25二元一次方程组解法(一)--代入法(提高) 知识讲解

合集下载

二元一次方程组的解法-代入消元法(课件)七年级数学下册(人教版)

二元一次方程组的解法-代入消元法(课件)七年级数学下册(人教版)
解这个方程,得 y=20
把y=20代入③,得 x=28
所以这个方程组的解是
x 28

y 20
答:篮球队有28支、排球队有20支参赛.
=1−
1.用代入法解方程组
时,代入正确的是(
)
− 2 = 4
C
A.x-2-x=4
B.x-2-2x=4
2.用代入法解方程组
2
A.3x=2×
3
所以原方程组的解是
y 105
转化
x+(x+10)=200
x=95
y=105
求方程组解的过程叫做解方程组.
将未知数的个数由多化少、逐一解决的思想方法,叫做消元思想.
把二元一次方程组中一个方程的一个未知数用含另一未知数的式子表示出
来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.
这种方法叫做代入消元法,简称代入法.
代入消元法解二元一次方程组的一般步骤:
第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未
知数用含有另一个未知数的式子表示出来;
第二步:把此式子代入没有变形的另一个方程中,可得一个一元一次方程;
第三步:解这个一元一次方程,得到一个未知数的值;
第四步:回代求出另一个未知数的值;

y 3x 1 0
解:由② ,得 y=3x+1



把③代入①,得 2x+3x+1=0
解这个方程,得 x=1
把x=1代入③,得 y=4
x 1
所以这个方程组的解是
y 4
本题还有其它
做法吗?
例2.用代入法解方程组

二元一次方程组解题技巧讲义(补课用)

二元一次方程组解题技巧讲义(补课用)

⼆元⼀次⽅程组解题技巧讲义(补课⽤)⼆元⼀次⽅程组解题技巧讲义(补课⽤)⼀、⼆元⼀次⽅程组的有关概念:1.⼆元⼀次⽅程:含有两个未知数,并且含有未知数的项的次数都是1?的整式⽅程叫做⼆元⼀次⽅程.它的⼀般形式:)0,0(≠≠=+b a c by ax ,如6713,245=-=-n m y x 等是⼆元⼀次⽅程。

2.⼆元⼀次⽅程的解集:适合⼀个⼆元⼀次⽅程的每⼀对未知数的值,叫做这个⼆元⼀次⽅程的⼀个解.对于任何⼀个⼆元⼀次⽅程,令其中⼀个未知数取任意⼀个值,都能求出与它对应的另⼀个未知数的值.因此,任何⼀个⼆元⼀次⽅程都有⽆数多个解.由这些解组成的集合,叫做这个⼆元⼀次⽅程的解集.3.⼆元⼀次⽅程组及其解:两个⼆元⼀次⽅程合在⼀起就组成了⼀个⼆元⼀次⽅程组.⼀般地,能使⼆元⼀次⽅程组的两个⽅程左右两边的值都相等的两个未知数的值,叫做⼆元⼀次⽅程组的解.它的⼀般形式为:=+=+.,222111c y b x a c y b x a 其中2121,,,b b a a 不全为零,如:?==;2,3y x =+=-;5,3n m n m =-=+-;2,53q p q p 都是⼆元⼀次⽅程组。

4.⼆元⼀次⽅程组的解法:代⼊消元法:在⼆元⼀次⽅程组中选取⼀个适当的⽅程,将⼀个未知数⽤含另⼀个未知数的式⼦表⽰出来,再代⼊另⼀个⽅程,消去⼀个未知数得到⼀元⼀次⽅程,求出这个未知数的值,进⽽求得这个⼆元⼀次⽅程组的解,这种⽅法叫做代⼊消元法。

加减消元法:两个⼆元⼀次⽅程中同⼀未知数的系数相反或相等时,将两个⽅程的两边分别相加或相差,从⽽消去这个未知数,得到⼀个⼀元⼀次⽅程,这种求⼆元⼀次⽅程组的解的⽅法叫做加减消元法,简称加减法.例题精析:例1.⽅程ax-4y=x-1是⼆元⼀次⽅程,则a 的取值为() A 、≠0 B 、≠-1 C 、≠1 D 、≠2 解题思路:含有两个未知数,并且含有未知数的项的次数都是1?的整式⽅程叫做⼆元⼀次⽅程.选B变式题1:如果(a -2)x+(b+1)y=13是关于x ,y 的⼆元⼀次⽅程,则a ,b 满⾜什么条件?解题思路:∵(a -2)x+(b+1)y=13是关于x ,y 的⼆元⼀次⽅程,∴a -2≠0,b+1≠0,?∴a ≠2,b ≠-1例2.若⼆元⼀次⽅程3x-2y=1有正整数解,则x 的取值应为()A 、正奇数B 、正偶数D 、0 解题思路:由312x y -=,x 、y 都是正整数,选A变式题1:.⽅程组2528x y x y +=??-=?的解是否满⾜2x -y=8?满⾜2x -y=8的⼀对x ,y 的值是否是⽅程组2528x y x y +=??-=?的解?解:满⾜,不⼀定.∵2528x y x y +=??-=?的解既是⽅程x+y=25的解,也满⾜2x -y=8,?∴⽅程组的解⼀定满⾜其中的任⼀个⽅程,但⽅程2x -y=8的解有⽆数组,如x=10,y=12,不满⾜⽅程组2528x y x y +=??-=?.例3.已知⼆元⼀次⽅程组45ax by bx ay +=??+=? 的解是21x y =??=?,则a+b 的值为____。

《二元一次方程组的解法(代入法)》教学评点

《二元一次方程组的解法(代入法)》教学评点

二元一次方程组的解法(代入法)教学评点引言在初中数学的学习过程中,解一元一次方程组已经成为了一个基本技能。

而解二元一次方程组则是更进一步的内容。

其中,代入法是解二元一次方程组最常用的一种方法之一。

本文将从教学评点的角度,对二元一次方程组的解法中的代入法进行分析和评价。

一、简明扼要•名称:二元一次方程组的解法(代入法)•目标学生:初中学生,如七年级或八年级的学生•内容概述:本教学内容主要介绍了二元一次方程组的解法中的代入法。

通过具体的例子和解题步骤的讲解,引导学生掌握代入法的基本思路和应用方法。

二、优点评价1. 简单易懂代入法作为解二元一次方程组的一种方法,与其他方法相比,具有简单易懂的特点。

学生只需要将其中一个方程中的变量用另一个方程中相同的变量代替,然后进行方程的简化和计算,即可求得解。

相比于消元法和等式法,代入法更直观,学生容易接受和理解。

2. 直接实用代入法在解决实际问题中具有广泛的应用。

许多实际问题可以用二元一次方程组来表示,而代入法正是解决这些问题的有效方法之一。

因此,通过学习代入法,学生可以更好地理解并解决与二元一次方程组相关的实际问题,提高数学应用能力。

3. 引导学生形成问题意识在代入法的教学过程中,教师可以设计一些具体的实际问题,引导学生自主思考和解决。

通过实际问题的引导,学生可以逐渐形成对问题的敏感性和思考能力,培养其解决问题的能力和兴趣。

4. 与其他解法互补在二元一次方程组的解法中,代入法与其他解法(如消元法和等式法)相互补充。

通过综合运用不同的解法,学生可以更全面地理解和掌握解法的特点和应用。

同时,代入法也为学生提供了一种备选的解题思路,方便学生在解决问题时灵活选择。

三、不足改进1. 局限性代入法解二元一次方程组的基本思路是将其中一个方程作为目标方程,然后将另一个方程中的变量用目标方程中的变量代替,从而得到一个只包含一个未知数的方程。

这个方法对于一些特殊的二元一次方程组可能不适用,或者解的过程会比较冗长。

二元一次方程组的解法

二元一次方程组的解法

二元一次方程组相关知识归纳(一)基础知识概要:1.二元一次方程:像x+y=2这样的方程中含有两个未知数(x和y),并且未知数的指数都是1这样的方程叫做二元一次方程.二元一次方程具备以下四个特征:(1)是方程;(2)有且只有两个未知数;(3)方程是整式方程,即各项都是整式;(4)各项的最高次数为1.2.二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.3.二元一次方程组:把两个方程x+y=3和2x+3y=10合写在一起为像这样,把两个二元一次方程组合在一起,就组成了一个二元一次方程组.它有两个特点:一是方程组中每一个方程都是一次方程;二是整个方程组中含有两个且只含有两个未知数.4.二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. (二)二元一次方程组的解法:1概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解. 这种解方程组的方法叫做代入消元法,简称代入法. (2)代入法解二元一次方程组的步骤①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的. );③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值; ⑤用“{”联立两个未知数的值,就是方程组的解; ⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边). 加减消元法2概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法. (2)加减法解二元一次方程组的步骤 ①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式; ②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法); ③解这个一元一次方程,求出未知数的值; ④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值; ⑤用“{”联立两个未知数的值,就是方程组的解; ⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边).【小结】解二元一次方程组可以用代入法,也可以用加减法.一般地说,当方程组中有一个方程的某一个未知数的系数的绝对值是1或有一个方程的常数项是0时,用代入法比较方便;当两个方程中某一未知数的系数的绝对值相等或成整数倍时,用加减法比较方便.二元一次方程组的解法1、求二元一次方程组的基本思想:消元思想;2、求二元一次方程组的基本方法:①代入法;例1:⎪⎩⎪⎨⎧-=+=+)2(1574)1(304y x y x 2514372x y x y +=+=⎧⎨⎩()()例2:例3: 说明:要判断结果是否正确,应像解一元一次方程那样进行检验,检验时,注意要把未知数的值代入方程组中的每一个方程,能使每一个方程都成立的一对数才是方程组的解。

二元一次方程组知识点归纳 (1)

二元一次方程组知识点归纳 (1)

二元一次方程组知识点归纳、解题技巧汇总、练习题及答案1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。

2、二元一次方程组的定义:含有两个未知数并且含有未知数的项的次数都是1,系数不为零的整式方程叫做二元一次方程。

注意:二元一次方程组应同时满足以下两点1、两个方程都是一次方程,2、方程组中共含有两个未知数。

也就是说二元一次方程组一共含有两个未知数,而不是每个方程都必须含有两个未知数。

2、二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。

4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

1有一组解如方程组x+y=5①x=-24/76x+13y=89②y=59/7 为方程组的解2.有无数组解如方程组x+y=6①因为这两个方程实际上是一个方程2x+2y=12②(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3.无解如方程组x+y=4①因为方程②化简后为x+y=52x+2y=10②,这与方程①相矛盾,所以此类方程组无解。

一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。

消元的方法有两种:1、代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这个方法叫做代入消元法,简称代入法。

例:解方程组x+y=5①6x+13y=89②解:由①得x=5-y③把③带入②,得6(5-y)+13y=89 y=59/7把y=59/7带入③,x=5-59/7 即x=-24/7x=-24/7y=59/7 为方程组的解基本思路:未知数又多变少。

消元法的基本方法:将二元一次方程组转化为一元一次方程。

代入法解二元一次方程组的一般步骤:从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y )用含另一个未知数(例如x )的代数式表示出来,即写成y=ax+b 的形式,即“变” 将y=ax+b 代入到另一个方程中,消去y ,得到一个关于x 的一元一次方程,即“代”。

求解二元一次方程组(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

求解二元一次方程组(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题5.4求解二元一次方程组(知识梳理与考点分类讲解)【知识点1】代入消元法解二元一次方程组代入消元法:(1)定义:将其中一个方程组中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程组,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法.(2)用代入消元法解二元一次方程组的一般步骤:步骤具体做法目的注意事项(1)变形选取一个系数比较简单的二元一次方程变形,用含一个未知数的式子表示另一个未知数变形为x=ax+b(或x=ay+b)(a,b 是常数,a≠0)的形式一般选未知数系数比较简单的方程变形(2)代入把y=ax+B(或x=ay+b)代入另一个没有变形的方程消去一个未知数,将二元一次方程组转化为一元一次方程变形后的方程只能代入另一个方程(或另一个方程变形后的方程)(3)求解解消元后的一元一次方程求出一个未知数的值去括号时不能漏乘,移项时所移的项要变号(4)回代把求得的未知数的值代入步骤(1)中变形后的方程求出另一个未知数的值一般代入变形后的方程(5)写解把两个未知数的值用大括号联立起来特别提醒:将方程组中的一个二元一次方程写成用含一个未知数的式子表示另一个未知数的形式,是用代入法解二元一次方程组的前提和关键,其方法就是利用等式的性质将其变形为y=ax+b(或x=ay+b)的形式,其中a,b 为常数,a≠0.用含一个未知数的式子表示另一个未知数后,应代入另一个方程求解,否则只能得到一个恒等式,并不能求出方程组的解.【知识点2】加减消元法解二元一次方程组1.加减消元法的定义通过将两个方程相加(减)消去其中一个未知数,将二元一次方程组转化为一元一次方程来解,这种解二元一次方程组的方法叫做加减消元法,简称加减法.2.用加减消元法解二元一次方程组的一般步骤步骤具体做法目的注意事项(1)变形根据绝对值较小的未知数(同一个未知数)的系数的最小公倍数,给方程的两边都乘适当的数.使某一个未知数在两个方程中的系数相等或互为相反数.给某个方程乘一个数时,方程两边的每一项都要和这个数相乘(2)代入两个方程中同一个未知数的系数互为相反数时,将两个方程相加;同一个未知数的系数相等时,将两个方程相减.消去一个未知数,将二元一次方程组转化为一元一次方程把两个方程相加(减)时,一定要把两个方程两边分别相加(减).(3)求解解消元后的一元一次方程求出一个未知数的值(4)回代把求得的未知数的值代入方程组中某个较简单的方程求出另一个未知数的值回代时选择系数较简单的方程(5)写解把两个未知数的值用大括号联立起来特别提醒:1.两个方程同一未知数的系数的绝对值相等或成倍数关系时,解方程组应考虑用加减消元法.2.如果同一未知数的系数的绝对值既不相等又不成倍数关系,我们应设法将一个未知数的系数的绝对值转化为相等关系.3.用加减法时,一般选择系数比较简单(同一未知数的系数的绝对值相等或成倍数关系)的未知数作为消元对象.【考点目录】【考点1】代入消元法解二元一次方程组;【考点2】加减消元法解二元一次方程组;【考点3】同解方程组;【考点4】整体思想解二元一次方程组;【考点5】求解二元一次方程组——错题复原问题;【考点6】求解二元一次方程组——参数问题;【考点7】构造二元一次方程组求解。

二元一次方程组的解法(一)代入法

二元一次方程组的解法(一)代入法

二元一次方程组的解法(一)——代入法一、知识互动1、消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一个未知数。

这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想。

2、代入法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这种方法叫做代入消元法,简称代入法。

3、用代入法解二元一次方程组的一般步骤:(1)从方程组中选一个系数较简单的方程,将这个方程中一个未知数用含有另一个未知数的代数式表示出来;(2)把变形后的方程代入另一个方程,得到一个一元一次方程;(3)解这个一元一次方程,求出一个未知数的值;(4)把求得的未知数的值代入变形后的方程,求出另一个未知数的值;(5)写出方程组的解。

4、热身:把方程872=-y x (1)写成用含x 的代数式表示y 的形式; 7872-=x y (2)写成用含y 的代数式表示x 的形式。

427+=y x二、例题讲解例1 用代入法解二元一次方程组(1)⎩⎨⎧=+=+1341632y x y x (2)⎪⎩⎪⎨⎧=+=-142732y x y x 解:⎩⎨⎧==25y x ⎩⎨⎧-==610y x例2 用整体代入法解二元一次方程组⎪⎩⎪⎨⎧=-+=+11)1(2231y x y x 解:⎩⎨⎧==15y x例3 甲、乙两人同求方程7=-by ax 的整数解,甲求出的一组解为⎩⎨⎧==43y x ,而乙把7=-by ax 中的7错看成1,求出一组解为⎩⎨⎧==21y x ,求a 、b 的值。

解:将解代入得⎩⎨⎧=-=-12743b a b a ,解得⎩⎨⎧==25b a三、课堂检测 1、用代入法解方程组⎩⎨⎧=--=421y x x y 代入正确的是( C ) A 、42=--x x B 、422=--x xC 、422=+-x xD 、42=+-x x2、用代入法解方程组⎩⎨⎧=-=+)2(,52)1(,243y x y x 下列变形中,化简较容易的是( D )A 、由(1),得342yx -= B 、由(1),得432xy -=C 、由(2),得25+=y x D 、由(2),得52-=x y2、若关于x 、y 的方程组⎩⎨⎧=+=-n my x my x 2的解是⎩⎨⎧==12y x ,则n m -为( D)A 、1B 、3C 、5D 、24、用代入法解二元一次方程组:(1)⎩⎨⎧+==+173x y y x (2)⎩⎨⎧=-=+3252y x y x (3)⎩⎨⎧=+=+743725y x y x解:⎩⎨⎧==21y x ⎩⎨⎧==11y x ⎩⎨⎧==11y x5、用整体代入法解二元一次方程组⎪⎩⎪⎨⎧=--=--yx y x 211)3(2032)3( 解:⎪⎪⎩⎪⎪⎨⎧==1011548y x6、如果573+n m b a 与m n b a 4218--是同类项,求n m -的值。

二元一次方程组解法详解

二元一次方程组解法详解

一、二元一次方程组解法总结1、二元一次方程组解法的基本思想二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为一元一次方程,就可以先解出一个未知数,然后再设法求另一个未知数,这种将未知数的个数由多化少,逐一简化的思想方法,叫做消元思想.即二元一次方程组形如:ax=b(a,b为已知数)的方程.2、代入消元法由方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程的解,这种方法叫做代入消元法,简称代入法.3、用代入消元法解二元一次方程组的步骤(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的代数式表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.4、加减消元法两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.5、加减消元法解二元一次方程组的一般步骤(1)把一个方程或者两个方程的两边乘以适当的数,使方程组的两个方程中一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)把求得的未知数的值代入到原方程组中的系数比较简单的一个方程中,求出另一个未知数的值;(5)把求出的未知数的值写成的形式. 6、二元一次方程组解的情况 若二元一次方程组(a 1,a 2,b 1,b 2,c 1,c 2均为不等于0的已知数),则 (1)当时,这个方程组只有唯一解;(2)当时,这个方程组无解;(3)当时,这个方程组有无穷多个解.二、重难点知识归纳二元一次方程组的解的理解,二元一次方程组的解法,运用有关概念解决相关数学问题.三、典型例题讲解例1、(1)下列方程中是二元一次方程的有( )① ② ③④mn +m=7 ⑤x +y=6A .1个B .2个C .3个D .4个(2)在方程(k 2-4)x 2+(2-k)x +(k +1)y +3k=0中,若此方程为二元一次方程,则k 的值为( )A .2B .-2C .±2D .以上都不对分析:一个方程是否是二元一次方程,必须看它是否满足或使它满足三个条件:①含有两个未知数;②未知数项的次数为1;③整式方程.解答:(1)∵方程①③不是整式方程,∴它们不是二元一次方程.∵mn的次数为2,∴方程④不是二元一次方程.∵方程②⑤满足二元一次方程的三个条件,∴方程②⑤是二元一次方程.故此题应选择B.(2)∵方程(k2-4)x2+(2-k)x+(k+1)y+3k=0是二元一次方程,∴它应满足条件:k2-4=0且2-k≠0且k+1≠0,解得k=±2且k≠2且k≠-1.∴k=-2.例2、在方程3x-ay=0中,如果是它的一个解,那么a的值为_____..由于方程的解必使方程左右两边的值相等,所以只需将代入方程中,解关于a的一次方程即可.解答:∵是方程3x-ay=0的一个解,∴3×3-a·2=0,例3、甲、乙两人同时解方程组乙因抄错c,解得求a、b、c的值.将正确的解代入方程组中可直接求出c的值,但不能求a、b的值.错误解有什么作用呢?方程组的解应满足每一个方程,因此正确解满足ax+by=2,错误的解同样能满足方程ax+by=2,那么就可以建立a、b的方程组,于是a、b、c的值均可求出.解答:都是方程①的解.又∵是方程②的解,∴c+3=-2,∴c=-5.故a、b、c的值分别为例4、解下列方程组.(1)先将①化简为3y=4x+5,再代入②即可消去y,从而求出x的值.(2)先将方程组进行化简,整理为标准的二元一次方程组的形式,再观察选择消去哪个未知数.解:(1)将①化简得:3y=4x+5 ③把③代入②得:2x-(4x+5)=1解得x=-3将x=-3代入③得:3y=4×(-3)+5∴∴原方程组的解为.(2)原方程组整理为由③×3-④×4,得7b=14,∴b=2.将b=2代入③,得a=2.∴原方程组的解为.例5、已知方程组与方程组有相同的解,求a、b 的值.题设的已知条件是两个方程组有相同的解。

人教版初一数学下册:《二元一次方程组》全章复习与巩固(提高)知识讲解

人教版初一数学下册:《二元一次方程组》全章复习与巩固(提高)知识讲解

《二元一次方程组》全章复习与巩固(提高)知识讲解【学习目标】1.了解二元一次方程组及其解的有关概念;2.掌握消元法(代入或加减消元法)解二元一次方程组的方法;3.理解和掌握方程组与实际问题的联系以及方程组的解;4.掌握二元一次方程组在解决实际问题中的简单应用;5.通过对二元一次方程组的应用,培养应用数学的理念. 【知识网络】【要点梳理】要点一、二元一次方程组的相关概念 1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 要点诠释:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧b a==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩. 要点诠释:(1)它的一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 不同时为零).(2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“{”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.(2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组⎩⎨⎧=+=+6252y x y x 无解,而方程组⎩⎨⎧-=+-=+2221y x y x 的解有无数个.要点二、二元一次方程组的解法1.解二元一次方程组的思想转化消元一元一次方程二元一次方程组2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式; ②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程; ③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解.要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程; (3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式; ②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.要点诠释:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.要点三、实际问题与二元一次方程组要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去; (2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组. 要点四、三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的求知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.412,325,51,x y z x y z x y z +-=⎧⎪++=-⎨⎪-+=⎩ 273,31,34a b a c b c +=⎧⎪-=⎨⎪-+=⎩等都是三元一次方程组. 要点诠释:理解三元一次方程组的定义时,要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组. 2.三元一次方程组的解法解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组; (2)解这个二元一次方程组,求出两个未知数的值; (3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值; (5)将求得的三个未知数的值用“{”合写在一起. 要点诠释: (1)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求比较简单的解法. (2)要检验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中,看每个方程的左右两边是否相等,若相等,则是原方程组的解,只要有一个方程的左、右两边不相等就不是原方程组的解. 3. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤:(1)弄清题意和题目中的数量关系,用字母(如x ,y ,z )表示题目中的两个(或三个)未知数;(2)找出能够表达应用题全部含义的相等关系;(3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组; (4)解这个方程组,求出未知数的值; (5)写出答案(包括单位名称). 要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去. (2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一. (3)一般来说,设几个未知数,就应列出几个方程并组成方程组. 【典型例题】类型一、二元一次方程组的相关概念1.在下列方程中,只有一个解的是( )A . 1330x y x y +=⎧⎨+=⎩ B . 1332x y x y +=⎧⎨+=-⎩ C . 1334x y x y +=⎧⎨-=⎩ D . 1333x y x y +=⎧⎨+=⎩【思路点拨】逐一求每个选项中方程组的解,便得出正确答案 【答案】C .【解析】选项A 、B 、D 中,将方程1x y +=,两边同乘以3得333x y +=,从而可以判断A 、B 选项中的两个二元一次方程矛盾,所以无解;而D 中两个方程实际是一个二元一次方程,所以有无数组解,排除法得正确答案为C. 【总结升华】在111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 均不为零),(1)当121222a a c a b c =≠时,方程组无解;(2)当121222a a c a b c ==,方程组有无数组解; (3)当1222a a ab ≠,方程组有唯一解. 举一反三:【高清课堂:二元一次方程组章节复习409413 例1(3)】 【变式1】若关于x 、y 的方程()12mm x y ++=是二元一次方程,则m = .【答案】1.【变式2】已知方程组531x y ax y b -=⎧⎨+=-⎩有无数多个解,则a 、b 的值等于 .【答案】a =﹣3,b =﹣14.类型二、二元一次方程组的解法2. (黄冈调考)解方程组2()5335()322x y y x y y ⎧-+=⎪⎪⎨⎪--=-⎪⎩①②【思路点拨】本题结构比较复杂,一般应先化简,再消元.仔细观察题目,不难发现,方程组中的每一个方程都含有(x -y ),因此可以把(x -y )看作一个整体,消去(x -y )可得到一个关于y 的一元一次方程.【答案与解析】解:由①×9得:6(x -y )+9y =45 ③ ②×4得:6(x -y )-10y =-12 ④ ③-④得:19y =57, 解得y =3.把y =3代入①,得x =6.所以原方程组的解是63x y =⎧⎨=⎩.【总结升华】本题巧妙运用整体法求解方程组,显然比加减法或代入法要简单,在平时求方程组的解时,要善于发现方程组的特点,运用整体法求解会收到事半功倍的效果. 举一反三:【变式】(换元思想)解方程组16105610x y x yx y x y +-⎧+=⎪⎪⎨+-⎪-=⎪⎩【答案】 解:设6x y m +=,10x yn -=. 则原方程组可化为15m n m n +=⎧⎨-=⎩,解得32m n =⎧⎨=-⎩.所以36210x y x y +⎧=⎪⎪⎨-⎪=-⎪⎩ 即1820x y x y +=⎧⎨-=-⎩.∴ 119x y =-⎧⎨=⎩.3.(2015•江都市模拟)小明和小文解一个二元一次组小明正确解得小文因抄错了c ,解得已知小文除抄错了c 外没有发生其他错误,求a+b+c的值. 【思路点拨】把代入方程组第一个方程求出c 的值,将x 与y 的两对值代入第二个方程求出a 与b 的值,即可求出a+b+c 的值.【答案与解析】 解:把代入cx ﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5, 把与分别代入ax+by=2,得,解得:,则a+b+c=2+﹣5=3﹣5=﹣2.【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.举一反三:【变式】已知二元一次方程组⎪⎪⎩⎪⎪⎨⎧=+=+175194y x y x 的解为a x =,b y =,则=-b a .【答案】11.类型三、实际问题与二元一次方程组4.用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图所示,求每块地砖的长与宽.60cm【思路点拨】初看这道题目中没有提供任何相等关系,但是题目提供的图形隐含着矩形两条宽相等,两条长相等,我们设每个小长方形的长为x ,宽为y ,就可以列出一个关于x 、y 的二元一次方程组. 【答案与解析】解:设每块地砖的长为xc m 与宽为ycm ,根据题意得:6023x y x x y +=⎧⎨=+⎩,解得:4515x y =⎧⎨=⎩ 答:每块地砖长为45cm ,宽为15cm【总结升华】有些题目的相等关系不是直接给我们的,这就需要我们仔细阅读题目,设法提炼出题目中隐含的相等关系.举一反三:【变式】如图,长方形ABCD 中放置9个形状、大小都相同的小长方形(尺寸如图),求图中阴影部分的面积.【答案】解:设每个小长方形的长为x ,宽为y ,根据题意得:422(2)37x y x y y +=⎧⎨+-=⎩,解得103x y =⎧⎨=⎩所以阴影部分的面积为:22(73)922(79)910382y xy +-=+-⨯⨯=. 答:图中阴影部分的面积为82.5.(龙岩)已知:用2辆A 型车和1辆B 型车载满货物一次可运货10吨;用1辆A 型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物. 根据以上信息,解答下列问题:(1)1辆A 型车和1辆车B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金100元/次,B 型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费. 【答案与解析】【总结升华】本题实际上是求二元一次方程组的正整数. 举一反三:【变式1】甲、乙两班学生到集市上购买苹果,价格如下:甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,而乙班则一次购买苹果70千克。

二元一次方程组解法ppt课件

二元一次方程组解法ppt课件

x 1
所以原方程组的解是
y
1
3x 5y 21 ① 2x 5y -11 ②
解:由①+②得:
5x=10
x=2
把x=2代入①,得: y=3
x 2
所以原方程组的解是
y
3
直接加减消元法
3x 5y 21 ① 2x 5y -11 ②
由①+②得: 5x=10
2x-5y=7

2x+3y=-1 ②
4、写出方程组的解
随堂练习: 你解对了吗?
1、用代入消元法解下列方程组

y=2x x=4 x+y=12 y=8
x=y—2-5

x=5 y=15
4x+3y=65
x+y=11
3x-2y=9

x=9 ⑷
x=3
y=2 x-y=7
y=0
x+2y=3
能 力 检 验 解二元一次方程组
(1)
2a b 18, a 3b 2.
(2) 2x y 5, 3x 4y 2.
SUCCESS
THANK YOU
2024/10/21
1
1
2、若方程5x 2m+n + 4y 3m-2n = 9是关于x、y
的二元一次方程,求m 、n 的值.
解: 根据已知条件可
列方程组:
2m + n = ①
13m – 2n = ②
由①得:1 n = 1 – ③
by ay
3 3
的解是
x 2
y
1
,则 a b 的值是

7.已知关于x,y方程组
2x 3x
3y 5y

25初中数学七年级下册 二元一次方程组解法(一)--代入法(提高) 知识讲解

25初中数学七年级下册 二元一次方程组解法(一)--代入法(提高) 知识讲解

4.已知
2x ax
5y by
6 4
① ②
和方程组
3x bx
5y ay
16 8
③ ④ 的解相同,求 (2a b)2011 的
值.
【思路点拨】两个方程组有相同的解,这个解是 2x+5y=-6 和 3x-5y=16 的解.由于这两个
方程的系数都已知,故可联立在一起,求出 x、y 的值.再将 x、y 的值代入 ax-by=-4,bx+ay
4/5
【答案】 解:把
代入 cx﹣3y=﹣2,得 c+3=﹣2,
解得:c=﹣5,


分别代入 ax+by=2,得

解得:

则 a+b+c=2 + ﹣5=3﹣5=﹣2.
5/5
=-8 中建立关于 a、b 的方程组即可求出 a、b 的值.
【答案与解析】
2x 5y 6 ①
解:依题意联立方程组 3x 5y 16

①+③得 5x=10,解得 x=2.

x=2
代入①得:2×2+5y=-6,解得
y

又联立方程组
ax bx
by ay
4 8
,则有
2a 2b 4 2a 2b 8
2.消元的基本思路:未知数由多变少. 3.消元的基本方法:把二元一次方程组转化为一元一次方程. 要点二、代入消元法 通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元 法,简称代入法. 要点诠释: (1)代入消元法的关键是先把系数较简单的方程变形为用含一个未知数的式子表示另一个未 知数的形式,再代入另一个方程中达到消元的目的. (2)代入消元法的技巧是: ①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解; ②若方程组中有未知数的系数为 1(或-1)的方程.则选择系数为 1(或-1)的方程进行变形 比较简便; (3)若方程组中所有方程里的未知数的系数都不是 1 或-1,选系数的绝对值较小的方程变形 比较简便.

(完整版)二元一次方程组知识点归纳

(完整版)二元一次方程组知识点归纳

t at i me an dAl l t h i ng si nt he i rb ei n ga re go od fo rs o m e t h i n二元一次方程组知识点归纳、解题技巧汇总、练习题及答案1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。

2、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。

注意 :二元一次方程组不一定都是由两个二元一次方程合在一起组成的! 也可以由一个或多个二元一次方程单独组成。

3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。

4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

1.有一组解 如方程组x+y=5① 6x+13y=89② x=-24/7 y=59/7 为方程组的解 2.有无数组解 如方程组x+y=6① 2x+2y=12② 因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3.无解 如方程组x+y=4① 2x+2y=10②, 因为方程②化简后为 x+y=5 这与方程①相矛盾,所以此类方程组无解。

一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。

消元的方法有两种: 代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这个方法叫做代入消元法,简称代入法。

例:解方程组x+y=5① 6x+13y=89② 解:由①得 x=5-y ③ t at i me an dAl l t h i ng si nt he i rb ei n ga re go od fo rs o m e t h i n把y=59/7带入③, x=5-59/7 即x=-24/7 ∴x=-24/7 y=59/7 为方程组的解 基本思路:未知数又多变少。

二元一次方程组-中考数学复习知识讲解+例题解析+强化训练

二元一次方程组-中考数学复习知识讲解+例题解析+强化训练

2012年中考数学复习教材回归知识讲解+例题解析+强化训练二元一次方程组◆知识讲解1.二元一次方程组的有关概念二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.2.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.3.二元一次方程组的应用对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤:(1)选定几个未知数;(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组;(3)解方程组,得到方程组的解;(4)检验求得未知数的值是否符合题意,符合题意即为应用题的解.◆例题解析例1 已知21x y =⎧⎨=⎩是方程组2(1)21x m y nx y +-=⎧⎨+=⎩的解,求(m+n )的值.【分析】由方程组的解的定义可知21x y =⎧⎨=⎩,同时满足方程组中的两个方程,将21x y =⎧⎨=⎩代入两个方程,分别解二元一次方程,即得m 和n 的值,从而求出代数式的值.【解答】把x=2,y=1代入方程组2(1)21x m y nx y +-=⎧⎨+=⎩中,得 22(1)12211m n ⨯+-⨯=⎧⎨+=⎩ 由①得m=-1,由②得n=0.所以当m=-1,n=0时,(m+n )=(-1+0)=-1.【点评】如果是方程组的解,那么它们就能满足这个方程组中的每一个方程.例2 (2008,长沙市)“5.12”汶川大地震后,灾区急需大量帐篷.•某服装厂原有4条成衣生产线和5条童装生产,工厂决定转产,计划用3天时间赶制1000•顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;•若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?【解答】(1)设每条成衣生产线和童装生产线平均每天生产帐篷各x ,y顶,则210523178x y x y +=⎧⎨+=⎩解得:x=41;y=32答:每条成衣生产线平均每天生产帐篷41顶,每条童装生产线平均每天生产帐篷32顶.(2)由3×(4×41+5×32)=972<1000知,即使工厂满负荷全面转产,也不能如期完成任务.可以从加班生产,改进技术等方面进一步挖掘生产潜力,或者动员其他厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献.例3 (2006,海南)某商场正在热销2008年北京奥运会吉祥物“福娃”和徽章两种奥运商品,根据下图提供的信息,•求一盒“福娃”玩具和一枚徽章的价格各是多少元?【分析】本题以图文形式提供了部分信息,主要考查学生运用二元一次方程组解决实际问题的能力.【解答】设一盒“福娃”玩具和一枚徽章的价格分别为x元和y元.依题意,得214523280x yx y+=⎧⎨+=⎩解这个方程组,得12510xy=⎧⎨=⎩故一盒“福娃”玩具的价格为125元,一枚徽章的价格为10元.例4 (2004,昆明市)为满足用水量不断增长的需求,昆明市最近新建甲,乙,•丙三个水厂,这三个水厂的日供水量共计11.8万m3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t土石,运输公司派出A 型,B•型两种载重汽车,A型汽车6辆,B型汽车4辆,分别运5次,可把土石运完;或者A型汽车3辆,B型汽车6辆,分别运5次,也可把土石运完,那么每辆A 型汽车,每辆B 型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)【分析】(1)可设甲水厂的日供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3,由三个水厂的日供水量总和为11.8万m 3,可列方程x+3x+12x+1=11.8; (2)设每辆A 型汽车每次运土石xt ,B 型车每辆每次运土石yt ,•依题意可列方程组30206001530600x y x y +=⎧⎨+=⎩解方程后可求解.【解答】(1)设甲水厂的供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3. 由题意得:x+3x+12x+1=11.8,解得x=2.4. 则3x=7.2,x+1=2.2.答:甲水厂日供水量是2.4万m 3,乙水厂日供水量是7.2万m 3,•丙水厂日供水量是2.2万m 3.(2)设每辆A 型汽车每次运土石xt ,每辆B 型汽车每次运土石yt ,由题意得:30206001530600x y x y +=⎧⎨+=⎩ ∴1015x y =⎧⎨=⎩ 答:每辆A 型汽车每次运土石10t ,每辆B 型汽车每次运土石15t .【点评】本例系统地考查了一元一次方程和二元一次方程组这两个重要内容,在同一背景下提供不同的动作方案是近年中考应用题的发展方法.◆强化训练一、填空题1.若2x m+n -1-3y m -n -3+5=0是关于x ,y 的二元一次方程,则m=_____,n=_____.2.在式子3m+5n -k 中,当m=-2,n=1时,它的值为1;当m=2,n=-3时,它的值是_____.3.若方程组26ax yx by+=⎧⎨+=⎩的解是12xy=⎧⎨=-⎩,则a+b=_______.4.已知方程组325(1)7x ykx k y-=⎧⎨+-=⎩的解x,y,其和x+y=1,则k_____.5.已知x,y,t满足方程组23532x ty t x=-⎧⎨-=⎩,则x和y之间应满足的关系式是_______.6.(2008,宜宾)若方程组2x y bx by a+=⎧⎨-=⎩的解是1xy=⎧⎨=⎩,那么│a-b│=_____.7.某营业员昨天卖出7件衬衫和4条裤子共460元,今天又卖出9件衬衫和6条裤子共660元,则每件衬衫售价为_______,每条裤子售价为_______.8.(2004,泰州市)为了有效地使用电力资源,我市供电部门最近进行居民峰谷用电试点,每天8:00至21:00用电每千瓦时0.55元(“峰电”价),21:00至次日8:00•用电每千瓦时0.30元(“谷电”价),王老师家使用“峰谷”电后,•五月份用电量为300kW·h,付电费115元,则王老师家该月使用“峰电”______kW·h.二、选择题9.二元一次方程3x+2y=15在自然数范围内的解的个数是()A.1个 B.2个 C.3个 D.4个10.已知x ay b=⎧⎨=⎩是方程组||223xx y=⎧⎨+=⎩的解,则a+b的值等于()A.1 B.5 C.1或5 D.0 11.已知│2x-y-3│+(2x+y+11)2=0,则()A.21xy=⎧⎨=⎩B.3xy=⎧⎨=-⎩C.15xy=-⎧⎨=-⎩D.27xy=-⎧⎨=-⎩12.在解方程组278ax bycx y-=⎧⎨+=⎩时,一同学把c看错而得到22xy=-⎧⎨=⎩,正确的解应是32xy=⎧⎨=⎩,那么a,b,c的值是()A.不能确定 B.a=4,b=5,c=-2C.a,b不能确定,c=-2 D.a=4,b=7,c=213.(2008,河北)如图4-2所示的两架天平保持平衡,且每块巧克力的质量相等,•每个果冻的质量也相等,则一块巧克力的质量是()A.20g B.25g C.15g D.30g14.4辆板车和5辆卡车一次能运27t货,10辆板车和3辆卡车一次能运20t 货,设每辆板车每次可运xt货,每辆卡车每次能运yt货,则可列方程组()A.452710327x yx y+=⎧⎨-=⎩B.452710320x yx y-=⎧⎨+=⎩C.452710320x yx y+=⎧⎨+=⎩D.427510203x yx y-=⎧⎨-=⎩15.七年级某班有男女同学若干人,女同学因故走了14名,•这时男女同学之比为5:3,后来男同学又走了22名,这时男女同学人数相同,那么最初的女同学有()A.39名 B.43名 C.47名 D.55名16.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,•捐款情况如下表:捐款/元 1 2 3 4人数 6 7表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组.()A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩17.甲,乙两人分别从两地同时出发,若相向而行,则ah 相遇;若同向而行,则bh 甲追 上乙,那么甲的速度是乙的速度为( )A .a b b +倍B .b a b +倍C .b a b a +-倍D .b a b a-+倍 18.学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,•但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺张数,•信封个数分别为( )A .150,100B .125,75C .120,70D .100,150三、解答题19.解下列方程组:(1)(2008,天津市)35821x y x y +=⎧⎨-=⎩(2)(2005,南充市)271132x y y x -=⎧⎪⎨--=⎪⎩20.(2008,山东省)为迎接2008年奥运会,•某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,•已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,•生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,•如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?21.(2008,重庆市)为支持四川抗震救灾,重庆市A,B,C三地现在分别有赈灾物资00t,100t,80t,需要全部运往四川重灾地区的D,E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20t.(1)求这批赈灾物资运往D,E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60t,A地运往D县的赈灾物资为xt(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍,其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25t.则A,B•两地的赈灾物资运往D,E两县的方案有几种?请你写出具体的运送方案:(3)已知A,B,C三地的赈灾物资运往D,E两县的费用如表所示:为及时将这批赈灾物资运往D,E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?22.(2003,常州市)甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg.(1)乙班比甲班少付出多少元?(2)甲班第一次,第二次分别购买苹果多少千克?答案1.3;-1 2.-7 3.8 4.k=3355.15y-x=6 6.1 7.20元 80元 8.1009.•C 10.C 11.D 12.B 13.A 14.C 15.C 16.A 17.C 18.A19.(1)由②得y=2x -1 ③把③代入①得:3x+5(2x -1)=8即x=1把x=1代入③得y=1∴原方程组的解为11x y =⎧⎨=⎩(2)化简方程组,得2763x y x y =+⎧⎨+=⎩ ④代入⑤,得y=-3.将y=-3代入,得x=1故原方程组的解是:13x y =⎧⎨=-⎩ 20.设生产奥运会标志x 套,生产奥运会吉祥物y 套,根据题意,得4520000,31030000.x y x y +=⎧⎨+=⎩①×2-②得:5x=10000.∴x=2000.把x=2000代入①得:5y=12000.∴y=2400.答:该厂能生产奥运会标志2000套,生产奥运会吉祥物2400套.21.(1)设这批赈灾物资运往D 县的数量为a (t ),运往E 县的数量为b (t ).由题意,得280,220.a b a b +=⎧⎨=-⎩解得180,100.a b =⎧⎨=⎩ 答:这批赈灾物资运往D 县的数量为180t ,运往E 县的数量为100t .(2)由题意,得1202225x x x-<⎧⎨--≤⎩解得40,45.xx>⎧⎨≤⎩即40<x≤45,∵x为整数,∴x的取值为41,42,43,44,45.则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41t,运往E县59t;B地的赈灾物资运往D县79t,运往E县21t.方案二:A地的赈灾物资运往D县42t,运往E县58t;B地的赈灾物资运往D县78t,运往E县22t.方案三:A地的赈灾物资运往D县43t,运往E县57t;B地的赈灾物资运往D县77t,运往E县23t.方案四:A地的赈灾物资运往D县44t,运往E县56t;B地的赈灾物资运往D县76t,运往E县24t.方案五:A地的赈灾物资运往D县45t,运往E县55t;B地的赈灾物资运往D县75t,运往E县25t.(3)设运送这批赈灾物资的总费用为w元,由题意,得w=220x+250(100-x)+200(120-x)+220(x-20)+200×60+210×20=-10x+60800.因为w随x的增大而减小,且40<x≤45,x为整数.所以,当x=41时,w有最大值,则该公司承担运送这批赈灾物资的总费用最多为:w=60390(元).22.(1)乙班共付出70×2=140(元),乙班比甲班少付出189-140=49(元).(2)设甲班第一次买苹果xkg,第二次买苹果ykg(x<y).①当x≤30时,则y>30(否则,x+y≤60<70).依题意有703 2.5189x yx y+=⎧⎨+=⎩或者7032189x yx y+=⎧⎨+=⎩解之,得2842xy=⎧⎨=⎩或者4921xy=⎧⎨=⎩(不合题意,舍去)②若30<x≤50,则30<y≤50,或y>50,当y>50,x+y>80>70,不合题意.当30<y≤50时,70×2.5=175<189,也不合题意.③若x>50,y>x,则x+y>70,不合题意.故甲班第一次买苹果28kg,第二次买苹果42kg.。

二元一次方程组的解法-代入法-2020-2021学年七年级数学下册课件(人教版)

二元一次方程组的解法-代入法-2020-2021学年七年级数学下册课件(人教版)

用代入消元法解二元一次方程组时,尽量选取未知数系数的绝对值是1 的方程进行变形;若未知数系数的绝对值都不是1,则选取系数的绝对值 较小的方程变形.
篮球联赛中,每场比赛都要分出胜负,胜一 场得2分.负一场得1分,某队
为了争取较好的名次,想在全部20场比赛中得到35分,那么这个队胜负场
数分别是多少? 解 设胜的场数是x,负的场数是y,可列方程组:
代入法是解二元一次方程组常用的方法之一.
x - y = 3, ① 例1 解方程组 3 x - 8 y = 14. ②
转化 解:由①,得 x = y + 3 .③
代入 把③代入②,得 3(y+3)-8y=14.
求解 解这个方程,得 y=-1.
回代 把y=-1代入③,得 x=2.
写解 所以这个方程组的解是
500
000
2
用 5 x代替 y,消去未知数 y
2
解二元一次方程组的步骤: 第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未 知数用含有另一个未知数的代数式表示出来. 第二步:把此代数式代入没有变形的一个方程中,可得一个一元一次方程. 第三步:解这个一元一次方程,得到一个未知数的值. 第四步:回代求出另一个未知数的值. 第五步:把方程组的解表示出来. 第六步:检验(口算或在草稿纸上进行笔算),即把求得的解代入每一个方程 看是否成立.
掌握代入消元法的意义. 会用代入法解二元一次方程组.
问题:一个苹果和一个梨的质量合计200g,这个苹果的质量加上一个10g的 砝码恰好与这个梨的质量相等,问苹果和梨的质量各是多少g?
y = x + 10 x + y =200
x + x +10 =200
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组解法—代入法(提高)知识讲解
【学习目标】
1. 理解消元的思想;
2. 会用代入法解二元一次方程组.
【要点梳理】
要点一、消元法
1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.
2.消元的基本思路:未知数由多变少.
3.消元的基本方法:把二元一次方程组转化为一元一次方程.
要点二、代入消元法
通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.
要点诠释:
(1)代入消元法的关键是先把系数较简单的方程变形为用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.
(2)代入消元法的技巧是:
①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;
②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;
(3)若方程组中所有方程里的未知数的系数都不是1或-1,选系数的绝对值较小的方程变形比较简便.
【典型例题】
类型一、用代入法解二元一次方程组
1.用代入法解方程组:
237 338
x y
x y
+=


-=



【思路点拨】比较两个方程未知数的系数,发现①中x的系数较小,所以先把方程①中x 用y表示出来,代入②,这样会使计算比较简便.
【答案与解析】
解:由①得
73
2
y
x
-
=③
将③代入②
73
338
2
y
y
-
⨯-=,解得
1
3
y=.

1
3
y=代入③,得x=3
所以原方程组的解为
3
1
3 x
y
=



=
⎪⎩

【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.
举一反三:
【变式】m 取什么数值时,方程组的解
(1)是正数;(2)当m取什么整数时,方程组的解是正整数?并求它的所有正整数解. 【答案】(1)m 是大于-4 的数时,原方程组的解为正数;
(2)m=-3,-2,0,.
2.(2016春•九台市期末)对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组:
解:把②代入①得,x+2×1=3,解得x=1.
把x=1代入②得,y=0.
所以方程组的解为
请用同样的方法解方程组:.
【思路点拨】仿照已知整体代入法求出方程组的解即可.
【答案与解析】
解:由①得,2x﹣y=2③,
把③代入②得,1+2y=9,
解得:y=4,
把y=4代入③得,x=3,
则方程组的解为
【总结升华】本题体现了整体思想在解二元一次方程组时的优越性,利用整体思想可简化计算.
举一反三:
【变式1】解方程组
2320, 235
2y9.
7
x y
x y
--=


-+

+=⎪⎩
【答案】
解:
232
235
29
7
x y
x y
y
-=


⎨-+
+=
⎪⎩


将①代入②:25
29 7
y
+
+=,
得 y=4,
将y=4代入①:2x-12=2
得 x=7,
∴原方程组的解是
7
4 x
y
=


=

.
(2)
45
:4:3
x y
x y
-=


=



解:由②,设x=4k,y=3k 代入①:4k-4·3k=5 4k-12k=5
-8k=5
5
8
k=-

5
4
2
x k
==-,
15
3
8
y k
==-,
∴原方程组的解为
5
2
15
8 x
y

=-
⎪⎪

⎪=-
⎪⎩
.
类型二、方程组解的应用
3.(2015春•临清市期末)如果方程组的解是方程3x+my=8的一个解,则
m=()
A.1 B.2 C.3 D.4
【思路点拨】求出方程组的解得到x与y的值,代入已知方程即可求出m的值.
【答案】B.
【解析】
解:,
由①得y=3-x ③
将③代入②得:6x=12,
解得:x=2,
将x=2代入②得:10﹣y=9,
解得:y=1,
将x=2,y=1代入3x+my=8中得:6+m=8,
解得:m=2.
【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的
未知数的值.
4.已知
256
4
x y
ax by
+=-


-=-



和方程组
3516
8
x y
bx ay
-=


+=-



的解相同,求2011
(2)
a b
+的
值.
【思路点拨】两个方程组有相同的解,这个解是2x+5y=-6和3x-5y=16的解.由于这两个方程的系数都已知,故可联立在一起,求出x、y的值.再将x、y的值代入ax-by=-4,bx+ay =-8中建立关于a、b的方程组即可求出a、b的值.
【答案与解析】
解:依题意联立方程组
256 3516
①x y
x y
+=-


-=
⎩③
①+③得5x=10,解得x=2.
把x=2代入①得:2×2+5y=-6,解得y=-2,所以
2
2 x
y
=


=-


又联立方程组
4
8
ax by
bx ay
-=-


+=-

,则有
224
228
a b
a b
+=-


-+=-


解得
1
3 a
b
=


=-


所以(2a+b)2011=-1.
【总结升华】求方程(组)中的系数,需建立关于系数的方程(组)来求解,本例中利用解相同,将方程组重新组合换位联立是解答本题的关键.
举一反三:
【变式】(2015•江都市模拟)小明和小文解一个二元一次组小明正确解得小文因抄错了c,解得已知小文除抄错了c外没有发生其他错误,求a+b+c 的值.
【答案】
解:把代入cx﹣3y=﹣2,得c+3=﹣2,
解得:c=﹣5,
把与分别代入ax+by=2,得,
解得:,
则a+b+c=2+﹣5=3﹣5=﹣2.。

相关文档
最新文档