腐蚀的电化学基础(电化学腐蚀动力学)讲义

合集下载

材料腐蚀与防护:第二章 腐蚀电化学理论基础 (2)

材料腐蚀与防护:第二章 腐蚀电化学理论基础 (2)

2.3.3 极化的种类和原因
— 电化学极化 — 浓差极化 — 电阻极化 — 混合极化
电化学极化(活化极化)
阳极电化学极化(活化极化):阳极过程控制步骤=电化学步骤
电子从阳极流走(流向阴极)的速度
>金属离子进入溶液的速度(电化学反应速度)
金属表面由于电子流失 比反应快而积累正电荷
——电位升高
电化学极化(活化极化)
E Ec0
2 1
I Ec0 Ea0 Pa Pc R
Ea0 I1
I2 I
Pc1 Pc2: I1 I2
• 氢过电位对腐蚀电流影响:
析氢腐蚀,阴极反应(H++e→H2)
在不同金属的表面上,极化程度有很大不 +E
同,即过电位不同,导致腐蚀电流不同;
Fe ia
Fe
2
2e
ic
• 处于平衡态时: ia = ic = i0
i0:交换电流密度
• 溶解速度>沉积速度,相当于阳极溶解反应,
ia > ic Fe ia Fe2 2e
– 形成净阳极电流 ia (净)= ia − ic 阳极溶解
– 电位向正方向移动,阳极极化
– 过电位ηa=Ea-E0
• 溶解速度<沉积速度,相当于阴极还原反应,
2.3.1 腐 蚀 速 率
• 单位时间内,单位面积上的金属失重为:
∆g It ⋅ N 1 ( I / S ) ⋅ N i ⋅ N
υ失重 = S ⋅ t = F S ⋅ t = F
=F
– i 腐蚀电流密度 mA/cm2 – 腐蚀电池的电流密度越大,金属腐蚀速率越大
• 我们了解了腐蚀速率与腐蚀电流密度的关系,那么实际 的腐蚀速率究竟如何呢?

第2章 电化学腐蚀的动力学

第2章 电化学腐蚀的动力学

51
ia =ik =ic
稳定电位:电极电位不随时 间变化,又称混合电位
腐蚀电位 稳定状态与平衡状态的区别?
52
腐蚀电池的作用
宏观腐蚀电池的作用
1.一种金属腐蚀而另一种金属不腐蚀: M1腐蚀加速,M2仍不腐蚀
孤立金属M1电极反应:
M1 D + ne
孤立M2电极反应:
M1 n+ + ne D n-
D + ne
10
电化学极化
电化学极化:由电化学步骤来控制电极反
应过程速度的极化
11
电极电位对电化学步 骤活化能的影响
反应按还原方向进行时,当电位改 变△,则带电子nF的粒子穿越双 电层所做的功增加nF△(即终态 总势能的增加),改变电极电位后 阴极反应的活化能增加:
阳极反应的活化能减小:
12
电极电位对电极反应 速度的影响
1.强极化时
在阳极极化曲线的塔菲尔区:
在阴极极化曲线的塔菲尔区:
72
腐蚀体系从腐蚀电位强极化时的极化公式
73
2.微极化时
Rp:线性极化区的极化曲线的斜率,称为极化阻率
74
极化曲线的测量方法
极化曲线: 极化电位与极化电流或极化电流密度之间的关系
曲线
75
1.恒电流法: = f(i) 可能有多值 2.恒电位法: i = F()
稳态扩散过程:扩散途径中每一点的扩散速度都相等,因
而扩散层内的浓度梯度在扩散过程中不随时间改变
菲克第一定律:单位时间内
通过单位面积的扩散物质流量为:
32
在电化学腐蚀过程中,往往是阴极反应,特别是氧分子还原反应 涉及浓度极化。氧分子向电极表面的扩散步骤往往是决定腐蚀速 度的控制步骤 在稳态条件下,扩散层内的浓度梯度就等于扩散层外侧溶液本体 的浓度与电极表面的浓度的差值除以扩散层的厚度:

第二章 金属腐蚀电化学理论基础

第二章  金属腐蚀电化学理论基础
(E=0.00V)
(Pt (镀铂黑)H2(1atm), H+(aH+=1)) 标准氢电极的电极反应为 (Pt) H2 = 2H+ + 2e 规定标准氢电极的电位为零。以 标准氢电极为参考电极测出的电位值 称为氢标电位,记为E(vs SHE) 。 SHE是最基准的参考电极,但使用 不方便,实验室中常用的参考电极有:
1.宏观腐蚀电池
铜铆钉
1. 异种金属相接触 如 电偶腐蚀。 2. 浓差电池 (1)金属离子浓度不同, 浓度低电位低,容易腐蚀。 (2)氧浓度不同 氧浓度低电位低,更容易腐蚀。 3. 温差电池 如金属所处环境温度不同, 高温电位低,更容易腐蚀。
铝板
粘 土
沙 土
2. 微观腐蚀电池 (1)材料本身的不均匀性
也可以简单地说,绝对电极电位是电子导体和离子导体接 触时的界面电位差。
双电层:
由于金属和溶液的内电位不同,在电极系统的金属相和
溶液相之间存在电位差,因此,两相之间有一个相界区,叫做
双电层。 电极系统中发生电极反应,两相之间有电荷转移,是形成 双电层的一个重要原因。 例如:Zn/Zn2+,Cu/Cu2+ 。
腐蚀原电池产生的电流是由于它的两个电极在电解质中的 电位不同产生的电位差引起的,该电位差是电池反应的推动力。 构成腐蚀原电池的基本要素(*) • • • • 阳极 阴极 电解质溶液(*) 电池反应的推动力-电池两个电极的电位差
电流流动:在金属中靠电子从阳极流向阴极;在溶液中靠离 子迁移;在阳、阴极区界面上分别发生氧化还原反应,实现电子 的传递。 从金属腐蚀历程也可看出化学腐蚀与电化学腐蚀的区别。
盐水滴实验
3%NaCl+铁氰化钾+酚酞

第四章电化学腐蚀反应动力学详解

第四章电化学腐蚀反应动力学详解
面的因素:
a)腐蚀的驱动力——腐蚀电池的起始电势差 0,C 0, A
b)腐蚀的阻力——阴、阳极的极化率 PC 和 PA ,以及欧姆电阻 R
三项阻力中任意一项都可能明显地超过另两项,在腐蚀过程中对速度起 控制作用,称为控制因素。利用极化图可以非常直观地判断腐蚀的控制 速度。
欧姆电势降与阴极(或阳极)极化曲线加和起来,如图中的 0,C A线, 然后与阳极极化曲线 0,AS 相交于A点,则点A对应的电流I1就是这
种情况下的腐蚀电流。
0,C 0,A C A I1R I1PC I1PA I1R
I1
0,C
PC
0,A
PA R

I corr
0,C 0,A
PC PA R
则阳极极化 阴极极化
A E Ei Ee (4.1a) c E Ee Ei (4.1b)
对不可逆电极存在一个稳态的电位Es,也使用电极极化一词。这时,极化值 的大小用类似式(4.1)的方程式表示
E Ei Es (4.2)
极化的结果:阴极极化使电极电位负移,阳极极化使电极电位正移。 当电流通过电极时,电极上产生两种相反的作用:
铜不溶于还原性酸,因为铜的平衡电势高于氢的平衡电势,不能形成氢阴极 构成腐蚀电池,但铜可溶于含氧酸或氧化性酸中,因为氧的平衡电势比铜高, 可构成阴极反应,组成腐蚀电池。酸中含氧量多,氧去极化容易,腐蚀电流 较大,而氧少时,氧去极化困难,腐蚀电流较小。见图4.10
铜在非含氧酸中是耐蚀的,但当溶液中含氰化物时,可与铜离子配合形成配 合离子,铜的电势向负方向移动,这样铜就可能溶解在还原酸中。见图4.10
图4.7 氧化性酸对铁的腐蚀
图4.8 金属平衡电极电位对腐蚀电流的影响
图4.9 钢在非氧化酸中的腐蚀极化图

腐蚀电化学研究方法常用技术讲义

腐蚀电化学研究方法常用技术讲义
一个电位测量仪器:直流数字电压表,高阻电压表,直流电位差计, pH计等。
一个实验电解池。
2、极化曲线
方法分类 装置和测量技术:一般用三电极体系 体系构成两个回路:一个是极化回路(电流测量回路)
一个是电位测量回路
极化电源
A
电位测量
二、Tafel直线外推法
极化曲线外延法测定腐蚀速度
对于活化极化控制体系,外加极化较大时,E与lgi间成线性关系,
1、线性极化方程
①活化极化控制的腐蚀体系,在自腐蚀电位附近,也
就是△E很小时(通常在±10mv左右),极化曲线是
线性关系,直线的斜率称极化电阻,Rp= d,E
icorr=
ba bc 2.303(ba bc )
1,线性极化方程式,SterdnI-Geary方
Rp
程式。
两电极系统:两个电极同等程度的极化,但方向相反, 所以两电极的极化值为2△E(V读数),则每个电极 极化值为△E,给定△E后测△I。
在弱极化区选三个适当的极化电位值△E,2△E和-2△E,测量出的相应的极化 电流密度,与极化电位值的关系分别为:
i(△E)=
icorr[exp(
2.3E ba
)-exp(
2b.3c E)]
i(2△E)=
icorr[exp(
4.6E ba
)-exp(
4b.6c E)]
i(-2△E)=
icorr[exp(
1、极化方法与方程式
方法:对腐蚀体系施加恒定电流(其数值应使极化电位不超过10mv),从自腐电 位开始极化,记录其极化电位—时间曲线,由充电曲线方程式计算出稳态时的极化 电位之IRp I已知,求出 Rp
a. 恒电流小极化时可得恒电流充电曲线方程式:

电化学腐蚀的原理PPT课件

电化学腐蚀的原理PPT课件
(2)水化的力量比较小
当金属与电解质溶液接触后,溶液中的一部分已水化了的金属离子将解脱水 化作用向金属表面沉积,使金属表面带正电。同时由于水化等作用,已沉积 到金属表面上的金属离子亦可重新返回到溶液中去。当上述两种过程达到动 态平衡时,结果就形成了金属表面带正电,紧靠金属表面的液层带负电的双 电层,见1-2(b)。
割的部分。
(1)阳极过程:金属溶解,以离子形式进入溶 液,并把等量电子留在金属上;
(2)电子转移过程:电子通过电路从阳极转移 到阴极;
(3)阴极过程:溶液中的氧化剂接受从阳极流 过来的电子后本身被还原。
由此可见,一个遭受腐蚀的金属的表面上至 少要同时进行两个电极反应,其中一个是金属阳 极溶解的氧化反应,另一个是氧化剂的还原反应 。
E(R/O)E0R nF TLn[[O R]]ba
特殊 E (R 条 /O ) E 件 0 0 .0: 5 L g [O 9 ]a n
注意事项
1、a 、b的值半反应式中相应的系数,一般来说,对 于稀溶液,可以直接用浓度代替活度进行计算
2、若组成氧化还原电极的某物质是固体或纯液体, 则不列入方程式,若为气体,则用分压表示,溶液 中的物质用相对浓度表示
0.7618v,带入能斯特方程得
(Zn2/Zn)(Zn2/Zn)0.05n917Vlg{{cc((氧 还化 原态 态))}}ba
0.7615V
0.05917V 2
lg
c(Zn) c
0.7615V 0.05917V lg 0.001 2
0.81V
例1.3讨论中性溶液中H+/H2的电极电势(298.15K, p(H2)=100.0kPa) pH=-lg[H+]
正电性的金属铂上能吸附氧分子或氢分子

第4章腐蚀动力学

第4章腐蚀动力学

第4章腐蚀动⼒学第四章电化学腐蚀动⼒学-1§4—1 电化学腐蚀速度与极化从热⼒学出发所建⽴起来的电位——pH图只能说明⾦属被腐蚀的趋势,但是在实际中需要解决的问题是腐蚀速度。

⼀. 腐蚀速度。

腐蚀速度的表⽰⽅法有三种。

1. 重量法:⽤腐蚀前后重量变化(只⽤均匀腐蚀,⾦属密度相同)增重法:V+ =(W1-W0)/S0t (g/m2h)失重法:V-=(W0-W1)/S0t (g/m2h)式中:W0——式样原始重量。

W1——腐蚀后的重量(g,mg)S0——经受腐蚀的表⾯积(m2) t——经受腐蚀的时间(⼩时)2. 腐蚀深度法(均匀腐蚀时,⾦属密度不同)可⽤此法表⽰。

D深=V±/d =(W1-W0)/S0td (mm/年) 式中d为⾦属密度⼒学(或电阻)性能变化法。

(适⽤于晶间腐蚀,氢腐蚀等)Kσ=(σbo-σbˊ)/σbo×100% K R =(R1-R0)/R0×100%σbo,R0——式样腐蚀前的强度和电阻σbˊ,R1——式样腐蚀后的强度和电阻3. ⽤阳极电流密度表⽰V¯=Icorr×N/F =3.73*10¯4 Icorr×N (g/m2h)F——法拉第常数96500KN——⾦属光当量=W/n =⾦属原⼦量/⾦属离⼦价数⼆. 极化上⼀章讨论了⾦属电化学腐蚀的热⼒学倾向,并未涉及腐蚀速度和影响腐蚀速度的因素等⼈们最为关⼼的问题。

电化学过程中的极化和去极化是影响腐蚀速度的最重要因素,研究极化和去极化规律对研究⾦属的腐蚀与保护是很重要的。

⾦属受腐蚀的趋势⼤⼩是由其电极电位决定的,将两块不同⾦属置于电解质中,两个电极电位之差就是腐蚀原动⼒。

但是这个电位差数值是不稳定的,当电极上有电流流过时,就会引起电极电位的变化。

这种由于有电流流动⽽造成电极电位变化的现象称为电极的极化。

电极的极化是影响腐蚀速度的重要因素之⼀。

(⼀)极化现象。

3 腐蚀热力学动力学详解

3 腐蚀热力学动力学详解

2.303( E Ecorr )
ba
i i exp c corr
2.303( E Ecorr )
bc
建立腐蚀电极上的动力学方程式
2 腐蚀电化学方法的基本原理
⑵线性极化技术
I i [exp exp ] 2.303(EEcorr )
corr
2.303( E Ecorr )
ba
bc
∣E-Ecorr∣<10mv,指数项可以展开为幂级数并化简:
E
ba bc
1
B
I
2.303(ba bc ) icorr
icorr
腐蚀电位附近,极 化曲线呈线性关系
Rp
E ,直线斜率称为极化电阻(或极化阻力)
I
icorr
ba bc 2.303(ba bc )
1 Rp
,线性极化方程式(Stern- Geary方程式)
★电极材料不同、电极所处介质不同, 其电位不同的根本原因在于形成的离子 双电层结构其电荷分布不同。
电极电位
离子双电层电荷密度
金属性质、溶液温度、金属离子浓度
水层阻止金属离子与表面电子接触复合
平衡态离子双电层结构
双电层具有电容和电阻的性能
二、 平衡电位和非平衡电位
平衡电位 当金属电极上只有一个确定的电极反应, 并且该反应处于动态平衡中,那么电极就 获得了一个不变的电位值,该电位值称为 平衡电位。
( A)
ba
0
corr corr a
2.303( Ecorr Ee,a )
ba
ic
ic0
exp
2.303( E Ee,c )
(B)
bc
i i exp (D) 0
corr c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阳极极化:金属腐蚀原电池有电流通过后引起阳
极电极电位向正的方向移动的现象。
阴极极化:金属腐蚀原电池有电流通过后引起阴
极电极电位向负的方向移动的现象。
① 阳极极化的原因
在金属阳极上产生极化的原因有三个:
—— 阳极活性极化:金属电离产生离子的速度
低于电子迁移速度,使得金属腐蚀速度降低,
这种现象称为活性极化。
度降低,使其在阴极表面积累更多的电子,
造成阴极上电子密度增大,电位更负的现象 。 —— 浓差极化:由阴极表面的反应物或生成 物扩散缓慢而引起的极化。
电化学极化的过程 电 子 转 移 反 应 的 方 向 性
反应物将电子传给电极,发生氧化反应
反应物从电极得到电子发生还原反应
二者总是同时存在的。如果在同一电极上的两个方向的反应速度
金属的腐蚀与防护
教学课件
石油工程学院海工教研室
第二章
腐蚀的电化学基础 ——电化学腐蚀动力学

一、 二、 三、 四、
电化学腐蚀过程 腐蚀速度的图解分析法 钝化作用 思考题
一、 电化学腐蚀过程 ——电极过程动力学基础
(一)电极过程的特征
电化学腐蚀本质上是一种电极过程。
将电流通过电极与溶液界面时所 发生的一连串变化的总和。
—— 浓差极化:由于金属阳极表面金属离子 扩散速度缓慢,使其表面离子浓度增加,阻 止了金属进一步电离; —— 电阻极化:由于金属表面生成氧化物, 阻止了金属离子的进一步的解离,这种现象 成为电阻极化、习惯上也叫钝化现象。
② 阴极极化的原因
阴极极化的主要原因有两个:
—— 阴极活性极化:由于阴极结合电子的速
电极过程的速度控制步骤:控制着整个电极过程速度的单元步骤。 采取措施提高了速度控制步骤的速度,才能提高整个电极过程的速 度。
为了使电极过程得以在所要求的速度下进行,必须增加对电极过
程的推动力,即需要一定的过电位。
电子转移过电位
由于电子转移步骤控制整个电极过程速度而引起的过电位
过 电 位 的 分 类
并且认为正在参加电极反应的反应物位于外紧密层。为了
使问题简化,我们还规定物质O与物质R以及溶液中的局外
电解质均不能吸附于电极上。此外还假定电极本身与物质 O和物质R之间不存在任何化学的相互作用。
电 子 转 移 步 骤 反 应 速 度 与 电 极 电 位 关 系 的 推 导
根据过渡状态理论,反应物O转变为产物R时需要越过图
浓差过电位
由于液相传质步骤控制整个电极过程速度而引起的过电位
反应过电位
由于表面转化步骤为控制整个电极过程速度而引起的过电位
结晶过电位
由于原子进入电极的晶格存在困难而引起的过电位
如 何 找 到 速 度 控 制 步 骤
首先,我们要通过实验对每个单元步骤的动力学特征分别 进行研究,研究出某一单元步骤的特征和影响这个步骤速度的 各个因素。
浓差极化
电极表面附近离子浓度与溶液中不同造成的极化
电极过程中至少要有一个步骤是电子转移步骤,
其特点是反应发生在电极与溶液界面之间,而且有电子
体的界面上, 而是在溶液的体相内部发生。这种情况下的电子转移是
杂乱无章的,方向是任意的,所以不能形成电流。
. 金属的极化现象 ⑴ 定义:金属腐蚀原电池有电流通过后引起电极 电位偏移的现象。包括阳极极化和阴极极化。
i i i
0 a 0 c
0
交换电流密度,是平衡电位下单 向氧化或单向还原的电流密度,它与 反应体系中各组分的浓度有关,是衡 量电化学极化难易的主要标志。
在两类导体界面上发生的 电极过程是一种有电子参加的 异相氧化还原反应。
电极过程应当服从异相 催化反应的一般规律。
电 极 过 程 的 特 征
首先,反应是在两相界面上发生的,反应
速度与界面面积的大小和界面的特性有关。
其次,反应速度在很大程度上受电极表面 附近很薄的液层中反应物和产物的传质过程的 影响。
电极过程的速度Vr
电极过程在电极与溶液界面间进行,可以用单位表 面上所消耗的反应物物质的量来描述电极过程的速度Vr, 其单位为mol· s-1· m-2。
因为在稳态下进行的各步骤速度应当相等,故可根
据单位时间内这个电极反应式所需要的电量来表示这个电 极过程的反应速度。
电极过程中各个单元步骤进行的速度并不一样大。每个单元步骤单 独进行时速度有大有小,说明它们所蕴藏的反应能力大小不同。
中的过渡态#
阳极极化反应过程中反应体系的势能曲线
电 子 转 移 步 骤 反 应 速 度 与 电 极 电 位 关 系 的 推 导
此时单位面积上的阳极反应和阴极反应速度分别为:
氧化反应(阳极):
W1 0 v AaC R exp K aC R RT
0 a
还原反应(阴极):
相等,则宏观上看来无电流表现;但当二者反应速度不同时,就会在 电极上产生静电流(外电流)
电 子 转 移 步 骤 反 应 速 度 与 电 极 电 位 关 系 的 推 导
设电极反应为R→O + ne,其中O为氧化产物,R为还 原产物。我们假定液相传质步骤速度很快,紧靠电极表面
的液层中反应物与产物的浓度与溶液内部的总体浓度相同,
v
0 c
W2 0 AcC O exp K cCO RT
电 子 转 移 步 骤 反 应 速 度 与 电 极 电 位 关 系 的 推 导
在平衡电位下,电极反应处于一种动态平衡:
v v
0 a
0 c
0 0 ia nFva
0 ic0 nFvc
宏观上无反应物的消耗和生成物的产生,因此
然后,掌握了各单元步骤的动力学特征后,可以把由实验 得到的的电极过程动力学特征加以分析。如果某个单元步骤的
动力学公式可以代表整个电极过程的动力学公式,则这个单元
步骤就是电极过程的速度控制步骤。影响这个单元步骤速度的 因素,也就是影响整个电极过程速度的因素。
(二)电化学极化过程
电化学极化 由于电子转移步骤控制整个电极过程速度而产生的极化
溶液中朝着一定方向输送某种物质的过程。
电 极 反 应 的 单 元 步 骤
液相传质步骤
附近输送的单元步骤
前置的表面转化步骤
反应物粒子自溶液内部或自液态电极内部向电极表面
电子转移步骤
反应物粒子在电极与溶液界面间得电子或失电子的单 元步骤
新相生成步骤
散的单元步骤
后置的表面转化步骤
产物粒子自电极表面向溶液内部或向液态电极内部疏
相关文档
最新文档