第四章_电化学腐蚀动力学
腐蚀动力学.

六、混合电位理论
混合电位理论在腐蚀理论中地位极为重要, 他与腐蚀动力学方程一起构成了现代腐蚀 动力学的理论基础。
混合电位理论有两个基本假设: (1)任何电化学反应都能分成两个或两 个以上的氧化反应分和还原分反应; (2)电化学反应过程中不可能有净电荷 积累。
自腐蚀电位:金属在腐蚀介质中处于自腐蚀状 态下的电位称为自腐蚀电位,简称腐蚀电位。
O2 2H2O 4e 4OH
O2 4H 4e 2H2O
(2)氢离子的还原反应
2H 2e H 2O
(3)高价金属离子的还原反应
Fe3 e Fe2
(4)氧化性阴离子的还原反应
2 Cr2O7 14H 6e 2Cr 3 7H2O
极化行为通常用极化曲线来描述。极化曲线 是表示电极电位与极化电流强度或极化电流密度i 之间关系的曲线。
曲线的倾斜程度表示 极化程度,曲线倾斜 程度越大,极化程度 越大,电极过程就越 难进行。
图1 极化曲线示意图
三、腐蚀极化图
1、 腐蚀极化图 腐蚀极化图是一种电位—电流图,它是把 表征腐蚀电池特征的阴、阳极极化曲线画 在同一张图上构成的。 腐蚀电位是一种 不可逆的非平衡 电位,需由实验 测得。
0 a
当电极上有电流通过时,电极将发生极化。
阴极极化:
e EC EC EC C
nFC nFC iC i i i [exp( ) exp( )] RT RT
0
阳极极化:
Ea Ea E a
e a
0
ia i i i [exp(
nFa
0 1
将单电极反应的电化学极化方程代入,得:
当过电位大于
腐蚀动力学模型

腐蚀动力学模型
腐蚀动力学模型是指基于大量实验数据和理论分析建立的一套数学模型,用于解释,
预测和优化腐蚀过程中金属材料的失效行为。
腐蚀动力学模型包括电化学腐蚀模型,应力
腐蚀开裂模型,高温氧化腐蚀模型等多种形式,但它们的基本原理都是相似的。
电化学腐蚀模型是最常见的一种腐蚀动力学模型,它是基于诸如极化曲线,极化电阻,电化学阻抗谱等电化学测试数据建立的。
在电化学腐蚀模型中,腐蚀速率是由电流密度,
金属表面的电位和溶液组成的。
通过对模型参数的优化来拟合实验数据,可以准确地预测
腐蚀速率的变化和确定最优腐蚀防护措施。
应力腐蚀开裂模型是另一种常见的腐蚀动力学模型,它是基于金属材料的裂纹成长原
理建立的。
在应力腐蚀开裂模型中,金属材料在经历应力作用时,可能出现裂纹,然后裂
纹逐渐扩展到材料内部而导致失效。
应力抑制因子,应力浓度因子和应力强度因子是应力
腐蚀开裂模型中的重要参数,它们可以用来评估材料的抗应力腐蚀开裂性能,并且指导相
关腐蚀防护技术的研发。
高温氧化腐蚀模型是一种专门用于研究高温下金属材料的氧化失效行为的腐蚀动力学
模型。
该模型基于氧化层生长的规律和反应动力学原理,考虑到高温,压力,气氛成分,
表面能等因素,可以预测金属材料在高温环境下的氧化速率,氧化层厚度和质量损失等信息,为热工装备的长期运行提供保障。
总之,腐蚀动力学模型是充满挑战又具有广阔应用前景的一个研究领域。
随着新材料
和新工艺的不断涌现,腐蚀动力学模型也将不断更新和完善,为各种工业领域的腐蚀防护
和材料设计提供更加可靠和有效的支持。
第4章腐蚀动力学

第4章腐蚀动⼒学第四章电化学腐蚀动⼒学-1§4—1 电化学腐蚀速度与极化从热⼒学出发所建⽴起来的电位——pH图只能说明⾦属被腐蚀的趋势,但是在实际中需要解决的问题是腐蚀速度。
⼀. 腐蚀速度。
腐蚀速度的表⽰⽅法有三种。
1. 重量法:⽤腐蚀前后重量变化(只⽤均匀腐蚀,⾦属密度相同)增重法:V+ =(W1-W0)/S0t (g/m2h)失重法:V-=(W0-W1)/S0t (g/m2h)式中:W0——式样原始重量。
W1——腐蚀后的重量(g,mg)S0——经受腐蚀的表⾯积(m2) t——经受腐蚀的时间(⼩时)2. 腐蚀深度法(均匀腐蚀时,⾦属密度不同)可⽤此法表⽰。
D深=V±/d =(W1-W0)/S0td (mm/年) 式中d为⾦属密度⼒学(或电阻)性能变化法。
(适⽤于晶间腐蚀,氢腐蚀等)Kσ=(σbo-σbˊ)/σbo×100% K R =(R1-R0)/R0×100%σbo,R0——式样腐蚀前的强度和电阻σbˊ,R1——式样腐蚀后的强度和电阻3. ⽤阳极电流密度表⽰V¯=Icorr×N/F =3.73*10¯4 Icorr×N (g/m2h)F——法拉第常数96500KN——⾦属光当量=W/n =⾦属原⼦量/⾦属离⼦价数⼆. 极化上⼀章讨论了⾦属电化学腐蚀的热⼒学倾向,并未涉及腐蚀速度和影响腐蚀速度的因素等⼈们最为关⼼的问题。
电化学过程中的极化和去极化是影响腐蚀速度的最重要因素,研究极化和去极化规律对研究⾦属的腐蚀与保护是很重要的。
⾦属受腐蚀的趋势⼤⼩是由其电极电位决定的,将两块不同⾦属置于电解质中,两个电极电位之差就是腐蚀原动⼒。
但是这个电位差数值是不稳定的,当电极上有电流流过时,就会引起电极电位的变化。
这种由于有电流流动⽽造成电极电位变化的现象称为电极的极化。
电极的极化是影响腐蚀速度的重要因素之⼀。
(⼀)极化现象。
化学实验中的电化学腐蚀

化学实验中的电化学腐蚀化学实验中的电化学腐蚀是指金属在电解液中发生氧化还原反应而导致金属表面损坏的过程。
电化学腐蚀是一个复杂的过程,涉及到物质的传输与转化、电极反应以及化学平衡等多个方面。
本文将从电化学腐蚀的定义、机理以及预防等方面加以阐述。
1. 电化学腐蚀的定义与机理电化学腐蚀是指金属在特定环境中与电解液发生化学反应,导致金属表面损坏的过程。
主要包括阳极和阴极两个区域,其中阳极区是金属发生氧化反应的地方,阴极区则是金属重新得到电子的地方。
腐蚀反应可以分为两个半反应:氧化半反应和还原半反应。
在阳极区,金属发生氧化反应,失去电子成为离子;在阴极区,离子获得电子还原为金属。
这两个半反应必须同时进行,维持电荷平衡。
导致电化学腐蚀的主要原因是金属与电解液中的离子产生反应,形成氧化物或氢氧化物等产物,使金属表面发生溶解,产生腐蚀现象。
此外,温度、电位、流体速度等因素也会对电化学腐蚀的过程产生影响。
2. 电化学腐蚀的实验方法与技术为了研究电化学腐蚀的过程,科学家们开发了一系列的实验方法和技术。
2.1 极化曲线法极化曲线法是一种通过改变电位观察腐蚀过程的方法。
该方法利用电位扫描仪测量不同电位下的电流变化,从而得到电极电流与电极电位的关系曲线,进而分析腐蚀过程中的各种参数。
2.2 交流阻抗法交流阻抗法是一种通过施加交流电进行测试的方法。
利用交流阻抗仪测量电极的阻抗值,从而得到电化学腐蚀的相关信息,如腐蚀速率、电极界面性质等。
2.3 循环伏安法循环伏安法是一种通过改变电极电位来研究腐蚀反应的方法。
通过改变电位的范围和速率,观察电极电流的变化情况,可以得到电极表面的反应动力学参数。
以上是一些常见的电化学腐蚀实验方法和技术,科学家们利用这些方法和技术可以深入研究电化学腐蚀的机理和特性。
3. 电化学腐蚀的预防措施针对电化学腐蚀的特点和机理,制定相应的预防措施是必要的。
以下介绍几个常用的预防措施。
3.1 阳极保护阳极保护是一种通过在金属表面施加电流,使其成为电化学反应中的阴极而达到保护的方法。
电化学腐蚀

电化学腐蚀1. 什么是电化学腐蚀?电化学腐蚀是金属与其环境中的电解质接触时所发生的一种自发氧化反应。
这种反应导致金属表面有损失,并最终导致金属的破坏。
电化学腐蚀是金属腐蚀的一种常见形式,特别是在湿润环境中。
它是金属腐蚀的主要机制之一,也是金属材料工程中需要考虑的重要问题之一。
2. 电化学腐蚀的机理电化学腐蚀涉及到三个基本组成部分:电极、电解质和外部电路。
在金属表面,由于各种反应产物、氧化物或水分解产物的影响,可能会形成一个电化学电池。
这样的电化学电池包括一个阳极和一个阴极,它们通过电子传导和离子传递来维持反应。
阳极是金属丧失而腐蚀的地方,阴极则是电子和离子的还原地点。
具体来说,金属表面处于不平衡的电位环境中,其电位处于阳极位或阴极位。
当金属处于阳极位时,它会发生氧化反应,如金属离子的溶解和氧气的反应。
而金属处于阴极位时,它会发生还原反应,如离子还原成金属或氧气还原成水。
3. 影响电化学腐蚀的因素3.1 电解质浓度电解质浓度是影响电化学腐蚀的重要因素之一。
较高浓度的电解质会导致电化学反应加速,加剧金属的腐蚀。
这是因为高浓度的电解质提供更多的离子来参与反应。
3.2 温度温度是影响金属腐蚀速率的因素之一。
在高温环境下,金属表面的反应速率会增加,从而加剧电化学腐蚀的过程。
3.3 金属特性不同的金属具有不同的抗腐蚀能力。
一些金属,如铝和不锈钢,具有较好的抗腐蚀性能,而其他金属,如铁和铅,容易受到电化学腐蚀的影响。
3.4 表面处理金属的表面处理可以改善其抗腐蚀性能。
例如,使用防锈涂层或电镀可以提供一个保护性的屏障,阻止电解质接触到金属表面。
4. 防止电化学腐蚀的措施4.1 选取适合的金属在特定的环境中,选择适当的金属可以减少电化学腐蚀的风险。
例如,在酸性环境中使用不锈钢可以有效地预防腐蚀。
4.2 使用防腐涂层对金属表面进行防腐涂层处理可以提供额外的保护层,阻止金属与电解质的直接接触。
一些常用的防腐涂层材料包括油漆、聚合物和金属涂层。
电化学腐蚀动力学

电化学腐蚀动⼒学电化学腐蚀动⼒学20世纪40年代末50年代初发展起来的电化学动⼒学是研究⾮平衡体系的电化学⾏为及动⼒学过程的⼀门科学,它的应⽤很⼴,涉及能量转换(从化学能、光能转化为电能)、⾦属的腐蚀与防护、电解以及电镀等领域,特别在探索具有特殊性能的新能源和新材料时更突出地显⽰出它的重要性,其理论研究对腐蚀电化学的发展也起着重要作⽤。
电化学动⼒学中的⼀些理论在⾦属腐蚀与防护领域中的应⽤就构成了电化学腐蚀动⼒学的研究内容,主要研究范围包括⾦属电化学腐蚀的电极⾏为与机理、⾦属电化学腐蚀速度及其影响因素等。
例如,就化学性质⽽论,铝是⼀种⾮常活泼的⾦属,它的标准电极电位为-1.662V。
从热⼒学上分析,铝和铝合⾦在潮湿的空⽓和许多电解质溶液中,本应迅速发⽣腐蚀,但在实际服役环境中铝合⾦变得相当的稳定。
这不是热⼒学原理在⾦属腐蚀与防护领域的局限,⽽是腐蚀过程中反应的阻⼒显著增⼤,使得腐蚀速度⼤幅度下降所致,这些都是腐蚀动⼒学因素在起作⽤。
除此之外,氢去极化腐蚀、氧去极化腐蚀、⾦属的钝化及电化学保护等有关内容也都是以电化学腐蚀动⼒学的理论为基础的。
电化学腐蚀动⼒学在⾦属腐蚀与防护的研究中具有重要的意义。
第⼀节腐蚀速度与极化作⽤电化学腐蚀通常是按原电池作⽤的历程进⾏的,腐蚀着的⾦属作为电池的阳极发⽣氧化(溶解)反应,因此电化学腐蚀速度可以⽤阳极电流密度表⽰。
例如,将⾯积各为10m2的⼀块铜⽚和⼀块锌⽚分别浸在盛有3%的氯化钠溶液的同⼀容器中,外电路⽤导线连接上电流表和电键,这样就构成⼀个腐蚀电池,如2-1。
图2-1 腐蚀电池及其电流变化⽰意图查表得知铜和锌在该溶液中的开路电位分别为+0.05伏和-0.83伏,并测得外电路电阻R 外=110欧姆,内电路电阻R 内=90欧姆。
让我们观察⼀下该腐蚀电池接通后其放电流随时间变化的情况。
外电路接通前,外电阻相当于⽆穷⼤,电流为零。
在外电路接通的瞬间,观察到⼀个很⼤的起始电流,根据欧姆定律其数值为o o 3k a -0.05(0.83)= 4.41011090I R ??---==?+始安培式中o k ?-——阴极(铜)的开路电位,伏;o a ?——阳极(锌)的开路电位,伏;R ——电池系统的总电阻,欧姆在达到最⼤值I 始后,电流⼜很快减⼩,经过数分钟后减⼩到⼀个稳定的电流值I 稳=1.5×10-4 安培,⽐I 始⼩约30倍。
材料腐蚀与防护-第四章-电化学腐蚀动力学

• 分类:表观极化曲线和理想极化曲线。 • *理想极化曲线----以单电极反应的平衡电位作为起始 电位的极化曲线。 • *表观极化曲线或实测极化曲线---- 由实验测得的腐蚀 电位与外加电流之间关系曲线。 • • 注意:表观极化曲线的起始电位只能是腐蚀电位而不 是平衡电极电位。
在金属腐蚀与防护研究中,测定金属电极表观极化曲线是 常用的一种研究方法。
第一节 第二节 第三节 第四节
本章主要内容 极化现象 极化 去极化 腐蚀极化图
第一节 极化
• 问题:因为具有很大腐蚀倾向的金属不一定必然对应着高 的腐蚀速度。 如:Al的平衡电极电位很负,从热力学上看它的腐蚀倾向很 大,但在某些介质中铝却比一些腐蚀倾向小的金属更耐蚀 。 • 因此,认识电化学腐蚀动力学规律及其影响,在工程上具 有更现实的意义。
2.2 去极化的方法: • 在溶液中增加去极剂(H+、O2-等)的浓度、升温、搅拌 以及其他降低活化过电压的措施,都将增强阴极去极化作 用; • 在溶液中加入络合物或者沉淀剂,它们会与金属离子形成 难溶的络合物或沉淀物,不仅可以使金属表面附近溶液中 的金属离子浓度降低,并能一定程度地减弱阳极极化作用 。 • 在溶液中升温、搅拌等均会加快金属离子进入溶液的速度 ,从而减弱阳极极化作用。 • 如果在溶液中加入某些活性阴离子,就有可能使已经钝化 的金属重新处于活化状态。
2)确定金属的腐蚀速度 • 利用极化曲线外延法求自腐蚀电流Icorr ,一种电化学技术 确定金属腐蚀速度的方法之一。
3.3 腐蚀速度计算及耐蚀评价
• 1)腐蚀速度计算 • 用腐蚀电池的腐蚀电流表征 • 电化学腐蚀过程严格遵守电当量关系。即一个一价的金属 离子在阳极区进入溶液,必定有一个一价的阴离子在阴极 获得一个电子;一个二价的金属的金属离子在阳极区进入 溶液,也必然有一个二价或两个一价的阴离子或中性分子 在阴极取走两个电子,如此类推。 • 金属溶解的数量与电量的关系遵循法拉第定律,即电极上 溶解(或析出)1mol的物质所需的电量为96500c,因此, 已知腐蚀电流或电流密度就能计算出所溶解(或析出)物 质的数量。
第四章钝化

Fe、Ni、Cr、Mo、Al等在稀硫酸中均可发 生因阳极极化引起的钝化
钝化的定义
钝化就是指热力学不稳定的金属或合金由于阳极过 程受阻而引起金属腐蚀速度下降的现象。(或由于 阳极过程受阻而引起金属耐蚀性提高的现象。) 钝化是金属表面状态的突变,金属的本质没有变化 金属钝化后所处的状态称作钝态(Passive State) ,而 钝态金属所具有的性质称之为钝性。
EF与致钝电位EPP的关系: 二者很接近,但并不相同。两者之间可相差百分 之几伏,所以有时可把EPP近似地看作EF 因为: ①EF是钝化膜活化的电位,而EPP是产生钝化的电位; ②EF是在断电后测得的,而EPP是在通电下测得的,故 包含有钝化膜的电阻降和膜孔隙中溶液的浓度极化。
2)破裂电位Eb、保护电位EP及亚稳孔出现电位Em
过钝化区:金属 高价离子溶解, 钝化膜破坏,及 析氧反应 钝化区:形成钝化 膜电位维持在钝化 区可保护金属—— 电化学阳极保护
活化区:阳极金属 溶解(低价离子)
E Etp
•四个特性区 • 四个特性区 • 四个特性电位: • 四个特性电位 过钝化区 E0、 Epp、Ep、Etp • 两个特性电流:
4.2金属钝化的特性曲线
图4-3 可钝化金属的典型阳极极化曲线
A~B区:活性溶解区。金 属处于活性溶解状态,按 正常的阳极溶解规律溶 解,溶解速度受活化极化 控制。金属以低价的形式 溶解为水化离子。 M → Mn+ + ne E↑,i↑,基本服从Tafel规 律。 对于铁来说,即为: Fe → Fe2+ + 2e
C点:对应的电位称E维;电流i维 D点:过钝化电位Etp
D~E区:过钝化区 (Transpassive Potential) 。 电流再次随电极电位的升高而 增加,这是由于氧化膜进一步 氧化生成更高价的可溶性氧化 物。钝化膜被破坏,腐蚀重新 加剧。 E↑ , i ↑ M203+4H20→M20-7+8H++6e 如不锈钢中的六价铬离子的形 成即属此情况,它是由于钝化 膜被破坏,因而使金属的溶解 速度上升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
OH / O2
lg OH pH 14
E
0
OH / O2
1.229 0.059 pH
吸氧腐蚀
特征:
1 电解质溶液中,只要有氧存在,无论在酸性、中性和 碱性溶液中,都可能首先发生吸氧腐蚀。
2 吸氧腐蚀速率受氧浓差极化控制
3 氧具有双重作用
吸氧腐蚀
基本步骤:
(1)氧穿过空气/溶液界面进入溶液
1
吸氧腐蚀
氧的阴极反应的还原过程
2
吸氧腐蚀
氧的阴极反应的还原过程
3
吸氧腐蚀
影响因素: 1 溶解氧浓度的影响 2 温度的影响 3 盐浓度的影响 4 溶液搅拌和流速的影响
iL
nFD
C
1 溶解氧浓度的影响
随着溶解氧浓度的增加, 极限扩散电流密度增大, 吸氧腐蚀速度增加。 但如果腐蚀金属具有钝化 特性,氧浓度增加反而使 金属转化为钝化态,腐蚀 速度会显著降低。
2H 2e H 2
O2 2H 2O 4e 4OH O2 4H 4e 2H 2O
高价离子还原
Fe3 e Fe2
氧化性酸还原
有机物的还原
NO3 2H 2e NO2 H2O
RO 4H 4e RH2 H 2O
材料腐蚀与防护
贵州大学材料与冶金学院
第四章 电化学腐蚀动力学
4.1 腐蚀电池的电极过程
4.2 极化
4.3 去极化 析氢腐蚀 吸氧腐蚀
热力学回答腐蚀原因及腐蚀倾向的问题 动力学解决腐蚀速度问题 相对于腐蚀倾向,人们更关心腐蚀速度
大的腐蚀倾向并不意味着高的腐蚀速度
通过研究电化学腐蚀的动力学问题寻找影响腐蚀 反应速度的因素,并借助控制这些因素以降低腐 蚀速度
4.2 极化
当电极上有净电流通过时,电极电位显著地偏离 了未通净电流的起始电位值,这种现象叫极化。
举例
r
K
A
高阻电压表 V
Cu
Zn
3%NaCl 参比电极
极化作用使电池两电极之间电位差减小、电流密度降低,从 而减缓了腐蚀速率。 极化是决定腐蚀速率的主要因素
- a
外电流为阳极极化电流时,其 电极电位向正的方向移动,称 为阳极极化 外电流为阴极极化电流时,其 电极电位向负的方向移动,称 为阴极极化
活化极化
0.059 i i T c (a ) lg(1 ) lg n iL i0
lg i
浓差极化
iL
(4)电阻极化过电位
电极表面可能存在氧化膜、盐膜和钝化膜等物质,由此产生的极化
r iR
T
iR
i
极化曲线
极化曲线是表示电极电位与电流之间的关系,可分为阳极极化曲 线和阴极极化曲线
a=a+blni
a: 电化学极化过电位
a、b:Tafel常数 i:电流密度
常数a与电极材料、表面状态、溶液组成及温度有关 物理意义是单位电流密度时的过电位 常数b与材料关系不大,对于大多数的金属来说相差 不多,在常温下接近于0.050 V
作业:Tafel 关系式,并说明从Tafel 常数a、b的中获取那些信息?
*阻力大的步骤—最慢—反应速度控制步骤
4.3 去极化
能够消除或抑制原电池阳极或阴极极化的过程被称做去极化。 分为阳极去极化和阴极去极化两类。
在阴极去极化过程中,典型的两种去极化反应 (1)析氢去极化 (2)吸氧去极化。
析氢腐蚀
定义:以氢离子还原反应为阴极过程的腐蚀。 必要条件: 1. 电解质溶液中必须有氢离子存在; 2. 金属的电极电位Em必须低于氢离子的还原电位(-0.413V)
i1
举例:析氢过程的阴极极化曲线
析氢腐蚀
基本步骤: 1.水化氢离子脱水
H nH2O H nH2O
2.氢离子放电成氢原子
H e H
3.氢原子结合成氢分子 H H H 2 4.氢分子形成气泡从表面逸出
氢原子在金属中的扩散
吸附在金属表面的氢原子能够渗入金属并在金属内
阴极极化时, k=e-
过电位总为正值,与极化电流的大小密切相关
二、极化现象的原因
阳极极化原因 1 活化极化 2 浓差极化 3 电阻极化(钝化)
+ + + + +
D -D -
阳极活化极化(电化学步骤)
当金属离子进入溶液的反应速度小于电子由阳极通过导线流向阴极 的速度,则阳极就会有过多的正电荷积累,从而改变双电层的电荷 分布及双电层间的电势差,使阳极向正方向移动。
对流、扩散和电迁移
3 电迁移
对于带电荷的粒子,如果溶液中存在电场,在电场作用下将沿着 一定方向移动。
(2)浓差极化过电位
浓差极化极限电流密度iL(以阴极极化为例)
iL
nFD
—扩散层厚度
C
C—溶液本身氧浓度 D—扩散系数 F—法拉第常数 n—物质的克当量
温度降低,扩散系数D减小,iL减小,腐蚀速率变慢; 反应物浓度降低,腐蚀速率变慢; 通过搅拌或改变电极现状,减少扩散层厚度,增大iL,加速腐蚀。
3.加入缓蚀剂,减少阴极面积,增大析氢过电位
4.降低活性阴离子Cl-、S2-成分
吸氧腐蚀
定义:以氧的还原反应为阴极过程的腐蚀 必要条件:1 溶液中必须有氧存在 2 金属的电位比氧的还原电位低。
O2 2H 2O 4e 4OH EE0OH / O2
0.401V
0.401 0.059lg OH 0.0148pO2
移;如果是固体或气体,则有新相生成。
速度控制步骤 在稳态条件下,各步骤中阻力最大的步骤决定了整个电极反
应的速度,称为速度控制步骤,简称控制步骤,记为RCS或者RDS。
根据控制步骤的不同,极化分为两类: 电化学极化 ( 活化极化 ) 浓度极化 ( 浓差极化 ) (* 电阻极化)
如果电极反应的活化能很高,电化学极化步骤变得最慢,成为控制步 骤,由此导致的极化称为电化学极化或活化极化
(2)在溶液对流作用下,氧迁移到阴极表面
(3)在扩散层范围内,氧在浓度梯度作用下扩散到阴极表面,形 成吸附氧 (4)在阴极表面氧离子发生还原反应,氧的离子化
步骤(1)、(2)和(4)不成为控制步骤 通常步骤(3)速度最慢为控制步骤
吸氧腐蚀
吸氧腐蚀
氧的阴极反应的极化曲线
1
2 3
吸氧腐蚀
氧的阴极反应的极化曲线
扩散,就有可能造成氢鼓泡,氢脆等损害,金属表面 吸附氢原子浓度愈大,则渗入金属的氢原子愈多,氢 损害的危害性愈大。因此,凡是在金属表面发生析氢 反应的场合,如金属在酸性溶液中发生析氢腐蚀,金 属的酸洗除锈,电镀,阴极保护,都应当注意是否会 造成氢损伤问题。
析氢腐蚀特征:
(1)浓差极化可以忽略。 (2)与溶液的pH值关系很大
(2)浓差极化过电位
液相传质过程的三种方式:
1 对流
物质的粒子随着流动的液体而移动。引起流动的原因可能是浓度 差、温度差(自然对流)和机械搅拌作用(强制对流)。在接近 电极表面的静止层(扩散层)中,对流传质的作用不大。 2 扩散 溶液中某组分存在浓度梯度,即使在静止溶液中也会发生该组分 的自浓度高向浓度低转移的现象。
如果反应物由液相向电极表面或产物自电极表面向液相深处运动的液
相传质步骤最慢,由此导致的极化称为浓度极化或浓差极化。
过电位类型
(1)活化极化过电位
(2)浓差极化过电位
(3)混合极化过电位
(4)电阻极化过电位
(1)活化极化过电位(电化学极化过电位)
过电位不仅与电极系统有关,与电极反应的电流密度之间还存在一定的函数 关系 1905年,Tafel发现许多金属在很宽的电流密度范围内,析氢过电位与电流 密度之间呈半对数关系,称为Tafel关系:
腐蚀极化图的应用
腐蚀极化图是研究电化学腐蚀的重要工具。 例1,在阳极极化率较小,阴极反应相同的情况下,金属平衡电位越负, 腐蚀电流越大。
腐蚀极化图的应用
例2,极化阻力越小,腐蚀电流越大
腐蚀控制因素
(a)阴极控制
(b)阳极控制
(c)混合控制
(d) 欧姆控制
电极的极化率由极化曲线的斜率决定,斜率越大极化越大,腐蚀速度越慢。
极化曲线的测定方法分为暂态法和稳态法
暂态法极化曲线的形状与时间和测试频率有关。 稳态法是指测量时每一个给定的电位对应的响应信号(电流)完全达到
稳定不变的状态。控制方式分为恒电流法和恒电位法
(*最为常用的方法是恒电位法)
腐蚀极化图(Evans图)
腐蚀极化图是一种电流-电位图,在腐蚀极化图中,忽略电压随电流变化 的细节,将极化曲线画成直线,称为伊文斯(Evans)图
累,导致阳极电位正移。
在阴极上,电子迅速流入,来不及与溶液中的氧化剂反应而消 耗,致使阴极上电子过剩,导致其电极电位负移。
*极化减小了腐蚀电流,对减缓电化学腐蚀有益。而对于原电池则希望尽
可能减小极化。
电极反应的步骤
一个电极反应至少需包括如下连续步骤: (1) 液相传质:溶液中的反应物向电极界面迁移。 (2) 电子转移(放电)或电化学反应:反应物在电极界面上发 生电化学反应,放出电子(氧化)或得到电子(还原),转 变为产物。 (3) 液相传质或新相生成:产物如果是离子,向溶液内部迁
4.1 腐蚀电池的电极过程
(1)阳极过程 阳极金属发生化学溶解或钝化的过程
第一步 金属离子离开晶格转变为表面吸附原子 M晶格——M吸附
第二步 表面吸附原子越过双电层进行放电转变为水合阳离子
M吸附+mH2O——Mn+ + ne 第三步 水合阳离子从双电层溶液侧向溶液深处迁移