活性中心数保持不变。 活性阴离子聚合是: 快引发、慢增长、无终止和无转移。
⑴. 聚合速率
测定t 时的 残留[M], 可求kp
⑵. 聚合度和聚合度分布
6.3.3 阳离子聚合机理
阳离子聚合机理:
快引发、快增长、易转移、难终止。
1. 链引发
其它络合物离子对: BF3 H 2O H BF3OH SnCl4 RCl R SnCl5

AlCl3 HCl H AlCl4


BF3 C2 H 5 2 O C2 H 5 BF3OC2 H 5
6.2.4 活性阴离子聚合的机理和应用 1. 活性阴离子聚合机理
2. 活性聚合的应用
①合成均一分子量的聚合物
②制备嵌段聚合物
在利用阴离子聚合,先制得一种单体的活的聚合物,然 后加入另一种单体聚合时,并非所有活的聚合物都可 以引发另一种单体聚合,反应能否进行,取决于 M1
和 M2 的相对碱性,即 M1 的给电子能力和 M 2的亲电
2. 链增长
阳离子聚合增长反应的特点:
⑴. 离子与分子间的反应,速度快,活化能低,几乎与引发同时完成;
⑵. 单体按头尾结构插入离子对,对构型有一定控制能力; ⑶. 增长过程中有时伴有分子内重排反应。
例如:3甲基1丁 烯的阳离子聚 合产物。
3. 链转移
离子聚合的增长活性中心带有相同的电荷,不能
4 9 4 9
C H Mn Li K C H Mn Li

高分子物理习题6

高分子物理习题6

=
kp
ᄡ1.0ᄡ10-3 ᄡ5
求得, k p = 950L �m�ol-1 s-1
(2)初始链增长速率
Rp = k p[B- ][M]0 = 950 �1�.0 �10-3 0.2 = 0.19mol �L-� 1 s-1 (3)先计算聚合 10s 时的单体浓度
ln 0.2 [M]10
= 950 ᄡ1.0 ᄡ10-3 ᄡ10 ,求得[M]10
与 1-乙 烯 基 萘 ( 0.75 mol∙L-1) 进 行 阴 离 子 聚 合 , 计 算 : ( 1) 平 均 聚 合 度 ;
( 2) 聚 合 度 的 数 量 和 质 量 分 布 。
解:
(1)平均聚合度
X
n
=
[M]0 -[M] [C]
=
0.75 0.005
= 150
(2)聚合度的数量和质量分布
聚合:
SnCl4 + C2H5Cl
C2H5 (SnCl5)
R (SnCl5)
CH3 + CH2 C
CH3
CH3 RCH2 C (SnCl5)
CH3
(4)CH3ONa 可以引发高活性和较高活性的单体进行阴离子聚合。高
活性的单体,如硝基乙烯、偏二腈乙烯。较高活性的单体,如丙烯腈、甲基丙
烯腈等,以及环氧烷烃(如环氧乙烷、环氧丙烷等)的开环聚合。



答:
苯乙烯,三种机理均可,可以选用表中 5 种引发剂的任一种。
偏二腈乙烯,阴离子聚合,选用 Na+萘或 n-C4H9Li 引发。
异丁烯,阳离子聚合,选用 SnCl4+H2O 或 BF3+H2O 引发。
丁基乙烯基醚,阳离子聚合,选用 SnCl4+H2O 或 BF3+H2O 引发。 甲基丙烯酸甲酯,阴离子聚合和自由基聚合,阴离子聚合选用 Na+萘或 n-

第六章 离子聚合与配位聚合反应

第六章 离子聚合与配位聚合反应
(2)Lewis酸:主要为金属卤化物、有机金属化合物以及它们 的复合物。
其引发反应可分两种情况: (i)不能“自离子化”的单独Lewis酸
与体系中微量的水发生水解生成H+引发聚合反应,如:
6.1 阳 离 子 聚 合 反 应
(ii)能“自离子化”的Lewis酸或不同Lewis酸的复合物 通过自离子化或不同Lewis酸相互离子化产生阳离子引发
6.2 阴 离 子 聚 合 反 应
6.2.3 链增长反 应
单体加成方式为首尾加成。 与阳离子聚合反应相似,增长链碳阴离子与抗衡阳离子间存 在离解平衡,其离解程度与抗衡阳离子以及溶剂性质等密切相 关。 ➢ 溶剂极性越强,离解程度越高,链增长活性越大;
6.2 阴 离 子 聚 合 反 应
➢ 抗衡阳离子(一般为碱金属离子)的影响较为复杂,在高极 性溶剂和低极溶剂性中的影响方向正好相反。
6.1 阳 离 子 聚 合 反 应
在这类引发体系中,通常把碳阳离子源称为引发剂(initiator), 而把Lewis酸称为活化剂(activator)。
6.1 阳 离 子 聚 合 反 应
6.1.3 链增长反应
(1)链增长活性中心与抗衡阴离子的离解平衡:
离解程度增加 反应活性增加
6.1 阳 离 子 聚 合 反 应
在高极性溶剂中,金属离子越小,越易溶剂化,与增长 活性中心的相互作用越小,离解程度越高,链增长反应越快; 在低极性溶剂中,溶剂化作用十分微弱,增长链碳阴离 子与抗衡阳离子之间的库仑力对活性中心离子对的离解程度 起决定性作用。金属离子越小,它与碳阴离子的库仑力越强, 离解程度越低,链增长反应越慢。
离解程度的影响因素:
➢ 链碳阳离子与抗衡阴离子间的相互作用:链碳阳离子与抗衡 阴离子的相互作用越弱,两者越易离解,链增长活性越高。

第六章离子聚合

第六章离子聚合

材料系高分子材料与工程专业
材料系高分子材料与工程专业
材料系高分子材料与工程专业
材料系高分子材料与工程专业
材料系高分子材料与工程专业
材料系高分子材料与工程专业
材料系高分子材料与工程专业
材料系高分子材料与工程专业
材料系高分子材料与工程专业
材料系高分子材料与工程专业
材料系高分子材料与工程专业
材料系高分子材料与工程专业
二、环状单体的种类及其聚合能力
环状单体的聚合能力与其结构有关。 环烷烃的聚合能力较低。 环烷烃中的碳原子被杂原子如O、S、N取代后,则这些杂环化合物的聚合能力变大。 它们在适当的引发剂作用下可形成高分子化合物。
材料系高分子材料与工程专业
材料系高分子材料与工程专业
材料系高分子材料与工程专业
(CH2)5 n C N O H + nH2O O H HO[ C (CH2)5 N ]nH
实际上此过程非常复杂,它包括开环、缩聚、加聚、交换、 裂解等不同反应和互相作用,最后达到水、单体、环状齐聚物及 线型链式分子各级分与聚合体之间一个总的平衡体系。
材料系高分子材料与工程专业
• • • • • • • • •
材料系高分子材料与工程专业
在环状单体中,R为烷基,Z为杂原子O,S,N,P,Si或-CONH-,-COO-,-CH=CH-基团
绝大多数环状单体的开环聚合是按离子型聚合机理进行的,但 也有少数环状单体的开环聚合是按水解聚合机理进行的。
材料系高分子材料与工程专业
CH2
CH2 CH2 O
环氧乙烷
CH2
材料系高分子材料与工程专业
材料系高分子材料与工程专业
EO的聚合物在工业上按相对分子质量大小不同分为两种产品:用碱 引发(阴离子开环聚合)制得相对分子质量在2万以下的称为聚乙二 醇,有液态和腊状聚合物。 用Ca和Sr的碳酸盐或ZnEt-H2O引发EO聚合而制得的相对分子质量 为几万~几百万的聚合物称为聚环氧乙烯(PEO)。

高分子化学_第六章_离子聚合比较

高分子化学_第六章_离子聚合比较

6.4 离子聚合的影响因素
将活性种区分成离子对P-C+ 和自由离子 P- 两种,离解平衡为:
M Na K
k+ +M
离子对增长
M M Na K
k M + Na + M
自由离子增长
M M + Na
总聚合速率是离子对 P-C+ 和自由离子 P- 聚合速率之和:
R p k [P C ][M] k [P ][M]
H —负值
X n n[M ] [C ]
温度对聚合度无影响
温度对增长速率的影响不明显,对聚合度无影响。
6.4 离子聚合的影响因素
4、丁基锂的配位能力和定向作用
反离子和溶剂—配位定向能力
聚二烯烃的微结构
1,4-和1,2-(或3,4)连接 顺式和反式、全同或间同构型
影响因素:
碱金属的电负性和原子半径; 溶剂的极性; 单体;
2、溶剂的影响
活性中心与反离子的结合形式:
AB
共价键
AB
紧对
AB
松对
A +B
自由离子
共价键—一般无引发活性 紧密离子对—利于定向配位,聚合速率较低; 疏松离子对—无定向能力,聚合速率较高;
活性次序:自由离子 > 疏松离子对 > 紧密离子对
聚合速率——平衡状态的离子对和自由离子共同作用的结果
6.4 离子聚合的影响因素
k Xn
=
Ap Atr,M
e-(Ep - (Etr,6m-)2/3R)T
E
Xn
=
Ep
-
Et
E Xn = Ep - Etr,M
Etr(Et) >Ep 总活化能 EXn=-12.5~-29 kJ/mol <0

高分子化学 第六章 离子聚合

高分子化学 第六章 离子聚合

55
五、低顺丁橡胶
n CH2=CH–CH=CH2
~~CH2
C=C
CH2~~ H C=C
H
占40~60%
H
~~CH2
CH2~~ H ~~CH2–CH~~ CH=CH2
占30~55% 占5~10%
56
性 能
缺点:弹性和强度比不上高顺丁橡胶,且分子 量分布窄,不易加工,难混炼。 优点:耐寒性特别好,在-70℃时仍能使用, 适于制造耐寒橡胶制品;另外,它生成容易、 成本低、色浅透明、质地较纯等,一般很少 单用,多与其它橡胶品种混合使用。
38
五、影响阳离子聚合速率常数 的因素
~~CH2–CH–A X ~~CH2–CH+A– X
共价键化合物
~~CH2–CH+┆┇A– X
紧密离子对
~~CH2–CH+ + A– X
松散离子对
自由离子
39
1.溶剂
溶剂的极性和溶剂化能力越大,则聚合 体系中自由离子和松散离子对的比例就越高, 结果会使聚合速率和聚合度增大,而产物的 规整性下降。
19
活的高分子的应用
• 1.合成遥爪预聚物及大分子单体
遥爪预聚物、大分子单体
• 2.合成梳形和星形聚合物
• 3.合成嵌段共聚物
~~SSSSBBB~~BBSSS~~
• 4.合成分子量均一聚合物
20
• 活的聚合物的数均聚合度
n([M ]0 [M ]) X n [C]
[M]0:起始单体浓度
[M]: 某时刻单体浓度
单基终止
36
4.链转移
阳离子聚合CM=10–2~10–4,自由基 聚合CM=10–4~10–5,阳离子聚合极易向 单体链转移。由于Etr,M > Ep ,升温使 CM增大。 为了得到高分子量产物,需在低温 下进行聚合。

第六章 离子聚合

第六章  离子聚合

碱金属将最外层的一价电子直接转移给单体, 生成自由基-阴离子,自由基阴离子末端很快偶 合终止,生成双阴离子,两端阴离子同时引发 单体聚合。如丁钠橡胶的生产。
电子间接转移引发
碱金属-芳烃复合引发剂 典例:钠和萘在四氢呋喃(THF)中引发苯乙烯 聚合。 碱金属(如钠)将最外层的一个价电子转移给 中间体(如萘),使中间体变为自由基阴离子 (如萘钠络合物),再引发单体聚合,同样形 成双阴离子。
1956年萘钠在THF中 引发苯乙烯聚合时首 先发现
活性聚合和活性聚合物 活性聚合(Living Polymerization): 引发剂在引发前,先100% 100%地迅速转变成阴离子 100% 活性中心,然后以相同速率同时引发单体增长, 至单体耗尽仍保持活性,称作活性聚合。 活性聚合物(Living Polymer): 定义:当单体转化率达到100%时,聚合仍不 终止,形成具有反应活性聚合物,即活性聚合物。
2)阳离子聚合的引发体系及引发作用 )
常用的引发体系: 质子酸(ProtonicAcid);
Lewis 酸;
质子酸 如浓H2SO4、H3PO4、HClO4等强质子酸。
质子酸引发机理:
强质子酸在非水介质中离解成质子氢(H+), 使烯烃质子化(Protonation),引发单体进行阳 离子聚合。 质子酸作为引发剂的条件: 有足够强度产生H+ ; 酸根离子(反离子)的亲核性(Nucleophilicity) 不能过强,以免与阳离子共价结合成而终止,如 氢卤酸HX。
根据中心离子的电荷性质
阴离子聚合 阳离子聚合
离子聚合
离子聚合的特点: 离子聚合的特点: 单体的选择性高; 聚合条件苛刻,通常需在低温下进行,体系中不 能有水或杂质存在; 聚合速率快; 反应介质对聚合有很大影响,实验重现性差。

第六章 离子聚合与配位聚合

第六章 离子聚合与配位聚合

阳 离 子 聚 合 反 应
(π+n)给电子取代乙烯,如:
该类单体由于N和O原子上的未成对电子能与双键形成p-π 共轭,使双键电子云密度增大,因而特别活泼。
6.1
阳 离 子 聚 合 反 应
(2)异核不饱和单体R2C=Z,Z为杂原子或杂原子基团; 如醛RHC=O,酮RR’C=O(丙酮除外,因其最高聚合 温度为-273 oC),硫酮RR’C=S等。 (3)杂环化合物:阳离子开环聚合 包括环醚、环亚胺、环缩醛、环硫醚、内酯和内酰胺等。 如:
6.1
阳 离 子 聚 合 反 应
(5)向高分子的链转移反应: 如在苯乙烯以及衍生物的阳离子聚合中,可通过分子内亲 电芳香取代机理发生链转移:
此外,增长链碳阳离子从其它链夺取H-生成更稳定的碳阳 离子:
但一般脱H- 反应活化能高,较难发生。
6.1
6.1.4 链终止反应
阳 离 子 聚 合 反 应
阳离子聚合中除链转移反应会导致增长链失活外,还可发 生以下的终止反应: (1)链增长碳阳离子与抗衡阴离子结合:
6.1.5 阳离子聚合的工业应用
由于适于阳离子聚合单体种类少,加之其聚合条件苛刻, 如需在低温、惰性气体保护、高纯有机溶剂中进行,因而限 制了它在工业上的应用。聚异丁烯和丁基橡胶是工业上用阳 离子聚合的典型产品。 异丁烯阳离子聚合通常用H2O / BF3 、 H2O/AlCl3、H2O / TiCl4等作为引发剂。在0~ -40℃下聚合时得到的是低分子量 (Mn<5万)油状或半固体状低聚物,可用作润滑剂、增粘剂、 增塑剂等。在-100℃以下聚合时,则可得到高分子量聚异丁 烯(Mn = 5×104~106),它是橡胶状固体,可用作粘合剂、 管道衬里及塑料改性剂等。
如Cl3CCOOH/TiCl4引发的异丁烯聚合

高分子化学 第六章_阳离子聚合

高分子化学 第六章_阳离子聚合
四、阳离子聚合动力学
阳离子聚合反应机理复杂,动力学方程建立较难: ①体系总伴有共引发剂,使引发反应复杂化; ②微量杂质对聚合速率影响很大; ③聚合速率极快,数据重复性差; ④真正的终止反应不存在,稳态假定难以建立; ⑤离子对和少量自由基离子并存,两者的影响难以分离。 ⑥聚合体系多为非均相
因此只能在特定条件下做动力学研究。 引发剂—SnCl4(低活性) 自终止方式—向反离子转移
第十八讲 阳离子聚合
(第六章 离子聚合)
复 习:
1、阴离子聚合的单体和引发剂; 单体—吸电子共轭单体 引发剂—亲核试剂
2、阴离子聚合的机理与特征 快引发、慢增长、无终止、无转移
3、阴离子聚合动力学 ——活性阴离子聚合
6.3 阳离子聚合
阳离子聚合反应的通式:
A B

M

AM
B
M
HM (CR)
质子或碳正离子
特点:
引发剂往往与共引发剂配合使用,引发体系离解度很 低,很难达到活性聚合的要求; 引发活化能低(Ei=8.4~ 21 kJ/mol),引发速率快;
(自由基聚合 Ed=105~150 kJ/mol )
6.3 阳离子聚合
2、链增长
HM (CR) + n M kp HMnM (CR)
古马隆
杂环化合物:环醚、醛类、环缩醛、三元环酰胺
基本原则: 由于离子聚合的工艺要求较高,故能用自由基聚合的,尽
可能不采用离子聚合。
6.3 阳离子聚合
二、阳离子聚合的引发体系和引发作用
引发剂—亲电试剂
引发方式有两种: 阳离子引发—质子酸、Lewis酸 —引发剂生成阳离子,引发单体生成碳阳离子
电荷转移引发—乙烯基咔唑和四腈基乙烯(TCE) —引发剂和单体先形成电荷转移络合物而后引发

第六章 离子聚合

第六章  离子聚合

第六章离子聚合思考题6。

1试从单体结构来解释丙烯腈和异丁烯离子聚合行为的差异,选用何种引发剂?丙烯酸、烯丙醇、丙烯酰胺、氯乙烯能否进行离子聚合,为什么?答丙烯腈中氰基为吸电子基团,同时与双键形成丌-丌共轭,能使双键上的电子云密度减弱,有利于阴离子的进攻,并使所形成的碳阴离子的电子云密度分散而稳定,因此丙烯腈能够进行阴离子聚合.进行阴离子聚合时,可选用碱金属、碱金属化合物、碱金属烷基化合物、碱金属烷氧化合物等作为引发剂。

异丁烯中两个甲基为推电子基团,能使双键上的电子云密度增加,有利于阳离子的进攻,并使所形成的碳阳离子的电子云密度分散而稳定,因此异丁烯能够进行阳离子聚合。

进行阳离子聚合时,通常采用质子酸、lewis酸及其相应的共引发剂进行引发。

丙烯酸、烯丙醇、丙烯酰胺、氯乙烯不能进行离子聚合,因为没有强烈的推电子基团和吸电子基团。

思考题6.2下列单体选用哪一引发剂才能聚合?指出聚合机理类型。

答苯乙烯三种机理均可,可以选用表中5种引发剂的任一种。

偏二腈乙烯,阴离子聚合,选用Na+萘或n—C4H9Li引发。

异丁烯,阳离子聚合,选用SnCl4+ H2O或BF3+H2O。

丁基乙烯基醚,阳离子聚合,选用SnCl4+ H2O或BF3+H2O。

CH2=C(CH3)CO2CH3,阴离子聚合和自由基聚合.阴离子聚合,选用Na+萘或n-C4H9Li 引发;自由基聚合选用(C6H5CO)2O2作引发剂。

思考题6.3下列引发剂可以引发哪些单体聚合?选择一种单体作代表,写出引发反应式。

(1)KNH2(2)A1C13+HCl (3)SnCl4+C2H5Cl (4)CH3ONa答(1) KNH2是一类高活性的阴离子引发剂,可以引发大多数阴离子聚合的单体进行聚合.如引发苯乙烯进行聚合(2)A1C13活性高,用微量水作共引发剂即可。

A1C13+HCl配合时,C1-亲核性过强,易与阳离子共价终止,因此很少采用。

(3) SnCl4+C2H5Cl以引发异丁烯、乙烯基烷基醚及共轭烯烃进行阳离子聚合(4)CH3ONa可以引发高活性和较高活性的单体进行阴离子聚合。

离子聚合资料

离子聚合资料

离子聚合简介离子聚合是一种重要的化学反应过程,指的是带电物质,即离子,在适当条件下相互吸引形成聚集体的过程。

离子聚合在化学、生物学、材料科学等领域都有广泛的应用,是一种重要的合成策略。

基本原理离子聚合是在溶液中,带电的阳离子和阴离子相互吸引而结合成大分子的过程。

通常情况下,这种反应是在水或有机溶剂中进行。

在离子聚合过程中,通常会产生水或其他小分子作为副产物。

离子聚合的应用1.聚合物合成:离子聚合在合成高分子材料中起着重要作用。

通过离子聚合,可以合成具有特定性质的聚合物,如聚合物胶体、聚合物微胶粒等。

2.生物医学领域:在药物传递、基因治疗等领域,离子聚合也有着重要的应用。

通过调控离子聚合过程,可以实现药物或基因的高效传递和释放。

3.智能材料:离子聚合还可以用于制备智能材料,如响应性聚合物、水凝胶等,在传感、控释等领域有着广泛的应用。

离子聚合的影响因素1.溶液pH值:pH值是影响离子聚合反应的重要因素。

在不同pH值下,离子会有不同的电荷状态和相互作用方式。

2.温度:温度对离子聚合反应的速率和产物结构也有显著影响。

3.溶剂:不同溶剂对离子聚合反应的溶剂化和分子运动等方面有影响。

离子聚合的发展趋势随着材料科学、医学、生物学等领域的不断发展,离子聚合作为一种重要的合成策略,其应用范围也在不断扩大。

未来,随着合成方法和材料设计的不断改进,离子聚合的性能和应用也将得到进一步提升。

总结离子聚合作为一种重要的合成策略和化学反应过程,在各个领域都有着广泛的应用。

通过调控离子聚合反应条件,可以合成具有特定性质和功能的聚合物材料,为材料科学、生物医学等领域的发展提供重要支撑。

随着科学技术的不断进步,离子聚合在未来的发展前景十分广阔。

第六章 离子聚合

第六章 离子聚合

若采用极性溶剂,得高 结构(约 若采用极性溶剂,得高1, 2结构 约80%)聚丁二烯 结构 聚丁二烯 或75% 3, 4结构的聚异戊二烯 % 结构的聚异戊二烯 改变溶剂极性,有可能制得 ~ % 改变溶剂极性,有可能制得35~55% 1, 2结构乙 结构乙 烯基聚丁二烯
Page19
返回
高分子化学
§6 离子型聚合反应
有机金属化合物-- --阴离子引发 6.2.2.2 有机金属化合物--阴离子引发
金属氨基化合物( 液氨体系) 金属氨基化合物(NaNH2或KNH2-液氨体系)
2K + 2NH3
KNH2 K
2KNH2 + H2
+ NH2
NH2 + CH2=CH C6H5
H2N-CH2-CH 单阴离子 C6H5
自由阴离子引发体系, 自由阴离子引发体系,引发容易
Page14
返回
高分子化学
§6 离子型聚合反应
常用的溶剂为非质子溶剂: 二氧六环、 常用的溶剂为非质子溶剂:苯、二氧六环、 四氢呋喃、 二甲基甲酰胺。 四氢呋喃、N,N ’– 二甲基甲酰胺。
溶剂在离子型聚合中的影响作用
i.改变单体浓度 改变单体浓度 ii.溶剂的链转移作用 溶剂的链转移作用 iii.影响活性中心的结构和形态 影响活性中心的结构和形态 溶剂极性越大,表观增长速率常数 溶剂极性越大,表观增长速率常数kp越大
(C4H9Li)n
烷烃
C4H9Li
单体
C4H9 Li
C4H9 Li ..
+M
C4H9M Li C4H9 + [Li OC4H8]
采用THF作溶剂,引发活性显著提高 作溶剂, 采用 作溶剂
C4H9Li + OC4H8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H3CO CH2 CH - Na+ X
(b) 金属胺氨基化合物
2K + NH3
2KNH2 + H2
K+ NH2- + H2C CH X
H2N CH2 CH2 X
(c) 有机金属化合物 最常用的阴离子聚合引发剂, 多为碱金属的有机金
属化合物如丁基锂。
BuLi + H2C CH X
Bu CH2 CH - Li+ X
2. 阳离子聚合单体
阳离子聚合单体必须是有利形成阳离子的 亲核性烯类单体,包括以下三大类:
(2)共轭烯烃如:
苯乙烯 1-甲基苯乙烯 N-乙烯基咔唑
(3)环氧化合物:
O O
CH3
O
O
O
O
四氢呋喃 三氧六环
环氧乙烷 环氧丙烷
烯烃单体的阳离子聚合活性与其取代基供电子的强弱密
切相关:
H2C CH
H2C CH
(2)与吸电子能力有关 单体的极性越大,吸电子能力越强,
易进行阴离子聚合,如:硝基乙烯。
5
阴离子聚合单体
阴离子聚合单体主要是带吸电子取代基的 α-烯烃和共轭烯烃,根据它们的聚合活性分为 四组:
A组(高活性):
CN
CN
H
H2C C CN
偏二氰乙烯
H2C C COOC2H5
a-氰基丙烯酸乙酯
H2C C NO2
19
活性聚合物
• 只要链终止反应不发生,
消耗完所有单体,聚合物链仍保持着活性,
再加入同种单体,会继续聚合,
加入另一种单体则会生成嵌段共聚物。
• 能进行活性聚合的引发剂很多,
最方便的是金属钠和萘钠引发剂,
碱金属钠把最外层电子转移给单体,
形成单体负离子进行活的聚合:
这种单体完全耗尽仍可保持聚合活性的 聚合物链阴离子称为“ 活性高分子”。
形成“活”性聚合物的原因:
1)离子聚合无双基终止(活性中心带同种电 荷)。
18
2)反离子为金属离子,不能与碳阴离子 形成共价键导致链终止; 3)阴离子聚合,从活性链上脱除负氢离子非 常困难,需能量较高,不易发生链转移(主 要原因)。
34
(iii) 端胺基聚合物
(3)制备带有特殊官能团的遥爪聚合物 前述制备端基聚合物的方法,如果是双
阴离子聚合,则可得到遥爪聚合物。
35
遥爪聚合物:指分子链两端都带有活性官能 团的聚合物,两个官能团遥遥位居于分子链 的两端,就象两个爪子,故称为遥爪聚合物。
A CH CH2 X
+ CH2 CH A
硝基乙烯
B 组(较高活性):
CN
H2C CH CN
H2C C CH3
H2C CH CO
丙烯腈 甲基丙烯腈
甲基丙CH烯3 酮
C 组(中活性):
CH3
H2C CH
H2C C
COOCH3
COOCH3
丙烯酸甲酯
甲基丙烯酸甲酯
D 组(低活性):
H2C CH
CH3 H2C C
H2C CH CH CH2
CH3 H2C C CH CH2
子活性中心的浓度等于引发剂的浓度。
28
聚合度
据活性阴离子聚合的特点: 1)引发剂全部很快地转变成阴离子活性中心; 2)所有链增长同时开始且无链转移和链终止反应。 聚合物的平均聚合度等于每个阴离子活性链所 加上的单体量, 即单体浓度与活性链浓度之比:
双阴离子,n=2; 单阴离子, n=1,[C]为引发剂浓度 29
+
(红色)
H2C CH - Na+ 2
Na+ - HC CH2 CH2 CH - Na+
引发聚合
一般先将金属钠与萘在惰性溶剂中反应后再加入 聚合体系引发聚合,属均相引发体系。
(2)亲核加成引发(阴离子加成引发)
引发剂离解产生的阴离子与单体加成引发聚 合反应:
R M + H2C CH X
R CH2 CH M X
2 CO2
X
O A O C CH CH2
X
O
CH2 CH C O A
H+
X
O HO C CH CH2
X
CH2
36
O CH C OH X
(4)制备嵌段共聚物 利用活性聚合,先制得一种单体的活性链,
然后加入另一种单体,可得到希望链段长度的 嵌段共聚物。
工业上已经用这种方法合成了St-B、 St-B-St两嵌段和三嵌段共聚物,这种聚合物 在室温具有橡胶的弹性,在高温又具有塑料的 热塑性,称热塑弹性体。
自由基聚合:慢引发、快增长、速(双基)终止 阴离子聚合:快引发、慢增长、无终止和无转移
所谓慢增长是相对快引发而言,实际上 阴离子聚合的增长速率常数比自由基还要大。
活性聚合物 阴离子聚合在适当条件下(体系非常纯
净;单体为非极性共轭双烯),可以不发生链终 止或链转移反应,活性链直到单体完全耗尽 仍可保持聚合活性。
或中性亲核试剂引发剂。
(1)电子转移引发
碱金属原子将其外层价电子转移给单体或其它物质, 生成阴离子聚合活性种,因此称电子转移引发剂。根据
电子转移的方式:直接转移引发、电子间接转移引发。
(a)电子直接转移引发
如金属钠引发苯乙烯:
Na + H2C CH
CH2 CH Na
H2C CH - Na+ 2
Na+ - HC CH2 CH2 CH - Na+
(2) 所有增长链同时以相同的速率进行链增长, 直到单体消耗完全,每个活性链有相同的机会分 享全部单体,生成大分子的分子量大小非常接近;
(3) 无链转移和链终止;
(4) 解聚反应可以忽略。 31
分子量分布仍存在一定分散性,why?
反应过程中很难使引发剂分子与单体完全混 合均匀,即每个活性中心与单体混合的机会 总是有些差别。 不可能将体系中的杂质完全清除干净。
☺ 这种通过定量计算加入引发剂和单体, 从而得到预期聚合度和窄分子量分布的 聚合反应称为化学计量聚合。
☺ 阴离子活性聚合得到的产物的分子量分布
很窄,接近单分散,如St在THF中聚合,分 子量分布指数=1.061.12,可用作分子量 及其分布测定的标准样品。
30
其原因为:
(1) 引发反应很快,引发剂立刻全部参加引发反 应,转变成活性中心;
第六章 离子聚合
6.1 引言
离子聚合:活性中心是离子的聚合。
离子聚合与 自由基聚合
的根本区别
聚合活性种不同
离子聚合的活性种是带电荷的离子。
碳阴离子: 阴离子聚合 碳阳离子: 阳离子聚合
离子聚合对单体有较高的选择性:
带有1,1-二烷基、烷氧基等推电子基的单体 才能进行阳离子聚合。
具有腈基、羰基等强吸电子基的单体才能进 行阴离子聚合。
37
6.2 阳离子聚合
阳离子活性很高,极易发生各种副反应, 很难获得高分子量的聚合物,目前主要产品只 有两种:(1)聚异丁烯,(2)丁基橡胶。
6.2.1 阳离子聚合的烯类单体
具有推电子基的烯类单体原则上可进行阳 离子聚合。
38
推电子基团使双键电子云密度增加,有 利于阳离子活性种进攻。
碳阳离子形成后,推电子基团的存在,使 碳上电子云稀少的情况有所改变,体系能 量有所降低,碳阳离子的稳定性增加。
26
(3) 链转移反应
负离子聚合链转移反应发生的比 较少,特别是在低温下进行,链转 移反应就更少了。
27
聚合速率 可简单地用增长速率来表示:
上式适用条件: (1) 无杂质的活性聚合;
M-——阴离子增长 活性中心的总浓度
(2) 且引发快于增长反应,即在开始聚合前,
引发剂已定量地离解成活性中心,则阴离
引发聚合
属非均相引发体系,为尽可能地增加引发剂与单体 的接触面积 ,聚合过程中通常是把金属与惰性溶剂加 热到金属的熔点以上,剧烈搅拌,然后冷却得到金属 微粒,再加入聚合体系。
(b) 电子间接转移引发
萘-钠复合物引发苯乙烯进行阴离子聚合:
THF Na +
Na (绿色)
Na
H2C +
CH
CH2 CH Na
羰基化合物、杂环化合物,大多属离子聚 合。
6.2 阴离子聚合
6.2.1 阴离子聚合单体 具有吸电子取代基的烯类单体原则上可以进行 阴离子聚合。 能否聚合取决于两种因素: (1)是否具有-共轭体系
带有吸电子基团并具有-共轭体系,能够进行 阴离子聚合,如S、B、AN、MMA;
4
带有吸电子基团并不具有-共轭体系,则 不能进行阴离子聚合,如氯乙烯(VC)、VAc。
20
实验证据 萘钠在THF中引发苯乙烯聚合,碳阴
离子增长链为红色,直到单体100%转 化,红色仍不消失
重新加入单体,仍可继续链增长 (放热),红色消退非常缓慢,几天~ 几周
21
Na +
[ THF
[2
] THF Na +2CH2 CH
] Na (绿色)
+ Na CH CH2 CH2 CH Na
(红色)
☺ 烷基乙烯基醚是另一容易进行阳离子聚
合的单体。
46
(3)共轭体系的烯类
π电子的活动性强,易诱导极化,既能阳 离子聚合,又能阴离子聚合,但聚合活性远不 如异丁烯、烷基乙烯基醚,工业很少进行这类 单体的阳离子聚合,但可选作共聚单体。
异丁烯 + 异戊二烯(少量)
聚合
R M 主要有:
金属氨基化合物(MtNH2)、烷氧阴离子(RO-、 PhO-)、有机金属化合物(MtR)、格氏试剂(RMgX) 等。
(a)碱金属烷基化合物 先由金属与醇(酚)反应制得烷氧阴离子,然后再
相关文档
最新文档