何时获得最大利润1ppt

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4ac b 2 物线开口向 上Fra Baidu bibliotek,有最 低 点,函数有最 小 值,是 4a ;当
a<0时,抛物线开口向 下 ,有最 高 点,函数有最 大 值,
4ac b 2 是 4a 。
复习提问
2. 二次函数y=2(x-3)2+5的对称轴是 直线x=3 ,顶点 坐标是 (3 ,5) 。当x= 3 时,y的最 小 值是 5 。
500 20013.5 x 件; 销售额可表示为: x500 20013.5 x 元; 所获利润可表示为:x 2.5500 20013.5 x 元; 当销售单价为 9.25 元时,可以获得最大利润,最大利 润是9112.5 元.
销售量可表示为 :
执教:肖兴兵
复习提问
1. 二次函数y=a(x-h)2+k的图象是一条 抛物线 ,它的对 称轴是 直线x=h ,顶点坐标是 (h,k) . 2 . 二次函数y=ax2+bx+c的图象是一条 抛物线 ,它的对称 b b 4ac b 2 , 直线x 2a 轴是 4a . 当a>0时,抛 2a ,顶点坐标是
3. 二次函数y=-3(x+4)2-1的对称轴是 直线x=-4 ,顶点 坐标是 (-4 ,-1) 。当x= -4 时,函数有最 大 值,是 -1 。 4.二次函数y=2x2-8x+9的对称轴是 直线x=2 ,顶点 坐标是 (2 ,1) .当x= 2 时,函数有最 小 值,是 1 。
活动探究1
某商店经营T恤衫,已知成批购进时单价是2.5元. 根据市场调查,销售量与单价满足如下关系:在一段 时间内,单价是13.5元时,销售量是500件,而单价每 降低1元,就可以多售出200件.请你帮助分析,销售 单价是多少时,可以获利最多?
∴当x=55时,y最大=30250
答:一个旅行团有55人时,旅行社可获最大利润30250元
课堂寄语
二次函数是一类最优化问题的数 学模型,能指导我们解决生活中的实 际问题,同学们,认真学习数学吧, 因为数学来源于生活,更能优化我们 的生活。
下课了!
若设销售价为x元(x≤13.5元),那么
活动探究2
还记得本章一开始涉及的“种多少棵橙子树”的 问题吗?
我们还曾经利用列表的方法得到一个数据,现在请 你验证一下你的猜测(增种多少棵橙子树时,总产量最 大?)是否正确. 与同伴进行交流你是怎么做的.
何时橙子总产量最大
某果园有100棵橙子树,每一棵树平均结600个橙子.现 准备多种一些橙子树以提高产量,但是如果多种树,那么 树之间的距离和每一棵树所接受的阳光就会减少.根据 经验估计,每多种一棵树,平均每棵树就会少结5个橙子.
课堂点睛 “二次函数应用” 的思 路
回顾本课“最大利润”和 “最高产量”解决问题 的过程,你能总结一下解决此类问题的基本思路吗? 1.理解问题; 2.分析问题中的变量和常量,以及它们之间的关系; 3.用数学的方式表示出它们之间的关系;
4.做数学求解;
5.检验结果的合理性,拓展等.
课堂练习
某商店购进一批单价为20元的日用品,如果以单价30 元销售,那么半个月内可以售出400件.根据销售经验,提 高单价会导致销售量的减少,即销售单价每提高1元,销 售量相应减少20件.售价提高多少元时,才能在半个月内 获得最大利润? 解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(40-20x) =-20x2+200x+4000 =-20(x-5)2+4500 ∴当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元
课堂练习2
某旅行社组团去外地旅游,30人起组团,每人单价 800元。旅行社对超过30人的团给予优惠,即旅行团每 增加一人,每人的单价就降低10元。当一个旅行团的人 数是多少时,旅行社可以获得最大营业额? 解:设一个旅行团有x人时,旅行社营业额为y元.则 y=〔 800-10(30-x) 〕· x =-10x2+1100x =-10(x-55)2+30250
如果增种x棵树,果园橙子 的总产量为y个,那么y与x之间的 关系式为:
y=(600-5x)(100+x ) =-5x² +100x+60000
验证猜想
解: y=(600-5x)(100+x ) =-5x² +100x+60000 =-5(x-10)2+60500 ∵当x=10时,y最大=60500 ∴增种10棵树时, 总产量最多,是60500个
相关文档
最新文档