深圳市中考数学填空题专项练习经典测试题(含答案解析)

合集下载

中考数学填空题专项练习经典测试(含答案解析)(2)

中考数学填空题专项练习经典测试(含答案解析)(2)

一、选择题1.如图,在5×5正方形网格中,一条圆弧经过A、B、C三点,那么这条圆弧所在的圆的圆心为图中的()A.M B.P C.Q D.R2.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣13.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27B.36C.27或36D.184.如图中∠BOD的度数是()A.150°B.125°C.110°D.55°5.将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5B.y=2(x+3)2+5C.y=2(x﹣3)2+5D.y=2(x+3)2﹣56.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-7.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( )A .x(x -1)=2070B .x(x +1)=2070C .2x(x +1)=2070D .(1)2x x -=2070 8.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >49.下列判断中正确的是( )A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦10.已知二次函数y =ax 2+bx+c 中,y 与x 的部分对应值如下: x1.1 1.2 1.3 1.4 1.5 1.6 y ﹣1.59 ﹣1.16 ﹣0.71 ﹣0.24 0.25 0.76则一元二次方程ax 2+bx+c =0的一个解x 满足条件( )A .1.2<x <1.3B .1.3<x <1.4C .1.4<x <1.5D .1.5<x <1.6 11.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( ) A .﹣1、3B .1、﹣3C .﹣1、﹣3D .1、3 12.二次函数y=3(x –2)2–5与y 轴交点坐标为( )A .(0,2)B .(0,–5)C .(0,7)D .(0,3) 13.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( )A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=150 14.下列说法正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“概率为1的事件”是必然事件 15.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次方程220ax ax a c -++=的根为( )A .0,4B .-3,5C .-2,4D .-3,1二、填空题16.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____.17.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.18.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.19.如图,AB 为O 的直径,弦CD AB ⊥于点E ,已知8CD =,3OE =,则O 的半径为______.20.在平面直角坐标系中,已知点P 0的坐标为(2,0),将点P 0绕着原点O 按逆时针方向旋转60°得点P 1,延长OP 1到点P 2,使OP 2=2OP 1,再将点P 2绕着原点O 按逆时针方向旋转60°得点P 3,则点P 3的坐标是_____.21.心理学家发现:学生对概念的接受能力y 与提出概念的时间x (分)之间的关系式为y=﹣0.1x 2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需________ 分钟.22.如图,在边长为2的正方形ABCD 中,以点D 为圆心,AD 长为半径画AC ,再以BC 为直径画半圆,若阴影部分①的面积为S 1,阴影部分②的面积为S 2,则图中S 1﹣S 2的值为_____.(结果保留π)23.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是23602s t t =-,则飞机着陆后滑行的最长时间为 秒. 24.若实数a 、b 满足a+b 2=2,则a 2+5b 2的最小值为_____.25.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.三、解答题26.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?27.如图,已知二次函数y=-x 2+bx+c 的图象经过A (-2,-1),B (0,7)两点.(1)求该抛物线的解析式及对称轴;(2)当x 为何值时,y >0?(3)在x 轴上方作平行于x 轴的直线l ,与抛物线交于C ,D 两点(点C 在对称轴的左侧),过点C ,D 作x 轴的垂线,垂足分别为F ,E .当矩形CDEF 为正方形时,求C 点的坐标.28.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .(Ⅰ)求证:∠A =∠EBC ;(Ⅱ)若已知旋转角为50°,∠ACE =130°,求∠CED 和∠BDE 的度数.29.二次函数2y x bx =+上部分点的横坐标x 与纵坐标y 的对应值如下表: x … 1-12- 0 1 2 3 … y … 3 54 0 1- 0 m …(1)直接写出此二次函数的对称轴 ;(2)求b 的值;(3)直接写出表中的m 值,m = ;(4)在平面直角坐标系xOy 中,画出此二次函数的图象.30.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的宜兴﹣我最喜爱的宜兴小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题(1)请补全条形统计图;(2)若全校有1000名同学,请估计全校同学中最喜爱“笋干”的同学有多少人?(3)在一个不透明的口袋中有4个元全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D,随机地把四个小球分成两组,每组两个球,请用列表或画树状图的方法,求出A,B两球分在同一组的概率.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.B3.B4.C5.A6.C7.A8.B9.C10.C11.A12.C13.B14.D15.B二、填空题16.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长17.1250cm2【解析】【分析】设将铁丝分成xcm和(200﹣x)cm两部分则两个正方形的边长分别是cmcm再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm和(200﹣x)cm两部分列二次18.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大19.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:20.(﹣22)【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4∠xOP2=∠P2OP3=60°作P3H⊥x轴于H利用含30度的直角三角形求出OHP3H从而得到P3点坐标【详解】解:如图∵点21.13【解析】【分析】直接代入求值即可【详解】试题解析:把y=599代入y=﹣01x2+26x+43得599=-01x2+26x+43解得:x1=x2=13分钟即学生对概念的接受能力达到599时需要122.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利23.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值24.4【解析】【分析】由a+b2=2得出b2=2-a代入a2+5b2得出a2+5b2=a2+5(2-a)=a2-5a+10再利用配方法化成a2+5b2=(a-即可求出其最小值【详解】∵a+b2=2∴b225.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍可以求得∠AOB的度数然后根据勾股定理即可求得AB的长详解:连接ADAEOAOB∵⊙O的半径为2△ABC内接于⊙O∠ACB=13三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB,BC的垂直平分线即可得到答案.【详解】解:作AB的垂直平分线,作BC的垂直平分线,如图,它们都经过Q,所以点Q为这条圆弧所在圆的圆心.故选:C.【点睛】本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.2.B解析:B【解析】【详解】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.3.B解析:B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(1)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(2)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.试题解析:分两种情况:(1)当其他两条边中有一个为3时,将x=3代入原方程,得:32-12×3+k=0解得:k=27将k=27代入原方程,得:x2-12x+27=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(2)当3为底时,则其他两边相等,即△=0,此时:144-4k=0解得:k=36将k=36代入原方程,得:x2-12x+36=0解得:x=63,6,6能够组成三角形,符合题意.故k的值为36.故选B.考点:1.等腰三角形的性质;2.一元二次方程的解.4.C解析:C【解析】试题分析:如图,连接OC .∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C .【考点】圆周角定理.5.A解析:A【解析】把22y x =向右平移3个单位长度变为:223()y x =-,再向下平移5个单位长度变为:22(3)5y x =--.故选A .6.C解析:C【解析】【分析】连接OD ,根据勾股定理求出CD ,根据直角三角形的性质求出∠AOD ,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD ,在Rt △OCD 中,OC =12OD =2, ∴∠ODC =30°,CD =2223OD OC +=∴∠COD =60°,∴阴影部分的面积=260418223=2336023π⨯-⨯⨯π- , 故选:C .本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.7.A解析:A【解析】【分析】【详解】解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=2070,故选A.【点睛】本题考查由实际问题抽象出一元二次方程.8.B解析:B【解析】【分析】【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选B.9.C解析:C【解析】【分析】根据等弧概念对A进行判断,根据垂径定理对B、C、D选项进行逐一判断即可.本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误.故选C.10.C解析:C【解析】【分析】仔细看表,可发现y的值-0.24和0.25最接近0,再看对应的x的值即可得.【详解】解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选C.【点睛】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.11.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a,b的值.【详解】解:∵P(-b,2)与点Q(3,2a)关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A.【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.12.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.13.B解析:B【解析】【分析】可设每月营业额平均增长率为x,则二月份的营业额是100(1+x),三月份的营业额是100(1+x)(1+x),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x.根据题意得:100(1+x )2=150,故选:B .【点睛】本题考查数量平均变化率问题.原来的数量为a ,平均每次增长或降低的百分率为x 的话,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a (1±x )(1±x )=a (1±x )2.增长用“+”,下降用“-”. 14.D解析:D【解析】试题解析:A 、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B 错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C 错误; D. “概率为1的事件”是必然事件,正确.故选D. 15.B解析:B【解析】【分析】先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.【详解】∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =∴()2620a c -+=或()2220a c --+=∴整理方程即得:160a c +=∴16c a =-将16c a =-代入220ax ax a c -++=化简即得:22150x x --=解得:13x =-,25x =故选:B .【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.二、填空题16.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x ﹣2)(x ﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长解析:12【解析】【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【详解】解:x 2﹣7x +10=0(x ﹣2)(x ﹣5)=0,解得:x 1=2,x 2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质. 17.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分则两个正方形的边长分别是cmcm 再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分列二次解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.18.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大解析:﹣13≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.19.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:解析:5【解析】【分析】连接OD,根据垂径定理求出DE,根据勾股定理求出OD即可.【详解】解:连接OD,∵CD⊥AB于点E,∴DE=CE= 12CD=12×8=4,∠OED=90°,由勾股定理得:OD= 2222345OE DE+=+=,即⊙O的半径为5.故答案为:5.【点睛】本题考查了垂径定理和勾股定理的应用,能根据垂径定理求出DE的长是解此题的关键.20.(﹣22)【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4∠xOP2=∠P2OP3=60°作P3H⊥x轴于H利用含30度的直角三角形求出OHP3H从而得到P3点坐标【详解】解:如图∵点解析:(﹣2,23).【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4,∠xOP2=∠P2OP3=60°,作P3H⊥x轴于H,利用含30度的直角三角形求出OH、P3H,从而得到P3点坐标.【详解】解:如图,∵点P0的坐标为(2,0),∴OP0=OP1=2,∵将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,∴OP2=2OP1=OP3=4,∠xOP2=∠P2OP3=60°,作P3H⊥x轴于H,OH=12OP3=2,P333∴P3(-2,3故答案为(-2,3【点睛】本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.21.13【解析】【分析】直接代入求值即可【详解】试题解析:把y=599代入y=﹣01x2+26x+43得599=-01x2+26x+43解得:x1=x2=13分钟即学生对概念的接受能力达到599时需要1解析:13【解析】【分析】直接代入求值即可.【详解】试题解析:把y=59.9代入y=﹣0.1x2+2.6x+43得,59.9=-0.1x2+2.6x+43解得:x1=x2=13分钟.即学生对概念的接受能力达到59.9时需要13分钟.故答案为:13.考点:二次函数的应用.22.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利解析:1 2π【解析】【分析】如图,设图中③的面积为S3.构建方程组即可解决问题.【详解】解:如图,设图中③的面积为S3.由题意:2132231··241··12S SS Sππ⎧+=⎪⎪⎨⎪+=⎪⎩,可得S1﹣S2=12π,故答案为12π.【点睛】本题考查扇形的面积、正方形的性质等知识,解题的关键是学会利用参数构建方程组解决问题.23.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值解析:【解析】【分析】把解析式化为顶点式,再根据二次函数的性质得出答案即可。

2018年广东省深圳市中考数学试卷(含答案解析版)

2018年广东省深圳市中考数学试卷(含答案解析版)

2018年广东省深圳市中考数学试卷(含答案解析版)12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= .14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)(2018•深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=√2,则AC= .三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a= ,b= .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)(2018•深圳)已知顶点为A抛物线y=a(x−12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.2018年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)(2018•深圳)6的相反数是()A.﹣6 B.−16 C.16D.6【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)(2018•深圳)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)(2018•深圳)图中立体图形的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55:几何图形.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)(2018•深圳)观察下列图形,是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【专题】27 :图表型.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【考点】W5:众数;W6:极差.【专题】1 :常规题型.【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)(2018•深圳)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.√a+√b=√ab【考点】35:合并同类项;46:同底数幂的乘法;48:同底数幂的除法;78:二次根式的加减法.【专题】1 :常规题型.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、√a+√b无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)(2018•深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)【考点】F8:一次函数图象上点的坐标特征;F9:一次函数图象与几何变换.【专题】53:函数及其图象.【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)(2018•深圳)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .{x +y =708x +6y =480 B .{x +y =706x +8y =480 C .{x +y =4806x +8y =70D .{x +y =4808x +6y =70【考点】99:由实际问题抽象出二元一次方程组.【专题】1 :常规题型.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x 个,小房间有y 个,由题意得:{x +y =708x +6y =480,故选:A .【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )A .3B .3√3C .6D .6√3【考点】MC :切线的性质.【专题】1 :常规题型;55A :与圆有关的位置关系.【分析】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3√3,∴光盘的直径为6√3,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】53:函数及其图象.【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab <0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】由点P 是动点,进而判断出①错误,设出点P 的坐标,进而得出AP ,BP ,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P 是动点,∴BP 与AP 不一定相等,∴△BOP 与△AOP 不一定全等,故①不正确;设P (m ,n ),∴BP ∥y 轴,∴B (m ,12m), ∴BP=|12m ﹣n|,∴S △BOP =12|12m ﹣n|×m=12|12﹣mn|∵PA ∥x 轴,∴A (12n ,n ),∴AP=|12n ﹣m|,∴S △AOP =12|12n ﹣m|×n=12|12﹣mn|,∴S △AOP =S △BOP ,故②正确;如图,过点P 作PF ⊥OA 于F ,PE ⊥OB 于E ,∴S △AOP =12OA ×PF ,S △BOP =12OB ×PE ,∵S △AOP =S △BOP ,∴OB ×PE=OA ×PE ,∵OA=OB ,∴PE=PF ,∵PE ⊥OB ,PF ⊥OA ,∴OP 是∠AOB 的平分线,故③正确;如图1,延长BP 交x 轴于N ,延长AP 交y 轴于M ,∴AM ⊥y 轴,BN ⊥x 轴,∴四边形OMPN 是矩形,∵点A ,B 在双曲线y=12x上,∴S △AMO =S △BNO =6, ∵S △BOP =4,∴S △PMO =S △PNO =2,∴S 矩形OMPN =4,∴mn=4, ∴m=4n, ∴BP=|12m﹣n|=|3n ﹣n|=2|n|,AP=|12n﹣m|=8|n|,∴S △APB=12AP ×BP=12×2|n|×8|n|=8,故④错误;∴正确的有②③,故选:B .【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= (a+3)(a﹣3).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:12.【考点】X4:概率公式.【专题】17 :推理填空题.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:3 6=1 2,故答案为:1 2.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是8 .【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【专题】11 :计算题.【分析】根据正方形的性质得到AC=AF ,∠CAF=90°,证明△CAE ≌△AFB ,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF 是正方形,∴AC=AF ,∠CAF=90°,∴∠EAC+∠FAB=90°, ∵∠ABF=90°, ∴∠AFB+∠FAB=90°, ∴∠EAC=∠AFB , 在△CAE 和△AFB 中,{∠CAE =∠AFB∠AEC =∠FBA AC =AF ,∴△CAE ≌△AFB ,∴EC=AB=4,∴阴影部分的面积=12×AB ×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)(2018•深圳)在Rt △ABC 中,∠C=90°,AD 平分∠CAB ,BE 平分∠ABC ,AD 、BE 相交于点F ,且AF=4,EF=√2,则AC= 8√105.【考点】IJ :角平分线的定义;KQ :勾股定理;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE ,最后判断出△AEF ∽△AFC ,即可得出结论.【解答】解:如图,∵AD ,BE 是分别是∠BAC 和∠ABC 的平分线,∴∠1=∠2,∠3=∠4, ∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E 作EG ⊥AD 于G ,在Rt △EFG 中,EF=√2,∴FG=EG=1,∵AF=4,∴AG=AF ﹣FG=3,根据勾股定理得,AE=√AG 2+EG 2=√10,连接CF ,∵AD 平分∠CAB ,BE 平分∠ABC , ∴CF 是∠ACB 的平分线,∴∠ACF=45°=∠AFE ,∵∠CAF=∠FAE ,∴△AEF ∽△AFC , ∴AE AF =AF AC, ∴AC=AF 2AE =√10=8√105,故答案为8√105.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE 是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×√22+√2+1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.【考点】6D:分式的化简求值.【专题】11 :计算题.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=x−x+1x−1⋅(x+1)(x−1)(x+1)2=1x+1把x=2代入得:原式=1 3【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100 人,a= 0.25 ,b= 15 .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【考点】V5:用样本估计总体;V7:频数(率)分布表;VC:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【考点】N3:作图—复杂作图;S9:相似三角形的判定与性质;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA ∴四边形ACDB 是菱形,∵∠ACD 与△FCE 中的∠FCE 重合,它的对角∠ABD 顶点在EF 上,∴四边形ACDB 为△FEC 的亲密菱形;(2)解:设菱形ACDB 的边长为x ,∵四边形ABCD 是菱形,∴AB ∥CE ,∴∠FAB=∠FCE ,∠FBA=∠E ,△EAB ∽△FCE则:FA FC =AB CE ,即x 12=6−x 6,解得:x=4,过A 点作AH ⊥CD 于H 点,∵在Rt △ACH 中,∠ACH=45°,∴AH =AC√2=2√2,∴四边形ACDB 的面积为:4×2√2=8√2.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD 是菱形是解此题的关键.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】34 :方程思想;522:分式方程及应用;524:一元一次不等式(组)及应用.【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•1600x=6000x+2,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【考点】MR:圆的综合题.【专题】15 :综合题;559:圆的有关概念及性质.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=12BC=1,∵cosB=BMAB=√1010,在Rt△AMB中,BM=1,∴AB=BMcosB=√10;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴AC AD =AE AC,∴AD•AE=AC 2=10;(3)在BD 上取一点N ,使得BN=CD ,在△ABN 和△ACD 中{AB =AC∠3=∠1BN =CD,∴△ABN ≌△ACD (SAS ),∴AN=AD ,∵AN=AD ,AH ⊥BD , ∴NH=HD ,∵BN=CD ,NH=HD ,∴BN+NH=CD+HD=BH .【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)(2018•深圳)已知顶点为A 抛物线y =a(x −12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB 与x 轴相交于点M ,y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若∠OPM=∠MAF ,求△POE 的面积;(3)如图2,点Q 是折线A ﹣B ﹣C 上一点,过点Q 作QN ∥y 轴,过点E 作EN ∥x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将△QEN 沿QE 翻折得到△QEN 1,若点N 1落在x 轴上,请直接写出Q 点的坐标.【考点】HF :二次函数综合题.【专题】15 :综合题;537:函数的综合应用.【分析】(1)将点B 坐标代入解析式求得a 的值即可得;(2)由∠OPM=∠MAF 知OP ∥AF ,据此证△OPE ∽△FAE 得OP FA=OE FE=134=43,即OP=43FA ,设点P (t ,﹣2t ﹣1),列出关于t 的方程解之可得;(3)分点Q 在AB 上运动、点Q 在BC 上运动且Q 在y 轴左侧、点Q 在BC 上运动且点Q 在y 轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点B(−32,2)代入y =a(x −12)2−2,解得:a=1,∴抛物线的解析式为:y =(x −12)2−2;(2)由y =(x −12)2−2知A (12,﹣2),设直线AB 解析式为:y=kx+b ,代入点A ,B 的坐标,得:{−2=12k +b 2=−32k +b,解得:{k =−2b =−1,∴直线AB 的解析式为:y=﹣2x ﹣1,易求E (0,1),F(0,−74),M(−12,0),若∠OPM=∠MAF , ∴OP ∥AF ,∴△OPE ∽△FAE ,∴OP FA =OE FE =134=43,∴OP =43FA =43√(12−6)2+(−2+74)2=√53,设点P (t ,﹣2t ﹣1),则:√t 2+(−2t −1)2=√53解得t 1=−215,t 2=−23,由对称性知;当t 1=−215时,也满足∠OPM=∠MAF ,∴t 1=−215,t 2=−23都满足条件,∵△POE 的面积=12OE ⋅|l|,∴△POE 的面积为115或13.(3)若点Q 在AB 上运动,如图1,设Q (a ,﹣2a ﹣1),则NE=﹣a 、QN=﹣2a ,由翻折知QN′=QN=﹣2a 、N′E=NE=﹣a ,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴QR N′S =RN′ES =QN′EN′,即QR 1=−2a−1ES =−2a −a=2,∴QR=2、ES=−2a−12,由NE+ES=NS=QR 可得﹣a+−2a−12=2,解得:a=﹣54,∴Q (﹣54,32);若点Q 在BC 上运动,且Q 在y 轴左侧,如图2,设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2,解得:a=3√55,∴Q (﹣3√55,2);若点Q 在BC 上运动,且点Q 在y 轴右侧,如图3,第31页(共31页)设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2, 解得:a=3√55, ∴Q (3√55,2).综上,点Q 的坐标为(﹣54,32)或(﹣3√55,2)或(3√55,2). 【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。

2022年广东省深圳市中考数学全真模拟试卷(5)(学生版+解析版)

2022年广东省深圳市中考数学全真模拟试卷(5)(学生版+解析版)

2022年广东省深圳市中考数学全真模拟试卷(5)一.选择题(共10小题,每题3分,共30分)1.(3分)下列说法中正确的是()A.﹣4<8B.如果a>b,那么|b﹣a|=b﹣aC.﹣|﹣(+0.8)|=0.8D.有最小的正有理数2.(3分)如图是由10个同样大小的小正方体摆成的几何体,将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图改变B.主视图改变C.左视图改变D.三种视图都发生改变3.(3分)北京的故宫占地面积约为720000平方米,数据720000用科学记数法表示为()A.0.72×104B.7.2×105C.72×105D.7.2×1064.(3分)将一个长方形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.80°B.70°C.60°D.50°5.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=5,AC=13,分别以A,C为圆心,以大于线段AC长度的一半为半径作弧.两弧相交于点E,F.过点E,F作直线EF,交BC于点D,连接AD,则△ABD的周长为()A.13B.17C.18D.25 6.(3分)下列命题中,是真命题的个数有()①平分弦的直径垂直于弦;②√81的算术平方根是9;③方程1x−1−2x+1=3x−1的解为x=0;④一组数据6,7,8,9,10的众数和中位数都是8.A.1个B.2个C.3个D.4个7.(3分)如图,小颖身高为160cm,在阳光下影长AB=240cm,当她走到距离墙角(点D)120cm的C处时,她的部分影子投射到墙上,则投射在墙上的影子DE的长度为()A.120cm B.80cm C.60cm D.40cm8.(3分)函数y=kx和y=kx+2(k≠0)在同一直角坐标系中的大致图象是()A.B.C.D.9.(3分)如图,直线AB:y=﹣3x+9交y轴于A,交x轴于B,x轴上一点C(﹣1,0),D为y轴上一动点,把线段BD绕B点逆时针旋转90°得到线段BE,连接CE,CD,则当CE长度最小时,线段CD的长为()A.√10B.√17C.5D.2√710.(3分)如图,在矩形ABCD中,AB=3,AD=6,CE⊥BD于E,AG⊥BD于G,AF 平分∠BAD交BC于点N,交EC延长线于点F,则下列说法中正确的有()个①BE=DG②BN=12AD③MN=√2④BD=CF⑤AG2=BG•DGA.2B.3C.4D.5二.填空题(共5小题,每题3分,共15分)11.(3分)因式分解:3x3﹣6x2y+3xy2=.12.(3分)用半径为18,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为13.(3分)如图,△ABC中,D、F在AB边上,E、G在AC边上,DE∥FG∥BC,且AD:DF:FB=3:2:1,若AG=15,则EC的长为.14.(3分)反比例函数y=kx(x<0)的图象如图所示,下列关于该函数图象的四个结论:①k>0;②当x<0时,y随x的增大而增大;③该函数图象关于直线y=﹣x对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有个.15.(3分)如图,在边长为6的正方形ABCD中,点E是边AB上一动点(不与A,B两点重合),过点E作EF⊥AB交对角线AC于点F,连接DF.当△ADF是等腰三角形时,AE的长度等于.三.解答题(共7小题,其中第16题6分,第17小题7分,第18小题7分,第19小题8分,第20小题8分,第21小题9分,第22小题10分,共55分)16.(6分)计算:(1)(12)−2−|√2−3|+2tan45°−(2020−π)0;(2)(√2+1)(√2−1)+(√3−2)2.17.(7分)先化简,再求值:a−2a+3÷a 2−42a+6−5a+2,其中a =﹣5.18.(7分)某市将开展以“玩转数学”为主题的数学展示活动,我校对100名参加选拔赛的同学的成绩按A ,B ,C ,D 四个等级进行统计,绘制成不完整的统计表和扇形统计图:成绩等级频数(人数) 频率 A4 0.04 Bm 0.51 Cn D合计100 1(1)求m = ,n = ;(2)在扇形统计图中,求“C 等级”所对应扇形的圆心角的度数;(3)成绩等级为A 的4名同学中有2名男生和2名女生,现从中随机挑选2名同学代表学校参加全市比赛,请用画树状图或列表的方法,求“选出的两名同学中至少有一名是女生”的概率.19.(8分)如图,正方形ABCD 的对角线交于点O ,点E 、F 分别在AB 、BC 上(AE <BE ),且∠EOF =90°,OE 、DA 的延长线交于点M ,OF 、AB 的延长线交于点N ,连接MN .(1)求证:OM =ON ;(2)若正方形ABCD 的边长为6,OE =EM ,求MN 的长.20.(8分)春节期间,某商店第一次用600元购进苹果若干斤,第二次又用600元购进该种苹果,但这次每斤苹果的进价是第一次进价的1.25倍,且购进的数量比第一次少了30斤.(1)求两次购进苹果的进价分别是多少元;(2)若商店以第二次进价提高40%作为两次购进苹果的统一售价,按此统一售价销售部分苹果后,又以八折销售完剩余的苹果,要使全部销售完后获利等于592元,求销售多少斤苹果后开始打八折.21.(9分)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D为BC边上的一个动点,以CD为直径的⊙O交AD于点E,过点C作CF∥AB,交⊙O于点F,连接CE、EF.(1)当∠CFE=45°时,求CD的长;(2)求证:∠BAC=∠CEF;(3)是否存在点D,使得△CFE是以CF为底的等腰三角形,若存在,求出此时CD的长;若不存在,试说明理由.22.(10分)如图,抛物线y=ax2+bx+3√3与x轴交于A(﹣3,0),B(9,0)两点,与y 轴交于点C,连接AC,BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ,过点Q作QD⊥x轴,与抛物线交于点D,连接PD 与BC交于点E.设点P的运动时间为t秒(t>0)(1)求抛物线的表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简).②在点P,Q运动的过程中,当PQ=PD时,求t的值;(3)点M为线段BC上一点,在点P,Q运动的过程中,当点E为PD中点时,是否存在点M使得PM+12BM的值最小?若存在,请求出PM+12BM的最小值;若不存在,请说明理由.2022年广东省深圳市中考数学全真模拟试卷(5)参考答案与试题解析一.选择题(共10小题,每题3分,共30分)1.(3分)下列说法中正确的是()A.﹣4<8B.如果a>b,那么|b﹣a|=b﹣aC.﹣|﹣(+0.8)|=0.8D.有最小的正有理数【解答】解:A.﹣4<8,故本选项符合题意;B.如果a>b,那么|b﹣a|=a﹣b,故本选项不合题意;C.﹣|﹣(+0.8)|=﹣0.8,故本选项不合题意;D.没有最小的有理数,故本选项不合题意.故选:A.2.(3分)如图是由10个同样大小的小正方体摆成的几何体,将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图改变B.主视图改变C.左视图改变D.三种视图都发生改变【解答】解:将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变,主视图的第二层由原来的两个小正方形变为一个小正方形,故选:B.3.(3分)北京的故宫占地面积约为720000平方米,数据720000用科学记数法表示为()A.0.72×104B.7.2×105C.72×105D.7.2×106【解答】解:将720000用科学记数法表示为7.2×105元.故选:B.4.(3分)将一个长方形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.80°B.70°C.60°D.50°【解答】解:如图:根据题意:AB∥CD.∴∠1=∠CBA.∴∠CBA=40°.根据折叠有∠2=∠DBC.∴∠2=180°−∠CBA2=70°.故选:B.5.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=5,AC=13,分别以A,C为圆心,以大于线段AC长度的一半为半径作弧.两弧相交于点E,F.过点E,F作直线EF,交BC于点D,连接AD,则△ABD的周长为()A.13B.17C.18D.25【解答】解:由作图可知,EF垂直平分线段AC,∴DA=DC,∴△ABD的周长=AB+BC+AD=AB+BD+DC=AB+BC=5+13=18,故选:C.6.(3分)下列命题中,是真命题的个数有()①平分弦的直径垂直于弦;②√81的算术平方根是9;③方程1x−1−2x+1=3x−1的解为x=0;④一组数据6,7,8,9,10的众数和中位数都是8.A.1个B.2个C.3个D.4个【解答】解:①平分弦(不是直径)的直径垂直于弦,故错误,是假命题;②√81的算术平方根是3,故错误,是假命题;③方程1x2−1−2x+1=3x−1的解x=0,正确,是真命题;④这组数据6,7,8,9,10的中位数是8,故错误,是假命题;真命题有1个,故选:A.7.(3分)如图,小颖身高为160cm,在阳光下影长AB=240cm,当她走到距离墙角(点D)120cm的C处时,她的部分影子投射到墙上,则投射在墙上的影子DE的长度为()A.120cm B.80cm C.60cm D.40cm【解答】解:过E作EF⊥CG于F,设投射在墙上的影子DE长度为xcm,由题意得:△GFE∽△HAB,∴AB:FE=AH:(GC﹣x),则240:120=160:(160﹣x),解得:x=80.即:投射在墙上的影子DE长度为80cm.故选:B.8.(3分)函数y=kx和y=kx+2(k≠0)在同一直角坐标系中的大致图象是()A.B.C.D.【解答】解:在函数y=kx和y=kx+2(k≠0)中,当k>0时,函数y=kx的图象在第一、三象限,函数y=kx+2的图象在第一、二、三象限,故选项A、D错误,选项B正确,当k<0时,函数y=kx的图象在第二、四象限,函数y=kx+2的图象在第一、二、四象限,故选项C错误,故选:B.9.(3分)如图,直线AB:y=﹣3x+9交y轴于A,交x轴于B,x轴上一点C(﹣1,0),D为y轴上一动点,把线段BD绕B点逆时针旋转90°得到线段BE,连接CE,CD,则当CE长度最小时,线段CD的长为()A.√10B.√17C.5D.2√7【解答】解:如图,设D(0,m).由题意:B(3,0),∴OD=m,OB=3,过E作EH⊥x于H,∴∠EHB=∠BOD=90°,∵把线段BD绕B点逆时针旋转90°得到线段BE∴∠DBE=90°,BD=BE,∴∠ODB+∠OBD=∠OBD+∠EBH=90°,∴∠BDO=∠EBH,∴△BOD≌△EHB(AAS),∴EH=OB=3,BH=OD=m,∵点C(﹣1,0),∴OC=1,∴CH=4﹣m,∴CE=√CH2+EH2=√(4−m)2+32=√(m−4)2+9,∴当m=4时,CE长度最小,∴D(0,4),∴OD=4,∴CD=2+OD2=√12+42=√17,故选:B.10.(3分)如图,在矩形ABCD中,AB=3,AD=6,CE⊥BD于E,AG⊥BD于G,AF 平分∠BAD交BC于点N,交EC延长线于点F,则下列说法中正确的有()个①BE=DG②BN=12AD③MN=√2④BD=CF⑤AG2=BG•DGA.2B.3C.4D.5【解答】解:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∴∠ABG=∠CDE,∵CE⊥BD于E,AG⊥BD于G,∴∠AGB=∠CED=90°,∴△AGB≌△CED(AAS),∴BG=DE,∴BE=DG,故①正确,∵∠BAD=90°,F A平分∠BAD,∴∠BAN =45°, ∵∠ABN =90°, ∴∠ANB =45°, ∴AB =BN ,∵AB =3,AD =BC =6, ∴BC =2AB ,∴BN =12AD ,故②正确, ∵AB =NB =3, ∴AN =3√2, ∵BN ∥AD , ∴NM AM=BN AD=12,∴MN =13AN =√2,故③正确, 连接AC ,易证∠ECB =∠BAC ,∵∠ECB =45°+∠F ,∠BAC =45°+∠CAF , ∴∠F =∠CAF , ∴CA =CF ,∵四边形ABCD 是矩形, ∴AC =BD ,∵BD =CF ,故④正确, ∵∠BAD =90°,AG ⊥BD ,∴△AGB ∽△DGA ,可得AG 2=BG •DG ,故⑤正确, 故选:D .二.填空题(共5小题,每题3分,共15分)11.(3分)因式分解:3x3﹣6x2y+3xy2=3x(x﹣y)2.【解答】解:3x3﹣6x2y+3xy2,=3x(x2﹣2xy+y2),=3x(x﹣y)2.12.(3分)用半径为18,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为6【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=×120π×18180,解得r=6.故答案为:6.13.(3分)如图,△ABC中,D、F在AB边上,E、G在AC边上,DE∥FG∥BC,且AD:DF:FB=3:2:1,若AG=15,则EC的长为9.【解答】解:∵DE∥FG∥BC,∴AD:DF:FB=AE:EG:GC,∵AD:DF:FB=3:2:1,∴AE:EG:GC=3:2:1,设AE=3x,EG=2x,GC=x,∵AG=15,∴3x+2x=15,解得:x=3,即AE=9,EG=6,GC=3,∴EC=EG+GC=6+3=9,故答案为:9.14.(3分)反比例函数y=kx(x<0)的图象如图所示,下列关于该函数图象的四个结论:①k>0;②当x<0时,y随x的增大而增大;③该函数图象关于直线y=﹣x对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有3个.【解答】解:观察反比例函数y=kx(x<0)的图象可知:图象过第二象限,∴k<0,所以①错误;因为当x<0时,y随x的增大而增大;所以②正确;因为该函数图象关于直线y=﹣x对称;所以③正确;因为点(﹣2,3)在该反比例函数图象上,所以k=﹣6,则点(﹣1,6)也在该函数的图象上.所以④正确.所以其中正确结论的个数为3个.故答案为3.15.(3分)如图,在边长为6的正方形ABCD中,点E是边AB上一动点(不与A,B两点重合),过点E作EF⊥AB交对角线AC于点F,连接DF.当△ADF是等腰三角形时,AE的长度等于3√2或3.【解答】解:①当AF=AD=6时,△AEF是等腰直角三角形,∴AF =√2AE , ∴AE =3√2.②当AF =DF 时,△ADF 是等腰直角三角形, ∴AD =√2AF =6, ∴AF =3√2,在等腰直角三角形AEF 中,AF =√2AE , ∴AE =3.③当AD =DF 时,∠AFD =45°,此时点F 与点C 重合,点E 与点B 重合,不符合题意; 综上所述,当△ADF 是等腰三角形时,AE 的长度等于3√2或3; 故答案为:3√2或3.三.解答题(共7小题,其中第16题6分,第17小题7分,第18小题7分,第19小题8分,第20小题8分,第21小题9分,第22小题10分,共55分) 16.(6分)计算:(1)(12)−2−|√2−3|+2tan45°−(2020−π)0; (2)(√2+1)(√2−1)+(√3−2)2. 【解答】解:(1)原式=4+√2−3+2×1﹣1 =2+√2;(2)原式=2﹣1+3﹣4√3+4 =8﹣4√3.17.(7分)先化简,再求值:a−2a+3÷a 2−42a+6−5a+2,其中a =﹣5.【解答】解:原式=a−2a+3•2(a+3)(a+2)(a−2)−5a+2=2a+2−5a+2 =−3a+2, 当a =﹣5时, 原式=−3−5+2=1.18.(7分)某市将开展以“玩转数学”为主题的数学展示活动,我校对100名参加选拔赛的同学的成绩按A ,B ,C ,D 四个等级进行统计,绘制成不完整的统计表和扇形统计图:成绩等级频数(人数)频率 A 4 0.04 B m 0.51 C n D 合计1001(1)求m = 51 ,n = 30 ;(2)在扇形统计图中,求“C 等级”所对应扇形的圆心角的度数;(3)成绩等级为A 的4名同学中有2名男生和2名女生,现从中随机挑选2名同学代表学校参加全市比赛,请用画树状图或列表的方法,求“选出的两名同学中至少有一名是女生”的概率.【解答】解:(1)参加本次比赛的学生有:4÷0.04=100(人); ∴m =0.51×100=51(人),D 组人数=100×15%=15(人), ∴n =100﹣4﹣51﹣15=30(人), 故答案为:51,30;(2)B 等级的学生共有:50﹣4﹣20﹣8﹣2=16(人), ∴所占的百分比为:16÷50=32%,∴C 等级所对应扇形的圆心角度数为:360°×30%=108°; (3)由题意可得,树状图如下图所示,选出的两名同学中至少有一名是女生的概率是1012=56.19.(8分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为6,OE=EM,求MN的长.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为6,∴OH=HA=3,∵E为OM的中点,∴HM=6,则OM=√32+62=3√5,∴MN=√2OM=3√10.20.(8分)春节期间,某商店第一次用600元购进苹果若干斤,第二次又用600元购进该种苹果,但这次每斤苹果的进价是第一次进价的1.25倍,且购进的数量比第一次少了30斤.(1)求两次购进苹果的进价分别是多少元;(2)若商店以第二次进价提高40%作为两次购进苹果的统一售价,按此统一售价销售部分苹果后,又以八折销售完剩余的苹果,要使全部销售完后获利等于592元,求销售多少斤苹果后开始打八折.【解答】解:(1)设第一次购进苹果的进价为x 元,则第二次购进苹果的进价为 1.25x 元, 由题意得:600x=6001.25x+30,解得:x =4,经检验x =4是原方程的解,则1.25x =5,答:第一次购进苹果的进价为4元,第二次购进苹果的进价为5元; (2)5(1+40%)=7(元),6004=150(斤),150﹣30=120(斤),设销售y 斤苹果后开始打八折,由题意得:7y +7×0.8(150+120﹣y )﹣2×600=592, 解得:y =200,答:销售200斤苹果后开始打八折.21.(9分)如图,在Rt △ABC 中,∠ACB =90°,AB =10,AC =6,点D 为BC 边上的一个动点,以CD 为直径的⊙O 交AD 于点E ,过点C 作CF ∥AB ,交⊙O 于点F ,连接CE 、EF .(1)当∠CFE =45°时,求CD 的长; (2)求证:∠BAC =∠CEF ;(3)是否存在点D ,使得△CFE 是以CF 为底的等腰三角形,若存在,求出此时CD 的长;若不存在,试说明理由.【解答】(1)解:∵∠CDE =∠CFE =45°,∵∠ACB=90°,∴∠DAC=∠CDA=45°,∴CD=AC=6;(2)证明:∵CF∥AB,∴∠B=∠FCB,∵∠FCB=∠DEF,∴∠B=∠DEF,又∠BAC+∠B=90°,∵CD是圆O的直径,∴∠CED=90°,∴∠DEF+∠CEF=90°,∴∠BAC=∠CEF;(3)解:存在点D,使得△CFE是CF为底的等腰三角形,则EF=CE.如图,连接FD,并延长和AB相交于G,则∠EFC=∠ECF,∵四边形CEDF为圆内接四边形,∴∠ADG=∠ECF,又∵∠CDE=∠CFE,∴∠ADG=∠CDE,∵CD为⊙O的直径,∴∠DFC=90°,∵FC∥AB,∴∠FGA=90°,∴∠FGA=∠ACD,∵AD=AD,∴△AGD≌△ACD(AAS),∴DG=CD,AC=AG=6,∵∠ACB=90°,AB=10,AC=6,∴BC=2−AC2=8,在Rt△BDG中,设CD=x,则BD=BC﹣CD=8﹣x,BG=AB﹣AG=10﹣6=4,DG=CD=x,∵BG2+DG2=BD2,∴42+x2=(8﹣x)2,∴x=3,即CD=3.22.(10分)如图,抛物线y=ax2+bx+3√3与x轴交于A(﹣3,0),B(9,0)两点,与y 轴交于点C,连接AC,BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ,过点Q作QD⊥x轴,与抛物线交于点D,连接PD 与BC交于点E.设点P的运动时间为t秒(t>0)(1)求抛物线的表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简).②在点P,Q运动的过程中,当PQ=PD时,求t的值;(3)点M为线段BC上一点,在点P,Q运动的过程中,当点E为PD中点时,是否存在点M使得PM+12BM的值最小?若存在,请求出PM+12BM的最小值;若不存在,请说明理由.【解答】解:(1)将A (﹣3,0),B (9,0)代入y =ax 2+bx +3√3,得:{9a −3b +3√3=081a +9b +3√3=0,解得:{a =−√39b =2√33, ∴抛物线的表达式为y =−√39x 2+2√33x +3√3⋯①;(2)由题意得:∠ACO =∠OBC =30°,∠ACB =90°,将点B 、C (0,3√3)的坐标代入一次函数表达式并解得:直线BC 的表达式为:y =−√33x +3√3⋯②;①点P 的坐标为(﹣3+12t ,√32t ), 点Q (9﹣2t ,0),将点Q 的坐标代入①式并整理得:点D (9﹣2t ,4√39(6t ﹣t 2)); ②当PQ =PD 时,则DQ 中点的纵坐标=点P 的纵坐标,即:12(4√39(6t ﹣t 2))=√32t ,解得:t =154; (3)点P 的坐标为(﹣3+12t ,√32t )、点D (9﹣2t ,4√39(6t ﹣t 2)), 点E 是PQ 的中点,则点E (3−34t ,√34t +2√39(6t ﹣t 2)), 将点E 的坐标代入②式并整理得:t 2﹣6t +9=0,解得:t =3,即点P (−32,3√32)即点P 是AC 的中点, 作点P 关于直线BC 的对称点P ′,过点P ′作P ′H ⊥x 轴、交BC 于点M ,过点P 作PN ⊥y 轴于点N ,则MH=12MB,则此时,PM+12BM=PM+MH=P′H为最小值,∵∠ACB=90°,PC=P′C,∠P′CM=∠NCP,∠P′MC=∠PNC=90°,∴△P′MC≌△PNC(AAS),∴MC=NC=12OC,OM=32OC=9√32=P′H,故PM+12BM的最小值为9√32.。

2023年深圳市中考数学真题+参考答案

2023年深圳市中考数学真题+参考答案

2023年深圳市中考数学真题一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.如果+10°C表示零上10度,则零下8度表示()A.+8℃B.-8℃C.+10℃D.-10℃2.下列图形中,为轴对称的图形的是()A. B.C. D.3.深中通道是世界级“桥、岛、隧、水下互通”跨海集群工程,总计用了320,000万吨钢材,320,000这个数用科学记数法表示为()A.0.32×106B.3.2×105C.3.2×109D.32×1084.下表为五种运动耗氧情况,其中耗氧量的中位数是()打网球跳绳爬楼梯慢跑游泳80L/h90L/h105L/h110L/h115L/hA.80L/hB.107.5L/hC.105L/hD.110L/h5.如图,在平行四边形ABCD中,AB=4,BC=6,将线段AB水平向右平移a个单位长度得到线段EF,若四边形ECDF为菱形时,则a的值为()A.1B.2C.3D.46.下列运算正确的是()A.a3⋅a2=a6B.4ab-ab=4C.a+12=a62=a2+1 D.-a37.如图为商场某品牌椅子的侧面图,∠DEF=120°,DE与地面平行,∠ABD=50°,则∠ACB =()A.70°B.65°C.60°D.50°8.某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设有大货车每辆运输x 吨,则所列方程正确的是()A.75x -5=50x B.75x =50x -5C.75x +5=50xD.75x =50x +59.爬坡时坡角与水平面夹角为α,则每爬1m 耗能 1.025-cosα J ,若某人爬了1000m ,该坡角为30°,则他耗能(参考数据:3≈1.732,2≈1.414)()A.58JB.159JC.1025JD.1732J10.如图1,在Rt △ABC 中,动点P 从A 点运动到B 点再到C 点后停止,速度为2单位/s ,其中BP 长与运动时间t (单位:s )的关系如图2,则AC 的长为()A.1552B.427C.17D.53二、填空题(本大题共5小题,每小题3分,共15分)11.小明从《红星照耀中国》,《红岩》,《长征》,《钢铁是怎样炼成的》四本书中随机挑选一本,其中拿到《红星照耀中国》这本书的概率为。

【精选试卷】深圳罗湖中学中考数学填空题专项练习经典测试卷(含答案解析)

【精选试卷】深圳罗湖中学中考数学填空题专项练习经典测试卷(含答案解析)

一、填空题1.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.2.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。

3.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.4.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PE+PC 的最小值是 .5.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量10020050010002000A出芽种子数 96 165 491 984 1965 发芽率 0.96 0.83 0.98 0.98 0.98 B出芽种子数 96 192 486 977 1946 发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样; ②随着实验种子数量的增加,A 种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98;③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号). 6.使分式x 2−1x+1的值为0,这时x=_____.7.已知扇形AOB 的半径为4cm ,圆心角∠AOB 的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm8.已知反比例函数的图象经过点(m ,6)和(﹣2,3),则m 的值为________. 9.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____. 10.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.11.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算) 12.如果a 是不为1的有理数,我们把11a-称为a 的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则 2019a =___________ .13.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y (米)表示甲、乙两人之间的距离,x (秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y 与x 函数关系,那么,乙到达终点后_____秒与甲相遇.14.计算:2cos45°﹣(π+1)0+111()42-+=______. 15.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元. 16.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.17.如图,反比例函数y=kx的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_____.18.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =kx的图象上,则k 的值为________.19.如图:已知AB=10,点C 、D 在线段AB 上且AC=DB=2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.20.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.21.如图,⊙O是△ABC的外接圆,∠A=45°,则cos∠OCB的值是________.22.如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△A n B n A n+1的边长为______.23.若一个数的平方等于5,则这个数等于_____.24.在函数3yx=-的图象上有三个点(﹣2,y1),(﹣1,y2),(12,y3),则y1,y2,y3的大小关系为_____.25.如图,在平面直角坐标系xOy中,函数y=kx(k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为_____.26.关于x的一元二次方程(a+1)x2-2x+3=0有实数根,则整数a的最大值是_____. 27.如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于 cm.28.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x,△MNR 的面积为 y,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.29.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.30.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、填空题1.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=22.【解析】【分析】过点E作交AG的延长线于H根据折叠的性质得到根据三角形外角的性质可得根据锐角三角函数求出即可求解【详解】如图过点E作交AG的延长线于H厘米`根据折叠的性质可知:根据折叠的性质可知:(3.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到4.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE +AP根据两点之间5.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确6.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法7.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面8.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-19.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键10.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下:-2-112-22-2-4-12-1-21-2-11.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合12.【解析】【分析】利用规定的运算方法分别算得a1a2a3a4…找出运算结果的循环规律利用规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4−三个数依次不断循环∵2019÷3=673∴a201913.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300s则可以求得此时乙与甲的距离即可求出14.【解析】解:原式==故答案为:15.2000【解析】【分析】设这种商品的进价是x元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x元由题意得(1+40)x×08=2240解得:x=2000故答案为:200016.【解析】根据弧长公式可得:=故答案为17.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=C D又∵BD⊥x轴∴18.-6【解析】因为四边形OABC是菱形所以对角线互相垂直平分则点A和点C关于y轴对称点C在反比例函数上设点C的坐标为(x)则点A的坐标为(-x)点B的坐标为(0)因此AC=-2xOB=根据菱形的面积等19.3【解析】【分析】分别延长AEBF交于点H易证四边形EPFH为平行四边形得出G为PH中点则G的运行轨迹为三角形HCD的中位线MN再求出CD的长运用中位线的性质求出MN的长度即可【详解】如图分别延长A20.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y轴建立平面直角坐标系由题意可得A(025)B(225)C(05121.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC从而可得cos∠OCB的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC由勾股定理得BC=OC∴cos∠OCB=故答案为【点睛】22.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A 2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得23.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质24.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k 据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=25.【解析】【分析】过D作DQ⊥x轴于Q过C作CM⊥x轴于M过E作EF⊥x轴于F设D点的坐标为(ab)求出CE的坐标代入函数解析式求出a再根据勾股定理求出b即可请求出答案【详解】如图过D作DQ⊥x轴于Q26.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根27.cm【解析】试题解析:如图折痕为GH由勾股定理得:AB==10cm由折叠得:AG=BG=AB =×10=5cmGH⊥AB∴∠AGH=90°∵∠A=∠A∠AGH=∠C=90°∴△ACB∽△AGH∴∴∴G28.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达29.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)==故答案为考点:列表法与树状图法;概率公式30.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、填空题1.2【解析】由D 是AC 的中点且S △ABC=12可得;同理EC=2BE 即EC=可得又等量代换可知S △ADF -S △BEF=2 解析:2 【解析】由D 是AC 的中点且S △ABC =12,可得1112622ABD ABC S S ∆∆==⨯=;同理EC=2BE 即EC=13BC ,可得11243ABE S ∆=⨯=,又,ABE ABF BEF ABD ABF ADF S S S S S S ∆∆∆∆∆∆-=-=等量代换可知S △ADF -S △BEF =22.【解析】【分析】过点E 作交AG 的延长线于H 根据折叠的性质得到根据三角形外角的性质可得根据锐角三角函数求出即可求解【详解】如图过点E 作交AG 的延长线于H 厘米`根据折叠的性质可知:根据折叠的性质可知:( 解析:423+【解析】 【分析】过点E 作EH AG ⊥交AG 的延长线于H,根据折叠的性质得到15,C CAG ∠=∠= 根据三角形外角的性质可得30,EAG EGA ∠=∠=根据锐角三角函数求出GC ,即可求解. 【详解】如图,过点E 作EH AG ⊥交AG 的延长线于H ,15,2C AE EG ︒∠===厘米,`根据折叠的性质可知:15,C CAG ∠=∠=30,EAG EGA ∴∠=∠=22cos3022AG HG EG ==⋅=⨯=根据折叠的性质可知:GC AG ==2,BE AE ==224BC BE EG GC ∴=++=++=+(厘米)故答案为:4+ 【点睛】考查折叠的性质,解直角三角形,作出辅助线,构造直角三角形是解题的关键.3.6【解析】分析:根据BD=CDAB=CD 可得BD=BA 再根据AM ⊥BDDN ⊥AB 即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB ∠ABD=∠P+∠BAP 即可得到△APM 是等腰直角三角形进而得到解析:6 【解析】分析:根据BD=CD ,AB=CD ,可得BD=BA ,再根据AM ⊥BD ,DN ⊥AB ,即可得到,依据∠ABD=∠MAP+∠PAB ,∠ABD=∠P+∠BAP ,即可得到△APM 是等腰直角三角形,进而得到AM=6. 详解:∵BD=CD ,AB=CD , ∴BD=BA ,又∵AM ⊥BD ,DN ⊥AB ,∴,又∵∠ABD=∠MAP+∠PAB ,∠ABD=∠P+∠BAP , ∴∠P=∠PAM ,∴△APM 是等腰直角三角形,∴AM=6, 故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM 是等腰直角三角形.4.【解析】试题分析:要求PE+PC 的最小值PEPC 不能直接求可考虑通过作辅助线转化PEPC 的值从而找出其最小值求解试题解析:如图连接AE∵点C 关于BD 的对称点为点A∴PE+PC=PE+AP 根据两点之间【解析】试题分析:要求PE+PC 的最小值,PE ,PC 不能直接求,可考虑通过作辅助线转化PE ,PC 的值,从而找出其最小值求解.试题解析:如图,连接AE ,∵点C 关于BD 的对称点为点A , ∴PE+PC=PE+AP ,根据两点之间线段最短可得AE 就是AP+PE 的最小值, ∵正方形ABCD 的边长为2,E 是BC 边的中点, ∴BE=1,∴22125+考点:1.轴对称-最短路线问题;2.正方形的性质.5.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③ 【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可. 详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A 种种子发芽的频率逐渐稳定在98%左右,故可以估计A 种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A 种种子发芽的频率逐渐稳定在98%左右,而B 种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A 种种子发芽率大于B 种种子发芽率,所以③中的说法是合理的. 故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.6.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1 【解析】试题分析:根据题意可知这是分式方程,x 2−1x+1=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法7.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=kx,可得k=-6,然后可得反比例函数的解析式为y=-6x,代入点(m,6)可得m=-1.故答案为:-1.9.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.10.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下:-2-112-22-2-4-12-1-21-2-解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.11.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键. 12.【解析】【分析】利用规定的运算方法分别算得a1a2a3a4…找出运算结果的循环规律利用规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4−三个数依次不断循环∵2019÷3=673∴a2019 解析:34. 【解析】【分析】 利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题.【详解】∵a 1=4a 2=11111143a ==---, a 3=211311413a ⎛⎫ ⎪⎝=⎭=---, a 4=31143114a ==--, …数列以4,−1334,三个数依次不断循环, ∵2019÷3=673, ∴a 2019=a 3=34, 故答案为:34. 【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律. 13.30【解析】【分析】由图象可以V 甲=9030=3m/sV 追=90120-30=1m/s 故V 乙=1+3=4m/s 由此可求得乙走完全程所用的时间为:12004=300s 则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V 甲=9030=3m/s ,V 追=90120−30=1m/s ,故V 乙=1+3=4m/s ,由此可求得乙走完全程所用的时间为:12004=300s ,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V 甲=9030=3m/s ,V 追=90120−30=1m/s , ∴V 乙=1+3=4m/s ,∴乙走完全程所用的时间为:12004=300s ,此时甲所走的路程为:(300+30)×3=990m . 此时甲乙相距:1200﹣990=210m则最后相遇的时间为:2103+4=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义. 14.【解析】解:原式==故答案为:32. 【解析】解:原式=121222⨯-++3232. 15.2000【解析】【分析】设这种商品的进价是x 元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x 元由题意得(1+40)x×08=2240解得:x =2000故答案为:2000解析:2000,【解析】【分析】设这种商品的进价是x 元,根据提价之后打八折,售价为2240元,列方程解答即可.【详解】设这种商品的进价是x 元,由题意得,(1+40%)x×0.8=2240, 解得:x =2000,故答案为:2000.【点睛】本题考查了一元一次方程的应用——销售问题,弄清题意,熟练掌握标价、折扣、实际售价间的关系是解题的关键.16.【解析】根据弧长公式可得:=故答案为解析:2π3【解析】根据弧长公式可得:602180π⨯⨯=23π,故答案为23π.17.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABC D为平行四边形∴AB=CD又∵BD⊥x轴∴解析:-3【解析】分析:由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.详解:过点P做PE⊥y轴于点E,∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质.18.-6【解析】因为四边形OABC是菱形所以对角线互相垂直平分则点A和点C 关于y轴对称点C在反比例函数上设点C的坐标为(x)则点A的坐标为(-x)点B的坐标为(0)因此AC=-2xOB=根据菱形的面积等【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 19.3【解析】【分析】分别延长AEBF 交于点H 易证四边形EPFH 为平行四边形得出G 为PH 中点则G 的运行轨迹为三角形HCD 的中位线MN 再求出CD 的长运用中位线的性质求出MN 的长度即可【详解】如图分别延长A解析:3【解析】【分析】分别延长AE 、BF 交于点H ,易证四边形EPFH 为平行四边形,得出G 为PH 中点,则G 的运行轨迹为三角形HCD 的中位线MN .再求出CD 的长,运用中位线的性质求出MN 的长度即可.【详解】如图,分别延长AE 、BF 交于点H .∵∠A=∠FPB=60°,∴AH ∥PF ,∵∠B=∠EPA=60°,∴BH ∥PE ,∴四边形EPFH 为平行四边形,∴EF 与HP 互相平分.∵G 为EF 的中点,∴G 也正好为PH 中点,即在P 的运动过程中,G 始终为PH 的中点,所以G 的运行轨迹为三角形HCD 的中位线MN .∵CD=10-2-2=6,∴MN=3,即G 的移动路径长为3.故答案为:3.本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.20.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A. B. C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解得a=2,b=−4,c=2.5.∴y=2x2−4x+2.5=2(x−1)2+0.5.∵2>0∴当x=1时,y min=0.5米.21.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC从而可得cos ∠OCB的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC由勾股定理得BC=OC∴cos ∠OCB=故答案为【点睛】解析:2 2【解析】【分析】根据圆周角定理可得∠BOC=90°,易求2OC,从而可得cos∠OCB的值.【详解】∵∠A=45°,∴∠BOC=90°∵OB=OC,由勾股定理得,BC=2OC,∴cos∠OCB=222OC OCBC OC==.故答案为2 2.【点睛】本题考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,属较简单题目题目.22.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.23.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:【解析】【分析】根据平方根的定义即可求解.【详解】若一个数的平方等于5,则这个数等于:故答案为:【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.24.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y2>y1>y3.【解析】【分析】根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可.【详解】解:∵函数y=-3x的图象上有三个点(-2,y1),(-1,y2),(12,y3),∴-2y1=-y2=12y3=-3,∴y1=1.5,y2=3,y3=-6,∴y2>y1>y3.故答案为y2>y1>y3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.25.【解析】【分析】过D作DQ⊥x轴于Q过C作CM⊥x轴于M过E作EF⊥x轴于F设D点的坐标为(ab)求出CE的坐标代入函数解析式求出a再根据勾股定理求出b 即可请求出答案【详解】如图过D作DQ⊥x轴于Q解析:25【解析】【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.【详解】如图,过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),则C点的坐标为(a+3,b),∵E为AC的中点,∴EF=12CM=12b,AF=12AM=12OQ=12a,E点的坐标为(3+12a,12b),把D、E的坐标代入y=kx得:k=ab=(3+12a)12b,解得:a=2,在Rt△DQO中,由勾股定理得:a2+b2=32,即22+b2=9,解得:5∴5故答案为5【点睛】本题考查了勾股定理、反比例函数图象上点的坐标特征、菱形的性质等,得出关于a、b的方程是解此题的关键.26.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根解析:-2【解析】【分析】。

深圳九年级中考数学试卷【含答案】

深圳九年级中考数学试卷【含答案】

深圳九年级中考数学试卷【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()A. -5B. 0C. 3D. 82. 如果 a > b,那么下列哪个式子成立?()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列哪个数是偶数?()A. 21B. 24C. 27D. 304. 下列哪个数是无理数?()A. √16B. √25C. √36D. √495. 下列哪个数是素数?()A. 11B. 12C. 13D. 14二、判断题1. 0是正数。

()2. 2的平方根是4。

()3. 所有的偶数都是2的倍数。

()4. 所有的奇数都不是2的倍数。

()5. 1是质数。

()三、填空题1. 如果 a = 3,那么 2a 5 = _____。

2. 如果 b = -2,那么 |b| = _____。

3. 如果 c = 5,那么c² = _____。

4. 如果 d = 4,那么√d = _____。

5. 如果 e = 15,那么e ÷ 3 = _____。

四、简答题1. 解释什么是素数。

2. 解释什么是偶数。

3. 解释什么是奇数。

4. 解释什么是无理数。

5. 解释什么是绝对值。

五、应用题1. 如果一个正方形的边长是6厘米,那么它的面积是多少平方厘米?2. 如果一个长方形的长是8厘米,宽是4厘米,那么它的面积是多少平方厘米?3. 如果一个圆的半径是5厘米,那么它的面积是多少平方厘米?4. 如果一个三角形的底是6厘米,高是4厘米,那么它的面积是多少平方厘米?5. 如果一个梯形的上底是4厘米,下底是6厘米,高是3厘米,那么它的面积是多少平方厘米?六、分析题1. 解释如何判断一个数是否是素数。

2. 解释如何计算一个数的平方根。

七、实践操作题1. 画出一个边长为5厘米的正方形,并计算它的面积。

2. 画出一个长为8厘米,宽为4厘米的长方形,并计算它的面积。

(必考题)中考数学填空题专项练习经典测试题(含答案解析)

(必考题)中考数学填空题专项练习经典测试题(含答案解析)

一、选择题1.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023 B .2021 C .2020 D .20192.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒3.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .4 4.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点5.如图,在△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′的度数为( )A .25°B .30°C .50°D .55°6.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( )A .400(1)640x +=B .2400(1)640x +=C .2400(1)400(1)640x x +++=D .2400400(1)400(1)640x x ++++=8.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x ,则下列方程中,正确的是( )A .()3001x 450+=B .()30012x 450+=C .2300(1x)450+=D .2450(1x)300-= 9.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π-C .32π-D .3π-10.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1211.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A .68°B .58°C .72°D .56°12.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π-B .8433π-C .8233π-D .843π- 13.若a 是方程22x x 30--=的一个解,则26a 3a -的值为( )A .3B .3-C .9D .9-14.下列判断中正确的是( )A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦15.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次方程220ax ax a c -++=的根为( )A .0,4B .-3,5C .-2,4D .-3,1二、填空题16.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).17.已知二次函数y =(x −2)2+3,当x _______________时,y 随x 的增大而减小.18.二次函数22(1)3y x =+-上一动点(,)P x y ,当21x -<≤时,y 的取值范围是_____.19.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.20.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.21.一元二次方程22x 20-=的解是______.22.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是23602s t t =-,则飞机着陆后滑行的最长时间为 秒. 23.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x 2﹣6x ﹣16,AB 为半圆的直径,则这个“果圆”被y 轴截得的线段CD 的长为_____.24.如图,点A 是抛物线24y x x =-对称轴上的一点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO ′,当O ′恰好落在抛物线上时,点A 的坐标为______________.25.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于_____.三、解答题26.如图,斜坡AB 长10米,按图中的直角坐标系可用353y x =-+表示,点A ,B 分别在x 轴和y 轴上,且30OAB ︒∠=.在坡上的A 处有喷灌设备,喷出的水柱呈抛物线形落到B 处,抛物线可用213y x bx c =-++表示.(1)求抛物线的函数关系式(不必写自变量取值范围);(2)求水柱离坡面AB的最大高度;(3)在斜坡上距离A点2米的C处有一颗3.5米高的树,水柱能否越过这棵树?27.在平面直角坐标系中,已知二次函数y=ax2﹣2ax﹣3a(a>0)图象与x轴交于点A,B (点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B的坐标;(2)若M为对称轴与x轴交点,且DM=2AM.①求二次函数解析式;②当t﹣2≤x≤t时,二次函数有最大值5,求t值;③若直线x=4与此抛物线交于点E,将抛物线在C,E之间的部分记为图象记为图象P(含C,E两点),将图象P沿直线x=4翻折,得到图象Q,又过点(10,﹣4)的直线y=kx+b 与图象P,图象Q都相交,且只有两个交点,求b的取值范围.28.“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;类别儿童玩具童车童装抽查件数90请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?29.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.30.某企业为响应国家教育扶贫的号召,决定对某乡镇全体贫困初、高中学生进行资助,初中学生每月资助200元,高中学生每月资助300元.已知该乡受资助的初中学生人数是受资助的高中学生人数的2倍,且该企业在2018年下半年7﹣12月这6个月资助学生共支出10.5万元.(1)问该乡镇分别有多少名初中学生和高中学生获得了资助?(2)2018年7﹣12月期间,受资助的初、高中学生中,分别有30%和40%的学生被评为优秀学生,从而获得了该乡镇政府的公开表扬.同时,提供资助的企业为了激发更多受资助学生的进取心和学习热情,决定对2019年上半年1﹣6月被评为优秀学生的初中学生每人每月增加a%的资助,对被评为优秀学生的高中学生每人每月增加2a%的资助.在此奖励政策的鼓励下,2019年1﹣6月被评为优秀学生的初、高中学生分別比2018年7﹣12月的人数增加了3a%、a%.这样,2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元,求a的值.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.A3.B4.D5.C6.D7.B8.C9.B10.D11.D12.C13.C14.C15.B二、填空题16.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能17.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y随x 的增大而减小在对称轴的右边y随x的增大而增大根据性质可得:当x<2时y随x的增大而减小考点:二次函数的性质18.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时19.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P(摸到白球)==20.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+21.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接22.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值23.20【解析】【分析】抛物线的解析式为y=x2-6x-16可以求出AB=10;在Rt△COM中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D(024.(22)或(2-1)【解析】∵抛物线y=x2-4x对称轴为直线x=-∴设点A坐标为(2m)如图所示作AP⊥y轴于点P作O′Q⊥直线x=2∴∠APO=∠AQO′=90°∴∠QAO′+∠AO′Q=90°25.-1【解析】由题意得ABBC于DBC于EBC交BC于FAB=勾股定理得AE=AD=1DB=-1三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A .【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键. 2.A【解析】【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数.【详解】∵35C ∠=︒∴35BAD C =∠=︒∠∵AB 是圆O 的直径∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠故答案为:A .【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.3.B解析:B【解析】【分析】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,设OF=x ,则OM=4-x ,MF=2,然后在Rt △MOF 中利用勾股定理求得OF 的长即可.【详解】如图:EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,∵四边形ABCD 是矩形,∴∠C=∠D=90°,∴四边形CDMN 是矩形,∴MN=CD=4,设OF=x ,则ON=OF ,∴OM=MN-ON=4-x ,MF=2,在直角三角形OMF 中,OM 2+MF 2=OF 2,即:(4-x )2+22=x 2,解得:x=2.5,故选B .本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.4.D解析:D【解析】【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误.【详解】当1a =-时,()224125=--+=-++y x x x ,∴当2x =-时,函数取得最大值5,故A 正确;当1a =时,()224125y x x x =--=--,∴函数图象开口向上,对称轴为2x =,∴当2x ≥时,y 随x 的增大而增大,故B 正确;当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误;故选D.【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键. 5.C解析:C【解析】试题解析:∵CC′∥AB ,∴∠ACC′=∠CAB=65°,∵△ABC 绕点A 旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C .6.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、不是轴对称图形,是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、既是轴对称图形,又是中心对称图形,故此选项正确.故选D .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.B解析:B【解析】【分析】根据平均年增长率即可解题.【详解】解:设这两年的年净利润平均增长率为x ,依题意得:()24001640x +=故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键. 8.C解析:C【解析】【分析】快递量平均每年增长率为x ,根据我国2016年及2018年的快递业务量,即可得出关于x 的一元二次方程,此题得解.【详解】快递量平均每年增长率为x ,依题意,得:2300(1x)450+=,故选C .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 9.B解析:B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯ =233π 故选B . 10.D解析:D【解析】【分析】连接AO 、BO 、CO ,根据中心角度数=360°÷边数n ,分别计算出∠AOC 、∠BOC 的度数,根据角的和差则有∠AOB =30°,根据边数n =360°÷中心角度数即可求解.【详解】连接AO 、BO 、CO ,∵AC 是⊙O 内接正四边形的一边,∴∠AOC =360°÷4=90°,∵BC 是⊙O 内接正六边形的一边,∴∠BOC =360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.11.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12=(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD2223OD OC+∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C .【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.13.C解析:C【解析】由题意得:2a 2-a-3=0,所以2a 2-a=3,所以6a 2-3a=3(2a 2-a)=3×3=9, 故选C.14.C解析:C【解析】【分析】根据等弧概念对A 进行判断,根据垂径定理对B 、C 、D 选项进行逐一判断即可. 本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B 错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C 正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误. 故选C.15.B解析:B【解析】【分析】先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.【详解】∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =∴()2620a c -+=或()2220a c --+=∴整理方程即得:160a c +=∴16c a =-将16c a =-代入220ax ax a c -++=化简即得:22150x x --=解得:13x =-,25x =故选:B .【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.二、填空题16.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.17.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y 随x 的增大而减小在对称轴的右边y 随x 的增大而增大根据性质可得:当x <2时y 随x 的增大而减小考点:二次函数的性质解析:<2(或x≤2).【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y 随x 的增大而减小,在对称轴的右边,y 随x 的增大而增大.根据性质可得:当x <2时,y 随x 的增大而减小. 考点:二次函数的性质18.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时 解析:35y -≤≤【解析】【分析】先确定抛物线的对称轴和顶点坐标,再根据抛物线的性质以对称轴为界分情况求解即得答案.【详解】解:∵抛物线的解析式是22(1)3y x =+-,∴抛物线的对称轴是直线:1x =-,顶点坐标是(-1,-3),抛物线的开口向上,当x <-1时,y 随x 的增大而减小,当x >-1时,y 随x 的增大而增大,且当2x =-时,1y =-;当x =1时,y =5;∴当21x -<≤-时,31y -≤<-,当11x -<≤ 时,35y -<≤,∴当21x -<≤时,y 的取值范围是:35y -≤≤.故答案为:35y -≤≤.【点睛】本题考查的是二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题关键.19.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P (摸到白球)== 解析:38【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,P (摸到白球)=353+ =38. 20.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x 的值直接计算【详解】∵一元二次方程x2﹣2x ﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+解析:-4【解析】【分析】利用根与系数的关系求出所求即可.此题也可解出x 的值,直接计算.【详解】∵一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),∴x 1+x 2=2,x 1x 2=﹣3,则x 1﹣x 2=﹣√(x 1+x 2)2−4x 1x 2=﹣√4+12=﹣4.故答案为﹣4.【点睛】本题考查了根与系数的关系,弄清根与系数的关系是解答本题的关键.21.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x 1=1,x 2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x 2=1,开方得:x =±1,解得:x 1=1,x 2=﹣1.故答案为x 1=1,x 2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.22.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s 取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值解析:【解析】【分析】把解析式化为顶点式,再根据二次函数的性质得出答案即可。

广东省深圳市2015年中考数学试题(解析版)(附答案)

广东省深圳市2015年中考数学试题(解析版)(附答案)

2015年中考真题精品解析 数学(深圳卷)一、选择题:1.15-的相反数是( )A 、15B 、15-C 、151 D 、151- 【答案】A考点:相反数的求法.2.用科学计数法表示316000000为( )A 、71016.3⨯B 、81016.3⨯C 、7106.31⨯D 、6106.31⨯【答案】B【解析】试题分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 考点:科学计数法.3.下列说法错误的是( )A 、2a a a =∙B 、a a a 32=+C 、523)(a a =D 、413a a a =÷- 【答案】C考点:幂的计算.4.下列图形既是中心对称又是轴对称图形的是( )考点:轴对称图形、中心对称图形.5.下列主视图正确的是( )【答案】A【解析】试题分析:从三视图的法则可得:下面为3个正方形,上面为1个正方形,且上面的正方形在中间.由前面往后面看,主视图为A考点:三视图6.在一下数据75,80,80,85,90中,众数、中位数分别是( )A 、75,80B 、80,80C 、80,85D 、80,90【答案】B考点:众数、中位数的计算.7.解不等式12-≥x x ,并把解集在数轴上表示( )【答案】B试题分析:解不等式,得:1x ≥-,在数轴上有等于号的要用实心点,故选B考点:解不等式.8.二次函数)0(2≠++=a c bx ax y 的图像如下图所示,下列说法正确的个数是( )○10>a ;○20>b ;○30<c ;○4042>-ac b 。

A 、1B 、2C 、3D 、4【答案】B考点:二次函数的性质.9.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A 、50°B 、20°C 、60°D 、70°【答案】D【解析】试题分析:根据AB 为⊙O 直径可得:∠ACB=90o ,则∠ACD=∠ACB -∠DCB=90°-20°=70°,根据同弧所对的圆周角相等可得:∠DBA=∠ACD=70°.考点:圆的基本性质.10.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元。

初三深圳数学试题分析及答案

初三深圳数学试题分析及答案

初三深圳数学试题分析及答案一、选择题(共10题,每题3分,满分30分)1. 已知a, b, c为三角形的三边,且满足a^2 + b^2 = c^2,根据勾股定理的逆定理,该三角形是直角三角形。

正确答案:√。

2. 圆的面积公式为S = πr^2,其中r为圆的半径。

若半径为4,则圆的面积为16π。

正确答案:×。

3. 一个数的立方根是它本身的数有±1和0。

正确答案:√。

4. 根据数轴上两点间的距离公式,若两点表示的数分别为x和y,且x < y,则两点间的距离为|y - x|。

正确答案:√。

5. 一个多项式的次数是多项式中次数最高的项的次数。

正确答案:√。

6. 一个数的相反数是与它相加等于零的数。

正确答案:√。

7. 根据绝对值的定义,一个数的绝对值是它到数轴原点的距离。

正确答案:√。

8. 一个数的平方根是它的两个相等的实数解。

正确答案:×。

9. 一个数的倒数是1除以这个数。

正确答案:√。

10. 一个数的平方是它自身乘以自身的结果。

正确答案:√。

二、填空题(共5题,每题2分,满分10分)11. 若一个三角形的内角和为180°,则该三角形是______三角形。

答案:锐角。

12. 一个数的算术平方根是它自身的数是______。

答案:0或1。

13. 一个数的立方根是它自身的数是______。

答案:±1或0。

14. 若一个数的绝对值是5,则这个数是______或______。

答案:5或-5。

15. 一个多项式的最高次数为3,则它是______次多项式。

答案:三。

三、解答题(共4题,每题10分,满分40分)16. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。

解:根据勾股定理,斜边长度为√(3^2 + 4^2) = 5。

17. 求圆的半径为5时的面积。

解:根据圆的面积公式,面积为π * 5^2 = 25π。

18. 已知一个多项式为2x^3 - 5x^2 + x - 7,求它的次数。

广东省深圳市2021-2023三年中考数学真题分类汇编-02填空题知识点分类

广东省深圳市2021-2023三年中考数学真题分类汇编-02填空题知识点分类

广东省深圳市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.因式分解-运用公式法(共1小题)1.(2022•深圳)分解因式:a2﹣1= .二.提公因式法与公式法的综合运用(共1小题)2.(2021•深圳)因式分解:7a2﹣28= .三.因式分解的应用(共1小题)3.(2023•深圳)已知实数a,b,满足a+b=6,ab=7,则a2b+ab2的值为 .四.一元二次方程的解(共1小题)4.(2021•深圳)已知方程x2+mx﹣3=0的一个根是1,则m的值为 .五.根的判别式(共1小题)5.(2022•深圳)已知一元二次方程x2+6x+m=0有两个相等的实数根,则m的值为 .六.反比例函数图象上点的坐标特征(共3小题)6.(2023•深圳)如图,Rt△OAB与Rt△OBC位于平面直角坐标系中,∠AOB=∠BOC=30°,BA⊥OA,CB⊥OB,若AB=,反比例函数y=(k≠0)恰好经过点C,则k = .7.(2022•深圳)如图,已知直角三角形ABO中,AO=1,将△ABO绕O点旋转至△A'B'O 的位置,且A'在OB中点,B'在反比例函数y=上,则k的值 .8.(2021•深圳)如图,已知反比例函数的图象过A,B两点,A点坐标(2,3),直线AB 经过原点,将线段AB绕点B顺时针旋转90°得到线段BC,则C点坐标为 .七.全等三角形的判定与性质(共1小题)9.(2022•深圳)已知△ABC是直角三角形,∠ABC=90°,AB=3,BC=5,AE=2,连接CE,以CE为底作直角三角形CDE,且CD=DE.F是AE边上的一点,连接BD 和BF,且∠FBD=45°,则AF长为 .八.勾股定理(共1小题)10.(2021•深圳)如图,已知∠BAC=60°,AD是角平分线且AD=10,作AD的垂直平分线交AC于点F,作DE⊥AC,则△DEF周长为 .九.圆周角定理(共1小题)11.(2023•深圳)如图,在⊙O中,AB为直径,C为圆上一点,∠BAC的角平分线与⊙O 交于点D,若∠ADC=20°,则∠BAD= °.一十.翻折变换(折叠问题)(共2小题)12.(2023•深圳)如图,在△ABC中,AB=AC,tan B=,点D为BC上一动点,连接AD,将△ABD沿AD翻折得到△ADE,DE交AC于点G,GE<DG,且AG:CG=3:1,则= .13.(2021•深圳)如图,在△ABC中,D,E分别为BC,AC上的点,将△CDE沿DE折叠,得到△FDE,连接BF,CF,∠BFC=90°,若EF∥AB,AB=4,EF=10,则AE的长为 .一十一.用样本估计总体(共1小题)14.(2022•深圳)某工厂一共有1200人,为选拔人才,提出了一些选拔的条件,并进行了抽样调查.从中抽出400人,发现有300人是符合条件的,那么该工厂1200人中符合选拔条件的人数为 .一十二.概率公式(共1小题)15.(2023•深圳)小明从《红星照耀中国》,《红岩》,《长征》,《钢铁是怎样炼成的》四本书中随机挑选一本,其中拿到《红星照耀中国》这本书的概率为 .广东省深圳市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.因式分解-运用公式法(共1小题)1.(2022•深圳)分解因式:a2﹣1= (a+1)(a﹣1) .【答案】见试题解答内容【解答】解:a2﹣1=(a+1)(a﹣1).故答案为:(a+1)(a﹣1).二.提公因式法与公式法的综合运用(共1小题)2.(2021•深圳)因式分解:7a2﹣28= 7(a+2)(a﹣2) .【答案】7(a+2)(a﹣2).【解答】解:7a2﹣28=7(a2﹣4)=7(a+2)(a﹣2).故答案为:7(a+2)(a﹣2).三.因式分解的应用(共1小题)3.(2023•深圳)已知实数a,b,满足a+b=6,ab=7,则a2b+ab2的值为 42 .【答案】42.【解答】解:∵a+b=6,ab=7,∴a2b+ab2=ab(a+b)=7×6=42.故答案为:42.四.一元二次方程的解(共1小题)4.(2021•深圳)已知方程x2+mx﹣3=0的一个根是1,则m的值为 2 .【答案】2.【解答】解:把x=1代入x2+mx﹣3=0得12+m﹣3=0,解得m=2.故答案是:2.五.根的判别式(共1小题)5.(2022•深圳)已知一元二次方程x2+6x+m=0有两个相等的实数根,则m的值为 9 .【答案】9.【解答】解:根据题意得Δ=62﹣4m=0,解得m=9.故答案为:9.六.反比例函数图象上点的坐标特征(共3小题)6.(2023•深圳)如图,Rt△OAB与Rt△OBC位于平面直角坐标系中,∠AOB=∠BOC=30°,BA⊥OA,CB⊥OB,若AB=,反比例函数y=(k≠0)恰好经过点C,则k= 4 .【答案】4.【解答】解:过点C作CE⊥x轴,垂足为E,∵∠AOB=∠BOC=30°,BA⊥OA,CB⊥OB,AB=,∴OB=2AB=2,∠COE=90°﹣30°﹣30°=30°,在Rt△OBC中=,即=,∴OC=4,在Rt△OCE中=,即=,CE=2,=,即=,∴OE=2,∴点C(2,2),∴k=2×2=4.故答案为:4.7.(2022•深圳)如图,已知直角三角形ABO中,AO=1,将△ABO绕O点旋转至△A'B'O 的位置,且A'在OB中点,B'在反比例函数y=上,则k的值 .【答案】见试题解答内容【解答】解:连接AA′,作B′E⊥x轴于点E,由题意知OA=OA′,A'是OB中点,∠AOB=∠A′OB′,OB′=OB,∴AA′=OB=OA′,∴△AOA′是等边三角形,∴∠AOB=60°,∴OB=2OA=2,∠B′OE=60°,∴OB′=2,∴OE=OB′=1,∴B′E=OE=,∴B′(1,),∵B'在反比例函数y=上,∴k=1×=.故答案为:.8.(2021•深圳)如图,已知反比例函数的图象过A,B两点,A点坐标(2,3),直线AB 经过原点,将线段AB绕点B顺时针旋转90°得到线段BC,则C点坐标为 (4,﹣7) .【答案】(4,﹣7).【解答】解:∵A点坐标(2,3),直线AB经过原点,∴B(﹣2,﹣3)过点B作x轴的平行线l过点A,点C作l的垂线,分别交于D,E两点,则D(2,﹣3),∵∠ABD+∠CBE=90°,∠ABD+∠BAD=90°,∴∠CBE=∠BAD,在△ABD与△BCE中,,∴△ABD≌△BCE(AAS),∴BE=AD=6,CE=BD=4,∴C(4,﹣7),故答案为(4,﹣7).七.全等三角形的判定与性质(共1小题)9.(2022•深圳)已知△ABC是直角三角形,∠ABC=90°,AB=3,BC=5,AE=2,连接CE,以CE为底作直角三角形CDE,且CD=DE.F是AE边上的一点,连接BD 和BF,且∠FBD=45°,则AF长为 .【答案】.【解答】解:将线段BD绕点D顺时针旋转90°,得到线段HD,连接BH,延长HE交BC于G,∴△BDH是等腰直角三角形,∴∠HBD=45°,∵∠FBD=45°,∴点B、F、H共线,又∵△EDC是等腰直角三角形,∴HD=BD,∠EDH=∠CDB,ED=CD,∴△EDH≌△CDB(SAS),∴EH=CB=5,∠DHE=∠CBD,∴∠BGH=∠BDH=90°,∴HE∥AB,∴△ABF∽△EHF,∴,∵AE=2,∴,∴AF=,故答案为:.八.勾股定理(共1小题)10.(2021•深圳)如图,已知∠BAC=60°,AD是角平分线且AD=10,作AD的垂直平分线交AC于点F,作DE⊥AC,则△DEF周长为 5+5 .【答案】5+5.【解答】解:∵AD的垂直平分线交AC于点F,∴FA=FD,∵AD平分∠BAC,∠BAC=60°,∴∠DAE=30°,∴DE=AD=5,∴AE===5,∴△DEF周长=DE+DF+EF=DE+FA+EF=DE+AE=5+5,故答案为:5+5.九.圆周角定理(共1小题)11.(2023•深圳)如图,在⊙O中,AB为直径,C为圆上一点,∠BAC的角平分线与⊙O 交于点D,若∠ADC=20°,则∠BAD= 35 °.【答案】35.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠ADC=20°,∴∠ADC=∠ABC=20°,∴∠BAC=90°﹣∠ABC=70°,∵AD平分∠BAC,∴∠BAD=∠BAC=35°,故答案为:35.一十.翻折变换(折叠问题)(共2小题)12.(2023•深圳)如图,在△ABC中,AB=AC,tan B=,点D为BC上一动点,连接AD,将△ABD沿AD翻折得到△ADE,DE交AC于点G,GE<DG,且AG:CG=3:1,则= .【答案】.【解答】解:如图,过点A作AF⊥BC于点F,过点A作AH⊥DE于点H,∵AB=AC,∴∠B=∠C,根据折叠的性质可知,∠B=∠E,AF=AH,AB=AE,BF=EH,∴∠E=∠C,设CG=a,则AG=3a,∴AB=AC=AE=4a,在Rt△ABF中,tan B==,∴BF=AF,∴,解得:或AF=(舍去),∴AH=AF=,BF=EH=,在Rt△AGH中,GH===,∴EG=EH﹣GH==,∵∠AGE=∠DGC,∠E=∠C,∴△AEG∽△DCG,∴,即,∴,∴=,∴==.故答案为:.13.(2021•深圳)如图,在△ABC中,D,E分别为BC,AC上的点,将△CDE沿DE折叠,得到△FDE,连接BF,CF,∠BFC=90°,若EF∥AB,AB=4,EF=10,则AE的长为 10﹣4 .【答案】10﹣4.【解答】解:方法一、如图,延长ED交FC于G,延长BA,DE交于点M,∵将△CDE沿DE折叠,得到△FDE,∴EF=EC,DF=DC,∠FED=∠CED,∴EG⊥CF,又∵∠BFC=90°,∴BF∥EG,∵AB∥EF,∴四边形BFEM是平行四边形,∴BM=EF=10,∴AM=BM﹣AB=10﹣4,∵AB∥EF,∴∠M=∠FED,∴∠M=∠CED=∠AEM,∴AE=AM=10﹣4,方法二、延长CA和FB相交于点H,∵折叠,∴EF=EC,∴∠EFC=∠ECF,又∵∠BFC=90°,∴∠H=∠EFH,∴EF=EC=HE=10,∵AB∥EF,∴∠ABH=∠EFH=∠H,∴AB=AH=4,∴AE=HE﹣AH=10﹣4.故答案为:10﹣4.一十一.用样本估计总体(共1小题)14.(2022•深圳)某工厂一共有1200人,为选拔人才,提出了一些选拔的条件,并进行了抽样调查.从中抽出400人,发现有300人是符合条件的,那么该工厂1200人中符合选拔条件的人数为 900 .【答案】900.【解答】解:1200×=900.答:该工厂1200人中符合选拔条件的人数为900.故答案为:900.一十二.概率公式(共1小题)15.(2023•深圳)小明从《红星照耀中国》,《红岩》,《长征》,《钢铁是怎样炼成的》四本书中随机挑选一本,其中拿到《红星照耀中国》这本书的概率为 .【答案】.【解答】解:小明从《红星照耀中国》,《红岩》,《长征》,《钢铁是怎样炼成的》四本书中随机挑选一本,拿到《红星照耀中国》这本书的概率为,故答案为:.。

广东省深圳市2021年中考数学真题试卷(含详细解析)

广东省深圳市2021年中考数学真题试卷(含详细解析)
设新矩形长和宽为x、y,则依题意 , ,联立 得 ,再探究根的情况:根据此方法,请你探究是否存在一个矩形,使其周长和面积都为原矩形的 倍;如图也可用反比例函数与一次函数证明 : , : ,那么,
①是否存在一个新矩形为原矩形周长和面积的2倍?_______.
②请探究是否有一新矩形周长和面积为原矩形的 ,若存在,用图像表达;
一、单选题
1.如图是一个正方体的展开图,把展开图折叠成小正方体后,和“建”字所在面相对的面上的字是()
A.跟B.百C.走D.年
2. 的相反数是()
A.2021B. C. D.
3.不等式 的解集在数轴上表示为()
A. B.
C. D.
4.《你好,李焕英》的票房数据是:109,133,120,118,124,那么这组数据的中位数是()
空气质量等级
空气质量指数
( )
频数

m

15

9

n
(1) ____, ______;
(2)求良的占比;
(3)求差的圆心角;
(4)统计表是一个月内的空气污染指数统计,然后根据这个一个月内的统计进行估测一年的空气污染指数为中的天数,从折线图可以得到空气污染指数为中的有9天.根据折线统计图,一个月(30天)中有_____天AQI为中,估测该城市一年(以365天计)中大约有_____天 为中.
21.探究:是否存在一个新矩形,使其周长和面积为原矩形的2倍、 倍、k倍.
(1)若该矩形为正方形,是否存在一个正方形,使其周长和面积都为边长为2的正方形的2倍?_______(填“存在”或“不存在”).
(2)继续探究,是否存在一个矩形,使其周长和面积都为长为3,宽为2的矩形的2倍?

广东省深圳市2023-2024学年九年级中考适应性考试数学试题(含解析)

广东省深圳市2023-2024学年九年级中考适应性考试数学试题(含解析)

2024年广东省深圳市中考数学适应性试卷一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.(3分)围棋在古代被列为“琴棋书画”四大文化之一,蕴含着中华文化的丰富内涵,如图所示是一个无盖的围棋罐,其主视图为( )A .B .C .D .2.(3分)已知x =1是关于x 的一元二次方程x 2+kx ﹣6=0的一个根,则k 的值为( )A .﹣5B .﹣7C .5D .73.(3分)如图,在菱形ABCD 中,∠B =60°,连接AC ,若AC =6,则菱形ABCD 的周长为( )A .24B .30C .D .4.(3分)用配方法解方程x 2+2x =3时,配方后正确的是( )A .(x +2)2=7B .(x +2)2=5C .(x +1)2=4D .(x +1)2=25.(3分)如图,在由大小相同的小正方形组成的网格中有一条“心形线”.数学小组为了探究随机投放一个点恰好落在“心形线”内部的概率,进行了计算机模拟试验,得到如下数据:试验总次数100200300500150020003000落在“心形线”内部的次数61931652467599961503落在“心形线”内部的频率0.6100.4650.5500.4920.5060.4980.501根据表中的数据,估计随机投放一点落在“心形线”内部的概率为( )A.0.46B.0.50C.0.55D.0.616.(3分)一段加固后的护栏如图所示,该护栏竖直部分是由等距(任意相邻两根木条之间的距离相等)且平行的木条构成.已知AC=50cm,则BC的长度为( )A.20cm B.25cm C.30cm D.7.(3分)击地传球是篮球运动中的一种传球方式,利用击地传球可以有效地躲避对手的拦截.传球选手从点A处将球传出,经地面点O处反弹后被接球选手在点C处接住,将球所经过的路径视为直线,此时∠AOB=∠COD.若点A距地面的高度AB为1.5m,点C距地面的高度CD为1m,传球选手与接球选手之间的距离BD为5m,则OB的长度为( )A.m B.2m C.2.5m D.3m8.(3分)据报道,2020年至2022年深圳市居民年人均可支配收入由6.49万元增长至7.27万元,设这两年人均可支配收入的年平均增长率为x,可列方程为( )A.6.49(1+x)2=7.27B.6.49(1+2x)=7.27C.6.49(1+x2)=7.27D.7.27(1﹣x)2=6.499.(3分)如图是凸透镜成像示意图,CD是蜡烛AB通过凸透镜MN所成的虚像.已知蜡烛的高AB为5.4cm,蜡烛AB离凸透镜MN的水平距离OB为6cm,该凸透镜的焦距OF为10cm,AE∥OF,则像CD的高为( )A.15cm B.14.4cm C.13.5cm D.9cm10.(3分)如图,在菱形ABCD中,对角线AC与BD相交于点O,过点D作DF⊥AB于点F,交AC于点E.已知AE=4,EC=6,则的值为( )A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)已知5a=2b,则a:b= .12.(3分)为测量广场上一棵树的高度,数学小组在阳光下测得广场上一根6m高的灯柱的影长为3m,在同一时刻,他们测得树的影长为2m,则该树的高度为 m.13.(3分)深圳某校举办了“博古通今,学史明智”的历史事件讲述大赛,选题有“鸦片战争”“香港回归”“改革开放”.八、九年级分别从中随机选择一个不同事件进行比赛,则八、九年级所选的历史事件都发生于新中国成立以后的概率为 .14.(3分)如图,在平面直角坐标系中,点A在第一象限,点B在x轴的正半轴,AO=AB=2,将△OAB沿OA所在的直线翻折后,点B落在点C处,且CA∥y轴,反比例函数的图象经过点C,则k的值为 .15.(3分)如图,在四边形ABCD中,AB=BC=6,∠ABC=60°,∠ADC=90°,对角线AC与BD相交于点E,若BE=3DE,则BD= .三、解答题(本题共7小题,共55分)16.(5分)解方程:x2﹣4x+3=0.17.(7分)深圳蕴藏丰富的旅游文化资源.为促进深港两地学生交流,某校开展“美丽深圳,深港同行”主题活动,景点有三个:A.梧桐烟云,B.莲花春早,C.梅沙踏浪.每位参加交流的学生都可以从中随机选择一个景点.(1)参加此次交流活动的小军选择的景点为“梧桐烟云”的概率是 ;(2)请用列表或画树状图的方法,求小明和小颖选择的景点都是“莲花春早”的概率.18.(8分)已知一个矩形的面积为6,长为x,宽为y.(1)y与x之间的函数表达式为 ;(2)在图中画出该函数的图象;列表:x…12346…y…63m 1.51…上面表格中m的值是 ;描点:在如图所示的平面直角坐标系中描出相应的点;连线:用光滑的曲线顺次连接各点,即可得到该函数的图象.(3)若点A(a,b)与点B(a+1,c)是该函数图象上的两点,试比较b和c的大小.19.(8分)某品牌画册每本成本为40元,当售价为60元时,平均每天的销售量为100本.为了吸引消费者,商家决定采取降价措施.经试销统计发现,如果画册售价每降低1元时,那么平均每天就能多售出10本.设这种画册每本降价x元.(1)平均每天的销售量为 本(用含x的代数式表示);(2)商家想要使这种画册的销售利润平均每天达到2240元,且要求每本售价不低于55元,求每本画册应降价多少元?20.(8分)如图,点O是矩形ABCD的对角线AC上一点,过点O作EF⊥AC,交BC于点E,交AD于点F.(1)在不添加新的点和线的前提下,请增加一个条件: ,使得OE=OF,并说明理由;(2)若OE=OF,AB=6,BC=8,求EF的长.21.(9分)【项目式学习】项目主题:守护生命,“数”说安全.项目背景:随着社会的发展,安全问题变得日益重要.某校为了提高学生的安全意识,开展以“守护生命,'数'说安全”为主题的项目式学习活动.创新小组通过考察测量、模拟探究和成果迁移等环节,开展地下弯道对通行车辆长度的限制研究.任务一:考察测量(1)如图1,创新小组所选取弯道的内、外侧均为直角,道路宽均为4m,则AB= m;任务二:模拟探究如果汽车在行驶中与弯道内、外侧均无接触,则可安全通过.(2)创新小组用线段模拟汽车通过宽度相同的直角弯道,探究发现:①当CD<2AB时(如图1),线段CD能通过直角弯道;②当CD=2AB时,必然存在线段CD的中点E与点B重合的情况,线段CD恰好不能通过直角弯道(如图2).此时,∠ADC的度数是 ;③当CD>2AB时,线段CD不能通过直角弯道.(3)如图3,创新小组用矩形PQMN模拟汽车通过宽均为4m的直角弯道,发现当PQ的中点E与点B重合,且PQ⊥AB时,矩形PQMN恰好不能通过该弯道.若PQ=am,PN=2m,且矩形PQMN能通过该直角弯道,求a的最大整数值.任务三:成果迁移(4)如图4,某弯道外侧形状可近似看成反比例函数y=(x>0)的图象,其对称轴交图象于点A.弯道内侧的顶点B在射线OA上,两边分别与x轴,y轴平行,OA=2m,AB=4m.创新小组探究发现通过该弯道的原理与通过直角弯道类似.有一辆长为bm,宽为2m的汽车需要安全通过该弯道,则b的最大整数值为 .(参考数据:≈1.4,≈1.7,≈2.2,≈2.6)22.(10分)已知点E是正方形ABCD内部一点,且∠BEC=90°.【初步探究】(1)如图1,延长CE交AD于点P.求证:△BEC∽△CDP;【深入探究】(2)如图2,连接DE并延长交BC于点F,当点F是BC的中点时,求的值;【延伸探究】(3)连接DE并延长交BC于点F,DF把∠BEC分成两个角,当这两个角的度数之比为1:2时,请直接写出的值.2024年广东省深圳市中考数学适应性试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.(3分)围棋在古代被列为“琴棋书画”四大文化之一,蕴含着中华文化的丰富内涵,如图所示是一个无盖的围棋罐,其主视图为( )A.B.C.D.【解答】解:这个立体图形的主视图为:故选:D.2.(3分)已知x=1是关于x的一元二次方程x2+kx﹣6=0的一个根,则k的值为( )A.﹣5B.﹣7C.5D.7【解答】解:把x=1代入关于x的一元二次方程x2+kx﹣6=0得:1+k﹣6=0,k=5,故选:C.3.(3分)如图,在菱形ABCD中,∠B=60°,连接AC,若AC=6,则菱形ABCD的周长为( )A.24B.30C.D.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵∠B=60°,∴△ABC是等边三角形,∴AB=BC=AC=6,∴AB=BC=CD=AD=6,∴菱形ABCD的周长为:AB+BC+CD+AD=6+6+6+6=24,故选:A.4.(3分)用配方法解方程x2+2x=3时,配方后正确的是( )A.(x+2)2=7B.(x+2)2=5C.(x+1)2=4D.(x+1)2=2【解答】解:x2+2x=3,两边同时加1,得:x2+2x+1=3+1,即(x+1)2=4.故选:C .5.(3分)如图,在由大小相同的小正方形组成的网格中有一条“心形线”.数学小组为了探究随机投放一个点恰好落在“心形线”内部的概率,进行了计算机模拟试验,得到如下数据:试验总次数100200300500150020003000落在“心形线”内部的次数61931652467599961503落在“心形线”内部的频率0.6100.4650.5500.4920.5060.4980.501根据表中的数据,估计随机投放一点落在“心形线”内部的概率为( )A .0.46B .0.50C .0.55D .0.61【解答】解:当试验次数逐渐增大时,落在“心形线”内部的频率稳定在0.50附近,则估计随机投放一点落在“心形线”内部的概率为0.50.故选:B .6.(3分)一段加固后的护栏如图所示,该护栏竖直部分是由等距(任意相邻两根木条之间的距离相等)且平行的木条构成.已知AC=50cm ,则BC 的长度为( )A .20cmB .25cmC .30cmD .【解答】解:过点C 作CD ⊥AM 交AM 于点D ,交BN 于点E ,∵BE ∥AD ,∴,∵AC =50cm ,∴BC =30cm .故选:C .7.(3分)击地传球是篮球运动中的一种传球方式,利用击地传球可以有效地躲避对手的拦截.传球选手从点A处将球传出,经地面点O处反弹后被接球选手在点C处接住,将球所经过的路径视为直线,此时∠AOB=∠COD.若点A距地面的高度AB为1.5m,点C距地面的高度CD为1m,传球选手与接球选手之间的距离BD为5m,则OB的长度为( )A.m B.2m C.2.5m D.3m【解答】解:由题意得∠ABO=∠CDO,∠AOB=∠COD,∴△ABO∽△CDO,∴,设OB=x m,则OD=(5﹣x)m,∴,∴x=3,即OB=3m,故选:D.8.(3分)据报道,2020年至2022年深圳市居民年人均可支配收入由6.49万元增长至7.27万元,设这两年人均可支配收入的年平均增长率为x,可列方程为( )A.6.49(1+x)2=7.27B.6.49(1+2x)=7.27C.6.49(1+x2)=7.27D.7.27(1﹣x)2=6.49【解答】解:设这两年人均可支配收入的年平均增长率为x,根据题意得,6.49(1+x)2=7.27,故选:A.9.(3分)如图是凸透镜成像示意图,CD是蜡烛AB通过凸透镜MN所成的虚像.已知蜡烛的高AB为5.4cm,蜡烛AB离凸透镜MN的水平距离OB为6cm,该凸透镜的焦距OF为10cm,AE∥OF,则像CD的高为( )A.15cm B.14.4cm C.13.5cm D.9cm【解答】解:由题意得,AB∥MN,AE∥OF,AB∥CD,∴四边形ABOE是平行四边形,∴AE=OB=6cm,∵AE∥OF,∴△CAE∽△COF,∴,∴,∴,∵AB∥CD,∴△OAB∽△OCD,∴,∴,∴CD=13.5cm,故选:C.10.(3分)如图,在菱形ABCD中,对角线AC与BD相交于点O,过点D作DF⊥AB于点F,交AC于点E.已知AE=4,EC=6,则的值为( )A.B.C.D.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB∥CD,AB=CD,AO=CO,∴∠AFD=∠CDF,∵DF⊥AB,∴∠AFD=90°,∴∠CDF=90°,∴∠CDE=∠COD=90°,又∵∠DCE=∠OCD,∴△CDE∽△COD,∴,即CD2=CO•CE,∵AE=4,EC=6,∴AC=AE+CE=4+6=10,∴AO=CO=5,∴OE=AO﹣AE=5﹣4=1,∴CD2=5×6=30,即,∴,∵AB∥CD,∴△AFE∽△CDE,∴,∴,∴,∴,∴,故选:B.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)已知5a=2b,则a:b= 2:5 .【解答】解:∵5a=2b,∴a:b=2:5.故答案为:2:5.12.(3分)为测量广场上一棵树的高度,数学小组在阳光下测得广场上一根6m高的灯柱的影长为3m,在同一时刻,他们测得树的影长为2m,则该树的高度为 4 m.【解答】解:设该树的高度为x m,依题意得:x:2=6:3,解得:x=4.答:该树的高度为4m.故答案为:4.13.(3分)深圳某校举办了“博古通今,学史明智”的历史事件讲述大赛,选题有“鸦片战争”“香港回归”“改革开放”.八、九年级分别从中随机选择一个不同事件进行比赛,则八、九年级所选的历史事件都发生于新中国成立以后的概率为 .【解答】解:“香港回归”和“改革开放”发生于新中国成立以后.将“鸦片战争”“香港回归”“改革开放”分别记为A,B,C,列表如下:A B CA(A,B)(A,C)B(B,A)(B,C)C(C,A)(C,B)共有6种等可能的结果,其中八、九年级所选的历史事件都发生于新中国成立以后的结果有:(B,C),(C,B),共2种,∴八、九年级所选的历史事件都发生于新中国成立以后的概率为=.故答案为:.14.(3分)如图,在平面直角坐标系中,点A在第一象限,点B在x轴的正半轴,AO=AB=2,将△OAB沿OA所在的直线翻折后,点B落在点C处,且CA∥y轴,反比例函数的图象经过点C,则k的值为 3 .【解答】解:延长CA交x轴于点D,如图所示:设OD=a,则a≠0,∵CA∥y轴,∴CD⊥OB,∴AO=AB=2,∴OD=BD=2a,由翻折的性质得:OC=OB=2a,AC=AB=2,在Rt△OCD中,OD=a,OC=2a,由勾股定理得:CD==,∴点C的坐标为,∵点C在反比例函数y=k/x的图象上,∴k==√3a2,∴AD=CD﹣AC=,在Rt△OAD中,AD=,OD=a,OA=2,由勾股定理得:AD2+OD2=OA2,∴,解得:a=,或a=0(不合题意,舍去),∴k==3.故答案为:3.15.(3分)如图,在四边形ABCD中,AB=BC=6,∠ABC=60°,∠ADC=90°,对角线AC与BD相交于点E,若BE=3DE,则BD= 3 .【解答】解:过点B作BM⊥AC于点M,过点D作DN⊥BM于点N,连接DM.∴∠BMC=∠BND=90°,∴CM∥DN.∵BE=3DE,∴BM=3MN.∵AB=BC=6,∠ABC=60°,∴△ABC为等边三角形,∴AC=6.∵BM⊥AC,∴CM=AC=3.∴BM====3.∴MN=.∴BN=4.∵∠ADC=90°,∴DM=AC=3.∴DN==.∴BD====3.故答案为:3.三、解答题(本题共7小题,共55分)16.(5分)解方程:x2﹣4x+3=0.【解答】解:x2﹣4x+3=0(x﹣1)(x﹣3)=0x﹣1=0或x﹣3=0x1=1,x2=3.17.(7分)深圳蕴藏丰富的旅游文化资源.为促进深港两地学生交流,某校开展“美丽深圳,深港同行”主题活动,景点有三个:A.梧桐烟云,B.莲花春早,C.梅沙踏浪.每位参加交流的学生都可以从中随机选择一个景点.(1)参加此次交流活动的小军选择的景点为“梧桐烟云”的概率是 ;(2)请用列表或画树状图的方法,求小明和小颖选择的景点都是“莲花春早”的概率.【解答】解:(1)∵有A.梧桐烟云,B.莲花春早,C.梅沙踏浪三个选项,∴小军选择的景点为“梧桐烟云”的概率为,故答案为:.(2)根据题意画树状图如图所示,共有9种等可能的结果,其中小明和小颖选择的景点都是“莲花春早”的结果有1种,∴P(小明和小颖选择的景点都是“莲花春早”)=,∴小明和小颖选择的景点都是“莲花春早”的概率为.18.(8分)已知一个矩形的面积为6,长为x,宽为y.(1)y与x之间的函数表达式为 y= ;(2)在图中画出该函数的图象;列表:x…12346…y…63m 1.51…上面表格中m的值是 2 ;描点:在如图所示的平面直角坐标系中描出相应的点;连线:用光滑的曲线顺次连接各点,即可得到该函数的图象.(3)若点A(a,b)与点B(a+1,c)是该函数图象上的两点,试比较b和c的大小.【解答】解:(1)根据题意得:xy=6,所以y=,则y与x之间的函数表达式为y=.故答案为:y=.(2)(3)由图象可知,在第一象限内y随着x的增大而减小,∵a+1>a,∴b>c.19.(8分)某品牌画册每本成本为40元,当售价为60元时,平均每天的销售量为100本.为了吸引消费者,商家决定采取降价措施.经试销统计发现,如果画册售价每降低1元时,那么平均每天就能多售出10本.设这种画册每本降价x元.(1)平均每天的销售量为 (100+10x) 本(用含x的代数式表示);(2)商家想要使这种画册的销售利润平均每天达到2240元,且要求每本售价不低于55元,求每本画册应降价多少元?【解答】解:(1)由题意可知,每天的销售量为(100+10x)本.故答案为:(100+10x).(2)由题意可得,(60﹣40﹣x)(100+10x)=2240,整理得x2﹣10x+24=0,解得x1=4,x2=6,∵要求每本售价不低于55元,∴x=4符合题意.故每本画册应降价4元.20.(8分)如图,点O是矩形ABCD的对角线AC上一点,过点O作EF⊥AC,交BC于点E,交AD于点F.(1)在不添加新的点和线的前提下,请增加一个条件: AO=CO ,使得OE=OF,并说明理由;(2)若OE=OF,AB=6,BC=8,求EF的长.【解答】解:(1)AO=CO;理由如下:∵AD∥BC,∴∠FAO=∠ECO,∵EF⊥AC,∴∠AOF=∠COE,又∵AO=CO,∴△AOF≌COE(ASA),∴OE=OF.(2)∵∠B=90°,AB=6,BC=8,∴AC==10,∵EF⊥AC,∴∠AOF=∠COE,∵AD∥BC,∴∠FAO=∠ECO,又∵EO=FO,∴△AOF≌COE(AAS),∴AO=CO=5,在Rt△COE中,tan∠OCE==,在Rt△ACB中,tan∠ACB==,∴,∴,∴EF=.21.(9分)【项目式学习】项目主题:守护生命,“数”说安全.项目背景:随着社会的发展,安全问题变得日益重要.某校为了提高学生的安全意识,开展以“守护生命,'数'说安全”为主题的项目式学习活动.创新小组通过考察测量、模拟探究和成果迁移等环节,开展地下弯道对通行车辆长度的限制研究.任务一:考察测量(1)如图1,创新小组所选取弯道的内、外侧均为直角,道路宽均为4m,则AB= 4 m;任务二:模拟探究如果汽车在行驶中与弯道内、外侧均无接触,则可安全通过.(2)创新小组用线段模拟汽车通过宽度相同的直角弯道,探究发现:①当CD<2AB时(如图1),线段CD能通过直角弯道;②当CD=2AB时,必然存在线段CD的中点E与点B重合的情况,线段CD恰好不能通过直角弯道(如图2).此时,∠ADC的度数是 45° ;③当CD>2AB时,线段CD不能通过直角弯道.(3)如图3,创新小组用矩形PQMN模拟汽车通过宽均为4m的直角弯道,发现当PQ的中点E与点B重合,且PQ⊥AB时,矩形PQMN恰好不能通过该弯道.若PQ=am,PN=2m,且矩形PQMN能通过该直角弯道,求a的最大整数值.任务三:成果迁移(4)如图4,某弯道外侧形状可近似看成反比例函数y=(x>0)的图象,其对称轴交图象于点A.弯道内侧的顶点B在射线OA上,两边分别与x轴,y轴平行,OA=2m,AB=4m.创新小组探究发现通过该弯道的原理与通过直角弯道类似.有一辆长为bm,宽为2m的汽车需要安全通过该弯道,则b的最大整数值为 10 .(参考数据:≈1.4,≈1.7,≈2.2,≈2.6)【解答】解:(1)如图1,延长内侧交外侧于点B′,则BB′⊥AB′,∴AB′=BB′=4,∴AB==4,故答案为:4;(2)由图形可知△ACD是等腰直角三角形,则∠ADC=45°,故答案为:45°;(3)解法一、如图3(1),设AB与MN相交于点G,根据题意得:∠ANM=∠NAG=45°,∴∠AGN=∠AGM=90°,又∵AG=AG,∠MAG=∠NAG=45°,∴△AGM≌△AGN(ASA),∴GM=GN,∴MN=2AG,又∵AB=4,NP=BG=2,∴MN=2AG=2(AB﹣BG)=8﹣4∵≈1.4,∴8﹣4=7.2,∴根据实际情况可得:a的最大整数值为7.解法二:如图3(2),设直线PQ分别与直线AM,AN相交于点I,H,根据题意得:∵NPQM为矩形,∴PQ∥MN,∴∠IHA=∠MNA=45°,又∵∠MAN=90°,∴IH=2AB=8,IQ=MQ=2,PH=PN=2,∴PQ=HI﹣IQ﹣PH=8﹣4,∵≈1.4,∴8﹣4=7.2,∴根据实际情况可得:a的最大整数值为7m.(4)如图4,过点A作AA′⊥x轴于点A′,由勾股定理可得OA′=AA′=,∴A(,),∴反比例函数的解析式为y=;设直线AB与MN的交点为P,则BP=2,过点P作PP′⊥x轴于点P′,则OP=OA+AB=BP=4,∴PP′=OP′=4,∴P(4,4),∴直线MN的解析式为:y=﹣x+8;令=﹣x+8,解得x=4±,∴M(4﹣,4+),N(4+,4﹣,∴MN==,∵10<<11,∴b=MN的最大整数值为10.故答案为:10.22.(10分)已知点E是正方形ABCD内部一点,且∠BEC=90°.【初步探究】(1)如图1,延长CE交AD于点P.求证:△BEC∽△CDP;【深入探究】(2)如图2,连接DE并延长交BC于点F,当点F是BC的中点时,求的值;【延伸探究】(3)连接DE并延长交BC于点F,DF把∠BEC分成两个角,当这两个角的度数之比为1:2时,请直接写出的值.【解答】(1)证明:∵四边形ABCD是正方形,∴∠D=90°,AD∥BC,∴∠CPD=∠BCE,∵∠BEC=90°,∴∠BEC=∠D,∴△BEC∽△CDP;作EG⊥BC于G,∴∠BGE=90°,∵四边形ABCD是正方形,∴∠BCD=90°,CD=BC,∴△FGE∽△FCD,∴,∵∠BEC=90°,点F是BC的中点,∴EF=BF=CF=BC,不妨设EF=BF=CF=1,则CD=BC=2,DF=,∴,∴EG=,FG=,∴CG=CF﹣FG=1﹣=,∵∠EGB=∠EGC=90°,∴∠CEG+∠ECG=90°,∵∠BEC=90°,∴∠CEG+∠BEG=90°,∴∠BEG=∠ECG,∴△BGE∽△EGC,=;当∠BEF:∠CEF=1:2时,即∠CEF=60°,∴∠DEC=120°,以BC所在的直线为x轴,CD所在的直线为y轴建立坐标系,设BC=CD=6,E(x,y),以BC的中点W为圆心,BC为直径作圆W,∵∠BEC=90°,∴点E在⊙W上,则W(﹣3,0),B(﹣6,0),∴(x+3)2+y2=32①,作等边三角形CDG,作△CDG的外接圆V,则点E⊙V上,则V(,3),CV=2,∴(x﹣)2+(y﹣3)2=(2)2②,由①②得,x=﹣,x+y=﹣6x,∴,如图3,当∠BEF:∠CEF=2:1时,即∠BEF=60°,∠CEF=30°,则∠DEC=150°,同上作⊙W,作等边三角形CDV,设BC=CD=2,则W(﹣1.0),B(﹣2,0),V(,1),以V为圆心,2为半径作⊙V,则点E在⊙V上,同理上可得:,∴x2+y2=﹣2x,x=﹣,∴=,综上所述:=或.。

深圳中考数学试题及答案

深圳中考数学试题及答案

深圳中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(循环)B. √2C. 3.14D. 0.5答案:B2. 如果一个二次函数的图像开口向上,且顶点坐标为(2, -1),则该函数的一般形式为:A. y = a(x-2)^2 - 1B. y = a(x+2)^2 - 1C. y = a(x-2)^2 + 1D. y = a(x+2)^2 + 1答案:A3. 已知一个等差数列的首项为3,公差为2,那么该数列的第10项为:A. 23B. 21C. 19D. 17答案:A4. 以下哪个图形是中心对称图形?A. 等边三角形B. 矩形C. 等腰梯形D. 圆答案:D5. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:C6. 函数y=2x+3的图像与x轴的交点坐标为:A. (-3/2, 0)B. (3/2, 0)C. (-1.5, 0)D. (1.5, 0)答案:A7. 计算(3x^2 - 2x + 1) - (x^2 - 4x + 3)的结果为:A. 2x^2 + 2x - 2B. 2x^2 + 2x + 2C. x^2 + 2x - 2D. x^2 + 2x + 2答案:C8. 已知一个三角形的两边长分别为3和4,且这两边的夹角为60度,那么这个三角形的面积为:A. 3√3/2B. 2√3C. 3√3D. 4√3/2答案:A9. 以下哪个选项是不等式2x - 3 > 5的解集?A. x > 4B. x > 4/3C. x > 4/2D. x > 8/3答案:D10. 一个正方体的体积为64立方厘米,那么它的棱长为:A. 2厘米B. 4厘米C. 8厘米D. 16厘米答案:B二、填空题(每题3分,共15分)11. 计算√(9 + 16)的值为______。

答案:512. 如果一个数的相反数是-5,那么这个数是______。

2023广东省深圳市各区中考数学模拟题-填空题

2023广东省深圳市各区中考数学模拟题-填空题

2023年广东省深圳市中考数学一~三模试题汇编:填空题(原卷版)一、实数与代数式及其运算1. (2023年广东省深圳市南山区中考三模)分解因式:2242a a ++=_________.2. (2023年广东省深圳市坪山区中考二模数学)分解因式:3a a -=__________.3. (2023年广东省深圳市盐田区中考二模)分解因式:2269ab a b --=_________________.4. (2023年广东省深圳市光明区中考二模)因式分解:3269a a a -+=________.5. (2023年广东省深圳市福田区中考二模)因式分解:a 3-a =______.6. (2023年广东省深圳市光明区中考一模)因式分解:2a 2﹣8=_____.7. (2023年广东省深圳市宝安区中考三模)分解因式:233x -=_____.8.(2023年广东省深圳市南山区中考一模) 一个二次二项式分解后其中的一个因式为3x -,请写出一个满足条件的二次二项式______.9. (2023年广东省深圳市龙华区中考二模)计算:5tan 45-+︒=______.10. (2023年广东省深圳市龙华区中考一模)已知32x y -=,则代数式395x y --=_____________.11. (2023年广东省深圳市南山区中考一模)按照下图所示的操作步骤,若输入x 的值为-2,则输出的值为____________.12.(2023年广东省深圳市宝安区中考二模) 3月21日是国际森林日,今年的主题是森林与可持续生产和消费.党的十八大以来,我国深入推进大规模国土绿化行动,我国森林植被总碳储量净增13.75亿吨,数据13.75亿用科学记数法表示为__________.二、不等式与方程1. (2023年广东省深圳市光明区中考二模)规定“⊗”的运算规则为:1a b a b ⊗=-.例如:1523233⊗=-=.当344x ⊗=时,x =________.2. (2023年广东省深圳市龙华区中考二模)已知x m y n =⎧⎨=⎩是方程组034x y x y -=⎧⎨+=⎩的解,则m n +=______.3. (2023年广东省深圳市坪山区中考二模数学)1x =是关于x 的一元二次方程240x x m ++=的一个根,则m =___________.4. (2023年广东省深圳市宝安区中考三模)若关于x 的一元二次方程22(2)40k x x k -++-=有一个根是0,则k 的值是______.三、函数1. (2023年广东省深圳市坪山区中考一模)抛物线y =2(x -3)2+1的顶点坐标为_______.2. (2023年广东省深圳市宝安区中考二模)某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地,这是因为人和木板对湿地的压力F 一定时,人和木板对地面的压强()Pa P 与木板面积()2mS 存在函数关系:F P S =(如图所示).若木板面积为20.2m 则压强为__________Pa .3. (2023年广东省深圳市坪山区中考二模数学)如图,在平面直角坐标系中,菱形ABCD 在第二象限内,边BC 与x 轴平行,A 、B 两点纵坐标分别为3、2,反比例函数()0k y x x=<的图象经过A 、B 两点.若菱形ABCD k 的值为___________.4. (2023年广东省深圳市南山区中考一模)如图,直角坐标系原点为Rt ABC △斜边的中点,90ACB ∠=︒,A 点坐标为()5,0-,且1tan 3A =,反比例函数()0k y k x =≠经过点C ,则k 的值为______.5. (2023年广东省深圳市坪山区中考一模)如图,点A ,C 为函数()0k y x x=<图象上的两点,过A ,C 分别作AB x ⊥轴,CD x ⊥轴,垂足分别为B ,D ,连接OA ,AC ,OC ,线段OC 交AB 于点E ,且点E 恰好为OC 的中点.当AEC △的面积为34时,k 的值为______.6. (2023年广东省深圳市龙华区中考一模)如图,点A (1,3)为双曲线k y x=上的一点,连接AO 并延长与双曲线在第三象限交于点B ,M 为y 轴正半轴一上点,连接MA 并延长与双曲线交于点N ,连接BM 、BN ,已知△MBN 的面积为332,则点N 的坐标为__________.7. (2023年广东省深圳市南山区中考三模)如图,点B 在反比例函数()0k y x x=<的图象上,点A 在y 轴上,AB x ∥轴,点D 为x 轴上一点,过点B 作BC AD ∥,交y 轴于点C ,若4ACD S = ,则k 的值为______.8. (2023年广东省深圳市福田区中考二模)如图,在平面直角坐标系中,将菱形ABCD 向右平移一定距离后,顶点C ,D 恰好均落在反比例函数k y x=(0k ≠,x >0)的图象上,其中点(6,6)A -,(3,2)B -,且AD x ∥轴,则k =_______.9. (2023年广东省深圳市龙华区中考二模)如图,在平面直角坐标系中,3OA =,将OA 沿y 轴向上平移3个单位至CB ,连接AB ,若反比例函数()0k y x x=>的图象恰好过点A 与BC 的中点D ,则k =______.10. (2023年广东省深圳市光明区中考一模)如图,点A 是函数2y x =(0x >)的图象上任意一点,AB x ∥轴交函数k y x=(0x <)的图象于点B ,以AB 为边作平行四边形ABCD ,且5ABCD S =,C 、D 在x 轴上,则k =________.11. (2023年广东省深圳市宝安区中考三模)如图,将矩形OABC 的顶点O 与原点重合,边AO CO 、分别与x 、y 轴重合.将矩形沿DE 折叠,使得点O 落在边AB 上的点F 处,反比例函数(0)k y k x=>上恰好经过E 、F 两点,若B 点的坐标为()21,,则k 的值为________.12. (2023年广东省深圳市盐田区中考二模)如图,A ,B 是反比例函数()0k y x x=>图象上两点,()2,0C -,()4,0D ,ACO ODB ≌△△,则k =__.13. (2023年广东省深圳市光明区中考一模)如图,直角ABC 中,90C ∠=︒,根据作图痕迹,若3cm CA =,3tan 4B =,则DE =________cm .四、平行线、三角形1. (2023年广东省深圳市福田区中考二模)某城市几条道路的位置关系如图所示,道路AB CD ,道路CD 与DF 的夹角54CDF ∠=︒.城市规划部门想新修一条道路BF ,要求BE EF =,则B ∠的度数为______.2. (2023年广东省深圳市南山区中考三模)如图,已知直线a b ∥,ABC 的顶点B 在直线b 上,90C ∠=︒,140∠=︒,则2∠的度数是______.3. (2023年广东省深圳市盐田区中考二模)一副三角板如图摆放,两斜边平行,则1∠=__°.4. (2023年广东省深圳市盐田区中考二模)在ABC 中,236AB AC A ==∠=︒,.由尺规作图得射线BM 交AC 于点F .则AF 的长是__.5. (2023年广东省深圳市宝安区中考三模)已知如图,在ABC 中,70A ∠=︒,且AC BC =,根据图中的尺规作图痕迹,计算α∠=______°;6. (2023年广东省深圳市坪山区中考二模数学)如图,在Rt ABC △中,90A ∠=︒,4AC =.根据尺规作图痕迹,作射线CE ,与AB 相交于点F .当3AF =时,AB 的长是___________.7. (2023年广东省深圳市龙华区中考一模)若直角三角形斜边上的高是3,斜边上的中线是6,则这个直角三角形的面积是 _____.8. (2023年广东省深圳市南山区中考一模)如图,等边三角形ABC 边长为2,点D 在BC 边上,且BD CD <,点E 在AB 边上且AE BD =,连接AD ,CE 交于点F ,在线段FC 上截取FG FA =,连接BG ,则线段BG 的最小值是______.9. (2023年广东省深圳市南山区中考三模)如图所示,4AB =,2AC =,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD PD =,则PB 长的取值范围为 ____.10. (2023年广东省深圳市坪山区中考二模数学)如图,在ABC 中,5AB AC ==,8BC =,D 是BC 边上一点,且BD AB =,E 是AB 延长线上一点,连接ED 交AC 于F ,若ADE B ∠=∠,则EF 的长度为___________.11. (2023年广东省深圳市龙华区中考一模)如图,l 是一条笔直的公路,道路管理部门在点A 设置了一个速度监测点,已知BC 为公路的一段,B 在点A 的北偏西30°方向,C 在点A 的东北方向,若AB=50米.则BC 的长为__________米.(结果保留根号)12. (2023年广东省深圳市宝安区中考二模)如图所示,这是一款在某商城热销的笔记本电脑散热支架,在保护颈椎的同时能让笔记本电脑更好地散热.根据产品介绍,当显示屏与水平线夹角为120︒时为最佳健康视角.如图,小翼希望通过调试和计算对购买的散热架OAC 进行简单优化,现在笔记本电脑下垫入散热架,散热架角度为30OAC ∠=︒,调整显示屏OB 与水平线夹角保持120︒,已知24cm OA =,18cm OB =,若要BC AC ⊥,则底座AC 的长度应设计为__________cm .(结果保留根号)13. (2023年广东省深圳市宝安区中考三模)在ABC 中,90ACB ∠=︒,AC BC =,点D 在ABC 内部,若BCD △的面积为13,且满足2ACD BCD DAB ∠-∠=∠,则CD =______.14. (2023年广东省深圳市坪山区中考一模)图①是伸缩折叠不锈钢晾衣架的实物图,图②是它的侧面示意图,AD 和CB 相交于点O ,点A 、B 之间的距离为1.2米,AB CD ∥,根据图②中的数据可得C 、D 之间的距离为__________米.15. (2023年广东省深圳市宝安区中考二模)如图,在Rt ABC △中,90B Ð=°,点D 为BC 中点,2C BAD ∠=∠,则AD AC的值为__________.16. (2023年广东省深圳市坪山区中考一模)如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1:2,则斜坡AB 的长为______米.五、平行四边形、矩形、菱形、正方形与圆1. (2023年广东省深圳市光明区中考一模)如图,在平行四边形ABCD 中,E 为CD 中点,连接BE ,F 为BE 中点,连接AF ,若2AB =,5BC =,120BAD ∠=︒.则AF 长为________.2. (2023年广东省深圳市坪山区中考一模)如图,在矩形ABCD 中,点E 为BC 上一点,8EB =,4AB =,连接AE ,将ABE 沿AE 所在的直线翻折,得到AB E ' ,B E '交AD 于点F ,将AB E ' 沿B E '所在的直线翻折,得到A B E '' ,A E '交AD 于点G ,GE GA '的值为______.3. (2023年广东省深圳市光明区中考二模)如图,矩形ABCD 的对角线AC 和BD 交于点O ,3AB =,4BC =.将ADC 沿着AC 折叠,使点D 落在点E 处,连接OE 交BC 于点F ,AE 交BC 于点G ,则EF =________.4. (2023年广东省深圳市光明区中考二模)如图,菱形ABCD 的对角线AC 与BD 交于点O ,4AB =,:3:2BD AD =,则AC =________.5. (2023年广东省深圳市龙华区中考二模)如图,在边长为4米的正方形场地ABCD 内,有一块以BC 为直径的半圆形红外线接收“感应区”,边AB 上的P 处有一个红外线发射器,红外线从点P 发射后,经AD 、CD 上某处的平面镜反射后到达 “感应区”,若1AP =米,当红外线途经的路线最短时,AD 上平面镜的反射点距离点A ______米.7. (2023年广东省深圳市福田区中考二模)如图,正方形ABCD 的边长为8,对角线AC BD 、相交于点O ,点M ,N 分别在边BC CD 、上,且90MON ∠=︒,连接MN 交OC 于P ,若2BM =,则OP OC ⋅=______.8. (2023年广东省深圳市南山区中考一模)如图,AC经过⊙O的圆心O,AB与⊙O相切于点B,若∠A=50°,则∠C=_____度.六、概率与统计1. (2023年广东省深圳市盐田区中考二模)某店某段时间所销40双鞋的鞋号数据如下:鞋号353637383940414243销售量/双2455126321据此进400双同款鞋,估计需求最多的鞋号为__.2. (2023年广东省深圳市宝安区中考二模)木箱里装有白色卡片若干张,在不允许将卡片倒出来的情况下,为了估计其数量,小强将5张黑色卡片放入木箱,搅匀后随机摸出一张卡片记下颜色,再放回木箱中,经过多次重复试验,发现摸到黑色卡片的频率稳定在0.2附近,则木箱中大约有白色卡片__________张.3. (2023年广东省深圳市龙华区中考一模)在一个不透明的口袋中,装有若干个红球和7个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率稳定在0.7,则估计口袋中大约有红球_____个.4. (2023年广东省深圳市龙华区中考二模)新学期开始,小颖从学校开设的感兴趣的5门劳动教育课程:烹饪、茶艺、花卉种植、整理收纳、家电维修中,随机选择一门课程学习,她选择“茶艺”课程的概率是______.5. (2023年广东省深圳市南山区中考三模)从1~9这9个自然数中,任取一个,是3的倍数的概率是_____.6. (2023年广东省深圳市光明区中考一模)在一个不透明的口袋中装有4个只有颜色不同的球,其中红球1个,白球2个,黄球1个,搅匀后随机摸出两个球,恰好都是白球的概率是_____________7. (2023年广东省深圳市福田区中考二模)一个不透明的袋中装有2个红球和4个黄球,这些球除颜色外完全相同.从袋中随机摸出一个球,摸到黄球的概率是__________.2023年广东省深圳市中考数学一~三模试题汇编:填空题(解析版)二、实数与代数式及其运算1. (2023年广东省深圳市南山区中考三模)分解因式:2242a a ++=_________.【答案】2(a+1)2【解析】【分析】【详解】2242a a ++=2(a+1)2.故答案为2(a+1)2考点:因式分解2. (2023年广东省深圳市坪山区中考二模数学)分解因式:3a a -=__________.【答案】(1)(1)a a a +-##(1)(1)a a a -+【解析】【分析】先提取公因式a ,再用平方差公式分解.【详解】解:()()()32111a a a a a a a -=-=+-.故答案为:(1)(1)a a a +-.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.3. (2023年广东省深圳市盐田区中考二模)分解因式:2269ab a b --=_________________.【答案】()23a b --【解析】【分析】提出负号后,再运用完全平方公式进行因式分解即可.【详解】2222269(96)(3)ab a b a ab b a b --=--+=--.故答案为:()23a b --.【点睛】此题主要考查了运用完全平方公式进行因式分解,熟练掌握完全平方公式的结构特征是解题的关键.4. (2023年广东省深圳市光明区中考二模)因式分解:3269a a a -+=________.【答案】2(3)a a -【解析】【分析】先提取公因式a ,再利用完全平方公式分解因式即可.【详解】解:()()232269693a a a a a a a a -+=-+=-,故答案为:2(3)a a -【点睛】此题考查了因式分解:将多项式写成几个整式积的形式叫做因式分解,因式分解的方法有提公因式法和公式法(平方差公式及完全平方公式),熟练掌握因式分解的方法是解题的关键.5. (2023年广东省深圳市福田区中考二模)因式分解:a 3-a =______.【答案】a (a -1)(a + 1)【解析】【分析】先提取公因式a ,再对余下的多项式利用平方差公式继续分解.【详解】解:a 3-a=a (a 2-1)=a (a +1)(a -1)故答案为:a (a -1)(a + 1).【点睛】本题考查了提公因式法和公式法,熟练掌握公式是解题的关键.6. (2023年广东省深圳市光明区中考一模)因式分解:2a 2﹣8=_____.【答案】2(a +2)(a -2).【解析】【分析】首先提取公因数2,进而利用平方差公式分解因式即可.【详解】2a 2-8=2(a 2-4)=2(a +2)(a -2).故答案为2(a +2)(a -2).考点:因式分解.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.的7. (2023年广东省深圳市宝安区中考三模)分解因式:233x -=_____.【答案】3(1)(1)x x +-【解析】【分析】先提取公因式,再用平方差公式即可求解.【详解】233x -()231x =-()()311x x =+-,故答案:()()311x x +-.【点睛】本题考查了用提公因式法和平方差公式分解因式的知识.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.因式分解是恒等变形.因式分解必须分解到每一个因式都不能再分解为止.8.(2023年广东省深圳市南山区中考一模) 一个二次二项式分解后其中的一个因式为3x -,请写出一个满足条件的二次二项式______.【答案】23x x -(答案不唯一)【解析】【分析】根据因式分解的结果,乘以一个单项式即可求解.【详解】解:∵()233x x x x -=-,∴出一个满足条件的二次二项式可以是:23x x -(答案不唯一).故答案为:23x x -(答案不唯一).【点睛】本题考查了因式分解与整式乘法的联系,掌握因式分解是解题的关键.9. (2023年广东省深圳市龙华区中考二模)计算:5tan 45-+︒=______.【答案】6【解析】【分析】根据绝对值的性质,特殊角锐角三角函数值化简,即可求解.详解】解:5tan 45516-+︒=+=.故答案为:6【【点睛】本题主要考查了绝对值的性质,特殊角锐角三角函数值,熟练掌握相关知识点是解题的关键.10. (2023年广东省深圳市龙华区中考一模)已知32x y -=,则代数式395x y --=_____________.【答案】1【解析】【分析】利用添括号法则把所求的代数式变形,代入计算即可.【详解】解:3x-9y-5=3(x-3y )-5当x-3y=2,原式=3×2-5=1,故答案为:1.【点睛】本题考查的是代数式求值,掌握添括号法则,会总体代入是解题的关键.11. (2023年广东省深圳市南山区中考一模)按照下图所示的操作步骤,若输入x 的值为-2,则输出的值为____________.【答案】7【解析】【分析】该程序计算是先平方,再乘以3,再减去5.将x 输入即可求解.【详解】解:输入x =-2,x 2=(-2)2=4,4×3=12,12-5=7.故答案为:712.(2023年广东省深圳市宝安区中考二模) 3月21日是国际森林日,今年的主题是森林与可持续生产和消费.党的十八大以来,我国深入推进大规模国土绿化行动,我国森林植被总碳储量净增13.75亿吨,数据13.75亿用科学记数法表示为__________.【答案】91.37510⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:13.75亿用科学记数法表示为91.37510⨯.故答案为:91.37510⨯.【点睛】本题考查用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.二、不等式与方程1. (2023年广东省深圳市光明区中考二模)规定“⊗”的运算规则为:1a b a b ⊗=-.例如:1523233⊗=-=.当344x ⊗=时,x =________.【答案】1【解析】【分析】根据新定义得到方程1344x -=,解方程即可得到答案.【详解】解:∵1a b a b⊗=-,344x ⊗=,∴1344x -=,解得1x =,故答案为:1.【点睛】本题主要考查了新定义下的实数运算,正确理解题意得到方程1344x -=是解题的关键.2. (2023年广东省深圳市龙华区中考二模)已知x m y n =⎧⎨=⎩是方程组034x y x y -=⎧⎨+=⎩的解,则m n +=______.【答案】2【分析】把x m y n =⎧⎨=⎩代入034x y x y -=⎧⎨+=⎩得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把x m y n =⎧⎨=⎩代入034x y x y -=⎧⎨+=⎩,得:034m n m n -=⎧⎨+=⎩①②,由+①②得:224m n +=,∴2m n +=.故答案为:2【点睛】本题考查了方程组的解的作用.将方程组的解代入方程组的解后,可以求出未知数,然后进行计算;但认真观察整体变换求得的结果,准确率更高.3. (2023年广东省深圳市坪山区中考二模数学)1x =是关于x 的一元二次方程240x x m ++=的一个根,则m =___________.【答案】5-【解析】【分析】将1x =代入240x x m ++=求解即可.【详解】解:将1x =代入240x x m ++=中,得50m +=,解得5m =-,故答案为:5-.【点睛】此题考查了一元二次方程的解,正确理解一元二次方程的解并代入方程求参数是解题的关键.4. (2023年广东省深圳市宝安区中考三模)若关于x 的一元二次方程22(2)40k x x k -++-=有一个根是0,则k 的值是______.【答案】2-【解析】【分析】根据一元二次方程根的定义,将0代入关于x 的一元二次方程22(2)40k x x k -++-=得到关于k 的方程求解,再根据一元二次方程定义确定k 值即可得到答案.【详解】解: 关于x 的一元二次方程22(2)40k x x k -++-=有一个根是0,240k ∴-=,解得2k =±,22(2)40k x x k -++-=是关于x 的一元二次方程,20k ∴-≠,即2k ≠,综上所述,2k =-,故答案为:2-.【点睛】本题考查一元二次方程的定义及一元二次方程根的定义,熟练掌握相关概念是解决问题的关键.三、函数1. (2023年广东省深圳市坪山区中考一模)抛物线y =2(x -3)2+1的顶点坐标为_______.【答案】(3,1)【解析】【分析】由抛物线解析式可求得答案.【详解】根据二次函数的性质,由顶点式直接得出顶点坐标为(3,1).故答案是(3,1).【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在()2y a x h k =-+中,对称轴为直线 x =h ,顶点坐标为(h ,k ).2. (2023年广东省深圳市宝安区中考二模)某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地,这是因为人和木板对湿地的压力F 一定时,人和木板对地面的压强()Pa P 与木板面积()2mS 存在函数关系:F P S =(如图所示).若木板面积为20.2m 则压强为__________Pa .【答案】3000【解析】【分析】先利用待定系数法求出P 关于S 的函数解析式,再将0.2S =代入计算即可.【详解】解:将()0.5,1200代入F P S=,得:12000.5F =,解得:600F =,∴600P S=,当0.2S =时,()60030000.2Pa P ==,故答案为:3000.【点睛】本题主要考查反比例函数的应用,解题的关键是掌握待定系数法求反比例函数解析式.3. (2023年广东省深圳市坪山区中考二模数学)如图,在平面直角坐标系中,菱形ABCD 在第二象限内,边BC 与x 轴平行,A 、B 两点纵坐标分别为3、2,反比例函数()0k y x x=<的图象经过A 、B 两点.若菱形ABCD k 的值为___________.【答案】12-【解析】【分析】过点A 作x 轴的垂线,交CB 的延长线于点E ,根据A ,B 两点的纵坐标分别为3,2,即可求得AE 的长,可用含k 的式子表示出BE BE 的长,在Rt AEB 中,即可得出k 的值,进而即可得解.【详解】过点A 作x 轴的垂线,交CB 的延长线于点E ,∵A ,B 两点在反比例函数()0k y x x<=的图象,且纵坐标分别为3,2,∴3232k k A B (,),(,),∴1236k k k AE BE ==-=,∵菱形ABCD∴BC AE ⨯,即BC =,∴AB BC ==,在Rt AEB 中,BE 2 ∴26k=,∴12k =.又∵图象在第二象限∴0k <∴12k =-故答案为:12-.【点睛】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.4. (2023年广东省深圳市南山区中考一模)如图,直角坐标系原点为Rt ABC △斜边的中点,90ACB ∠=︒,A 点坐标为()5,0-,且1tan 3A =,反比例函数()0k y k x =≠经过点C ,则k 的值为______.【答案】12【解析】【分析】作CD AB ⊥于点D .由1tan 3A =可设BC x =,3AC x =,根据勾股定理即可求出BC 和AC 的值,利用面积法求出CD 的值,再利用勾股定理求出BD 的值,得到点C 的坐标,然后可求出k 的值.【详解】如图,作CD AB ⊥于点D .∵()5,0A -,O 为Rt ABC △斜边AB 的中点,∴()5,0B ,∴5OB =,10AB =.∵1tan 3A ==BC AC ,∴可设BC x =,3AC x =,由勾股定理得()222310x x +=,x ∴=(负值舍去),BC ∴=,AC =, 1122AC BC AB CD ⋅=⋅,∴10CD =,3CD ∴=,BD ∴=1==,514OD ∴=-=,(4C ∴,3).反比例函数(0)k y k x=≠经过点C ,4312k ∴=⨯=.故答案为:12.【点睛】本题考查了勾股定理,面积法求线段的长,锐角三角函数的定义,以及反比例函数图象上点的坐标特征,求出点C 的坐标是解答本题的关键.5. (2023年广东省深圳市坪山区中考一模)如图,点A ,C 为函数()0k y x x=<图象上的两点,过A ,C 分别作AB x ⊥轴,CD x ⊥轴,垂足分别为B ,D ,连接OA ,AC ,OC ,线段OC 交AB 于点E ,且点E 恰好为OC 的中点.当AEC △的面积为34时,k 的值为______.【答案】2-【解析】【分析】根据三角形的中线的性质求出AEO △的面积,根据相似三角形的性质求出1OCD S =△,根据反比例函数系数k 的几何意义解答即可.【详解】解:∵点E 为OC 的中点,∴AEO △的面积AEC =△的面积34=,∵点A ,C 为函数()0k y x x=<图象上的两点,∴ABO CDO S S = ,∴34AEO CDBE S S ==四边形△,∵AB x ⊥轴,CD x ⊥轴,∴EB CD ∥,∴OEB OCD ∽△△,∴212OEB OCD S S ⎛⎫= ⎪⎝⎭△△,∴1OCD S =△,则112xy =-,∴2k xy ==-.故答案为:2-.【点睛】本题考查的是反比例函数系数k 的几何意义、相似三角形的性质,掌握反比例函数系数k 的几何意义、相似三角形的面积比等于相似比的平方是解题的关键.6. (2023年广东省深圳市龙华区中考一模)如图,点A (1,3)为双曲线k y x=上的一点,连接AO 并延长与双曲线在第三象限交于点B ,M 为y 轴正半轴一上点,连接MA 并延长与双曲线交于点N ,连接BM 、BN ,已知△MBN 的面积为332,则点N 的坐标为__________.【答案】(92,23)【解析】【分析】根据待定系数法求得反比例函数与一次函数解析式,可得到A 点坐标为(2,3),求出B 点坐标,设BN 与y 轴交点为D ,设N 点坐标为(a , 3a),再利用待定系数法确定直线BM 与BN 的解析式,求出M 、N 、D 坐标,然后利用S △MNB =S △MND +S △MBD ,求出a的值即可得到C 点坐标.【详解】解:将点A 坐标为(1,3)代入双曲线表达式k y x=,一次函数表达式y=mx ,解得k=3,m=3所以双曲线表达式3y x =,一次函数表达式y=3x 两函数联立:33y x y x ⎧=⎪⎨⎪=⎩,解得13x y =⎧⎨=⎩或-1-3x y =⎧⎨=⎩所以B (-1,-3)设BN 交y 轴于D,如图,设N 点坐标为(a , 3a )设BN 为y=bx+c,将B(-1,-3),N(a , 3a )代入3·3b a c a b c ⎧=+⎪⎨⎪-=-+⎩解得33-3b ac a ⎧=⎪⎪⎨⎪=⎪⎩所以33y -3x a a =+当x=0时,3y -3a =所以D (0,3-3a )设MN 为y=px+q,将A(1,3),N(a , 3a )代入的33ap q a p q ⎧=+⎪⎨⎪=+⎩解得3-3+3p a q a ⎧=⎪⎪⎨⎪=⎪⎩所以33-+3y x a a=+当x=0时,3y +3a=所以M (0,3+3a)所以MD=(3+3a )-(3-3a )=6∵S △MNB =S △MND +S △MBD ,∴1133661222a ⋅⋅+⨯⨯=,解得92a =,又∵N(a , 3a )∴点N 的坐标为(92,23)【点睛】本题考查了一次函数与反比例函数的综合性数形结合的题目,难度较大,能找到面积的等量关系是解答此题的关键.7. (2023年广东省深圳市南山区中考三模)如图,点B 在反比例函数()0k y x x=<的图象上,点A 在y 轴上,AB x ∥轴,点D 为x 轴上一点,过点B 作BC AD ∥,交y 轴于点C ,若4ACD S = ,则k 的值为______.【答案】8-【解析】【分析】设k B a a ⎛⎫ ⎪⎝⎭,,根据BC AD ∥证明BAC DOA ∽得出AB OA DO AC ⋅=⋅,根据三角形的面积公式得出142ACD S AC OD =⋅= ,则()8k AB OA a a ⋅=-⋅=,进而即可求解.【详解】解:设k B a a ⎛⎫ ⎪⎝⎭,,则k AB a OA a =-=,,∵BC AD ∥,∴BCA DAO ∠=∠,又∵90BAC DOA ∠=∠=︒,∴BAC DOA ∽,∴AB AC DO OA=,∴AB OA DO AC ⋅=⋅,∵142ACD S AC OD =⋅= ,∴()8k AB OA a a ⋅=-⋅=,∴8k =-,故答案为:8-.【点睛】本题考查了反比例函数k 的几何意义,相似三角形的判定和性质,根据三角形相似得到AB OA DO AC ⋅=⋅是解题的关键.8. (2023年广东省深圳市福田区中考二模)如图,在平面直角坐标系中,将菱形ABCD 向右平移一定距离后,顶点C ,D 恰好均落在反比例函数k y x=(0k ≠,x >0)的图象上,其中点(6,6)A -,(3,2)B -,且AD x ∥轴,则k =_______.【答案】9【解析】【分析】根据点A 、B 的坐标先求出菱形的边长,再求出点C 和D 的坐标,根据平移方法可得C '和D ¢的坐标,根据反比例函数图象特点列方程求解即可.【详解】解:∵四边形ABCD 为菱形,(6,6)A -,(3,2)B -,∴5AB BC CD DA ====,∴(16)D -,,(2,2)C ,设菱形向右平移a 个单位,得到(16)D a '-+,,22C a '+(,),∵向右平移使顶点C ,D 两点都落在反比例函数k y x =(0k ≠,x >0)的图象上,∴6(1)2(2)a a +=+-,∴52a =,∴9k =,故答案为:9.【点睛】此题主要考查了反比例函数图象上点的坐标特征,菱形的性质,坐标与图形变化﹣平移,待定系数法求反比例函数的解析式,关键是掌握反比例函数图象上的点横纵坐标之积等于k .9. (2023年广东省深圳市龙华区中考二模)如图,在平面直角坐标系中,3OA =,将OA 沿y 轴向上平移3个单位至CB ,连接AB ,若反比例函数()0k y x x=>的图象恰好过点A 与BC 的中点D ,则k =______.【答案】【解析】【分析】延长BA 交x 轴于点E ,根据平移的性质可证明四边形OABC 是菱形,从而得到BE x ⊥轴,设点A 的坐标为(),a b ,则点(),3B a b +,229a b +=,可得点D 的坐标为33,22a b ++⎛⎫ ⎪⎝⎭,再由反比例函数图象的性质可得3322a b ab ++⨯=,可求出点A 的坐标为)2,即可.【详解】解:如图,延长BA 交x 轴于点E ,∵将OA 沿y 轴向上平移3个单位至CB ,∴3,,OC OA BC OA BC OA ===∥,∴四边形OABC 是平行四边形,点C 的坐标为()0,3,∵3OC OA ==,∴四边形OABC 是菱形,∴AB y ∥轴,3AB =,即BE x ⊥轴,设点A 的坐标为(),a b ,则点(),3B a b +,229a b +=,∵点D 为BC 的中点,∴点D 的坐标为33,22ab ++⎛⎫⎪⎝⎭,∵反比例函数()0ky x x =>的图象恰好过点A 与BC 的中点D ,∴3322a bab ++⨯=,解得:2b =,∴a =(负值舍去),∴点A的坐标为)2,把点)2代入()0ky x x =>得:k =.故答案:【点睛】本题主要考查了反比例函数的几何应用,根据题意准确得到四边形OABC 是菱形是解题的关键.10. (2023年广东省深圳市光明区中考一模)如图,点A 是函数2y x =(0x >)的图象上任意一点,AB x ∥轴交函数k y x=(0x <)的图象于点B ,以AB 为边作平行四边形ABCD ,且5ABCD S =,C 、D 在x 轴上,则k =________.【答案】-3【解析】【分析】首先把平行四边形ABCD 转化为矩形,然后根据k 的几何意义求解.【详解】解:过点B 作BM ⊥x 轴,过点A 作AN ⊥x 轴,则∠BMC =∠AND =90°,∵四边形ABCD 为平行四边形,∴BC ∥AD ,BC =AD ,∴∠BCM =∠ADN ,在△BCM 和△ADN 中为BMC AND BCM ADN BC AD ∠∠⎧⎪∠∠⎨⎪⎩===,∴△BCM ≌△ADN ,∴S ▱BCDA =S 矩形BMNA =5,又∵S 矩形BMNA =−k +2=5,∴k =−3.故答案为:−3.【点睛】本题考查了反比例函数k 的几何含义,平行四边形的性质.需要我们熟练掌握把已知图形转化为模型图形(与k 相关的矩形或三角形)的能力.11. (2023年广东省深圳市宝安区中考三模)如图,将矩形OABC 的顶点O 与原点重合,边AO CO 、分别与x 、y 轴重合.将矩形沿DE 折叠,使得点O 落在边AB 上的点F 处,反比例函数(0)k y k x=>上恰好经过E 、F 两点,若B 点的坐标为()21,,则k 的值为________.【答案】10-【解析】【分析】连结OF ,过E 作EH OA ⊥于H .得到E 点的坐标为()1k ,,F 点的坐标为22k ⎛⎫ ⎪⎝⎭,,证明EHD OAF ∽△△,利用相似三角形的性质求得4k HD =,在Rt DAF △中,利用勾股定理列式计算即可求解.【详解】解:连结OF ,过E 作EH OA ⊥于H.。

深圳中学中考数学填空题专项练习经典测试(含答案解析)

深圳中学中考数学填空题专项练习经典测试(含答案解析)

一、选择题1.如图,在5×5正方形网格中,一条圆弧经过A、B、C三点,那么这条圆弧所在的圆的圆心为图中的()A.M B.P C.Q D.R2.下列图形中既是轴对称图形又是中心对称图形的是( )A.正三角形B.平行四边形C.正五边形D.正六边形3.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x米.则可列方程为()A.32×20﹣32x﹣20x=540B.(32﹣x)(20﹣x)=540C.32x+20x=540D.(32﹣x)(20﹣x)+x2=5404.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数为()A.25°B.30°C.50°D.55°5.现有一块长方形绿地,它的短边长为20 m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m2,设扩大后的正方形绿地边长为xm,下面所列方程正确的是( )A.x(x-20)=300B.x(x+20)=300C.60(x+20)=300D.60(x-20)=300 6.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .7.如图中∠BOD 的度数是( )A .150°B .125°C .110°D .55°8.二次函数236yx x =-+变形为()2y a x m n =++的形式,正确的是( )A .()2313y x =--+ B .()2313y x =--- C .()2313y x =-++D .()2313y x =-+-9.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表: x … -1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…-159…当y 2>y 1时,自变量x 的取值范围是 A .-1<x <2 B .4<x <5C .x <-1或x >5D .x <-1或x >410.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是A .点A 在圆外B .点A 在圆上C .点A 在圆内D .不能确定11.将抛物线y=2x 2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( )A .y=2(x ﹣3)2﹣5B .y=2(x+3)2+5C .y=2(x ﹣3)2+5D .y=2(x+3)2﹣5 12.用配方法解方程x 2+2x ﹣5=0时,原方程应变形为( ) A .(x ﹣1)2=6B .(x+1)2=6C .(x+2)2=9D .(x ﹣2)2=913.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )A .B .C .D .14.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是( ) A .正三角形B .矩形C .正八边形D .正六边形15.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .15B .25C .35D .45二、填空题16.如图,有6张扑克牌,从中任意抽取两张,点数和是偶数的概率是_____.17.设a 、b 是方程220190x x +-=的两个实数根,则()()11a b --的值为_____. 18.抛物线y =(x ﹣1)2﹣2与y 轴的交点坐标是_____.19.已知关于x 方程x 2﹣3x+a=0有一个根为1,则方程的另一个根为_____. 20.已知如图所示的图形的面积为24,根据图中的条件,可列出方程:_______.21.从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下: 公交车用时 公交车用时的频数 线路 3035t ≤≤ 3540t <≤ 4045t <≤ 4550t <≤ 合计A 59 151 166 124 500B 50 50 122 278 500 C4526516723500早高峰期间,乘坐_________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.22.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有_____个. 23.如图,点A 是抛物线24y x x =-对称轴上的一点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO ′,当O ′恰好落在抛物线上时,点A 的坐标为______________.24.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是s =60t ﹣1.5t 2,飞机着陆后滑行_____米才能停下来.25.某地区2017年投入教育经费2 500万元,2019年计划投入教育经费3 025万元,则2017年至2019年,该地区投入教育经费的年平均增长率为_____.三、解答题26.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m 的住房墙,另外三边用27m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m 2?27.某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y (万件)与售价x (元/件)之间满足函数关系式y=﹣x+26. (1)求这种产品第一年的利润W 1(万元)与售价x (元/件)满足的函数关系式; (2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W 2至少为多少万元.28.为了创建国家级卫生城区,某社区在九月份购买了甲、乙两种绿色植物共1100盆,共花费了27000元.已知甲种绿色植物每盆20元,乙种绿色植物每盆30元. (1)该社区九月份购买甲、乙两种绿色植物各多少盆?(2)十月份,该社区决定再次购买甲、两种绿色植物.已知十月份甲种绿色植物每盆的价格比九月份的价格优惠5a元()0a >,十月份乙种绿色植物每盆的价格比九月份的价格优惠2%5a .因创卫需要,该社区十月份购买甲种绿色植物的数量比九月份的数量增加了1%2a ,十为份购买乙种绿色植物的数量比九月份的数量增加了%a .若该社区十月份的总花费与九月份的总花费恰好相同,求a的值.29.某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:转动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345546701落在“铅笔”的频率m n(结果保留小数点后两位)0.680.740.680.690.680.70(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.30.如图7,某中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆,设矩形的宽为x,面积为y.(1)求y与x的函数关系式,并求自变量x的取值范围;(2)生物园的面积能否达到210平方米,说明理由.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.D3.B4.C5.A6.D7.C8.A9.D10.C11.A12.B13.D14.C15.B二、填空题16.【解析】【分析】列举出所有情况再找出点数和是偶数的情况根据概率公式求解即可【详解】解:从6张牌中任意抽两张可能的情况有:(410)(510)(610)(810)(910)(109)(417.-2017【解析】【分析】根据根与系数的关系可得出将其代入中即可得出结论【详解】∵是方程的两个实数根∴∴故答案为:-2017【点睛】本题考查了根与系数的关系牢记两根之和等于两根之积等于是解题的关键18.(0﹣1)【解析】【分析】将x=0代入y=(x﹣1)2﹣2计算即可求得抛物线与y轴的交点坐标【详解】解:将x=0代入y=(x﹣1)2﹣2得y=﹣1所以抛物线与y轴的交点坐标是(0﹣1)故答案为:(019.2【解析】分析:设方程的另一个根为m根据两根之和等于-即可得出关于m的一元一次方程解之即可得出结论详解:设方程的另一个根为m根据题意得:1+m=3解得:m=2故答案为2点睛:本题考查了根与系数的关系20.(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差据此即可列出方程【详解】根据题意得:(x+1)2-1=24即:(x+1)2=25故答案为(x+1)2=25【点睛】本题考查了一元二21.C【解析】分析:样本容量相同观察统计表可以看出C线路上的公交车用时超过分钟的频数最小即可得出结论详解:样本容量相同C线路上的公交车用时超过分钟的频数最小所以其频率也最小故答案为C点睛:考查用频率估计22.2【解析】试题解析:∵袋中装有6个黑球和n个白球∴袋中一共有球(6+n)个∵从中任摸一个球恰好是黑球的概率为∴解得:n=2故答案为223.(22)或(2-1)【解析】∵抛物线y=x2-4x对称轴为直线x=-∴设点A坐标为(2m)如图所示作AP⊥y轴于点P作O′Q⊥直线x=2∴∠APO=∠AQO′=90°∴∠QAO′+∠AO′Q=90°24.600【解析】【分析】将函数解析式配方成顶点式求出s的最大值即可得【详解】∵s =60t﹣15t2=﹣t2+60t=﹣(t﹣20)2+600∴当t=20时s取得最大值600即飞机着陆后滑行600米才能25.10【解析】【分析】设年平均增长率为x则经过两次变化后2019年的经费为2500(1+x)2;2019年投入教育经费3025万元建立方程2500(1+x)2=3025求解即可【详解】解:设年平均增长三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB,BC的垂直平分线即可得到答案.【详解】解:作AB的垂直平分线,作BC的垂直平分线,如图,它们都经过Q,所以点Q为这条圆弧所在圆的圆心.故选:C.【点睛】本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.2.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A. 是轴对称图形,不是中心对称图形,故错误;B. 不是轴对称图形,是中心对称图形,故错误;C. 是轴对称图形,不是中心对称图形,故错误;D. 是轴对称图形,也是中心对称图形,故正确.故答案选:D.【点睛】本题考查的知识点是中心对称图形,轴对称图形,解题的关键是熟练的掌握中心对称图形,轴对称图形.3.B解析:B【解析】【分析】先将图形利用平移进行转化,可得剩余图形的长等于原来的长减去小路的宽,剩余图形的宽等于原来的宽减去路宽,然后再根据矩形面积公式计算.【详解】利用图形平移可将原图转化为下图,设道路的宽为x,根据题意得:(32-x)(20-x)=540.故选B.【点睛】本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.4.C解析:C【解析】试题解析:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.5.A解析:A【解析】【分析】设扩大后的正方形绿地边长为xm,根据“扩大后的绿地面积比原来增加300m2”建立方程即可.【详解】设扩大后的正方形绿地边长为xm,根据题意得x(x-20)=300,故选A.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.6.D解析:D 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、不是轴对称图形,是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、既是轴对称图形,又是中心对称图形,故此选项正确. 故选D . 【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.C解析:C 【解析】试题分析:如图,连接OC .∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C .【考点】圆周角定理.8.A解析:A 【解析】 【分析】根据配方法,先提取二次项的系数-3,得到()232y x x =--,再将括号里的配成完全平方式即可得出结果. 【详解】解:()()()222236=323211313y x x x x x x x =-+--=--+-=--+,故选:A . 【点睛】本题主要考查的是配方法,正确的掌握配方的步骤是解题的关键.9.D【解析】 【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x <4时,y 1>y 2,从而得到当y 2>y 1时,自变量x 的取值范围. 【详解】∵当x=0时,y 1=y 2=0;当x=4时,y 1=y 2=5; ∴直线与抛物线的交点为(-1,0)和(4,5), 而-1<x <4时,y 1>y 2,∴当y 2>y 1时,自变量x 的取值范围是x <-1或x >4. 故选D . 【点睛】本题考查了二次函数与不等式:对于二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.10.C解析:C 【解析】 【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d >r 时,点在圆外;当d=r 时,点在圆上;当d <r 时,点在圆内判断出即可. 【详解】解:∵⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm , ∴d <r ,∴点A 与⊙O 的位置关系是:点A 在圆内, 故选C .11.A解析:A 【解析】把22y x =向右平移3个单位长度变为:223()y x =-,再向下平移5个单位长度变为:22(3)5y x =--.故选A .12.B解析:B 【解析】 x 2+2x ﹣5=0, x 2+2x=5, x 2+2x+1=5+1, (x+1)2=6,13.D解析:D【解析】【分析】【详解】∵ab>0,∴a、b同号.当a>0,b>0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a<0,b<0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求.故选B.14.C解析:C【解析】因为正八边形的每个内角为135 ,不能整除360度,故选C.15.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.二、填空题16.【解析】【分析】列举出所有情况再找出点数和是偶数的情况根据概率公式求解即可【详解】解:从6张牌中任意抽两张可能的情况有:(410)(510)(610)(810)(910)(109)(4解析:7 15.【解析】【分析】列举出所有情况,再找出点数和是偶数的情况,根据概率公式求解即可.【详解】解:从6张牌中任意抽两张可能的情况有:(4,10)(5,10)(6,10)(8,10)(9,10)(10,9) (4,9)(5,9)(6,9)(8,9)(9,8)(10,8)(4,8) (5,8) (6,8) (8,6) (9,6) (10,6) (4,6) (5,6) (6,5) (8,5) (9,5) (10,5) (4,5)(5,4)(6,4)(8,4)(9,4)(10,4)∴一共有30种情况,点数和为偶数的有14个, ∴点数和是偶数的概率是1473015=; 故答案为715. 【点睛】本题考查概率的概念和求法.解题的关键是找到所求情况数与总情况数,根据:概率=所求情况数与总情况数之比.17.-2017【解析】【分析】根据根与系数的关系可得出将其代入中即可得出结论【详解】∵是方程的两个实数根∴∴故答案为:-2017【点睛】本题考查了根与系数的关系牢记两根之和等于两根之积等于是解题的关键解析:-2017 【解析】 【分析】根据根与系数的关系可得出1a b +=-,2019ab =-,将其代入()()()111a b ab a b --=-++中即可得出结论.【详解】∵a 、b 是方程220190x x +-=的两个实数根, ∴1a b +=-,2019ab =-,∴()()()111a b ab a b --=-++2019112017=-++=-. 故答案为:-2017. 【点睛】本题考查了根与系数的关系,牢记“两根之和等于b a -,两根之积等于ca”是解题的关键. 18.(0﹣1)【解析】【分析】将x =0代入y =(x ﹣1)2﹣2计算即可求得抛物线与y 轴的交点坐标【详解】解:将x =0代入y =(x ﹣1)2﹣2得y =﹣1所以抛物线与y 轴的交点坐标是(0﹣1)故答案为:(0解析:(0,﹣1) 【解析】 【分析】将x =0代入y =(x ﹣1)2﹣2,计算即可求得抛物线与y 轴的交点坐标.解:将x=0代入y=(x﹣1)2﹣2,得y=﹣1,所以抛物线与y轴的交点坐标是(0,﹣1).故答案为:(0,﹣1).【点睛】本题考查了二次函数图象上点的坐标特征,根据y轴上点的横坐标为0求出交点的纵坐标是解题的关键.19.2【解析】分析:设方程的另一个根为m根据两根之和等于-即可得出关于m的一元一次方程解之即可得出结论详解:设方程的另一个根为m根据题意得:1+m=3解得:m=2故答案为2点睛:本题考查了根与系数的关系解析:2【解析】分析:设方程的另一个根为m,根据两根之和等于-ba,即可得出关于m的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=2.故答案为2.点睛:本题考查了根与系数的关系,牢记两根之和等于-ba是解题的关键.20.(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差据此即可列出方程【详解】根据题意得:(x+1)2-1=24即:(x+1)2=25故答案为(x+1)2=25【点睛】本题考查了一元二解析:(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差,据此即可列出方程.【详解】根据题意得:(x+1)2 -1=24,即:(x+1)2 =25.故答案为(x+1)2 =25.【点睛】本题考查了一元二次方程的应用——图形问题,解题的关键是明确图中不规则图形的面积计算方法.21.C【解析】分析:样本容量相同观察统计表可以看出C线路上的公交车用时超过分钟的频数最小即可得出结论详解:样本容量相同C线路上的公交车用时超过分钟的频数最小所以其频率也最小故答案为C点睛:考查用频率估计【解析】分析:样本容量相同,观察统计表,可以看出C线路上的公交车用时超过45分钟的频数最小,即可得出结论.详解:样本容量相同,C线路上的公交车用时超过45分钟的频数最小,所以其频率也最小,故答案为C.点睛:考查用频率估计概率,读懂统计表是解题的关键.22.2【解析】试题解析:∵袋中装有6个黑球和n个白球∴袋中一共有球(6+n )个∵从中任摸一个球恰好是黑球的概率为∴解得:n=2故答案为2解析:2【解析】试题解析:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为34,∴63 64n=+,解得:n=2.故答案为2.23.(22)或(2-1)【解析】∵抛物线y=x2-4x对称轴为直线x=-∴设点A坐标为(2m)如图所示作AP⊥y轴于点P作O′Q⊥直线x=2∴∠APO=∠AQO′=90°∴∠QAO′+∠AO′Q=90°解析:(2,2)或(2,-1)【解析】∵抛物线y=x2-4x对称轴为直线x=-42 2-=∴设点A坐标为(2,m),如图所示,作AP⊥y轴于点P,作O′Q⊥直线x=2,∴∠APO=∠AQO′=90°,∴∠QAO′+∠AO′Q=90°,∵∠QAO′+∠OAQ=90°,∴∠AO′Q=∠OAQ,又∠OAQ=∠AOP , ∴∠AO ′Q=∠AOP , 在△AOP 和△AO′Q 中,APO AQO AOP AO Q AO AO ∠∠'⎧⎪∠∠'⎨⎪'⎩===∴△AOP ≌△AO ′Q (AAS ), ∴AP=AQ=2,PO=QO′=m , 则点O ′坐标为(2+m ,m-2),代入y=x 2-4x 得:m-2=(2+m )2-4(2+m ), 解得:m=-1或m=2,∴点A 坐标为(2,-1)或(2,2), 故答案是:(2,-1)或(2,2).【点睛】本题考查了坐标与图形的变换-旋转,全等三角形的判定与性质,函数图形上点的特征,根据全等三角形的判定与性质得出点O ′的坐标是解题的关键.24.600【解析】【分析】将函数解析式配方成顶点式求出s 的最大值即可得【详解】∵s=60t ﹣15t2=﹣t2+60t =﹣(t ﹣20)2+600∴当t =20时s 取得最大值600即飞机着陆后滑行600米才能解析:600 【解析】 【分析】将函数解析式配方成顶点式求出s 的最大值即可得. 【详解】 ∵s =60t ﹣1.5t 2, =﹣32t 2+60t , =﹣32(t ﹣20)2+600, ∴当t =20时,s 取得最大值600,即飞机着陆后滑行600米才能停下来, 故答案为:600. 【点睛】此题考查二次函数解析式的配方法,利用配方法将函数解析式化为顶点式由此得到函数的最值是一种很重要的解题方法.25.10【解析】【分析】设年平均增长率为x 则经过两次变化后2019年的经费为2500(1+x)2;2019年投入教育经费3025万元建立方程2500(1+x)2=3025求解即可【详解】解:设年平均增长解析:10% 【解析】【分析】设年平均增长率为x,则经过两次变化后2019年的经费为2500(1+x)2;2019年投入教育经费3025万元,建立方程2500(1+x)2=3025,求解即可.【详解】解:设年平均增长率为x,得2500(1+x)2=3025,解得x=0.1=10%,或x=-2.1(不合题意舍去).所以2017年到2019年该地区投入教育经费的年平均增长率为10%.【点睛】本题考查一元二次方程的应用--求平均变化率的方法,能够列出式子是解答本题的关键.三、解答题26.所围矩形猪舍的长为12m、宽为8m【解析】【分析】设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(27﹣2x+1)m.根据矩形的面积公式建立方程求出其解就可以了.【详解】解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(27﹣2x+1)m,由题意得x(27﹣2x+1)=96,解得:x1=6,x2=8,当x=6时,27﹣2x+1=16>15(舍去),当x=8时,27﹣2x+1=12.答:所围矩形猪舍的长为12m、宽为8m.【点睛】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.27.(1)W1=﹣x2+32x﹣236;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.【解析】【分析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.【详解】(1)W1=(x﹣6)(﹣x+26)﹣80=﹣x2+32x﹣236.(2)由题意:20=﹣x 2+32x ﹣236. 解得:x=16,答:该产品第一年的售价是16元. (3)由题意:7≤x≤16,W 2=(x ﹣5)(﹣x+26)﹣20=﹣x 2+31x ﹣150, ∵7≤x≤16,∴x=7时,W 2有最小值,最小值=18(万元), 答:该公司第二年的利润W 2至少为18万元. 【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.28.(1)该社区九月份购买甲、乙两种绿色植物分别为600,500盆;(2)a 的值为25 【解析】 【分析】(1)设该社区九月份购买甲、乙两种绿色植物分别为x ,y 盆,根据甲、乙两种绿色植物共1100盆和共花费了27000元列二元一次方程组即可;(2)结合(1)根据题意列出关于a 的方程,用换元法,设%t a =,化简方程, 求解即可. 【详解】解:(1)设该社区九月份购买甲、乙两种绿色植物分别为x ,y 盆,由题意知,1100203027000x y x y +=⎧⎨+=⎩ , 解得,600500x y =⎧⎨=⎩,答:该社区九月份购买甲、乙两种绿色植物分别为600,500盆; (2)由题意知,12(20)600(1%)30(1%)500(1%)27000525aa a a -⨯++-⨯+=, 令%t a =,原式可化为240t t -=, 解得,10t =(舍去),20.25t =, ∴25a =, ∴a 的值为25. 【点睛】本题考查了二元一次方程组和一元二次方程在实际问题中的应用,根据题意正确列式是解题的关键.29.(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36 【解析】【分析】(1)利用频率估计概率求解;(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n+4000×0.5(1-360n)=3000,然后解方程即可. 【详解】(1)转动该转盘一次,获得铅笔的概率约为0.7; 故答案为 0.7(2)4000×0.5×0.7+4000×3×0.3=5000, 所以该商场每天大致需要支出的奖品费用为5000元; (3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n +4000×0.5(1﹣360n)=3000,解得n =36, 所以转盘上“一瓶饮料”区域的圆心角应调整为36度. 故答案为36. 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了扇形统计图.30.(1)y= -2x 2+40x ;0<x≤403;(2)不能,理由见解析. 【解析】 【分析】(1)设矩形的宽为x ,则长为40-2x ,根据矩形面积公式“面积=长×宽”列出函数的关系式;(2)令y=210,看函数方程有没有解. 【详解】解:(1)设矩形的宽为x ,则长为40-2x , y=x (40-2x )=-2x 2+40x 又要围成矩形, 则40-2x≥x ,x≤403x 的取值范围:0<x≤403(2)令y=210,则-2x 2+40x=210变形得:2x2-40x+210=0,即x2-20x+105=0,又∵△=b2-4ac=(-20)2-4×1×105<0,∴方程无实数解,∴生物园的面积达不到210平方米.【点睛】本题考查的是函数关系式的求法及最值的求法,同学们应该掌握.。

【解析版】中考数学填空题专项练习经典练习卷(培优)(2)

【解析版】中考数学填空题专项练习经典练习卷(培优)(2)

一、选择题1.如图,ABC ∆是O 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32°B .31°C .29°D .61°2.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒3.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x 米.则可列方程为( )A .32×20﹣32x ﹣20x =540 B .(32﹣x )(20﹣x )=540 C .32x +20x =540 D .(32﹣x )(20﹣x )+x 2=5404.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足等式( )A .16(1+2x)=25B .25(1-2x)=16C .25(1-x)²=16D .16(1+x)²=25 5.二次函数236yx x =-+变形为()2y a x m n =++的形式,正确的是( )A .()2313y x =--+ B .()2313y x =--- C .()2313y x =-++D .()2313y x =-+-6.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表:x…-10245…y1…01356…y2…0-1059…当y2>y1时,自变量x的取值范围是A.-1<x<2B.4<x<5C.x<-1或x>5D.x<-1或x>47.一元二次方程x2+x﹣14=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定8.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.1129.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.43B.63C.23D.810.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A.15B.25C.35D.4511.如图,某中学计划靠墙围建一个面积为280m的矩形花圃(墙长为12m),围栏总长度为28m,则与墙垂直的边x为()A.4m或10m B.4m C.10m D.8m12.已知二次函数y=ax2+bx+c中,y与x的部分对应值如下:x 1.1 1.2 1.3 1.4 1.5 1.6 y﹣1.59﹣1.16﹣0.71﹣0.240.250.76则一元二次方程ax 2+bx+c =0的一个解x 满足条件( ) A .1.2<x <1.3 B .1.3<x <1.4 C .1.4<x <1.5 D .1.5<x <1.6 13.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( ) A .36°B .54°C .72°D .108°14.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是( ) A .14B .12C .23D .3415.如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F .P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是( )A .4-9πB .4-89π C .8-49π D .8-89π 二、填空题16.已知:如图,在△AOB 中,∠AOB =90°,AO =3 cm ,BO =4 cm .将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D =__________cm .17.如图,已知抛物线y=ax 2+bx+c 与x 轴交于A 、B 两点,顶点C 的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a 1x 2+b 1x+c 1,则下列结论正确的是_________.(写出所有正确结论的序号)①b >0;②a ﹣b+c <0;③阴影部分的面积为4;④若c=﹣1,则b 2=4a .18.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.19.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.20.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____.21.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.22.如图,在直角坐标系中,已知点30A -(,)、04B (,),对OAB 连续作旋转变换,依次得到1234、、、,则2019的直角顶点的坐标为__________.23.抛物线21(2)43y x =++关于x 轴对称的抛物线的解析式为_______ 24.函数y =x 2﹣4x +3的图象与y 轴交点的坐标为_____.25.一个等边三角形边长的数值是方程x 2﹣3x ﹣10=0的根,那么这个三角形的周长为_____.三、解答题26.如图,方格纸中有三个点A B C ,,,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.(注:图甲、图乙、图丙在答题纸上)27.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?28.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB 上,点B的对应点为E,连接BE.(Ⅰ)求证:∠A=∠EBC;(Ⅱ)若已知旋转角为50°,∠ACE=130°,求∠CED和∠BDE的度数.29.2019年第六届世界互联网大会在乌镇召开,小南和小西参加了某分会场的志愿服务工作,本次志愿服务工作一共设置了三个岗位,分别是引导员、联络员和咨询员.请你用画树状图或列表法求出小南和小西恰好被分配到同一个岗位进行志愿服务的概率.30.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.A3.B4.C5.A6.D7.A8.C9.A10.C11.C12.C13.C14.B15.B二、填空题16.5【解析】试题解析:∵在△AOB中∠AOB=90°AO=3cmBO=4cm∴AB==5cm∵点D为AB 的中点∴OD=AB=25cm∵将△AOB绕顶点O按顺时针方向旋转到△A1OB1处∴OB1=OB=17.③④【解析】【分析】①首先根据抛物线开口向上可得a>0;然后根据对称轴为x=﹣>0可得b<0据此判断即可②根据抛物线y=ax2+bx+c的图象可得x=﹣1时y>0即a﹣b+c>0据此判断即可③首先判18.y=05(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1m)B(4n)∴m=(1﹣2)2+1=1n=(4﹣2)2+1=3∴A(11)B(43)过A作AC∥x轴交B′B的延长线于点19.相离【解析】r=2d=3则直线l与⊙O的位置关系是相离20.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长21.1250cm2【解析】【分析】设将铁丝分成xcm和(200﹣x)cm两部分则两个正方形的边长分别是cmcm再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm和(200﹣x)cm两部分列二次22.【解析】【分析】根据勾股定理列式求出AB的长再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环然后求出一个循环组旋转前进的长度再用2019除以3根据商为673可知第20123.【解析】【分析】由关于x轴对称点的特点是:横坐标不变纵坐标变为相反数可求出抛物线关于x轴对称的抛物线解析式【详解】∵∴关于x轴对称的抛物线解析式为-即故答案为:【点睛】此题考查了二次函数的图象与几何24.(03)【解析】【分析】令x=0求出y的值然后写出与y轴的交点坐标即可【详解】解:x=0时y=3所以图象与y轴交点的坐标是(03)故答案为(03)【点睛】本题考查了求抛物线与坐标轴交点的坐标掌握二次25.15【解析】【分析】先解方程求出方程的根再确定等边三角形的边长然后求等边三角形的周长【详解】解:x2﹣3x﹣10=0(x﹣5)(x+2)=0即x﹣5=0或x+2=0∴x1=5x2=﹣2因为方程x2﹣三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】 【分析】根据题意连接OC ,COP ∆为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可计算的COP ∠的度,再根据直角三角形可得P ∠的度数. 【详解】根据题意连接OC.因为119A ∠=︒所以可得BC 所对的大圆心角为2119238BOC ︒︒∠=⨯= 因为BD 为直径,所以可得23818058COD ︒︒︒∠=-= 由于COP ∆为直角三角形 所以可得905832P ︒︒︒∠=-= 故选A. 【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.2.A解析:A 【解析】 【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数. 【详解】 ∵35C ∠=︒∴35BAD C =∠=︒∠ ∵AB 是圆O 的直径 ∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠ 故答案为:A . 【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.3.B解析:B 【解析】 【分析】先将图形利用平移进行转化,可得剩余图形的长等于原来的长减去小路的宽,剩余图形的宽等于原来的宽减去路宽,然后再根据矩形面积公式计算.【详解】利用图形平移可将原图转化为下图,设道路的宽为x , 根据题意得:(32-x )(20-x )=540.故选B. 【点睛】本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.4.C解析:C【解析】解:第一次降价后的价格为:25×(1﹣x ),第二次降价后的价格为:25×(1﹣x )2.∵两次降价后的价格为16元,∴25(1﹣x )2=16.故选C .5.A解析:A 【解析】【分析】根据配方法,先提取二次项的系数-3,得到()232y x x =--,再将括号里的配成完全平方式即可得出结果. 【详解】解:()()()222236=323211313y x x x x x x x =-+--=--+-=--+,故选:A . 【点睛】本题主要考查的是配方法,正确的掌握配方的步骤是解题的关键.6.D解析:D 【解析】 【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x <4时,y 1>y 2,从而得到当y 2>y 1时,自变量x 的取值范围. 【详解】∵当x=0时,y 1=y 2=0;当x=4时,y 1=y 2=5; ∴直线与抛物线的交点为(-1,0)和(4,5), 而-1<x <4时,y 1>y 2,∴当y 2>y 1时,自变量x 的取值范围是x <-1或x >4. 故选D . 【点睛】本题考查了二次函数与不等式:对于二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.7.A解析:A 【解析】 【分析】根据方程的系数结合根的判别式,可得出△=2>0,即可判断有两个不相等的实数根. 【详解】∵△=12﹣4×1×(﹣14)=2>0, ∴方程x 2+x ﹣14=0有两个不相等的实数根. 故选:A . 【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.8.C解析:C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.9.A解析:A【解析】【分析】【详解】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=12∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=323,∴3.故选A.【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.10.C解析:C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3 355÷=故选C11.C解析:C【解析】【分析】设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.【详解】设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,根据题意列出方程x(28-2x)=80,解得x1=4,x2=10因为8≤x<14∴与墙垂直的边x为10m故答案为C.【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x值.12.C解析:C【解析】【分析】仔细看表,可发现y的值-0.24和0.25最接近0,再看对应的x的值即可得.【详解】解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选C.【点睛】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.13.C 解析:C 【解析】正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是3605=72度,故选C.14.B解析:B【解析】【分析】画树状图展示所有12种等可能的结果数,再两人摸出的小球颜色相同的结果数然后根据概率公式求解.【详解】解:画树状图如下:,一共12种可能,两人摸出的小球颜色相同的有6种情况,所以两人摸出的小球颜色相同的概率是612=12,故选:B.【点睛】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.B解析:B【解析】试题解析:连接AD,∵BC是切线,点D是切点,∴AD⊥BC,∴∠EAF=2∠EPF=80°,∴S扇形AEF=280?28 3609ππ=,S △ABC =12AD•BC=12×2×4=4, ∴S 阴影部分=S △ABC -S 扇形AEF =4-89π.二、填空题16.5【解析】试题解析:∵在△AOB 中∠AOB=90°AO=3cmBO=4cm ∴AB==5cm ∵点D 为AB 的中点∴OD=AB=25cm ∵将△AOB 绕顶点O 按顺时针方向旋转到△A1OB1处∴OB1=OB= 解析:5 【解析】试题解析:∵在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,∴AB cm ,∵点D 为AB 的中点,∴OD =12AB =2.5cm .∵将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,∴OB 1=OB =4cm ,∴B 1D =OB 1﹣OD =1.5cm . 故答案为1.5.17.③④【解析】【分析】①首先根据抛物线开口向上可得a >0;然后根据对称轴为x=﹣>0可得b <0据此判断即可②根据抛物线y=ax2+bx+c 的图象可得x=﹣1时y >0即a ﹣b+c >0据此判断即可③首先判解析:③④ 【解析】 【分析】①首先根据抛物线开口向上,可得a >0;然后根据对称轴为x=﹣2ba>0,可得b <0,据此判断即可.②根据抛物线y=ax 2+bx+c 的图象,可得x=﹣1时,y >0,即a ﹣b+c >0,据此判断即可. ③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底×高,求出阴影部分的面积是多少即可.④根据函数的最小值是2424ac b a-=-,判断出c=﹣1时,a 、b 的关系即可.【详解】解:∵抛物线开口向上, ∴a >0,又∵对称轴为x=﹣2ba>0,∴b <0,∴结论①不正确; ∵x=﹣1时,y >0,∴a ﹣b+c >0,∴结论②不正确;∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=ax 2+bx+c 的最小值是y=﹣2,∴平行四边形的高是2,∴阴影部分的面积是:2×2=4,∴结论③正确; ∵2424ac b a-=-,c=﹣1,∴b 2=4a ,∴结论④正确.故答案为:③④.【点睛】本题考查二次函数图象与几何变换;二次函数图象与系数的关系.18.y=05(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1m)B (4n)∴m=(1﹣2)2+1=1n=(4﹣2)2+1=3∴A(11)B(43)过A作AC∥x轴交B′B的延长线于点解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.19.相离【解析】r=2d=3则直线l与⊙O的位置关系是相离解析:相离【解析】r=2,d=3,则直线l与⊙O的位置关系是相离20.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长解析:12【解析】【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案. 【详解】 解:x 2﹣7x +10=0 (x ﹣2)(x ﹣5)=0, 解得:x 1=2,x 2=5,故等腰三角形的腰长只能为5,5,底边长为2, 则其周长为:5+5+2=12. 故答案为:12. 【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质.21.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分则两个正方形的边长分别是cmcm 再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分列二次解析:1250cm 2 【解析】 【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4xcm ,2004x-cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250,由于18>0,故其最小值为1250cm 2,故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.22.【解析】【分析】根据勾股定理列式求出AB 的长再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环然后求出一个循环组旋转前进的长度再用2019除以3根据商为673可知第201 解析:()8076,0【解析】【分析】根据勾股定理列式求出AB 的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2019除以3,根据商为673可知第2019个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可. 【详解】解:∵点A (-3,0)、B (0,4),∴,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12, ∵2019÷3=673, ∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点, ∵673×12=8076, ∴△2019的直角顶点的坐标为(8076,0). 故答案为(8076,0). 【点睛】本题主要考查了点的坐标变化规律,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.23.【解析】【分析】由关于x 轴对称点的特点是:横坐标不变纵坐标变为相反数可求出抛物线关于x 轴对称的抛物线解析式【详解】∵∴关于x 轴对称的抛物线解析式为-即故答案为:【点睛】此题考查了二次函数的图象与几何 解析:()21243y x =-+- 【解析】 【分析】由关于x 轴对称点的特点是:横坐标不变,纵坐标变为相反数,可求出抛物线21(2)43y x =++关于x 轴对称的抛物线解析式.【详解】∵21(2)43y x =++, ∴关于x 轴对称的抛物线解析式为-21(2)43y x =++,即()21243y x =-+-, 故答案为:()21243y x =-+-. 【点睛】此题考查了二次函数的图象与几何变换,解题的关键是抓住关于x 轴、y 轴对称点的特点.24.(03)【解析】【分析】令x=0求出y的值然后写出与y轴的交点坐标即可【详解】解:x=0时y=3所以图象与y轴交点的坐标是(03)故答案为(03)【点睛】本题考查了求抛物线与坐标轴交点的坐标掌握二次解析:(0,3).【解析】【分析】令x=0,求出y的值,然后写出与y轴的交点坐标即可.【详解】解:x=0时,y=3,所以.图象与y轴交点的坐标是(0,3).故答案为(0,3).【点睛】本题考查了求抛物线与坐标轴交点的坐标,掌握二次函数与一元二次方程的联系是解答本题的关键.25.15【解析】【分析】先解方程求出方程的根再确定等边三角形的边长然后求等边三角形的周长【详解】解:x2﹣3x﹣10=0(x﹣5)(x+2)=0即x﹣5=0或x+2=0∴x1=5x2=﹣2因为方程x2﹣解析:15【解析】【分析】先解方程求出方程的根,再确定等边三角形的边长,然后求等边三角形的周长.【详解】解:x2﹣3x﹣10=0,(x﹣5)(x+2)=0,即x﹣5=0或x+2=0,∴x1=5,x2=﹣2.因为方程x2﹣3x﹣10=0的根是等边三角形的边长,所以等边三角形的边长为5.所以该三角形的周长为:5×3=15.故答案为:15.【点睛】本题考查了一元二次方程的解法、等边三角形的周长等知识点.求出方程的解是解决本题的关键.三、解答题26.(1)见解析;(2)见解析;(3)见解析.【解析】【分析】可以从特殊四边形着手考虑,平行四边形是中心对称图形但不是轴对称图形,等腰梯形是轴对称图形但不是中心对称图形,正方形既是轴对称图形又是中心对称图形 【详解】 解:如图:27.(1)y=﹣20x+1600;(2)当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元; (3)超市每天至少销售粽子440盒. 【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P 与x 的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x 的取值范围,再根据(1)中所求得的销售量y (盒)与每盒售价x (元)之间的函数关系式即可求解. 试题解析:(1)由题意得,y =70020(45)x --=201600x -+;(2)P=(40)(201600)x x --+=220240064000x x -+-=220(60)8000x --+,∵x ≥45,a=﹣20<0,∴当x=60时,P 最大值=8000元,即当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)由题意,得220(60)8000x --+=6000,解得150x =,270x =,∵抛物线P=220(60)8000x --+的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x ≤58,∴50≤x ≤58,∵在201600y x =-+中,20k =-<0,∴y 随x 的增大而减小,∴当x=58时,y 最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒. 考点:二次函数的应用.28.(Ⅰ)证明见解析;(Ⅱ)∠BDE=50°, ∠CED =35° 【解析】 【分析】(Ⅰ)由旋转的性质可得AC =CD ,CB =CE ,∠ACD =∠BCE ,由等腰三角形的性质可求解.(Ⅱ)由旋转的性质可得AC =CD ,∠ABC =∠DEC ,∠ACD =∠BCE =50°,∠EDC =∠A,由三角形内角和定理和等腰三角形的性质可求解.【详解】证明:(Ⅰ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,CB=CE,∠ACD=∠BCE,∴∠A=180ACD2︒-∠,∠CBE=180BCE2︒-∠,∴∠A=∠EBC;(Ⅱ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,∠ACB=∠DCE∴∠A=∠ADC=65°,∵∠ACE=130°,∠ACD=∠BCE=50°,∴∠ACB=∠DCE =80°,∴∠ABC=180°﹣∠BAC﹣∠BCA=35°,∵∠EDC=∠A=65°,∴∠BDE=180°﹣∠ADC﹣∠CDE=50°.∠CED=180°﹣∠DCE﹣∠CDE=35°【点睛】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.29.13【解析】【分析】分别用字母A,B,C代替引导员、联络员和咨询员岗位,利用列表法求出所有等可能结果,再根据概率公式求解可得.【详解】分别用字母A,B,C代替引导员、联络员和咨询员岗位,用列表法列举所有可能出现的结果:的结果中,小南和小西恰好被分配到同一个岗位的结果有3种,即AA,BB,CC,∴小南和小西恰好被分配到同一个岗位进行志愿服务的概率=39=13.【点睛】考查随机事件发生的概率,关键是用列表法或树状图表示出所有等可能出现的结果数,用列表法或树状图的前提是必须使每一种情况发生的可能性是均等的.30.小路的宽为1m.【解析】【分析】如果设小路的宽度为xm,那么整个草坪的长为(16﹣2x)m,宽为(9﹣x)m,根据题意即可得出方程.【详解】设小路的宽度为xm,那么整个草坪的长为(16﹣2x)m,宽为(9﹣x)m.根据题意得:(16﹣2x)(9﹣x)=112解得:x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽为1m.【点睛】本题考查了一元二次方程的应用,弄清“整个草坪的长和宽”是解决本题的关键.。

中考数学填空题专项练习经典习题(含答案解析)

中考数学填空题专项练习经典习题(含答案解析)

一、选择题1.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有x 名学生,那么所列方程为( )A .()1119802x x +=B .()1119802x x -= C .()11980x x +=D .()11980x x -= 2.把抛物线y =2(x ﹣3)2+k 向下平移1个单位长度后经过点(2,3),则k 的值是( ) A .2B .1C .0D .﹣1 3.一元二次方程的根是( ) A .3x = B .1203x x ==-, C .1203x x ==, D .1203x x ==,4.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值( )A .0或2B .-2或2C .-2D .2 5.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点6.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x 米.则可列方程为( )A .32×20﹣32x ﹣20x =540 B .(32﹣x )(20﹣x )=540 C .32x +20x =540 D .(32﹣x )(20﹣x )+x 2=5407.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是( )A .13B .14C .15D .168.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( )A .59B .49C .56D .139.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是x =1D .不存在实数根10.下列函数中是二次函数的为( )A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x 2D .y =x 3+2x -3 11.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >4 12.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( )A .﹣1、3B .1、﹣3C .﹣1、﹣3D .1、3 13.如图,AOB 中,30B ∠=︒.将AOB 绕点O 顺时针旋转52︒得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( )A .22︒B .52︒C .60︒D .82︒ 14.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m≥1B .m≤1C .m >1D .m <1 15.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D.230++-=有两个不相等的实数根ax bx c二、填空题16.若直角三角形两边分别为6和8,则它内切圆的半径为_____.17.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.18.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1_____y2.(用“>”、“<”、“=”填空)19.两块大小相同,含有30°角的三角板如图水平放置,将△CDE绕点C按逆时针方向旋转,当点E的对应点E′恰好落在AB上时,△CDE旋转的角度是______度.20.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为_____.21.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.22.已知二次函数y=a(x+3)2﹣b(a≠0)有最大值1,则该函数图象的顶点坐标为_____.23.如图,在Rt△ABC中,∠ACB=90°,CB=4,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将BD绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为_____.24.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y =−140x 2+10,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是______米.(精确到1米)25.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_________.三、解答题26.用你喜欢的方法解方程(1)x 2﹣6x ﹣6=0(2)2x 2﹣x ﹣15=027.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m 的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.28.二次函数2y x bx =+上部分点的横坐标x 与纵坐标y 的对应值如下表:x…1-12-0123…y (35)401-0m…(1)直接写出此二次函数的对称轴;(2)求b的值;(3)直接写出表中的m值,m= ;(4)在平面直角坐标系xOy中,画出此二次函数的图象.29.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.30.在平面直角坐标系xOy中,抛物线y=a2x-4ax与x轴交于A,B两点(A在B的左侧).(1)求点A,B的坐标;(2)已知点C(2,1),P(1,-32a),点Q在直线PC上,且Q点的横坐标为4.①求Q点的纵坐标(用含a的式子表示);②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.A3.D4.D5.D6.B7.A8.B9.A10.B11.B12.A13.D14.D15.C二、填空题16.2或-1【解析】【分析】根据已知题意求第三边的长必须分类讨论即8是斜边或直角边的两种情况然后利用勾股定理求出另一边的长再根据内切圆半径公式求解即可【详解】若8是直角边则该三角形的斜边的长为:∴内切圆17.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面18.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x2-4x-1=(x-2)2-5可知其图象开口向上19.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线可得△E′CB是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE旋转的度数【详解】解:∵三角板是两块大小20.(2)【解析】由题意得:即点P的坐标21.【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1男2女1女2男1(男1男2)(男1女122.(﹣31)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(hk)即可求解【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1∴﹣b=1根据二次函数的顶点式方程y23.【解析】【分析】根据题意用的面积减去扇形的面积即为所求【详解】由题意可得AB =2BC∠ACB=90°弓形BD与弓形AD完全一样则∠A=30°∠B=∠BCD=60°∵CB=4∴AB =8AC=4∴阴影部24.85【解析】由于两盏EF距离水面都是8m因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平25.【解析】【分析】【详解】解:从袋子中随机取出1个球总共有6种等可能结果这个球为红球的结果有5中所以从袋子中随机取出1个球则它是红球的概率是故答案为:三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】根据题意得:每人要赠送(x-1)张贺卡,有x个人,然后根据题意可列出方程:(x-1)x=1980.【详解】解:根据题意得:每人要赠送(x-1)张贺卡,有x个人,∴全班共送:(x-1)x=1980,故选:D.【点睛】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x个人是解决问题的关键.2.A解析:A【解析】【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论.【详解】解:设抛物线y=2(x-3)2+k 向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1,∴k=2,故选A .【点睛】本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.3.D解析:D【解析】x 2−3x=0,x(x−3)=0,∴x 1=0,x 2=3.故选:D.4.D解析:D【解析】【分析】将()1212122(2)2=3x x x x x x -+--+-化简可得,()21212124423x x x x x x +-+=--, 利用韦达定理,()2142(2)3k k ----+=-,解得,k =±2,由题意可知△>0, 可得k =2符合题意.【详解】解:由韦达定理,得: 12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x -+--+=-,得:()21212423x x x x --+=-,即()21212124423x x x x x x +-+=--,所以,()2142(2)3k k ----+=-,化简,得:24k =,解得:k =±2,因为关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根,所以,△=()214(2)k k ---+=227k k +-〉0,k =-2不符合,所以,k =2故选:D.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键. 5.D解析:D【解析】【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误.【详解】当1a =-时,()224125=--+=-++y x x x ,∴当2x =-时,函数取得最大值5,故A 正确;当1a =时,()224125y x x x =--=--,∴函数图象开口向上,对称轴为2x =,∴当2x ≥时,y 随x 的增大而增大,故B 正确;当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误;故选D.【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键. 6.B解析:B【解析】【分析】先将图形利用平移进行转化,可得剩余图形的长等于原来的长减去小路的宽,剩余图形的宽等于原来的宽减去路宽,然后再根据矩形面积公式计算.【详解】利用图形平移可将原图转化为下图,设道路的宽为x ,根据题意得:(32-x )(20-x )=540.故选B.【点睛】本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.7.A解析:A【解析】【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8.B解析:B【解析】【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:49. 【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.9.A解析:A 【解析】 【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可. 【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根, 1+8﹣c =0,解得c =9, ∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0, ∴方程有两个不相等的实数根. 故选:A . 【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.10.B解析:B 【解析】A. y =3x −1是一次函数,故A 错误;B. y =3x 2−1是二次函数,故B 正确;C. y =(x +1)2−x 2不含二次项,故C 错误;D. y =x 3+2x −3是三次函数,故D 错误; 故选B.11.B解析:B【解析】【分析】【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选B.12.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a,b的值.【详解】解:∵P(-b,2)与点Q(3,2a)关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A.【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.13.D解析:D【解析】【分析】根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得∠'的度数.A CO【详解】∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.14.D解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->, 解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.15.C解析:C 【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2ba-=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误; ∵对称轴x=2ba-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确; ∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误, 故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2ba-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x 轴有两个交点.二、填空题 16.2或-1【解析】【分析】根据已知题意求第三边的长必须分类讨论即8是斜边或直角边的两种情况然后利用勾股定理求出另一边的长再根据内切圆半径公式求解即可【详解】若8是直角边则该三角形的斜边的长为:∴内切圆解析:2-1 【解析】 【分析】根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.【详解】若8是直角边,则该三角形的斜边的长为:226+8=10,∴内切圆的半径为:6+810=22-;若8是斜边,则该三角形的另一条直角边的长为:228627=-,∴内切圆的半径为:6+278=712--.故答案为2或7-1.【点睛】本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键.17.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面解析:16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积,依此列式计算即可.【详解】解:如图.2+2=4,恒星的面积=4×4-4π=16-4π.故答案为16-4π.【点睛】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积-半径为2的圆的面积.18.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x2-4x-1=(x-2)2-5可知其图象开口向上解析:<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小. 【详解】由二次函数y=x 2-4x-1=(x-2)2-5可知,其图象开口向上,且对称轴为x=2, ∵1<x 1<2,3<x 2<4,∴A 点横坐标离对称轴的距离小于B 点横坐标离对称轴的距离, ∴y 1<y 2. 故答案为<.19.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB 的中线可得△E′CB 是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE 旋转的度数【详解】解:∵三角板是两块大小解析:30 【解析】 【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB 的中线,可得△E′CB 是等边三角形,从而得出∠ACE′的度数和CE′的长,从而得出△CDE 旋转的度数. 【详解】解:∵三角板是两块大小一样且含有30°的角, ∴CE′是△ACB 的中线, ∴CE′=BC =BE′, ∴△E′CB 是等边三角形, ∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°, 故答案为:30. 【点睛】本题考查了含有30°角的直角三角形的性质,等边三角形的判定和性质,旋转的性质,本题关键是得到CE ´是△ABC 的中线.20.(2)【解析】由题意得:即点P 的坐标解析: ,2). 【解析】由题意得:441a a =⇒= 2y x ⇒=222OD x x =⇒=⇒=,即点P 的坐标)2.21.【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1男2女1女2男1(男1男2)(男1女1解析:2 3【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.【详解】解:所有可能的结果如下表:的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为812=23,故答案为23.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(﹣31)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(hk)即可求解【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1∴﹣b=1根据二次函数的顶点式方程y解析:(﹣3,1)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(h,k),即可求解.【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1,∴﹣b=1,根据二次函数的顶点式方程y=a(x+3)2﹣b(a≠0)知,该函数的顶点坐标是:(﹣3,﹣b),∴该函数图象的顶点坐标为(﹣3,1).故答案为:(﹣3,1).【点睛】本题考查了二次函数的性质,解答该题时,需熟悉二次函数的顶点式y=a (x-h )2+k 中的h 、k 所表示的意义.23.【解析】【分析】根据题意用的面积减去扇形的面积即为所求【详解】由题意可得AB =2BC∠ACB=90°弓形BD 与弓形AD 完全一样则∠A=30°∠B=∠BCD=60°∵CB=4∴AB=8AC =4∴阴影部解析:83π. 【解析】 【分析】 根据题意,用ABC 的面积减去扇形CBD 的面积,即为所求.【详解】 由题意可得,AB =2BC ,∠ACB =90°,弓形BD 与弓形AD 完全一样, 则∠A =30°,∠B =∠BCD =60°, ∵CB =4,∴AB =8,AC =,2604360π⨯⨯-=83π,故答案为:83π. 【点睛】本题考查不规则图形面积的求法,属中档题.24.85【解析】由于两盏EF 距离水面都是8m 因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平解析:8√5 【解析】由于两盏E 、F 距离水面都是8m ,因而两盏景观灯之间的水平距离就 是直线y=8与抛物线两交点的横坐标差的绝对值. 故有−140x 2+10=8,即x 2=80,x 1=4√5,x 2=−4√5.所以两盏警示灯之间的水平距离为:|x 1−x 2|=|4√5−(−4√5)|=8√5≈18(m )25.【解析】【分析】【详解】解:从袋子中随机取出1个球总共有6种等可能结果这个球为红球的结果有5中所以从袋子中随机取出1个球则它是红球的概率是故答案为:解析:56【解析】 【分析】 【详解】解:从袋子中随机取出1个球,总共有6种等可能结果,这个球为红球的结果有5中,所以从袋子中随机取出1个球,则它是红球的概率是56故答案为:56.三、解答题 26.(1)x 1=x 2=32)x 1=﹣2.5,x 2=3 【解析】 【分析】(1)先求出b 2﹣4ac 的值,再代入公式求出即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】 x 2﹣6x ﹣6=0, ∵a=1,b=-6,c=-6,∴b 2﹣4ac =(﹣6)2﹣4×1×(﹣6)=60,x =632±=x 1=x 2=3 (2)2x 2﹣x ﹣15=0, (2x +5)(x ﹣3)=0, 2x +5=0,x ﹣3=0, x 1=﹣2.5,x 2=3. 【点睛】此题考查一元二次方程的解法,根据每个方程的特点选择适合的方法是关键,由此才能使计算更简便.27.(1)60,10;(2)96°;(3)1020;(4)23【解析】 【分析】(1)根据基本了解的人数以及所占的百分比可求得接受调查问卷的人数,进行求得不了解的人数,即可求得m 的值;(2)用360度乘以“了解很少”的比例即可得;(3)用“非常了解”和“基本了解”的人数和除以接受问卷的人数,再乘以1800即可求得答案; (4)画树状图表示出所有可能的情况数,再找出符合条件的情况数,利用概率公式进行求解即可. 【详解】(1)接受问卷调查的学生共有3050%60÷=(人),604301610m =---=, 故答案为:60,10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数163609660=︒⨯=︒, 故答案为:96°;(3)该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为:4301800102060+⨯=(人), 故答案为:1020; (4)由题意列树状图:由树状图可知,所有等可能的结果有12 种,恰好抽到1名男生和1名女生的结果有8种, ∴恰好抽到1名男生和1名女生的概率为82123=. 【点睛】本题考查了条形统计图与扇形统计图信息关联,列表法或树状图法求概率,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.28.(1)对称轴x =1;(2)b=-2;(3)m=3;(4)见解析 【解析】 【分析】(1)根据图表直接写出此二次函数的对称轴即可; (2)图象经过点(1,-1),代入求b 的值即可;(3)由题意将x=3代入解析式得到并直接写出表中的m 值; (4)由题意采用描点法画出图像即可. 【详解】解:(1)观察图像直接写出此二次函数的对称轴x=1.(2)∵二次函数2y x bx =+的图象经过点(1,-1),∴2b =-.(3)将x=3代入解析式得m=3.(4)如图.【点睛】本题考查了二次函数的图象和性质,根据二次函数的图象和性质分析是解此题的关键.29.(1)相切,证明见解析;(2)62.【解析】【分析】(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出r=3,由tan∠E=OB CDEB DE=,推出348CD=,可得CD=BC=6,再利用勾股定理即可解决问题.【详解】解:(1)相切,理由如下,如图,连接OC,∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)设⊙O的半径为r,在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,AB=2r=6,∵tan ∠E=OB CD EB DE=, ∴348CD =, ∴CD=BC=6,在Rt △ABC 中,=【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,正确添加辅助线,熟练掌握和灵活应用相关知识解决问题是关键. 30.(1)A (0,0),B (4,0);(2)①Q 点的纵坐标为3+3a ,②符合题意的a 的取值范围是 -1≤a <0.【解析】【分析】(1)令y =0,则a 2x -4ax =0,可求得A 、B 点坐标;(2)①设直线PC 的解析式为,将点P (1,-32a ),C (2,1)代入可解得31,13.2k a b a =+=-- ()3113.2y x a =+-- 由于Q 点的横坐标为4,可求得Q 点的纵坐标为3+3a ②当a >0时,如图1,不合题意;当a <0时,由图2,图3可知,3+3a≥0,可求出a 的取值范围.【详解】(1)令y =0,则a 2x -4ax =0.解得 120, 4.x x ==∴ A (0,0),B (4,0)(2)①设直线PC 的解析式为.y kx b =+将点P (1,-32a ),C (2,1)代入上式, 解得31,13.2k ab a =+=-- ∴y=(1+32a)x-1-3a. ∵点Q 在直线PC 上,且Q 点的横坐标为4,∴Q 点的纵坐标为3+3a②当a >0时,如图1,不合题意;当a <0时,由图2,图3可知,3+3a≥0.∴a≥-1.∴符合题意的a的取值范围是 -1≤a<0.图1 图2 图3【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.。

2019深圳中考真题数学试卷(含详细解析和答案)

2019深圳中考真题数学试卷(含详细解析和答案)

2019年深圳市初中毕业升学考试数学一、选择题(每小题3分,共12小题,满分36分)1.51-的绝对值是( )A. -5B.51C. 5D.51-【答案】B【解析】考点绝对值.2.下列图形是轴对称图形的是( )【答案】A【考点】轴对称图形与中心对称图形3.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( ) A.4.6×109 B.46×107 C.4.6×108 D.0.46×109 【答案】C【考点】科学计数法4.下列哪个图形是正方体的展开图( )【答案】B【考点】立体图形的展开.5.这组数据20,21,22,23,23的中位数和众数分别是( ) A.20,23 B.21,23 C.21,22 D.22,23 【答案】D【解析】中位数:先把数据按从小到大排列顺序20,21,22,23,23,则中间的那一个就是中位数. 众数是出现次数最多的那个数就是众数,即是23.故选D6.下列运算正确的是( )A.422a a a =+B.1243a a a =⋅ C.1243)(a a = D.22)(ab ab =【答案】C【解析】整式运算,A.2222a a a =+; B 743a a a =⋅ ;D 222)(b a ab =.故选C7.如图,已知AB l =1,AC 为角平分线,下列说法错误的是( ) A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3【答案】B【解析】两直线平行,同位角相等,即∠2=∠3.故选B.8.如图,已知AB=AC ,AB=5,BC=3,以AB 两点为圆心,大于21AB 的长为半径画圆,两弧相交于点M,N ,连接MN 与AC 相较于点D ,则△BDC 的周长为( ) A.8 B.10 C.11 D.13【答案】A【解析】尺规作图,因为MN 是线段AB 的垂直平分线,则AD=BD ,又因为AB=AC=5,BC=3,所以△BDC的周长为8.9.已知)0(2≠++=a c bx ax y 的图象如图,则b ax y +=和xcy =的图象为( )【答案】C【解析】根据)0(2≠++=a c bx ax y 的图象可知抛物线开口向下,则0<a ,抛物线与y 轴交点在负半轴,故c <0,对称轴在y 轴的右边,则b >0.10.下列命题正确的是( ) A.矩形对角线互相垂直 B.方程x x 142=的解为14=x C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等 【答案】D【解析】矩形的对角线互相平分且相等,故A 错;方程x x 142=的解为14=x 或0=x ,故B 错;六边形内角和为720°,故C 错.故选D11.定义一种新运算:⎰-=⋅-abnn n b a dx x n 1,例如:⎰-=⋅khh k xdx 222,若⎰-=--m522mdx x ,则m=( )A. -2B. 52-C. 2D.52 【答案】B 【解析】⎰-=-=-=----m51122511)5(mm m m m dx x ,则m=52-,故选B. 12.已知菱形ABCD ,E,F 是动点,边长为4,BE=AF ,∠BAD=120°,则下列结论正确的有几个( ) ①△BEC ≌△AFC ; ②△ECF 为等边三角形 ③∠AGE=∠AFC ④若AF=1,则31=GE GF A. 1 B. 2 C. 3 D. 4【答案】D【解析】在四边形ABCD 是菱形,因为∠BAD=120°,则∠B=∠DAC=60°,则AC=BC ,且BE=AF ,故可得△BEC ≌△AFC ;因为△BEC ≌△AFC ,所以FC=EC ,∠FCA=∠ECB ,所以△ECF 为等边三角形;因为∠AGE=180°-∠BAC-∠AEG ;∠AFC=180°-∠FAC-∠ACF ,则根据等式性质可得∠AGE=∠AFC ;因为AF=1,则AE=3,所以根据相似可得31=GE GF . 二、填空题(每小题3分,共4小题,满分12分)13.分解因式:=-a ab 2. 【答案】)1)(1(-+b b a【解析】)1)(1()1(22-+=-=-b b a b a a ab14.现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽取一张,抽到标有数字2的卡片的概率是 .【答案】83 【解析】全部共有8张卡片,标有数字2的卡片有3张,随机抽取一张,故抽到2概率为83. 15.如图在正方形ABCD 中,BE=1,将BC 沿CE 翻折,使点B 对应点刚好落在对角线AC 上,将AD 沿AF 翻折,使点D 对应点落在对角线AC 上,求EF= .【答案】6 【解析】16.如图,在Rt △ABC 中,∠ABC=90°,C (0,-3),CD=3AD,点A 在xky =上,且y 轴平分脚ACB ,求k= 。

深圳市高级中学中考数学填空题专项练习经典练习题(含答案解析)

深圳市高级中学中考数学填空题专项练习经典练习题(含答案解析)

一、选择题1.关于x 的方程(m ﹣3)x 2﹣4x ﹣2=0有两个不相等的实数根,则实数m 的取值花围是( )A .m≥1B .m >1C .m≥1且m≠3D .m >1且m≠3 2.已知2(0)y ax bx c a =++≠的图象如图,则y ax b =+和c y x=的图象为( )A .B .C .D .3.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若50C ∠=︒,则∠AOD 的度数为( )A .40︒B .50︒C .80︒D .100︒ 4.如图,ABC ∆是O 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32°B .31°C .29°D .61°5.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .6.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒7.已知二次函数y =ax 2+bx +c (a >0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x 1,x 2(0<x 1<x 2<4)时,对应的函数值是y 1,y 2,且y 1=y 2,设该函数图象的对称轴是x =m ,则m 的取值范围是( )A .0<m <1B .1<m ≤2C .2<m <4D .0<m <48.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x(x-20)=300B .x(x+20)=300C .60(x+20)=300D .60(x-20)=300 9.如图,点O 是△ABC 的内切圆的圆心,若∠A =80°,则∠BOC 为( )A .100°B .130°C .50°D .65° 10.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是A .点A 在圆外B .点A 在圆上C .点A 在圆内D .不能确定 11.下列诗句所描述的事件中,是不可能事件的是( )A .黄河入海流B .锄禾日当午C .大漠孤烟直D .手可摘星辰12.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A.310B.925C.920D.3513.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是()A.36°B.54°C.72°D.108°14.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是()A.14B.12C.23D.3415.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.45二、填空题16.如图,将半径为6的半圆,绕点A逆时针旋转60°,使点B落到点B′处,则图中阴影部分的面积是_____.17.抛物线y=2(x−3)2+4的顶点坐标是__________________.18.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.19.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_____.20.如图,AB是⊙O的直径,∠AOE=78°,点C、D是弧BE的三等分点,则∠COE=_____.21.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于_____cm.22.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.23.已知二次函数y =a (x +3)2﹣b (a ≠0)有最大值1,则该函数图象的顶点坐标为_____.24.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_________.25.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.三、解答题26.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x 米.(1)若苗圃园的面积为72平方米,求x ;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;27.关于x 的一元二次方程x 2﹣2x ﹣(n ﹣1)=0有两个不相等的实数根.(1)求n 的取值范围;(2)若n 为取值范围内的最小整数,求此方程的根.28.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y (件)与销售单价 x (元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w (元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?29.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB 上,点B的对应点为E,连接BE.(Ⅰ)求证:∠A=∠EBC;(Ⅱ)若已知旋转角为50°,∠ACE=130°,求∠CED和∠BDE的度数.30.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.C3.C4.A5.C6.A7.C8.A9.B10.C11.D12.A13.C14.B15.B二、填空题16.24π【解析】【分析】根据整体思想可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′再利用扇形面积公式计算即可【详解】解:∵S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB而根据旋17.(34)【解析】【分析】根据二次函数配方的图像与性质即可以求出答案【详解】在二次函数的配方形式下x-3是抛物线的对称轴取x=3则y=4因此顶点坐标为(34)【点睛】本题主要考查二次函数的图像与性质18.2【解析】分析:设方程的另一个根为m根据两根之和等于-即可得出关于m的一元一次方程解之即可得出结论详解:设方程的另一个根为m根据题意得:1+m=3解得:m=2故答案为2点睛:本题考查了根与系数的关系19.-3<x<1【解析】试题分析:根据抛物线的对称轴为x=﹣1一个交点为(10)可推出另一交点为(﹣30)结合图象求出y>0时x的范围解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1已知一个交点为(120.68°【解析】【分析】根据∠AOE的度数求出劣弧的度数得到劣弧的度数根据圆心角弧弦的关系定理解答即可【详解】∵∠AOE=78°∴劣弧的度数为78°∵AB是⊙O的直径∴劣弧的度数为180°﹣78°=121.【解析】【分析】把扇形的弧长和圆锥底面周长作为相等关系列方程求解【详解】设此圆锥的底面半径为r根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr解得:r=1故答案为:1【点睛】本题考查了圆锥22.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P(摸到白球)==23.(﹣31)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(hk)即可求解【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1∴﹣b=1根据二次函数的顶点式方程y24.【解析】【分析】【详解】解:从袋子中随机取出1个球总共有6种等可能结果这个球为红球的结果有5中所以从袋子中随机取出1个球则它是红球的概率是故答案为:25.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍可以求得∠AOB的度数然后根据勾股定理即可求得AB的长详解:连接ADAEOAOB∵⊙O的半径为2△ABC内接于⊙O∠ACB=13三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试1.D解析:D【解析】【分析】根据二次项系数非零及根的判别式列出关于m 的一元一次不等式组,然后方程组即可.【详解】解:∵(m-3)x 2-4x-2=0是关于x 的方程有两个不相等的实数根,∴230(4)4(3)(2)0m m -≠⎧⎨∆=---⨯->⎩解得:m>1且m ≠3.故答案为D.【点睛】本题考查了根的判别式以及一元二次方程的定义,正确运用一元二次方程的定义和根的判别式解题是解答本题的关键.2.C解析:C【解析】【分析】根据二次函数y=ax 2+bx+c (a≠0)的图象可以得到a <0,b >0,c <0,由此可以判定y=ax+b 经过一、二、四象限,双曲线c y x=在二、四象限. 【详解】根据二次函数y=ax 2+bx+c (a≠0)的图象,可得a <0,b >0,c <0,∴y=ax+b 过一、二、四象限, 双曲线c y x=在二、四象限, ∴C 是正确的.故选C .【点睛】 此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.3.C解析:C【解析】【分析】由AC 是⊙O 的切线可得∠CAB=90︒,又由50C ∠=︒,可得∠ABC=40︒;再由OD=OB ,则∠BDO=40︒最后由∠AOD=∠OBD+∠OBD 计算即可.解:∵AC 是⊙O 的切线∴∠CAB=90︒,又∵50C ∠=︒∴∠ABC=90︒-50︒=40︒又∵OD=OB∴∠BDO=∠ABC=40︒又∵∠AOD=∠OBD+∠OBD∴∠AOD=40︒+40︒=80︒故答案为C.【点睛】本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.4.A解析:A【解析】【分析】根据题意连接OC ,COP ∆为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可计算的COP ∠的度,再根据直角三角形可得P ∠的度数.【详解】根据题意连接OC.因为119A ∠=︒所以可得BC 所对的大圆心角为2119238BOC ︒︒∠=⨯=因为BD 为直径,所以可得23818058COD ︒︒︒∠=-=由于COP ∆为直角三角形所以可得905832P ︒︒︒∠=-=故选A.【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.5.C解析:C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、图形既不是轴对称图形是中心对称图形,B 、图形是轴对称图形,C 、图形是轴对称图形,也是中心对称轴图形,D 、图形是轴对称图形.故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.A解析:A【解析】【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数.【详解】∵35C ∠=︒∴35BAD C =∠=︒∠∵AB 是圆O 的直径∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠故答案为:A .【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.7.C解析:C【解析】【分析】根据二次函数图象上点的坐标特征即可求得.【详解】解:当a>0时,抛物线开口向上,则点(0,1)的对称点为(x0,1),∴x0>4,∴对称轴为x=m中2<m<4,故选C.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,画出草图更直观.8.A解析:A【解析】【分析】设扩大后的正方形绿地边长为xm,根据“扩大后的绿地面积比原来增加300m2”建立方程即可.【详解】设扩大后的正方形绿地边长为xm,根据题意得x(x-20)=300,故选A.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.9.B解析:B【解析】【分析】根据三角形的内切圆得出∠OBC=12∠ABC,∠OCB=12∠ACB,根据三角形的内角和定理求出∠ABC+∠ACB的度数,进一步求出∠OBC+∠OCB的度数,根据三角形的内角和定理求出即可.【详解】∵点O是△ABC的内切圆的圆心,∴∠OBC=12∠ABC,∠OCB=12∠ACB.∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.故选B.【点睛】本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌握,能求出∠OBC+∠OCB的度数是解答此题的关键.10.C解析:C【解析】【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.【详解】解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,∴d<r,∴点A与⊙O的位置关系是:点A在圆内,故选C.11.D解析:D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.A解析:A【解析】【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:红红红绿绿红﹣﹣﹣(红,红)(红,红)(绿,红)(绿,绿)红(红,红)﹣﹣﹣(红,红)(绿,红)(绿,红)红(红,红)(红,红)﹣﹣﹣(绿,红)(绿,红)绿(红,绿)(红,绿)(红,绿)﹣﹣﹣(绿,绿)绿(红,绿)(红,绿)(红,绿)(绿,绿)﹣﹣﹣∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,∴63P2010==两次红,故选A. 13.C 解析:C 【解析】正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是3605=72度,故选C.14.B解析:B【解析】【分析】画树状图展示所有12种等可能的结果数,再两人摸出的小球颜色相同的结果数然后根据概率公式求解.【详解】解:画树状图如下:,一共12种可能,两人摸出的小球颜色相同的有6种情况,所以两人摸出的小球颜色相同的概率是612=12,故选:B.【点睛】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.二、填空题16.24π【解析】【分析】根据整体思想可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′再利用扇形面积公式计算即可【详解】解:∵S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB而根据旋解析:24π【解析】【分析】根据整体思想,可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′,再利用扇形面积公式计算即可.【详解】解:∵S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB而根据旋转的性质可知S半圆AB′=S半圆AB∴S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′而由题意可知AB=12,∠BAB′=60°即:S阴影=2 6012360π⋅⋅=24π故答案为24π.【点睛】本题考查了扇形面积的相关计算,根据整体思想求出表示阴影部分面积的方法,再用公式计算扇形的面积即可.17.(34)【解析】【分析】根据二次函数配方的图像与性质即可以求出答案【详解】在二次函数的配方形式下x-3是抛物线的对称轴取x=3则y=4因此顶点坐标为(34)【点睛】本题主要考查二次函数的图像与性质解析:(3,4)【解析】【分析】根据二次函数配方的图像与性质,即可以求出答案.【详解】在二次函数的配方形式下,x-3是抛物线的对称轴,取x=3,则y=4,因此,顶点坐标为(3,4).【点睛】本题主要考查二次函数的图像与性质.18.2【解析】分析:设方程的另一个根为m根据两根之和等于-即可得出关于m的一元一次方程解之即可得出结论详解:设方程的另一个根为m 根据题意得:1+m=3解得:m=2故答案为2点睛:本题考查了根与系数的关系解析:2【解析】分析:设方程的另一个根为m,根据两根之和等于-ba,即可得出关于m的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=2.故答案为2.点睛:本题考查了根与系数的关系,牢记两根之和等于-ba是解题的关键.19.-3<x<1【解析】试题分析:根据抛物线的对称轴为x=﹣1一个交点为(10)可推出另一交点为(﹣30)结合图象求出y>0时x的范围解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1已知一个交点为(1解析:-3<x<1【解析】试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为﹣3<x<1.考点:二次函数的图象.20.68°【解析】【分析】根据∠AOE的度数求出劣弧的度数得到劣弧的度数根据圆心角弧弦的关系定理解答即可【详解】∵∠AOE=78°∴劣弧的度数为78°∵AB是⊙O的直径∴劣弧的度数为180°﹣78°=1解析:68°【解析】【分析】根据∠AOE的度数求出劣弧AE的度数,得到劣弧BE的度数,根据圆心角、弧、弦的关系定理解答即可.【详解】∵∠AOE=78°,∴劣弧AE的度数为78°.∵AB是⊙O的直径,∴劣弧BE的度数为180°﹣78°=102°.∵点C、D是弧BE的三等分点,∴∠COE23=⨯102°=68°.故答案为:68°.【点睛】本题考查了圆心角、弧、弦的关系定理,掌握在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等是解题的关键.21.【解析】【分析】把扇形的弧长和圆锥底面周长作为相等关系列方程求解【详解】设此圆锥的底面半径为r根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr解得:r=1故答案为:1【点睛】本题考查了圆锥解析:【解析】【分析】把扇形的弧长和圆锥底面周长作为相等关系,列方程求解.【详解】设此圆锥的底面半径为r.根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr1203180π⨯=,解得:r=1.故答案为:1.【点睛】本题考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.22.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P(摸到白球)==解析:3 8【解析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,P(摸到白球)=353=38.23.(﹣31)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(hk)即可求解【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1∴﹣b=1根据二次函数的顶点式方程y解析:(﹣3,1)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(h,k),即可求解.【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1,∴﹣b=1,根据二次函数的顶点式方程y=a(x+3)2﹣b(a≠0)知,该函数的顶点坐标是:(﹣3,﹣b),∴该函数图象的顶点坐标为(﹣3,1).故答案为:(﹣3,1).【点睛】本题考查了二次函数的性质,解答该题时,需熟悉二次函数的顶点式y=a(x-h)2+k中的h、k所表示的意义.24.【解析】【分析】【详解】解:从袋子中随机取出1个球总共有6种等可能结果这个球为红球的结果有5中所以从袋子中随机取出1个球则它是红球的概率是故答案为:解析:5 6【解析】【分析】【详解】解:从袋子中随机取出1个球,总共有6种等可能结果,这个球为红球的结果有5中,所以从袋子中随机取出1个球,则它是红球的概率是5 6故答案为:56.25.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍可以求得∠AOB的度数然后根据勾股定理即可求得AB的长详解:连接ADAEOAOB∵⊙O的半径为2△ABC内接于⊙O∠ACB=13解析:分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题26.(1)12(2)当x=11时,y最小=88平方米【解析】(1)根据题意得方程解即可;(2)设苗圃园的面积为y,根据题意得到二次函数的解析式y=x(30-2x)=-2x2+30x,根据二次函数的性质求解即可.解: (1)苗圃园与墙平行的一边长为(30-2x)米.依题意可列方程x(30-2x)=72,即x2-15x+36=0.解得x1=3(舍去),x2=12.(2)依题意,得8≤30-2x≤18.解得6≤x≤11.面积S=x(30-2x)=-2(x-152)2+2252(6≤x≤11).①当x=152时,S有最大值,S最大=2252;②当x=11时,S有最小值,S最小=11×(30-22)=88“点睛”此题考查了二次函数、一元二次不等式的实际应用问题,解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.27.(1)n>0;(2)x1=0,x2=2.【解析】(1)根据方程有两个不相等的实数根可知240b ac ∆=-> ,即可求出n 的取值范围; (2)根据题意得出n 的值,将其代入方程,即可求得答案. 【详解】(1)根据题意知,[]224(2)41(1)0b ac n ∆=-=--⨯⨯--> 解之得:0n >;(2)∵0n > 且n 为取值范围内的最小整数, ∴1n =,则方程为220x x -=, 即(2)0x x -=, 解得120,2x x ==. 【点睛】本题主要考查了一元二次方程根的判别式,明确和掌握一元二次方程20(a 0)++=≠ax bx c 的根与24b ac ∆=-的关系(①当>0∆ 时,方程有两个不相等的实数根;②当0∆= 时方程有两个相等的实数根;③当∆<0 时,方程无实数根)是解题关键.28.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件. 【解析】 【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解; (2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解; (3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论. 【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b , 将点(30,100)、(45,70)代入一次函数表达式得:100307045k bk b +⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250, ∵-2<0,故当x <55时,w 随x 的增大而增大,而30≤x≤50, ∴当x=50时,w 由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元; (3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.29.(Ⅰ)证明见解析;(Ⅱ)∠BDE=50°, ∠CED =35°【解析】【分析】(Ⅰ)由旋转的性质可得AC=CD,CB=CE,∠ACD=∠BCE,由等腰三角形的性质可求解.(Ⅱ)由旋转的性质可得AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,由三角形内角和定理和等腰三角形的性质可求解.【详解】证明:(Ⅰ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,CB=CE,∠ACD=∠BCE,∴∠A=180ACD2︒-∠,∠CBE=180BCE2︒-∠,∴∠A=∠EBC;(Ⅱ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,∠ACB=∠DCE∴∠A=∠ADC=65°,∵∠ACE=130°,∠ACD=∠BCE=50°,∴∠ACB=∠DCE =80°,∴∠ABC=180°﹣∠BAC﹣∠BCA=35°,∵∠EDC=∠A=65°,∴∠BDE=180°﹣∠ADC﹣∠CDE=50°.∠CED=180°﹣∠DCE﹣∠CDE=35°【点睛】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.30.小路的宽为1m.【解析】【分析】如果设小路的宽度为xm,那么整个草坪的长为(16﹣2x)m,宽为(9﹣x)m,根据题意即可得出方程.【详解】设小路的宽度为xm,那么整个草坪的长为(16﹣2x)m,宽为(9﹣x)m.根据题意得:(16﹣2x)(9﹣x)=112解得:x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽为1m.【点睛】本题考查了一元二次方程的应用,弄清“整个草坪的长和宽”是解决本题的关键.。

深圳罗芳中学中考数学填空题专项练习经典测试题(含答案解析)

深圳罗芳中学中考数学填空题专项练习经典测试题(含答案解析)

一、选择题1.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023 B .2021 C .2020 D .20192.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x 米.则可列方程为( )A .32×20﹣32x ﹣20x =540 B .(32﹣x )(20﹣x )=540 C .32x +20x =540D .(32﹣x )(20﹣x )+x 2=540 4.如图,在△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′的度数为( )A .25°B .30°C .50°D .55°5.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 6.如图中∠BOD 的度数是( )A .150°B .125°C .110°D .55° 7.二次函数236y x x =-+变形为()2y a x m n =++的形式,正确的是( )A .()2313y x =--+B .()2313y x =---C .()2313y x =-++D .()2313y x =-+- 8.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是 A .点A 在圆外B .点A 在圆上C .点A 在圆内D .不能确定9.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( )A .400(1)640x +=B .2400(1)640x +=C .2400(1)400(1)640x x +++=D .2400400(1)400(1)640x x ++++=10.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >> 11.若将抛物线y=x 2平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是( )A .向左平移3个单位B .向右平移3个单位C .向上平移3个单位D .向下平移3个单位 12.下列判断中正确的是( )A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦13.以394c x ±+=为根的一元二次方程可能是( ) A .230x x c --=B .230x x c +-=C .230-+=x x cD .230++=x x c 14.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( )A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=15015.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .-1<x <2B .x >2C .x <-1D .x <-1或x >2二、填空题16.从五个数1,2,3,4,5中随机抽出1个数 ,则数3被抽中的概率为_________.17.如图,抛物线y =﹣2x 2+2与x 轴交于点A 、B ,其顶点为E .把这条抛物线在x 轴及其上方的部分记为C 1,将C 1向右平移得到C 2,C 2与x 轴交于点B 、D ,C 2的顶点为F ,连结EF .则图中阴影部分图形的面积为______.18.对于实数,a b ,定义运算“◎”如下:a ◎b 22()()a b a b =+--.若()2m +◎()3m -24=,则m =_____.19.用半径为3cm ,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于_____cm .20.四边形ABCD 内接于⊙O ,∠A =125°,则∠C 的度数为_____°.21.若点A (-3,y 1)、B (0,y 2)是二次函数y=-2(x -1)2+3图象上的两点,那么y 1与y 2的大小关系是________(填y 1>y 2、y 1=y 2或y 1<y 2).22.如图,在△ABC 中,CA=CB ,∠ACB=90°,AB=4,点D 为AB 的中点,以点D 为圆心作圆,半圆恰好经过三角形的直角顶点C ,以点D 为顶点,作90°的∠EDF ,与半圆交于点E ,F ,则图中阴影部分的面积是____.23.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.24.关于x 的一元二次方程(k-1)x 2-2x+1=0有两个不相等的实数根,则实数k 的取值范围是_______.25.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有_____个. 三、解答题26.如图,以△ABC 的边AB 为直径画⊙O ,交AC 于点D ,半径OE//BD ,连接BE ,DE ,BD ,设BE 交AC 于点F ,若∠DEB=∠DBC.(1)求证:BC 是⊙O 的切线;(2)若BF=BC=2,求图中阴影部分的面积.27.关于x 的一元二次方程230x x k -+=有实数根.(1)求k 的取值范围; (2)如果k 是符合条件的最大整数,且一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根,求此时m 的值.28.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B 《红楼梦》、C 《西游记》、D 《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.29.在一个不透明的袋子中,装有除颜色外其余均相同的红、蓝两种球,已知其中红球有3个,且从中任意摸出一个是红球的概率为0.75.(1)根据题意,袋中有个蓝球.(2)若第一次随机摸出一球,不放回,再随机摸出第二个球.请用画树状图或列表法求“摸到两球中至少一个球为蓝球(记为事件A)”的概率P(A).30.为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.C3.B4.C5.D6.C7.A8.C9.B10.A11.A12.C13.A14.B15.D二、填空题16.【解析】分析:直接利用概率公式求解即可求出答案详解:从12345中随机取出1个不同的数共有5种不同方法其中3被抽中的概率为故答案为点睛:本题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情17.4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE即可求解【详解】令y =0则:x=±1令x=0则y=2则:OB=1BD=2OB=2S阴影部分图形=S四边形BDFE=BD×OE=2×2=18.-3或4【解析】【分析】利用新定义得到整理得到然后利用因式分解法解方程【详解】根据题意得或所以故答案为:或【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法这19.【解析】【分析】把扇形的弧长和圆锥底面周长作为相等关系列方程求解【详解】设此圆锥的底面半径为r根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr解得:r=1故答案为:1【点睛】本题考查了圆锥20.【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可【详解】解:∵四边形ABCD内接于⊙O∴∠A+∠C=180°∵∠A=125°∴∠C=55°故答案为:55【点睛】本题考查了圆内接四边形的性21.y1<y2【解析】试题分析:根据题意可知二次函数的对称轴为x=1由a=-2可知当x>1时y随x增大而减小当x<1时y随x增大而增大因此由-3<0<1可知y1<y2故答案为y1<y2点睛:此题主要考查22.π﹣2【解析】【分析】连接CD作DM⊥BCDN⊥AC证明△DMG≌△DNH则S四边形DGCH=S四边形DMCN求得扇形FDE的面积则阴影部分的面积即可求得【详解】连接CD作DM⊥BCDN⊥AC∵CA23.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+24.k<2且k≠1【解析】试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根∴k-1≠0且△=(-2)2-4(k-1)>0解得:k <2且k≠1考点:1根的判别式;2一元二次25.2【解析】试题解析:∵袋中装有6个黑球和n 个白球∴袋中一共有球(6+n )个∵从中任摸一个球恰好是黑球的概率为∴解得:n=2故答案为2三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A .【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键. 2.C解析:C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、图形既不是轴对称图形是中心对称图形,B 、图形是轴对称图形,C 、图形是轴对称图形,也是中心对称轴图形,D 、图形是轴对称图形.故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.B解析:B【解析】【分析】先将图形利用平移进行转化,可得剩余图形的长等于原来的长减去小路的宽,剩余图形的宽等于原来的宽减去路宽,然后再根据矩形面积公式计算.【详解】利用图形平移可将原图转化为下图,设道路的宽为x ,根据题意得:(32-x )(20-x )=540.故选B.【点睛】本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.4.C解析:C【解析】试题解析:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.5.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.C解析:C【解析】试题分析:如图,连接OC.∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C.【考点】圆周角定理.7.A解析:A【解析】【分析】根据配方法,先提取二次项的系数-3,得到()232y x x =--,再将括号里的配成完全平方式即可得出结果.【详解】解:()()()222236=323211313y x x x x x x x =-+--=--+-=--+, 故选:A .【点睛】本题主要考查的是配方法,正确的掌握配方的步骤是解题的关键.8.C解析:C【解析】【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d >r 时,点在圆外;当d=r 时,点在圆上;当d <r 时,点在圆内判断出即可.【详解】解:∵⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,∴d <r ,∴点A 与⊙O 的位置关系是:点A 在圆内,故选C .9.B解析:B【解析】【分析】根据平均年增长率即可解题.【详解】解:设这两年的年净利润平均增长率为x ,依题意得:()24001640x +=故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键.10.A解析:A 【解析】 【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小. 【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A . 【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.11.A解析:A 【解析】 【分析】先确定抛物线y=x 2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),然后利用顶点的平移情况确定抛物线的平移情况. 【详解】解:抛物线y=x 2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0), 因为点(0,0)向左平移3个单位长度后得到(-3,0), 所以把抛物线y=x 2向左平移3个单位得到抛物线y=(x+3)2. 故选:A . 【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12.C解析:C 【解析】 【分析】根据等弧概念对A 进行判断,根据垂径定理对B 、C 、D 选项进行逐一判断即可. 本题解析. 【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B 错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C 正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误. 故选C.13.A解析:A 【解析】 【分析】根据一元二次方程根与系数的关系求解即可. 【详解】设x 1,x 2是一元二次方程的两个根,∵32x ±=∴x 1+x 2=3,x 1∙x 2=-c ,∴该一元二次方程为:21212()0x x x x x x -++=,即230x x c --=故选A. 【点睛】此题主要考查了根据一元二次方程的根与系数的关系列一元二次方程.14.B解析:B 【解析】 【分析】可设每月营业额平均增长率为x ,则二月份的营业额是100(1+x ),三月份的营业额是100(1+x )(1+x ),则可以得到方程即可. 【详解】设二、三两个月每月的平均增长率是x . 根据题意得:100(1+x )2=150, 故选:B . 【点睛】本题考查数量平均变化率问题.原来的数量为a ,平均每次增长或降低的百分率为x 的话,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a (1±x )(1±x )=a (1±x )2.增长用“+”,下降用“-”. 15.D解析:D 【解析】 【分析】根据已知图象可以得到图象与x 轴的交点是(-1,0),(2,0),又y >0时,图象在x 轴的上方,由此可以求出x 的取值范围.【详解】依题意得图象与x轴的交点是(-1,0),(2,0),当y>0时,图象在x轴的上方,此时x<-1或x>2,∴x的取值范围是x<-1或x>2,故选D.【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,注意数形结合思想的运用.二、填空题16.【解析】分析:直接利用概率公式求解即可求出答案详解:从12345中随机取出1个不同的数共有5种不同方法其中3被抽中的概率为故答案为点睛:本题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情解析:1 5【解析】分析:直接利用概率公式求解即可求出答案.详解:从1,2,3,4,5中随机取出1个不同的数,共有5种不同方法,其中3被抽中的概率为15.故答案为15.点睛:本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比. 17.4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE即可求解【详解】令y=0则:x=±1令x=0则y=2则:OB=1BD=2OB=2S阴影部分图形=S四边形BDFE=BD×OE=2×2=解析:4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE,即可求解.【详解】令y=0,则:x=±1,令x=0,则y=2,则:OB=1,BD=2,OB=2,S阴影部分图形=S四边形BDFE=BD×OE=2×2=4.故:答案为4.【点睛】本题考查的是抛物线性质的综合运用,确定S阴影部分图形=S四边形BDFE是本题的关键.18.-3或4【解析】【分析】利用新定义得到整理得到然后利用因式分解法解方程【详解】根据题意得或所以故答案为:或【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法这解析:-3或4 【解析】 【分析】利用新定义得到22[(2)(3)][(2)(3)]24m m m m ++--+--=,整理得到2(21)490m --=,然后利用因式分解法解方程.【详解】根据题意得,22[(2)(3)][(2)(3)]24m m m m ++--+--=,2(21)490m --=, (2 m-1+7)(2 m-1-7)=0,2 m-1+7=0或2 m-1-7=0,所以123,4m m =-=.故答案为:3-或4.【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.19.【解析】【分析】把扇形的弧长和圆锥底面周长作为相等关系列方程求解【详解】设此圆锥的底面半径为r 根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr 解得:r=1故答案为:1【点睛】本题考查了圆锥解析:【解析】 【分析】把扇形的弧长和圆锥底面周长作为相等关系,列方程求解. 【详解】设此圆锥的底面半径为r .根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr 1203180π⨯=, 解得:r =1. 故答案为:1. 【点睛】本题考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.20.【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可【详解】解:∵四边形ABCD 内接于⊙O∴∠A+∠C=180°∵∠A=125°∴∠C=55°故答案为:55【点睛】本题考查了圆内接四边形的性解析:【解析】 【分析】根据圆内接四边形的对角互补的性质进行计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=55°,故答案为:55.【点睛】本题考查了圆内接四边形的性质,理解圆内接四边形的对角互补的性质是解答本题的关键. 21.y1<y2【解析】试题分析:根据题意可知二次函数的对称轴为x=1由a=-2可知当x>1时y随x增大而减小当x<1时y随x增大而增大因此由-3<0<1可知y1<y2故答案为y1<y2点睛:此题主要考查解析:y1<y2【解析】试题分析:根据题意可知二次函数的对称轴为x=1,由a=-2,可知当x>1时,y随 x增大而减小,当x<1时,y随x增大而增大,因此由-3<0<1,可知y1<y2.故答案为y1<y2.点睛:此题主要考查了二次函数的图像与性质,解题关键是求出其对称轴,然后根据对称轴和a的值判断其增减性,然后可判断.22.π﹣2【解析】【分析】连接CD作DM⊥BCDN⊥AC证明△DMG≌△DNH则S 四边形DGCH=S四边形DMCN求得扇形FDE的面积则阴影部分的面积即可求得【详解】连接CD作DM⊥BCDN⊥AC∵CA解析:π﹣2.【解析】【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【详解】连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=12AB=2,四边形DMCN是正方形,DM2.则扇形FDE的面积是:2902360π⨯=π.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵DMG DNHGDM HDNDM DN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=2.则阴影部分的面积是:π﹣2.故答案为π﹣2.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.23.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2 =﹣3则x1﹣x2=﹣(x1+解析:-4【解析】【分析】利用根与系数的关系求出所求即可.此题也可解出x的值,直接计算.【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1、x2(x1<x2),∴x1+x2=2,x1x2=﹣3,则x1﹣x2=﹣√(x1+x2)2−4x1x2=﹣√4+12=﹣4.故答案为﹣4.【点睛】本题考查了根与系数的关系,弄清根与系数的关系是解答本题的关键.24.k<2且k≠1【解析】试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根∴k-1≠0且△=(-2)2-4(k-1)>0解得:k<2且k≠1考点:1根的判别式;2一元二次解析:k<2且k≠1【解析】试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k<2且k≠1.考点:1.根的判别式;2.一元二次方程的定义.25.2【解析】试题解析:∵袋中装有6个黑球和n个白球∴袋中一共有球(6+n)个∵从中任摸一个球恰好是黑球的概率为∴解得:n=2故答案为2 解析:2【解析】试题解析:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为34,∴63 64n=+,解得:n=2.故答案为2.三、解答题26.(1)证明见解析;(2)2π【解析】【分析】(1)求出∠ADB的度数,求出∠ABD+∠DBC=90︒,根据切线判定推出即可;(2)连接OD,分别求出三角形DOB面积和扇形DOB面积,即可求出答案.【详解】(1)AB是O的直径,90ADB∴∠=︒,90A ABD∴∠+∠=︒,A DEB∠=∠,DEB DBC∠=∠,A DBC∴∠=∠,90DBC ABD∠+∠=︒,BC∴是O的切线;(2)连接OD,2BF BC ==,且90ADB ∠=︒, CBD FBD ∴∠=∠, //OE BD ,FBD OEB ∴∠=∠, OE OB =,OEB OBE ∴∠=∠,11903033CBD OEB OBE ADB ∴∠=∠=∠=∠=⨯︒=︒,60C ∴∠=︒,323AB BC ∴==,O ∴3,∴阴影部分的面积=扇形DOB 的面积-三角形DOB 的面积13333362ππ=⨯= 【点睛】本题考查了切线判定的定理和三角形及扇形面积的计算方法,熟练掌握该知识点是本题解题的关键.27.(1)94k ≤;(2)m 的值为32. 【解析】 【分析】(1)利用判别式的意义得到()2340k ∆=--≥,然后解不等式即可; (2)利用(1)中的结论得到k 的最大整数为2,解方程2320x x -+=解得121,2x x ==,把1x =和2x =分别代入一元二次方程()2130m x x m -++-=求出对应的m ,同时满足10m -≠. 【详解】解:(1)根据题意得()2340k ∆=--≥, 解得94k ≤;(2)k 的最大整数为2,方程230x x k -+=变形为2320x x -+=,解得121,2x x ==,∵一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根,∴当1x =时,1130m m -++-=,解得32m =; 当2x =时,()41230m m -++-=,解得1m =, 而10m -≠, ∴m 的值为32. 【点睛】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根.28.(1)50;(2)见解析;(3)16. 【解析】 【分析】(1) 本次一共调查:15÷30%;(2)先求出B 对应的人数为:50﹣16﹣15﹣7,再画图;(3)先列表,再计算概率. 【详解】(1)本次一共调查:15÷30%=50(人); 故答案为50;(2)B 对应的人数为:50﹣16﹣15﹣7=12, 如图所示:(3)列表:A B C D AABAC AD BBABCBDC CA CB CDD DA DB DC∵共有12种等可能的结果,恰好选中A、B的有2种,∴P(选中A、B)=212=16.【点睛】本题考核知识点:统计初步,概率.解题关键点:用列表法求概率. 29.(1)1;(2)1 2【解析】【分析】(1) 根据红球的个数和红球的概率可求出总球的个数,然后相减即可;(2)根据题意画出树状图,然后求出总可能数和符合条件的次数,根据概率公式求解即可.【详解】(1)3÷0.75-3=1. 故填1.(2)将袋中各球分别记为红1、红2、红3、蓝.根据题意,可以画出如下的树状图:由树状图可以看出,所有可能出现的结果共有12种,这些结果出现的可能性相等,其中事件A的结果共有6种,所以 P(A)=61 122.30.(1)该广场绿化区域的面积为144平方米;(2)广场中间小路的宽为1米.【解析】【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.【点睛】本题考查的知识点是一元二次方程的应用,找准题目中的等量关系式是解此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为( ) A .1x 0=,2x 4= B .1x 2=-,2x 6= C .13x 2=,25x 2= D .1x 4=-,2x 0=2.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .3.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若50C ∠=︒,则∠AOD 的度数为( )A .40︒B .50︒C .80︒D .100︒4.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x 米.则可列方程为( )A .32×20﹣32x ﹣20x =540 B .(32﹣x )(20﹣x )=540 C .32x +20x =540D .(32﹣x )(20﹣x )+x 2=5405.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x(x-20)=300B .x(x+20)=300C .60(x+20)=300D .60(x-20)=3006.已知m 、n 是方程2210x x --=的两根,且22(714)(367)8m m a n n -+--=,则a 的值等于A .5-B .5C .9-D .97.二次函数236yx x =-+变形为()2y a x m n =++的形式,正确的是( )A .()2313y x =--+ B .()2313y x =--- C .()2313y x =-++D .()2313y x =-+-8.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表: x … -1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…-159…当y 2>y 1时,自变量x 的取值范围是 A .-1<x <2B .4<x <5C .x <-1或x >5D .x <-1或x >49.若将抛物线y=x 2平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是( ) A .向左平移3个单位 B .向右平移3个单位 C .向上平移3个单位D .向下平移3个单位10.如图,⊙O 是△ABC 的外接圆,∠B=60°,⊙O 的半径为4,则AC 的长等于( )A .3B .3C .3D .811.下列函数中是二次函数的为( )A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x 2D .y =x 3+2x -3 12.下列对二次函数y=x 2﹣x 的图象的描述,正确的是( )A .开口向下B .对称轴是y 轴C .经过原点D .在对称轴右侧部分是下降的 13.关于y=2(x ﹣3)2+2的图象,下列叙述正确的是( ) A .顶点坐标为(﹣3,2) B .对称轴为直线y=3C .当x≥3时,y 随x 增大而增大D .当x≥3时,y 随x 增大而减小14.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是( )A .14B .12C .23D .3415.下列说法正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖 C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“概率为1的事件”是必然事件二、填空题16.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.17.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____. 18.已知关于x 方程x 2﹣3x+a=0有一个根为1,则方程的另一个根为_____. 19.如图,AB 为O 的直径,弦CD AB ⊥于点E ,已知8CD =,3OE =,则O 的半径为______.20.如图,在直角坐标系中,已知点30A -(,)、04B (,),对OAB 连续作旋转变换,依次得到1234、、、,则2019的直角顶点的坐标为__________.21.心理学家发现:学生对概念的接受能力y 与提出概念的时间x (分)之间的关系式为y=﹣0.1x 2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需________ 分钟. 22.△ABC 中,∠A =90°,AB =AC ,以A 为圆心的圆切BC 于点D ,若BC =12cm ,则⊙A 的半径为_____cm .23.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.24.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为________.25.在一空旷场地上设计一落地为矩形ABCD 的小屋,AB +BC =10m ,拴住小狗的10m 长的绳子一端固定在B 点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S (m 2).(1)如图1,若BC =4m ,则S =_____m 2.(2)如图2,现考虑在(1)中矩形ABCD 小屋的右侧以CD 为边拓展一正△CDE 区域,使之变成落地为五边形ABCED 的小屋,其他条件不变,则在BC 的变化过程中,当S 取得最小值时,边BC 的长为____m .三、解答题26.为了创建国家级卫生城区,某社区在九月份购买了甲、乙两种绿色植物共1100盆,共花费了27000元.已知甲种绿色植物每盆20元,乙种绿色植物每盆30元. (1)该社区九月份购买甲、乙两种绿色植物各多少盆?(2)十月份,该社区决定再次购买甲、两种绿色植物.已知十月份甲种绿色植物每盆的价格比九月份的价格优惠5a元()0a >,十月份乙种绿色植物每盆的价格比九月份的价格优惠2%5a .因创卫需要,该社区十月份购买甲种绿色植物的数量比九月份的数量增加了1%2a ,十为份购买乙种绿色植物的数量比九月份的数量增加了%a .若该社区十月份的总花费与九月份的总花费恰好相同,求a 的值.27.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本. (1)求出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?28.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE .1()求证:ACD ≌BCE ;2()当AD BF =时,求BEF ∠的度数.29.在平面直角坐标系xOy中,抛物线y=a2x-4ax与x轴交于A,B两点(A在B的左侧).(1)求点A,B的坐标;(2)已知点C(2,1),P(1,-32a),点Q在直线PC上,且Q点的横坐标为4.①求Q点的纵坐标(用含a的式子表示);②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.30.如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC =DE,求出点D的坐标;(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.A3.C4.B5.A6.C7.A8.D9.A10.A11.B12.C13.C14.B15.D二、填空题16.8【解析】【分析】首先求出AB的坐标然后根据坐标求出ABCD的长再根据三角形面积公式计算即可【详解】解:∵y=x2﹣2x﹣3设y=0∴0=x2﹣2x﹣3解得:x1=3x2=﹣1即A点的坐标是(﹣1017.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大18.2【解析】分析:设方程的另一个根为m根据两根之和等于-即可得出关于m的一元一次方程解之即可得出结论详解:设方程的另一个根为m根据题意得:1+m=3解得:m=2故答案为2点睛:本题考查了根与系数的关系19.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O 的半径为5故答案为:20.【解析】【分析】根据勾股定理列式求出AB的长再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环然后求出一个循环组旋转前进的长度再用2019除以3根据商为673可知第20121.13【解析】【分析】直接代入求值即可【详解】试题解析:把y=599代入y=﹣01x2+26x+43得599=-01x2+26x+43解得:x1=x2=13分钟即学生对概念的接受能力达到599时需要122.【解析】【分析】由切线性质知AD⊥BC根据AB=AC可得BD=CD=AD=BC=6【详解】解:如图连接AD则AD⊥BC∵AB=AC∴BD=CD=AD=BC=6故答案为:6【点睛】本题考查了圆的切线性23.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+24.20【解析】【分析】一般用增长后的量=增长前的量×(1+增长率)再根据题意列出方程5(1+x)2=72即可解答【详解】设这两年中投入资金的平均年增长率是x由题意得:5(1+x)2=72解得:x1=025.88π;【解析】【分析】(1)小狗活动的区域面积为以B为圆心10m为半径的圆以C为圆心6m为半径的圆和以A为圆心4为半径的圆的面积和据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心10为半三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】二次函数y=ax2+1的图象经过点(-2,0),得到4a+1=0,求得a=-,代入方程a(x-2)2+1=0即可得到结论.【详解】解:∵二次函数y=ax2+1的图象经过点(-2,0),∴4a+1=0,∴a=-14,∴方程a(x-2)2+1=0为:方程-(x-2)2+1=0,解得:x1=0,x2=4,故选:A.【点睛】本题考查了二次函数与x轴的交点问题,二次函数图象上点的坐标特征,一元二次方程的解,正确的理解题意是解题的关键.2.A解析:A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.3.C解析:C【解析】 【分析】由AC 是⊙O 的切线可得∠CAB=90︒,又由50C ∠=︒,可得∠ABC=40︒;再由OD=OB ,则∠BDO=40︒最后由∠AOD=∠OBD+∠OBD 计算即可. 【详解】解:∵AC 是⊙O 的切线 ∴∠CAB=90︒, 又∵50C ∠=︒ ∴∠ABC=90︒-50︒=40︒ 又∵OD=OB∴∠BDO=∠ABC=40︒ 又∵∠AOD=∠OBD+∠OBD ∴∠AOD=40︒+40︒=80︒ 故答案为C. 【点睛】本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.4.B解析:B 【解析】 【分析】先将图形利用平移进行转化,可得剩余图形的长等于原来的长减去小路的宽,剩余图形的宽等于原来的宽减去路宽,然后再根据矩形面积公式计算.【详解】利用图形平移可将原图转化为下图,设道路的宽为x , 根据题意得:(32-x )(20-x )=540.故选B. 【点睛】本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.5.A解析:A 【解析】 【分析】设扩大后的正方形绿地边长为xm ,根据“扩大后的绿地面积比原来增加300m 2”建立方程即可. 【详解】设扩大后的正方形绿地边长为xm , 根据题意得x (x-20)=300, 故选A . 【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.6.C解析:C 【解析】试题解析:∵m ,n 是方程x 2﹣2x ﹣1=0的两根 ∴m 2﹣2m=1,n 2﹣2n=1∴7m 2﹣14m=7(m 2﹣2m )=7,3n 2﹣6n=3(n 2﹣2n )=3 ∵(7m 2﹣14m+a )(3n 2﹣6n ﹣7)=8 ∴(7+a )×(﹣4)=8 ∴a=﹣9. 故选C .7.A解析:A 【解析】 【分析】根据配方法,先提取二次项的系数-3,得到()232y x x =--,再将括号里的配成完全平方式即可得出结果. 【详解】解:()()()222236=323211313y x x x x x x x =-+--=--+-=--+,故选:A . 【点睛】本题主要考查的是配方法,正确的掌握配方的步骤是解题的关键.8.D解析:D 【解析】 【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x<4时,y1>y2,从而得到当y2>y1时,自变量x的取值范围.【详解】∵当x=0时,y1=y2=0;当x=4时,y1=y2=5;∴直线与抛物线的交点为(-1,0)和(4,5),而-1<x<4时,y1>y2,∴当y2>y1时,自变量x的取值范围是x<-1或x>4.故选D.【点睛】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.9.A解析:A【解析】【分析】先确定抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),然后利用顶点的平移情况确定抛物线的平移情况.【详解】解:抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),因为点(0,0)向左平移3个单位长度后得到(-3,0),所以把抛物线y=x2向左平移3个单位得到抛物线y=(x+3)2.故选:A.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.10.A解析:A【解析】【分析】【详解】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B ,且∠AOD=∠COD=12∠AOC , ∴∠COD=∠B=60°; 在Rt △COD 中,OC=4,∠COD=60°,∴,∴.故选A .【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.11.B解析:B【解析】A. y =3x −1是一次函数,故A 错误;B. y =3x 2−1是二次函数,故B 正确;C. y =(x +1)2−x 2不含二次项,故C 错误;D. y =x 3+2x −3是三次函数,故D 错误;故选B.12.C解析:C【解析】【分析】根据抛物线的开口方向、对称轴公式以及二次函数性质逐项进行判断即可得答案.【详解】A 、∵a=1>0,∴抛物线开口向上,选项A 不正确;B 、∵﹣122b a ,∴抛物线的对称轴为直线x=12,选项B 不正确; C 、当x=0时,y=x 2﹣x=0,∴抛物线经过原点,选项C 正确; D 、∵a >0,抛物线的对称轴为直线x=12, ∴当x >12时,y 随x 值的增大而增大,选项D 不正确, 故选C .【点睛】本题考查了二次函数的性质:二次函数y=ax 2+bx+c (a≠0),对称轴直线x=-2b a,当a >0时,抛物线y=ax 2+bx+c (a≠0)的开口向上,当a <0时,抛物线y=ax 2+bx+c (a≠0)的开口向下,c=0时抛物线经过原点,熟练掌握相关知识是解题的关键.13.C解析:C【解析】∵ y=2(x ﹣3)2+2的图象开口向上,顶点坐标为(3,2),对称轴为直线x=3,∴当3x 时,y随x的增大而增大.∴选项A、B、D中的说法都是错误的,只有选项C中的说法是正确的.故选C.14.B解析:B【解析】【分析】画树状图展示所有12种等可能的结果数,再两人摸出的小球颜色相同的结果数然后根据概率公式求解.【详解】解:画树状图如下:,一共12种可能,两人摸出的小球颜色相同的有6种情况,所以两人摸出的小球颜色相同的概率是612=12,故选:B.【点睛】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.D解析:D【解析】试题解析:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C错误;D. “概率为1的事件”是必然事件,正确.故选D.二、填空题16.8【解析】【分析】首先求出AB的坐标然后根据坐标求出ABCD的长再根据三角形面积公式计算即可【详解】解:∵y=x2﹣2x﹣3设y=0∴0=x2﹣2x﹣3解得:x1=3x2=﹣1即A 点的坐标是(﹣10解析:8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.17.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大解析:﹣13≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.18.2【解析】分析:设方程的另一个根为m根据两根之和等于-即可得出关于m的一元一次方程解之即可得出结论详解:设方程的另一个根为m根据题意得:1+m=3解得:m=2故答案为2点睛:本题考查了根与系数的关系解析:2【解析】分析:设方程的另一个根为m,根据两根之和等于-ba,即可得出关于m的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=2.故答案为2.点睛:本题考查了根与系数的关系,牢记两根之和等于-ba是解题的关键.19.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:解析:5【解析】【分析】连接OD,根据垂径定理求出DE,根据勾股定理求出OD即可.【详解】解:连接OD,∵CD⊥AB于点E,∴DE=CE= 12CD=12×8=4,∠OED=90°,由勾股定理得:2222345OE DE+=+=,即⊙O的半径为5.故答案为:5.【点睛】本题考查了垂径定理和勾股定理的应用,能根据垂径定理求出DE的长是解此题的关键.20.【解析】【分析】根据勾股定理列式求出AB的长再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环然后求出一个循环组旋转前进的长度再用2019除以3根据商为673可知第2018076,0解析:()【解析】【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2019除以3,根据商为673可知第2019个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.【详解】解:∵点A(-3,0)、B(0,4),∴,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2019÷3=673,∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点,∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).【点睛】本题主要考查了点的坐标变化规律,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.21.13【解析】【分析】直接代入求值即可【详解】试题解析:把y=599代入y=﹣01x2+26x+43得599=-01x2+26x+43解得:x1=x2=13分钟即学生对概念的接受能力达到599时需要1解析:13【解析】【分析】直接代入求值即可.【详解】试题解析:把y=59.9代入y=﹣0.1x2+2.6x+43得,59.9=-0.1x2+2.6x+43解得:x1=x2=13分钟.即学生对概念的接受能力达到59.9时需要13分钟.故答案为:13.考点:二次函数的应用.22.【解析】【分析】由切线性质知AD⊥BC根据AB=AC可得BD=CD=AD=BC =6【详解】解:如图连接AD则AD⊥BC∵AB=AC∴BD=CD=AD=BC=6故答案为:6【点睛】本题考查了圆的切线性解析:【解析】【分析】由切线性质知AD⊥BC,根据AB=AC可得BD=CD=AD=12BC=6.【详解】解:如图,连接AD,则AD⊥BC,∵AB=AC,∴BD=CD=AD=12BC=6,故答案为:6.【点睛】本题考查了圆的切线性质,解题的关键在于掌握圆的切线性质.23.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+解析:-4【解析】【分析】利用根与系数的关系求出所求即可.此题也可解出x的值,直接计算.【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1、x2(x1<x2),∴x1+x2=2,x1x2=﹣3,则x1﹣x2=﹣√(x1+x2)2−4x1x2=﹣√4+12=﹣4.故答案为﹣4.【点睛】本题考查了根与系数的关系,弄清根与系数的关系是解答本题的关键.24.20【解析】【分析】一般用增长后的量=增长前的量×(1+增长率)再根据题意列出方程5(1+x)2=72即可解答【详解】设这两年中投入资金的平均年增长率是x由题意得:5(1+x)2=72解得:x1=0解析:20%.【解析】【分析】一般用增长后的量=增长前的量×(1+增长率),再根据题意列出方程5(1+x)2=7.2,即可解答.【详解】设这两年中投入资金的平均年增长率是x,由题意得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意舍去).答:这两年中投入资金的平均年增长率约是20%.故答案是:20%.【点睛】此题考查一元二次方程的应用,解题关键在于列出方程.25.88π;【解析】【分析】(1)小狗活动的区域面积为以B为圆心10m为半径的圆以C为圆心6m为半径的圆和以A为圆心4为半径的圆的面积和据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心10为半解析:88π;5 2【解析】【分析】(1)小狗活动的区域面积为以B为圆心、10m为半径的34圆,以C为圆心、6m为半径的14圆和以A为圆心、4为半径的14圆的面积和,据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心、10为半径的34圆,以A为圆心、x为半径的1 4圆、以C为圆心、10-x为半径的30360圆的面积和,列出函数解析式,由二次函数的性质解答即可.【详解】解:(1)如图,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B为圆心、10m为半径的34圆,以C为圆心、6m为半径的14圆和以A为圆心、4m为半径的14圆的面积和,∴S=34×π•102+14•π•62+14•π•42=88π; (2)如图,设BC=x ,则AB=10-x ,∴S=34•π•102+14•π•x 2+30360•π•(10-x)2 =π3(x 2-5x+250) =π3(x-52)2+325π4, 当x=52时,S 取得最小值, ∴BC=52. 故答案为:(1)88π;(2)52. 【点睛】本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积.三、解答题26.(1)该社区九月份购买甲、乙两种绿色植物分别为600,500盆;(2)a 的值为25【解析】【分析】(1)设该社区九月份购买甲、乙两种绿色植物分别为x ,y 盆,根据甲、乙两种绿色植物共1100盆和共花费了27000元列二元一次方程组即可;(2)结合(1)根据题意列出关于a 的方程,用换元法,设%t a ,化简方程, 求解即可.【详解】解:(1)设该社区九月份购买甲、乙两种绿色植物分别为x ,y 盆,由题意知,1100203027000x y x y +=⎧⎨+=⎩ , 解得,600500x y =⎧⎨=⎩, 答:该社区九月份购买甲、乙两种绿色植物分别为600,500盆; (2)由题意知,12(20)600(1%)30(1%)500(1%)27000525aa a a -⨯++-⨯+=, 令%t a =,原式可化为240t t -=,解得,10t =(舍去),20.25t =,∴25a =,∴a 的值为25.【点睛】本题考查了二元一次方程组和一元二次方程在实际问题中的应用,根据题意正确列式是解题的关键.27.(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.【解析】【分析】(1)待定系数法列方程组求一次函数解析式.(2)列一元二次方程求解.(3)总利润=单件利润⨯销售量:w =(x -20)(-2x +80),得到二次函数,先配方,在定义域上求最值.【详解】(1)设y 与x 的函数关系式为y =kx +b .把(22,36)与(24,32)代入,得22362432.k b k b +=⎧⎨+=⎩解得280.k b =-⎧⎨=⎩∴y =-2x +80(20≤x≤28).(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x 元,根据题意,得(x -20)y =150,即(x -20)(-2x +80)=150.解得x 1=25,x 2=35(舍去).答:每本纪念册的销售单价是25元.(3)由题意,可得w =(x -20)(-2x +80)=-2(x -30)2+200.∵售价不低于20元且不高于28元,当x <30时,y 随x 的增大而增大,∴当x =28时,w 最大=-2×(28-30)2+200=192(元).答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元.28.()1证明见解析;()2BEF 67.5∠=.【解析】【分析】()1由题意可知:CD CE =,DCE 90∠=,由于ACB 90∠=,从而可得ACD BCE ∠∠=,根据SAS 即可证明ACD ≌BCE ;()2由ACD ≌()BCE SAS 可知:A CBE 45∠∠==,BE BF =,从而可求出BEF ∠的度数.【详解】()1由题意可知:CD CE =,DCE 90∠=,ACB 90∠=,ACD ACB DCB ∠∠∠∴=-,BCE DCE DCB ∠∠∠=-,ACD BCE ∠∠∴=,在ACD 与BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,ACD ∴≌()BCE SAS ;()2ACB 90∠=,AC BC =,A 45∠∴=,由()1可知:A CBE 45∠∠==,AD BF =,BE BF ∴=,BEF 67.5∠∴=.【点睛】本题考查了旋转的性质、全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.29.(1)A (0,0),B (4,0);(2)①Q 点的纵坐标为3+3a ,②符合题意的a 的取值范围是 -1≤a <0.【解析】【分析】(1)令y =0,则a 2x -4ax =0,可求得A 、B 点坐标;(2)①设直线PC 的解析式为,将点P (1,-32a ),C (2,1)代入可解得31,13.2k a b a =+=-- ()3113.2y x a =+-- 由于Q 点的横坐标为4,可求得Q 点的纵坐标为3+3a ②当a >0时,如图1,不合题意;当a <0时,由图2,图3可知,3+3a≥0,可求出a 的取值范围.【详解】(1)令y =0,则a 2x -4ax =0.解得 120, 4.x x ==∴ A (0,0),B (4,0)(2)①设直线PC 的解析式为.y kx b =+将点P (1,-32a ),C (2,1)代入上式, 解得31,13.2k ab a =+=-- ∴y=(1+32a)x-1-3a. ∵点Q 在直线PC 上,且Q 点的横坐标为4,∴Q 点的纵坐标为3+3a②当a >0时,如图1,不合题意;当a <0时,由图2,图3可知,3+3a≥0.∴a≥-1.∴符合题意的a 的取值范围是 -1≤a <0.图1 图2 图3【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.30.(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P点坐标(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).【解析】【分析】(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EF⊥y 轴于点F,利用勾股定理表示出DC,DE的长.再建立相等关系式求出m值,进而求出D 点坐标;(3)先根据边角边证明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后当以C、D、P 为顶点的三角形与△DOC相似时,根据对应边不同进行分类讨论:①当OC与CD是对应边时,有比例式OC ODDC DP=,能求出DP的值,又因为DE=DC,所以过点P作PG⊥y轴于点G,利用平行线分线段成比例定理即可求出DG,PG的长度,根据点P在点D的左边和右边,得到符合条件的两个P点坐标;②当OC与DP是对应边时,有比例式OC ODDP DC=,易求出DP,仍过点P作PG⊥y轴于点G,利用比例式DG PG DPDF EF DE==求出DG,PG的长度,然后根据点P在点D的左边和右边,得到符合条件的两个P点坐标;这样,直线DE上根据对应边不同,点P所在位置不同,就得到了符合条件的4个P点坐标.【详解】解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),∴10{3b cc-+==-,解得2{3bc=-=-,故抛物线的函数解析式为y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则点C的坐标为(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点E坐标为(1,﹣4),设点D的坐标为(0,m),作EF⊥y轴于点F(如下图),∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴点D 的坐标为(0,﹣1);(3)∵点C (3,0),D (0,﹣1),E (1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,,在△COD 和△DFE 中,∵{90CO DFCOD DFE DO EF=∠=∠=︒=,∴△COD ≌△DFE (SAS ),∴∠EDF=∠DCO ,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD ⊥DE ,①当OC 与CD 是对应边时,∵△DOC ∽△PDC , ∴OC OD DC DP=1DP , 解得DP=3, 过点P 作PG ⊥y 轴于点G , 则DG PG DP DF EF DE ==,即31DG PG == 解得DG=1,PG=13, 当点P 在点D 的左边时,OG=DG ﹣DO=1﹣1=0,所以点P (﹣13,0), 当点P 在点D 的右边时,OG=DO+DG=1+1=2, 所以,点P (13,﹣2); ②当OC 与DP 是对应边时,∵△DOC ∽△CDP , ∴OC OD DP DC=,即3DP, 解得,过点P 作PG ⊥y 轴于点G ,。

相关文档
最新文档