四年级等差数列求和及练习题

合集下载

等差数列求和计算题

等差数列求和计算题

等差数列求和计算题
"等差数列求和计算题"是指给定一个等差数列,并要求计算这个数列的前n项和的问题。

在等差数列中,相邻的两项之间的差值保持不变,这个差值称为公差。

求和计算题着重于找出数列的前n项和的数值。

可以使用等差数列求和公式来解决这类问题,这个公式是:Sn = (n/2) * (a1 + an)
其中Sn是数列的前n项和,n是项数,a1是数列的第一项,an 是数列的第n项。

通过将已知的数列信息代入这个公式,就可以得到所求的和的数值。

例:求等差数列1, 4, 7, 10, 13, ... 的前10项和。

首先求出公差d,第二项减去第一项为3,第三项减去第二项也为3,公差为3。

其次,代入公式。

n=10, a1=1, d=3。

Sn = (10/2) * (1 + (1+ (10-1)*3))
= 5 * (1+ 27)
= 140
因此,这个等差数列的前10项和为140。

四年级奥数等差数列求和

四年级奥数等差数列求和

等差数列求和例1、有一个数列:3、6、9、12、……480,这个数列共有几项?其中48是第几项?练1、有一个数列:13、21、29、37、……85,这个数列共有几项?练2、有一个数列:113、108、103、98、……48,这个数列共有几项?练3、已知一个等差数列,首项是6,末项是126,公差是5,其中121是第几项?练4、已知等差数列5、7、9、11……这个数列的第20项和第92项分别是什么?练5、已知等差数列500、497、494、491……这个数列的第20项和第92项分别是什么?例2、计算1+2+3+4+5+6+7+8+9+10练、计算1+2+3+4+5+……+99+100 1+2+3+4+……+500计算1+2+3+4+……+133 1+2+3+4+……+311例3、计算5+8+11+14+17……+38练、计算16+19+22+25……+100 5+7+9+11+……+47计算41+46+51+……306 6+16+26……+666计算999+997+995+……+101 777+769+761+753……+401例4、有一个等差数列:1、5、9、13……那么这个等差数列前100项的和是多少?练1、有一个等差数列:1、5、9、13……那么这个等差数列前50项的和是多少?练2、有一个等差数列:9、11、13、15……那么这个等差数列前65项的和是多少?练3、有一个等差数列:300、297、294……那么这个等差数列前55项的和是多少?练4、有一个等差数列a1=18,d=5,那么这个等差数列前99项的和是多少?例5、计算(1+3+5+……+2019)-(2+4+6+……2018)练1、计算(2+4+6+...+100)-(1+3+5+ (99)练2、计算1000-1-2-3-……-20练3、计算2000-3-6-9-……-51-54练4、计算1+2+3+......+9+10+20+30+......+90+100+200+300+ (1000)请认真完成作业~·~1、有一个数列:10、13、16、19……124,这个数列共有几项?其中28是第几项?2、计算1+2+3+4+……199 1+2+3+4……+3333、计算80+81+82+83……+150 332+331+330+……+1004、计算1+3+5+7+9……+99 8+10+12+14+……+1885、计算23+26+29+……119 222+118+114+……+986、有一个等差数列,a1=13,d=4,求前40项的和。

四年级奥数第四讲_等差数列含答案

四年级奥数第四讲_等差数列含答案
二、典例剖析:
例(1) 在数列 3、6、9……,201 中,共有多少数?如果继续写下去,第 201 个数 是多少? 分析: (1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:
项数=(末项-首项) 公差+1,便可求出。 (2)根据公式:末项=首项+公差 (项数-1) 解: 项数=(201-3) 3+1=67 末项=3+3 (201-1)=603
=1+600×99÷2 =29701(个) 答:这个点阵共有点 29701 个。
5、解: 当 X=1991 时,则 Y+Z=2, Y=Z=1
有1组
y 1 y 2 当 X=1990 时,则 Y+Z=3, z z 或 z 1
有2组
当 X=1989 时,则 Y+Z=4.
Y 1 y 2 y 3 Z 3 或 z 2 或 z 1 有 3 组
答:有 15 个男生参加了比赛。
练一练:从 1 到 50 这 50 个连续自然数中,取两数相加,使其和大于 50,有多少种不 同的取法?
答案: 625 种
例(6)若干人围成 16 圈,一圈套一圈,从外向内圈人数依次少 6 人,如果共有 912 人,问最外圈有多少人?最内圈有多少人?
分析:从已知条件 912 人围成 16 圈,一圈套一圈,从外到内各圈依次减少 6 人,也就
它前面两个数中大数减去小数的差,从第一个数开始到第 2002 个数为止这 2002 个数的和


二、简答题 (每小题 10 分)
1、有 10 只盒子,54 个乒乓球,能不能把 54 个乒乓球放进盒子中去,使各盒子的乒乓球
数不相等?
2、小明家住在一条胡同里,胡同里的门牌号从 1 号开始摸着排下去。小明将全胡同的门牌 号数进行口算求和,结果误把 1 看成 10,得到错误的结果为 114,那么实际上全胡同有多 少家?

小学四年级升五年级数学思维能力培训教案第3章-等差数列求和

小学四年级升五年级数学思维能力培训教案第3章-等差数列求和

第三章:等差数列求和
一、例题赏析
1、求1+2+3+……+1998+1999的和。

练习1:求2+4+6+……+196+198的和。

2:一堆圆木堆成右图形状,你能计算
出它的根数吗?如果有10层呢?
练习2:在一张白纸上画20条直线,它们最多出现多少个交点?
3:下图中有多少个长方形?(正方形也看作长方形统计)
练习3:某班有45名同学,每两人握一次手,一共要握多少次手?
二、跟踪训练
1、2+3+4+5+……+99=?
2、50条直线共有多少个交点?
3、下图中有多少个三角形?
4、学校进行乒乓球选拨赛,每个参赛选手都要和其他所有选手各赛一场,一共进行了78场比赛。

问:有多少人参加了选拨赛?
5、某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位。

问:这个剧院一共有多少个座位?
6、1+2+3-4+5+6+7-8+9+10+11-12+……+25+26+27-28
7、下图中共有多少个三角形?。

等差数列求和基础题

等差数列求和基础题

等差数列求和基础题一.选择题1. 等差数列{}n a 的前n 项和为n S ,若142,20,a S ==则6S = A.16 B.24 C.36 D.422. 设等差数列{}n a 的前n 项和为n S ,若111a =-,376a a +=-,则当n S 取最小值时,n 等于A.8B.7C.6D.93. 已知n S 是等差数列{}n a 的前n 项和,且63S =,1118S =,则9a 等于 A.3 B.5 C.8 D.154. 已知等差数列{a n }前n 项的和为S n , 233=a , S 3=9,则a 1= A.23 B.29C.-3D.6 5. 已知等差数列{}n a 中,256,15a a ==,若2n n b a =,则数列{}n b 的前5项和为 A. 90 B. 45 C. 30 D. 1866. 等差数列}{n a 的前n 项和为n S ,若119717,170a a a S ++=则的值为 A.10 B.20 C.25 D.307. 设等差数列{a n }前n 项和为S n . 若a 1= -11,a 4+a 6= -6 ,则当S n 取最小值时,n 等于 A.6 B. 7 C.8 D.98. 设等差数列{}n a 的前n 项和为n S ,246a a +=,则5S 等于 A.10 B.12 C.15 D.309. 已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S = A.138 B.135 C.95 D.2310. 记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d = A.2 B.3 C.6 D.711. 已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于A.30B.45C.90D.18612. 设S n 是等差数列{a n }的前n 项和,若S 5 = S 9,则a 3:a 5 = A.5:9 B.9:5 C.3:5 D.5:3 13. 在等差数列}{n a 中,已知S 3=9,S 9=54,则}{n a 的通项n a 为 A.33-=n a n B.n a n 3= C.2+=n a n D.1+=n a n 14. 若等差数列}{n a 的前3项和93=S 且11=a ,则2a 等于 A.3 B.4 C.5 D.615. 等差数列{}n a 中,11a =,3514a a +=,其前n 项和100n S =,则n = A.9 B.10 C.11 D.1216. 等差数列{a n }的前n 项和为S n ,若等于则442,10,2S S S == A.12B.18C.24D.4217. 已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d = A.23-B.13- C.13 D.2318. 在等差数列{a n }中,若a 4+a 6 =12, S n 是数列{a n }的前n 项和,则S 9的值为 A.48 B.54 C.60 D.6619. 一个只有有限项的等差数列,它的前5项的和为34,最后5项和为146,所有项的和为234,则它的第七项等于 A.22 B.21 C.19 D.1820. 已知数列{a n }的通项公式是a n =2n –49 (n ∈N ),那么数列{a n }的前n 项和S n 达到最小值时的n 的值是 A.23 B.24 C.25 D.2621. 已知等差数列{a n }中,a 2+a 8=8,则该数列前9项和S 9等于 A.18 B.27 C.36 D.45 22. 设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4= A.8B.7C.6D.523. 等差数列{}n a 中,n S 是前n 项和,且38S S =,7k S S =,则k 的值为 A.4B.11C.2D.1224. 等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项的和S 9等于 A.66 B.99 C.144 D.297 25. 等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于 A.-1221B.-21.5C.-20.5D.-2026. 等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值为 A.95 B.100 C.115 D.12527. 在等差数列}{n a 中,,,83125S S a =-=则前n 项和n s 的最小值为 A.80- B.76- C.75- D.74-28. 等差数列{a n }中,若a 3+ a 4+ a 5+ a 6+ a 7=450 则前9项和S 9=A.1620B.810C.900D.67529. 已知等差数列{}n a 的前n 项和为n S ,若5418a a =-,则8S 等于 A.144 B.72 C.54 D.36 30. 在等差数列{a n }中,前n 项和S n =36n -n 2,则S n 中最大的是 A.S 1 B.S 9 C.S 17 D.S 1831. 将含有k 项的等差数列插入4和67之间,结果仍成一新的等差数列,并且新的等差 数列所有项的和为781,则k 的值为A.20B.21C..22D.2432. 设数列{}n a 是等差数列,且n S a a ,6,682=-=是数列 {}n a 的前n 项和,则 A.S 4<S 3 B.S 4==S 2 C.S 6<S 3 D.S 6=S 333. 已知等差数列前n 项和为S n ,若S 15<0,S 14>0,则此数列中绝对值最小的项为 A.第6项 B.第7项 C.第8项 D.第9项 34. 设等差数列{}n a 的前n 项和为n S ,已知20092007120102010,2,20092007S S a S =--==则 A.2008- B.2008 C.2010- D.201035. 已知等差数列{}n a 中,10795=-+a a a ,记n n a a a S +++= 21,则13S 的值为 A.130 B.260 C.156 D.16836. 已知等差数列{}n a 的前n 项和为n S ,且424a a -=,39S =,则数列{}n a 的通项公 式为A.n a n =B.2n a n =+C.21n a n =-D.21n a n =+37. 等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则数列{}n a 前9项和9S 等于 A.297 B.144 C.99D.6638. 等差数列{}n a 的前n 项和)3,2,1(⋅⋅⋅=n S n 当首项1a 和公差d 变化时,若1185a a a ++是一个定值,则下列各数中为定值的是A. 15SB. 16SC.17SD.18S39. 在公差为2的等差数列{}n a 中,如果前17项和为1734S =,那么12a 的值为 A. 2 B. 4 C. 6 D. 840. 已知等差数列30,240,18,}{49===-n n n n a S S S n a 若项和为的前,则n 的值为 A.18B.17C.16D.1541. 已知等差数列854,18,}{S a a S n a n n 则若项和为的前-== A.18 B.36 C.54 D.72 42. 设函数()f x =,类比课本推导等差数列的前n 项和公式的推导方法计算(4)(3)...(0)(1)...(4)(5)f f f f f f -+-++++++的值为A.2 B. 2 C.2 D. 243. 在等差数列{a n }中,,3321=++a a a 165302928=++a a a ,则此数列前30项和等于 A.810 B.840 C.870 D.90044. 设数列}{n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项为 A.1 B.2 C.4 D.645. 已知等差数列{}n a 的公差0<d ,若10,248264=+=⋅a a a a ,则该数列的前n 项和n S 的最大值为 A.50 B.45 C.40 D.3546. 等差数列{}n a 中,11a =,3514a a +=,其前n 项和100n S =,则n = A.9 B.10 C.11 D.1247. 若}{n a 是等差数列,首项01>a ,020082007>+a a ,020082007<⋅a a ,则使数列}{n a 的前n 项和n S 为正数的最大自然数n 是A.4013B. 4014C. 4015D. 401648. 设数列{n a }是等差数列,且n S a a ,6,682=-=是数列{n a }的前n 项和,则A.S 4<S 5B.S 4=S 5C.S 6<S 5D.S 6=S 549. 已知等差数列{}n a 的通项公式()211,2,3n a n n =-=,,记11T a =,1121122,,n n n n n n T a n T T a a n -+-++⎧⎪=⎨++⎪⎩为奇数,为偶数(2,3,n =),那么2n T =A.21n+ B.1162n - C.25 436n n n n ⎧⎨-+≠⎩,=1,,1D.232n n + 50. 已知数列2),1(2,}{a a S S n a n n n n 则且项和为的前-=等于A.4B.2C.1D.—251. 等差数列1062,}{a a a S n a n n ++若项和为的前为一个确定的常数,则下列各个和中,也为确定的常数的是A.S 6B.S 11C.S 12D.S 1352. 设n S 是等差数列{}n a 的前n 项和,若3163=S S 则=126S SA.310 B.13 C.81 D.9153. 已知等差数列{}n a 的前n 项和为n S ,若9S =18,n S =240,4n a -=30,则n 的值为 A.18 B.17 C.16 D.15 54. 若等差数列{}n a 的前5项和525S =,且23a =,则7a = A.12 B.13 C.14 D.1555. 已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于 A.64B.100C.110D.12056. 等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且3457-+=n n T S n n ,则使得nnb a 为整数的正整数n 的个数是 A.3 B.4 C.5 D.657. 数列{}n a 是公差为2-的等差数列,若509741=+++a a a ,则=++++99963a a a a A.-182 B.-82 C.-148 D.-7858. 设A .B .C 三点共线(该直线不过原点O ),数列{a n }是等差数列,S n 是该数列的前n 项和=a 1+a 200,则S 200=A.200B.100C.50D.30059. 一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 A.14 B.16 C.18D.2060. 等差数列{a n }中,a 1>0,公差d <0, S n 为其前n 项和,对任意自然数n ,若点(n, S n )在以下4条曲线中的某一条上,则这条曲线应是61. 已知等差数列{a n }前n 项和S n 有最大值且11011-<a a ,当S n 是最小正数时,n = A.17 B.18 C.19 D.20 62. 记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S = A.16B.24C.36D.4863. 设|a n |是等差数列,若a 2=3,a 7=13,则数列{a n }前8项的和为 A.128 B.80 C.64 D.5664. 已知等差数列}{n a 的前n 项和为S n ,若OC a OA a OB 20043+=,且A 、B 、C 三点共线(该直线不过原点O ),则S 2006 =A.1003B. 1004C. 2006D.2007 65. 等差数列{}n a 的前n 项和为n S ,若1697=+a a ,77=S ,则12a 的值是 A.15 B.30 C.31 D.6466. 已知数列{a n }、{b n }都是公差为1的等差数列,其首项分别为a 1、b 1,且a 1+b 1=5,a 1、b 1∈N *,设C n =a b (n ∈N *),则数列{C n }前10项和等于A.55B.70C.85D.10067. 已知,)1()1()1(22102nn nx a x a x a a x x x ++++=++++++ 若 ++21a an a n -=+-291,那么自然数n 的值为A. 3B.4C.5D.668. 已知等差数列{a n }的前n 项和为S n ,若m >1,m ∈N*,且21121,38m m m m a a a S -+-+==,则m 等于A.11B.10C.9D.869. 已知等差数列{a n }中, S n 是它的前n 项和,若S 16>0, S 17<0, 则当S n 取最大值时,n 的值为 A.16 B.9 C.8 D.10 70. 已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n na b 为整数的正整数n 的个数是A.2B.3C.4D.571. 设数列}{n a 是等差数列,且n S a a ,6,673=-=是数列}{n a 的前n 项和,则 A.54S S =B.56S S =C.64S S >D.56S S <72. 已知数列{-2n+25},其前n 项和S n 达到最大值时,n 为A.10B.11C.12D.1373. 若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅<,则使0n S >成立的最大自然数n 是A.198B.199C.200D.20174. 设等差数列{}n a 满足81335a a =.且10a >.n S 为其前n 项之和.则n S 中最大的是 A.10S B.11S C.20S D.21S 75. 已知S n 是等差数列{a n }的前n 项和,且a 2+a 4+a 7+a 15=40,则S 13的值为 A.20 B.65C.130D.26076. 等差数列{}n a 的通项公式是12+=n a n ,其前n 项和为n S ,则数列⎭⎬⎫⎩⎨⎧n S n 的前10项和为A.75B.70C .120 D.10077. 在等差数列}{n a 中,若30,240,1849===-n n a S S ,则n 的值为 A.14B.15C.16D.1778. 在等差数列{}n a 中,若C a a a =++1383,则其前n 项和n S 的值等于5C 的是 A.15S B.17S C.8S D.7S79. 设{}n a 是等差数列,1359a a a ++=,69a =,则这个数列的前6项和等于 A.12B.24C.36D.4880. {}n a 是等差数列,10110,0S S ><,则使n a <0的最小的n 值是 A.5 B.6 C.7 D.881. 等差数列}{n a 的前n 项和为n S ,若10173=+a a ,则19S 的值是 A.55 B.95 C.100 D.不能确定 82. 在等差数列{a n }中,a 1>0,且3a 8=5a 13,则S n 中最大的是 A.S 21B.S 20C.S 11D.S 1083. 设S n 是等差数列前n 项的和,若9535=a a ,则59S S等于 A.1 B.-1 C.2D.2184. 已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为 A.180B.-180C.90D.-9085. 若{a n }是等差数列,首项a 1>0,a 2003+a 2004>0,a 2003·a 2004<0,则使前n 项和S n >0成立的最大自然数n 是 A.4005B.4006C.4007D.400886. 已知等差数列{}n a 中,247,15a a ==,则前10项的和10S = A.100 B.210 C.380 D.400 87. 设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12=A .310 B.13 C.18 D .1988. 设等差数列{a }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取得最大值时,n 的值为 A.5 B.6 C.7 D.889. 已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC +,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=A.100B. 101C.200D.201 90. 已知等差数列{a n }的前20项的和为100,那么a 7·a 14的最大值为 A.25 B.50 C.100 D.不存在91. 若某等差数列{a n }中,a 2+a 6+a 16为一个确定的常数,则其前n 项和S n 中也为确定的常数 的是 A.S 17 B.S 15 C.S 8 D.S 792. 在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则{a n }的前n 项和S n 中最大的负数为 A.S 17B.S 18C.S 19D.S 2093. 等差数列}{n a 的公差为d ,前n 项的和为S n ,当首项a 1和d 变化时,1182a a a ++是一个定值,则下列各数中也为定值的是 A.S 7B.S 8C.S 13D.S 1594. 在等差数列{ a n }中,S 4 =1, S 8 =4,则a 17 + a 18 + a 19+ a 20 的值是 A .7 B .8 C .9 D .1095. 设a 1, a 2, a 3,……和b 1, b 2, b 3,……都是等差数列,且a 1=25, b 1=75,a 100+b 100=100,则数列a 1+b 1, a 2+b 2,……的前100项的和是A.0B.100C.10000D.不确定96. 等差数列{a n }中,若前15项的和S 15=90,则a 8等于97. 已知S k 表示数列{a k }前k 项和,且S k + S k+1 = a k +1 (k ∈N*),那么此数列是 A .递增数列 B . 递减数列 C .常数列 D . 摆动数列 98. 设S n 是等差数列{a n }的前n 项和,若31a a =95,则59S S等于 A.-1 B.21C.1D.2 99. 等差数列{a n }中,a n -4=30,且前9项的和S 9=18,前n 项和为S n =240,则n 等于 A.15B.16C.17D.18100. 等差数列{a n }中,若a 10=10,a 19=100,前n 项和S n =0,则n 等于 A.7B.9C.17D.19参考答案(仅供参考) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 D C A B A D A C C B C B D A B 16 17 18 19 20 21 22 23 24 25 26 27 2829 30C D B D B C D A B C A C BB D3132 33 34 35 36 37 38 39 40 41 42 43 44 45 AB C C A C C A D D D B B B B 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 B B B D A B A D B B B B B C C 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 C D C A A C B B C D A C A C C 76 77 78 79 80 81 82 83 84 85 86 87 8889 90 A B A B B B B A A B B A BA A 919293949596979899100B C C C C A C C A C。

四年级奥数等差数列求和一

四年级奥数等差数列求和一

等差数列的通项公式
定义:等差数列中任意一项 都等于前一项加上一个常数
公式:an=a1+(n-1)d, 其中an是第n项,a1是第 一项,d是公差
特点:每一项与前一项的差 等于公差,且差值相等
求解方法:根据已知项和公 差,利用通项公式求出任意
一项
02
等差数列求和的方法
公式法求和
适用范围:适用 于已知首项和公 差的等差数列
公式:S_n = n/2 * (2a_1 + (n1)d),其中a_1是 首项,d是公差, n是项数
推导过程:由等 差数列的性质, 可以推导出该公 式
计算步骤:代入 已知数值,计算 出等差数列的和
倒序相加法求和
添加标题
定义:将等差数列从前往后和从后往前分别相加,再除以2得到等差数列 的和
添加标题
适用范围:适用于等差数列求和问题
+(n-1)d)
变形一: Sn=an^2/2+( n-9)an/2nd/2+n^2/4n/4
变形二: Sn=d/2*n^2+ (a1-d/2)*n
拓展:等差数列 求和公式的应用 范围和适用条件
05
等差数列求和的练习题
基础练习题
题目:1+2+3+...+99=? 题目:求1到100的所有偶数的和。 题目:求1到100的所有奇数的和。 题目:已知等差数列的前三项分别为a、b、c,求该等差数列的和。
添加标题
举例:对于数列1, 3, 5, 7, 9,倒序相加得到1+9, 3+7, 5+5,结果为 10+10+5=25
添加标题
优势:可以快速求解等差数列求和问题

人教版四年级下册数学 等差数列及其应用 专项练习

人教版四年级下册数学  等差数列及其应用  专项练习

人教版四年级下册数学四则运算等差数列及其运算1. 一个等差数列的第3项是21,第7项是57,求它的第10项。

2. 求1+4+7+10+…+295+298的和。

3. 已知等差数列:1,4,7,10,13,…(1)这个数列的第15项是多少?(2)55是其中的第几项?4. 已知等差数列6,11,16,21,…,求:它的第27项是多少?211是它的第几项?5. 琪琪学英语单词,第一天学会了6个单词,以后每天都比前一天多学会1个,最后一天学会了26个。

琪琪在这些天中共学会了多少个单词?6.计算下列各题。

(1)297+293+289+…+213+209(2)2001+1991+1981+1971+19617. 计算下列各题。

(1)2+6+10+14+…+202+206(2)1+3+5+7+9+…+65+678. 学校进行乒乓球选拔比赛,每个参赛选手都要和其他所有选手各赛一场,如果有25人参加比赛,问:一共要进行多少场比赛?9. 养鸡场第一个笼里有4只鸡,第二个笼里有7只鸡,第三个笼里有10只鸡,每个鸡笼总比前一个多放3只鸡,最后一个鸡笼里有40只鸡,问:一共有多少个鸡笼?共有多少只鸡?10. 某校有学生800人,若每年净增60人,10年后共有多少学生在这所学校读过书?11. 婷婷练习口算,她按照自然数的顺序从1开始求和,当计算到某个数时,和是60,但她重复计算了其中一个数字。

问:婷婷重复计算了哪个数字?12. 某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位。

这个剧院共有多少个座位?13. 电视台要播放一部30集的电视剧。

如果要求每天播出的集数互不相等,该电视连续剧最多可以播放几天?14.少年宫为庆祝六一儿童节,在六层塔楼上安装彩灯。

每一层都比下一层多6盏,第一层和第六层彩灯盏数的个位数字都是6。

六层一共装彩灯666盏。

请你算出每一层装的彩灯各有多少盏。

等差数列求和问题

等差数列求和问题

基本题特训1、1+2+3+4+ (50)2、10+11+12+13+14+ (90)3、1+2+3+4+ (200)4、6+7+8+9+10 (80)5、3+4+5+6+ (150)6、4+6+8+10+12+......110 7、1+3+5+7+9+ (99)8、101+102+103+……+198+1999、5+10+15+20+……+10010、4+7+10+13+16+……+12111、时钟几点敲几下,且每半点敲一下,那一昼夜共敲多少下?12、7个自然数的和是98,求这个七个数各是多少。

13、按1、4、7、10、13……排列的一列数中,第90个数是多少?14、小明看一本故事书,第一天看2页,以后每天比前一天多看2页,20天正好看完,这本书共有多少页?15、数列3、6、9、12……396,求这个数列共有多少个数。

其中第80个数是多少?典型题特训1、一个电影院共有30排座位,第一排有20个座位,以后每排要比前排多2个座位,这个电影院共有多少个座位?2、四个连续奇数和是120,求这四个连续奇数是各是多少。

3、六个连续偶数的和是126,求这六个偶数各是多少。

4、有一堆钢管堆成一个梯形共有10层,最底一层有25根,每两层间差2根,求这堆钢管共有多少根。

5、(1+3+5+……2001)-(2+4+6+……2000)6、6个连续偶数的和是1998,求这个六个数。

7、一辆双层公共汽车有66个座位,空车出发,第一站上一位乘客,每二站上两位,第三站上三位,依此类推,第几站后,车上坐满乘客?8、在11和23之间插入7个数,使组成的9个数构成一个等差数列。

写出插入的7个数。

10、100到200之间所有个位是5的数字和是多少?。

等差数列求和口算练习

等差数列求和口算练习

等差数列求和口算练习等差数列是数学中一种常见的数列形式,其中相邻的两项之间的差值是相等的。

在数学运算中,求等差数列的和是一个基本的技能。

通过口算练习,我们可以提高我们的计算能力,加强对等差数列求和的理解。

本文将为大家介绍等差数列的定义及其求和的口算练习方法。

一、等差数列的定义等差数列由一系列数字按照相同的差值顺序排列而成。

等差数列的通项公式为:an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。

二、求等差数列的和的口算练习方法1. 首项与末项求和法若已知等差数列的首项a1、末项an和项数n,则可以通过以下公式快速求得等差数列的和Sn:Sn = (a1 + an) × n / 22. 首项与公差求和法若已知等差数列的首项a1、公差d和项数n,则可以通过以下公式快速求得等差数列的和Sn:Sn = (2a1 + (n - 1)d) × n / 2三、口算练习示例1. 示例一:求等差数列2, 5, 8, 11, 14的和。

根据首项a1=2,公差d=3,项数n=5,使用首项与公差求和法可得:Sn = (2 × 2 + (5 - 1) × 3) × 5 / 2= (4 + 12) × 5 / 2= 16 × 5 / 2= 80 / 2= 40所以等差数列2, 5, 8, 11, 14的和为40。

2. 示例二:求等差数列-3, 0, 3, 6, 9, 12的和。

根据首项a1=-3,末项an=12,项数n=6,使用首项与末项求和法可得:Sn = (-3 + 12) × 6 / 2= 9 × 6 / 2= 54 / 2= 27所以等差数列-3, 0, 3, 6, 9, 12的和为27。

通过以上口算练习示例,我们可以发现求等差数列和的口算方法简单快捷,可以提高我们的计算效率,并锻炼我们的脑力。

进行口算练习时,建议掌握好等差数列的定义及其求和公式,并根据具体的题目灵活运用。

四年级等差数列的奥数题

四年级等差数列的奥数题

等差数列的求和公式为:S=(首项+末项)×项数÷2
求首项是5,末项是93,公差是4的等差数列的和
1.求等差数列1,6,11,16…的第20项是多少?第35项是多少?251是这个等差数列的第几项?
2、已知等差数列2,5,8,11,14…,问47是其中第几项?
3、如果一等差数列的第4项为21,第6项为33,求它的第8项.
4、已知等差数列的公差为4,末项为280,数列共25项,这个数列的首项是多
少?这个数列的第16项是多少?
5、小剧场共有40排座位,每一排都比前一排多2个座位,最后一排有120个
座位,第一排有多少个座位?第25排有多少个座位?
解答:
1.公差为5;
第20项为(20-1)*5+1=96;
第35项为(35-1)*5+1=171;
251是第((251-1)/5)+1=51 项
2.公差为3;
47是第((47-2)/3)+1=16项
3.公差为(33-21)/(6-4)=6;
第8项为33+(8-6)*6=45;
也可直接由33+(33-21)得出
4.令首项为x,则x+(25-1)*4=280,得首项为184;
第16项为184+(16-1)*4=244;
5.公差为2,项数为40,末项为120,
则令首项为x,有x+(40-1)*2=120,得首项为42;
第25排有座位 42+(25-1)*2=90个
6.若在等差数列2,5,8,…的每相邻两项中间插入三项,使它构成一个新的等差数列,则原数列的第10项,是新数列的第()项。

数列求和专项练习(含答案)

数列求和专项练习(含答案)

数列求和专项练习1.在等差数列{}n a 中,已知34151296=+++a a a a ,求前20项之和。

2.已知等差数列{}n a 的公差是正数,且,4,126473-=+-=a a a a 求它的前20项之和。

3.等差数列{}n a 的前n 项和S n =m ,前m 项和S m =n (m>n ),求前m+n 项和S n+m4.设y x ≠,且两数列y a a a x ,,,,321和4321b y b b x b ,,,,,均为等差数列,求1243a a b b --5.在等差数列{}n a 中,前n 项和S n ,前m 项和为S m ,且S m =S n , n m ≠,求S n+m6.在等差数列{}n a 中,已知1791,25S S a ==,问数列前多少项为最大,并求出最大值。

7.求数列的通项公式:(1){}n a 中,23,211+==+n n a a a(2){}n a 中,023,5,21221=+-==++n n n a a a a a9.求证:对于等比数列前n 项和S n 有)(32222n n n n n S S S S S +=+10. 已知数列{}n a 中,前n 项和为S n ,并且有1),(241*1=∈+=+a N n a S n n (1)设),(2*1N n a a b n n n ∈-=+求证{}n b 是等比数列;(2)设),(2*N n a c nn ∈=求证{}n b 是等差数列;11.设数列满足,(Ⅰ)求数列的通项公式:(Ⅱ)令,求数列的前n 项和.【规范解答】(Ⅰ)由已知,当时,而,满足上述公式,所以的通项公式为. (Ⅱ)由可知,①从而 ②①②得{}n a 12a ={}n a n n b na ={}n b n S 1n ≥[]111211()()()n n n n n a a a a a a a a ++-=-+-++-+21232(1)13(222)22n n n --+-=++++=12a ={}n a 212n n a -=212n n n b na n -==•35211222322n n n s -=•+•+•++•23572121222322n n n s +=•+•+•++•-3521212(12)22222n n n n s -+-=++++-•即 12.已知数列{}n a 的前n 项和*∈+=N n nn S n ,22. (1)求数列{}n a 的通项公式;(2)设()n nan a b n 12-+=,求数列{}n b 的前n 2项和.【答案】(1) n a n = (2) 21222n n T n +=+-13.已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式;211(31)229n n S n +⎡⎤=-+⎣⎦(Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .(Ⅰ)由题设可知83241=⋅=⋅a a a a ,又941=+a a , 可解的⎩⎨⎧==8141a a 或⎩⎨⎧==1841a a (舍去)由314q a a =得公比2=q ,故1112--==n n n qa a . (Ⅰ)1221211)1(1-=--=--=n n n n q q a S 又1111111n n n n n n n n n n a S S b S S S S S S +++++-===-所以1113221211111...1111...++-=⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+++=n n nn n S S S S S S S S b b b T12111--=+n .14. 设数列{}n a 的前n 项和为n S .已知233nn S =+.(I )求{}n a 的通项公式;(II )若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T . 【解析】所以,13,1,3,1,n n n a n -=⎧=⎨>⎩1363623n n +=-⨯ ,又1T 适合此式.13631243nnn T +=-⨯ 15.知等差数列满足:,,的前n 项和为.(1)求及;(2)令(n N *),求数列的前n 项和. 【命题立意】本题考查等差数列的通项公式与前n 项和公式的应用、裂项法求数列的和,考查了考生的逻辑推理、等价变形和运算求解能力.【思路点拨】(1)设出首项和公差,根据已知条件构造方程组可求出首项和公差,进而求出求及;(2)由(1)求出的通项公式,再根据通项的特点选择求和的方法.【规范解答】(1)设等差数列的公差为d ,因为,,所以有,解得, 所以;==. (2)由(1)知,所以b n ===, 所以==,即数列的前n 项和=.{}n a 37a =5726a a +={}n a n S n a n S n b =211n a -∈{}n b n T n a nS n b {}n a 37a =5726a a +=112721026a d a d +=⎧⎨+=⎩13,2a d ==321)=2n+1n a n =+-(n S n(n-1)3n+22⨯2n +2n 2n+1n a =211n a -21=2n+1)1-(114n(n+1)⋅111(-)4n n+1⋅n T 111111(1-+++-)4223n n+1⋅-11(1-)=4n+1⋅n4(n+1){}n b n T n4(n+1)。

(完整)四年级等差数列求和

(完整)四年级等差数列求和

德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+,+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。

高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=,=49+52=50+51。

1~100正好可以分成这样的50对数,每对数的和都相等。

于是,小高斯把这道题巧算为(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列的第一个数(第一项)叫首项,最后一个数(最后一项)叫末项,如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。

计算等差数列的和,可以用以下关系式:等差数列的和=(首项+末项)×项数÷2末项=首项+公差×(项数-1)项数=(末项-首项)÷公差+1例1:计算下列数列的和(1)1,2,3,4,5,,,100;(2)8,15,22,29,36,,,71。

其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2随堂小练:计算等差数列1,3,5,7,9,,,99的和例2:计算下面数列的和1+2+3+,+1999分析:这串加数1,2,3,,,1999是等差数列,首项是1,末项是1999,共有1999个数。

由等差数列求和公式可得解:原式=(1+1999)×1999÷2=1999000注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

例3:计算下面数列的和11+12+13+,+31分析:这串加数11,12,13,,,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。

【全国通用】四年级上册奥数培训精品等差数列求和

【全国通用】四年级上册奥数培训精品等差数列求和
斐 丽波丽那在契 这是 些一 天个 中商 共人 学的 会儿了子 多, 少早 个年 单词?
像这样按照一定规律排列成的一列数我们称 在3、算和术=和(一首、项二+末次项方)程×的项代数数÷学2方面,已成为中世纪欧洲数学之典范。
德等国差著 数名列大的科项学数家=(高末斯项-首项)÷公差+1
它为数列 悉5、了5不0把同钥国匙家配在5商0把业锁上,使现用要的将算每术把体钥系匙。正确的配上锁,至多需要试多少次?
解:原数列之和=(6+38)×9÷2 =44×9÷2 =198
等差数列的和=(首项+末项)×项数÷2
例2:计算1 + 6+ 11 + 16 + 21+ 26 +......+ 276
等差数列的和=(首项+末项)×项数÷2 ?
等差数列的项数=(末项-首项)÷公差+1
解:等差数列的项数: (276-1)÷5+1=56(项)
(1)1、2、3、4、5、6…… (如3果)第5一、格10放、入152、粒2,0、第2二5、格3放0入4粒,第3格放入6粒,第四格放入8粒……依次类推,放满64格,一共要放入多少粒石子?
(这2个)数前列2的0项项的数和= 是(多19少9-?101)÷1+1=99 首卡项尔=·弗7,里末德项里=希40·高3,斯公差=4,
斐波那契是一个商人的儿子,早年 随父到过北非,跟从阿拉伯教师学习 计算。后来到埃及、叙利亚、希腊、西 西里和法国旅游,拜访各地的学者,熟 悉了不同国家在商业上使用的算术体系。
经过研究和比较,他认为其他数系无一能与印 度—阿拉伯数系相媲美。斐波那契于1200年回到家乡, 把在各地学得的数学知识加以总结,写成《算盘书》 这是向西欧介绍印度—阿拉伯数系和阿拉伯数学的最 早的著作。这本书的开头介绍了一些算盘知识,而后 却偏离了这一课题。因此,书名中“算盘”一词已失 去它作为计算工具的本意,而应理解为“算术”或由 印度—阿拉伯数系而产生的“算法”。斐波那契大量 吸收并系统地总结了来自阿拉伯文献的数学知识,改 进了欧氏几何的某些技巧,归纳了同种类型的方法和 习题。在算术和一、二次方程的代数学方面,已成为 中世纪欧洲数学之典范。

小学奥数等差数列求和习题及答案

小学奥数等差数列求和习题及答案

等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。

二、表达方式:常用n S 来表示 。

三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。

对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++11002993985051=++++++++共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。

四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。

譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。

例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。

(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

小学数学《等差数列》练习题(含答案)

小学数学《等差数列》练习题(含答案)

小学数学《等差数列》练习题(含答案)你还记得吗【复习1】你能给大家说一说有关等差数列的性质、结论以及相关公式吗?呵呵!快快举手, 多多贏得小印章!分析:以下答案仅供参考!(1)先介绍一下一些定义和表示方法:定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、……从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、••••••从第二项起,每一项比前一项小5 ,递减数列(2)首项:一个数列的第一项,通常用型表示;末项:一个数列的最后一项,通常用爲表示,它也可表示数列的第n项.每个数列都有最后一项吗?数列分有限数列和无限数列;项数:一个数列全部项的个数,通常用n来表示;公差:等差数列每两项之间固定不变得差,通常用d来表示;和:一个数列的某些项的和,常用Sn来表示・(3)三个重要的公式:①通项公式:末项二首项+(项数-DX公差a n =a i+ (n _ 1) Xd回忆讲解这个公式的时候我们可以结合具体数列或者原来学的植树问题的思想,让同学明白末项其实就是首项加上(末项与首项的)间隔的公差个数,或者从找规律的情况入手.同时我们还可延伸出来这样一个有用的公式:aιl-aιlt=(n-m)×cl,②项数公式:项数二(末项-首项)一公差+1 (其实此公式是由①推导出来的,教师也可以帮助同学推导,可以为以后的解方程做好铺垫)由通项公式可以得到:n = (a lt-a l)÷d + \(若U ll);n = (a l-a n)÷d + \(若A a”).找项数还有一种配组的方法,其中运用的思想我们是常常用到的!譬如:找找下面数列的项数:4、7、10、13、•・••••、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、……、(46、47、48),注意等差是 3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48 有48-4+1=45项,每组3个数,所以共45÷3=15组,原数列有15组.当然,我们还可以有其他的配组方法.③求和公式;和=(首项+末项)X项数÷2s l,=(a l+a n)×n÷2对于这个公式的得到我们可以从两个方面入手:(思路 1) 1+2+3+…+98+99+100=(1 + IOo) + (2 + 99) + (3 + 98) + …+ (50 +51)V ______________________ iz______________________ >50-MoL= 101x50=5050(思路2)这道题目,我们还可以这样理解:和=1 + 2 + 3+ 4+ ....+ 98+ 99+100 + 和二100+99 + 98+ 97+ ....+ 3+2+12 倍和=101 + 101+101+101+ .. + 101 + 101+101100 --------即,和=(IOO+l)xl00∙j∙2=101x50=5050(4)中项定理对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首相与末项和的一半;或者换句话说,各项和等于中间项乘以项数•譬如:(1) 4+8+12+...+32+36= (4+36) ×9÷2=20×9=180 ,题中的等差数列有 9 项, 中间一项即第5项的值是20,而和恰等于20X9 ;(2) 65+63+61 + ...+5+3+1= (1+65) ×33÷2=33X33= 1089 ,题中的等差数列有 33 项,中间一项即第17项的值是33,而和恰等于33X33.如果是一个项数为偶数的等差数列,我们该如何运用这个公式呢?其实我们可以将其去掉一项,变成奇数项,求和之后再加上去掉的那一项.中项定理也可用在速算与巧算中.譬如:计算:124. 68+324. 68+524. 68+724. 68+924. 68分析:这是一列等差数列,项数是奇数,中间数是524. 68,所以可以用5X524. 68=2623.4.等差数列是小学奥数的一个重要知识,无论是竞赛还是小升初都是一个考核的重点. 一部分题目是直接考数列,但更多的是结合到找规律、周期等问题进行考核.复习题目的重点就是让学生熟练掌握等差数列的求和、末项和项数的求解.不能让学生去单纯的背公式,而应该把原理讲透∙【复习2]某剧院有25排座位,后一排比前一排多两个座位,最后一排有70个座位•问: 这个剧一共有多少个座位?分析:首项:70-(25-1)X2=22 ,座位总数:(22+70) × 25÷2=1150 .【复习3】小明从1月1日开始写大字。

四年级下册数学试题-奥数培优:利用等差规律计算(含答案)全国通用

四年级下册数学试题-奥数培优:利用等差规律计算(含答案)全国通用

课 题利用等差规律计算教学内容在小学数学竞赛中,常出现一类有规律的数列求和问题在三年级我们已介绍过高斯的故事,他之所以算得快,算得正确,就在于他善于观察,发现了等差数列求和规律. 1+2+3+---+98+99+10050101=1+100+2+99++50+51 1444442444443共()()()= 101×50,即 (100 +1)×(100÷2)=101×50=5050.按一定次序排列的一列数叫做数列,数列中的数称为项,第一个数叫第一项,又叫首项;第二个数叫第二项……最后一个数叫末项.如果一个数列从第二项开始,每一项与它前面一项的差都相等,就称这个数列为等差数列.后项与前项的差叫做这个数列的公差.如: 1,2,3,4.…是等差数列,公差为l ; l ,3,5,7,…是等差数列,公差为2; 5,10,15,20,…是等差数列,公差为5.由高斯的巧算可知,在等差数列中,有如下规律: 项数=(末项首项)÷公差+1 第几项=首项+(项-1)×公差 总和=(首项十末项)×项数÷2本讲用各种实例展示了等差数列的广泛应用价值,我们要求同学们注意灵活应用这三个公式计算下面各题:(1) 2+5+8+…+23+26+29;(2)(2+4+6+...+100) - (1+3+5+ (99)解(1)这是一个公差为3、首项为2、末项为29、项数为(29 -2) ÷3+1=10的等差数列求和,原式= (2+29)×10÷2=31×10÷2=155.(2)解法一原式=(2+100)×50÷2-(1+99)×50÷2=2550 - 2500=50,解法二原式= (2-1)+(4-3)+(6-5)+…+(100 - 99)=l×50= 50.两种解法相比较,解法一直接套公式,平平淡淡;解法二从整体上把握了题目的运算结构和数字特点,运用交换律和结合律把原式转化成了整齐的结构“1+1+…+1”,因而解得更巧、更好计算:l÷2010 +2÷2010 +3÷2010 +…+2008÷2010+2009÷2010+ 2010÷2010如果按照原式的顺序,先算各个商,再求和,既繁又难,由于除数都相同,被除数组成一个等差数列:1,2,3,4,…,2008,2009,2010.所以可根据除法的运算性质,先求全部被除数的和,再求商解原式= (1+1+2+3+…+2009+2010)÷2010= (1- 2010)×2010÷2÷2010=1000. 5此题解法巧在根据题目特点,运用除法性质进行转化计算中又应用乘除混合运算的简化运算.使整个解答显得简捷明快。

小学数学简便运算练习题数列与等差数列求和

小学数学简便运算练习题数列与等差数列求和

小学数学简便运算练习题数列与等差数列求和小学数学简便运算练习题 - 数列与等差数列求和一、数列的概念及简便运算法数列是按照一定规律排列的一组数,其中每个数称为数列的项。

数列可以用公式表示,比如:an = a1 + (n-1)d在这个公式中,an表示第n个数的值,a1是数列的首项,n是项数,d是公差。

公差表示每一项与前一项之间的差。

以下是数列的一些常见简便运算法:1. 确定数列的公式:- 如果已知数列的相邻两项之间的差是固定的,那么它是等差数列。

可以通过首项和公差来确定等差数列的表达式。

- 如果已知数列的相邻两项之间的比是固定的,那么它是等比数列。

可以通过首项和公比来确定等比数列的表达式。

2. 求数列的特定项:- 如果已知数列的首项和公差(或公比),可以根据公式an = a1+ (n-1)d(或an = a1 * r^(n-1))来计算数列的特定项。

3. 求数列的和:- 对于等差数列,求前n项的和可以使用公式Sn = (n/2)(a1 + an)。

- 对于等比数列,求前n项的和可以使用公式Sn = a1 * (1 - r^n) /(1 - r),其中r不等于1。

二、练习题1. 求由3、6、9、12、...构成的等差数列的前10项之和。

解答:由题意可知首项a1 = 3,公差d = 6 - 3 = 3。

根据公式Sn = (n/2)(a1 + an),代入n = 10,a1 = 3,an = a1 + (n-1)d = 3 + (10-1)3 = 30。

则前10项的和Sn = (10/2)(3 + 30) = 150。

2. 求由2、4、8、16、...构成的等比数列的前8项之和。

解答:由题意可知首项a1 = 2,公比r = 4 / 2 = 2。

根据公式Sn = a1 * (1 - r^n) / (1 - r),代入n = 8,a1 = 2,r = 2。

则前8项的和Sn = 2 * (1 - 2^8) / (1 - 2) = 510。

四年级等差数列求和及练习题

四年级等差数列求和及练习题

四年级等差数列求和及练习题等差数列求和基本公式等差数列的和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1末项=首项+公差×(项数-1)首项=末项-公差×(项数-1)公差=(末项-首项)÷(项数-1)练1:计算下列各题(1)6+10+14+18+22+26+30(2)1+2+3+4+5+……+198+199(3)1+3+5+7+……+95+97+99(4)2+4+6+8+……+96+98+100(5) 2001-3-6-9-……-57-60(7)(2+4+6+8+……+96+98+100)-(1+3+5+7+……+95+97+99)练2(1)有一串数,已知第一个数是6,后面的每一个数都比它的前一个数大4,这串数中的第2003个数是几何?(2)一个等差数列:3,7,11,15……。

这个等差数列的第100项是多少?1(6) +1985-1982+……+11-8+5-2(3)在等差数列4,10,16,22……中,第48项是几何?508是这个数列的第几项?(4)一个等差数列的第一项是5,第六项是35,它的公差是几何?它的第十项是几何?(5)求首项是5,公差是3的等差数列的前1999项的和。

(6)求一切被2除余数是1的一切三位数的和。

练31、XXX学英语单词,第一天学了6个单词,以后每一天都比前一天多学会一个,最后一天学会了26个。

XXX在这些天XXX了多少个单词?2、有一堆圆木堆成一堆,从上到下,上面一层有10根,每向下一层增加一根,共堆了10层。

这堆圆木共有几何根?3、20个小朋友排成一排玩报数游戏,后一个同学报的数都比前一个同学报的数多3,已知最后。

人教2011版小学数学四年级简单的等差数列求和

人教2011版小学数学四年级简单的等差数列求和

四、等差数列的和
• 例:6 + 10 + 14 + 18 + 22 + 26 + 30 + 34 + 38 分析:这是一个等差数列;首项=6,末项=38,公差=4
原数列的和:6 + 10 + 14 + 18 + 22 + 26 + 30 + 34 + 38 倒过来的和:38+ 34+ 30 + 26 + 22 + 18 + 14 + 10 + 6 44 44 44 44 44 44 44 44 44 44
三、知识运用
• 1、一串数:1、3、5、7、9、……49。这串数共有多少个? 这个数列的项数= (49-1)÷ 2+1=25; • 2、一串数:2、4、6、8、……2008。这串数共有多少个? 这个数列的项数= (2008-2)÷ 2+1=1004 • 3、一串数:101、102、103、104、……199。这串数共有 多少个? 这个数列的项数= (199-101)÷1+1=99
等差数列知识总结:
• 怎样判断一个数列是等差数列 • 怎样求出等差数列项数 • 必须求出等差数列的和
1、等差数列的项数=(末项-首项)÷公差+1 2、等差数列的和=(首项+末项)×项数÷2
四、布置作业

作业:第23页练习六,第9题。
四则运算
简单的等差数列求和
一、等差数列的基本知识
• (一)数列的基本知识
(1)1、2、3、4、5、6…… (2)2、4、6、8、10、12 (3)5、10、15、20、25、30 像这样按照一定规律排列成的一列数我们称它为数列; 数列中的每一个数称为一项; 第1项称为首项;最后1项称为末项; 在第几个位置上的数就叫第数列的基本知识
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列求和
基本公式
等差数列的和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
末项=首项+公差×(项数-1)
首项=末项-公差×(项数-1)
公差=(末项-首项)÷(项数-1)
练习1:计算下列各题
(1)6+10+14+18+22+26+30 (2)1+2+3+4+5+……+198+199
(3)1+3+5+7+……+95+97+99 (4)2+4+6+8+……+96+98+100
(5) 2001-3-6-9-……-57-60 (6) 1991-1988+1985-1982+……+11-8+5-2
(7)(2+4+6+8+……+96+98+100)-(1+3+5+7+……+95+97+99)
练习2
(1)有一串数,已知第一个数是6,后面的每一个数都比它的前一个数大4,这串数中的第2003个数是多少?
(2)一个等差数列:3,7,11,15……。

这个等差数列的第100项是多少?
(3)在等差数列4,10,16,22……中,第48项是多少?508是这个数列的第几项?
(4)一个等差数列的第一项是5,第六项是35,它的公差是多少?它的第十项是多少?
(5)求首项是5,公差是3的等差数列的前1999项的和。

(6)求所有被2除余数是1的所有三位数的和。

练习3
1、丹丹学英语单词,第一天学了6个单词,以后每一天都比前一天多学会一个,最后一天学会了
26个。

丹丹在这些天中共学会了多少个单词?
2、有一堆圆木堆成一堆,从上到下,上面一层有10根,每向下一层增加一根,共堆了10层。

这堆圆木共有多少根?
3、20个小朋友排成一排玩报数游戏,后一个同学报的数都比前一个同学报的数多3,已知最后
一个同学报的数是62,第一个同学报的数是多少?
4、45个同学聚会,见面时每个人都和其余的人握手一次,那么一共握手多少次?。

相关文档
最新文档