关联速度问题高一
(完整word版)高中物理竞赛_话题18:关联速度问题.doc
![(完整word版)高中物理竞赛_话题18:关联速度问题.doc](https://img.taocdn.com/s3/m/8beab16ed15abe23492f4d25.png)
话题 18:关联速度问题一、刚体的力学性质 :讨论的问题中,研究对象是刚体、刚性球、刚性杆或拉直的、不可伸长的线等,它们都具有刚体的力学性质,是不会发生形变的理想化物体,刚体上任意两点之间的相对距离是恒定不变的;任何刚体的任何一种复杂运动都是由平动与转动复合而成的.如图所示,三角板从位置ABC 移动到位置 A B C ,可以认为整个板一方面做平动,使板上点 B 移到点 B ,另一方面又以点 B 为轴转动,使点 A 到达点 A 、点 C 到达点 C .由于前述刚体的力学性质所致,点A、C及板上各点的平动速度相同,否则板上各点的相对位置就会改变.这里,我们称点 B 为基点.分析刚体的A 运动时,基点可以任意选择.于是我们得到刚体运动的速度法则:刚体上每一点的速度都是与基点速度相同的平动速度和相对于该基点的转动速C 度的矢量和.我们知道转动速度v r,r是转动半径,转动角速度则与基点的选择无关.CABB是刚体转动角速度,刚体自身根据刚体运动的速度法则,对于既有平动又有转动的刚性杆或不可伸长的线绳,每个时刻我们总可以找到某一点,这一点的速度恰是沿杆或绳的方向,以它为基点,杆或绳上其他点在同一时刻一定具有相同的沿杆或绳方向的分速度(与基点相同的平动速度).结论一、杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度.再来研究接触物系接触点速度的特征.由刚体的力学性质及“接触”的约束可知,沿接触面法线方向,接触双方必须具有相同的法向分速度,否则将分离或形变,从而违反接触或刚性的限制.至于沿接触面的切向接触双方是否有相同的分速度,则取决于该方向上双方有无相对滑动,若无相对滑动,则接触双方将具有完全相同的速度.因此,我们可以得到下面的结论.结论二、接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同.相交物系交叉点速度的特征是什么呢?我们来看交叉的两直线 a 、b,如图所示,设直线 a 不动,当直线 b 沿自身方向移动时,交点P 并不移动,而当直线 b 沿直线a的方向移动时,交点P 便沿直线 a 移动,因交点 P 亦是直线 b 上一点,故与直线 b 具有相同的沿直线 a 方向的平移速度.同理,若直线b 固定,直线 a 移动,交点 P 的移动速度与直线 a 沿直线 b 方向平动的速度相同.根据运动合成原理,当两直线a 、b 各自运动,交点 P 的运动分别P是两直线沿对方直线方向运动的合运动.于是我们可以得到下ab面的结论.结论三、线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和.二、相关的速度所谓关联速度就是两个通过某种方式联系起来的速度.比如一根杆上的两个速度通过杆发生联系,一根绳两端的速度通过绳发生联系.( 一) 、当绳(杆)端在做既不沿绳(杆)方向,又不垂直于绳(杆)方向的运动时,一般要将绳(杆)端的运动分解为沿绳(杆)方向和垂直于绳(杆)方向二个分运动。
高考物理计算题复习《关联速度问题》(解析版)
![高考物理计算题复习《关联速度问题》(解析版)](https://img.taocdn.com/s3/m/d1a0d97f90c69ec3d5bb7592.png)
《关联速度》一、计算题1.如图所示,竖直平面内放一直角杆,杆的各部分均光滑,水平部分套有质量为m A=3kg的小球A,竖直部分套有质量为m B=2kg的小球B,A、B之间用不可伸长的轻绳相连。
在水平外力F的作用下,系统处于静止状态,且OA=3m,OB=4m,重力加速度g=10m/s2.(1)求水平拉力F的大小和水平杆对小球A弹力F N的大小;(2)若改变水平力F大小,使小球A由静止开始,向右做加速度大小为4.5m/s2的匀拉力F所做的功。
加速直线运动,求经过23s2.如图所示,某人用绳通过定滑轮拉小船,绳某时刻与水平方向夹角为α.求:(1)若人匀速拉绳的速度为v o,则此时刻小船的水平速度v x为多少?(2)若使小船匀速靠岸,则通过运算分析拉绳的速度变化情况?3.如图,足够长光滑斜面的倾角为θ=30°,竖直的光滑细杆到定滑轮的距离为a=3m,斜面上的物体M和穿过细杆的m通过跨过定滑轮的轻绳相连,开始保持两物体静止,连接m的轻绳处于水平状态,放手后两物体从静止开始运动,已知M=5.5kg,m=3.6kg,g=10m/s2.(1)求m下降b=4m时两物体的速度大小各是多大?(2)若m下降b=4m时恰绳子断了,从此时算起M最多还可以上升的高度是多大?4.如图所示,水平光滑长杆上套有一个质量为m A的小物块A,细线跨过O点的轻小光滑定滑轮一端连接小物块A,另一端悬挂质量为m B的小物块B,C为O点正下方杆上一点,滑轮到杆的距离OC=ℎ.开始时小物块A受到水平向左的拉力静止于P 点,PO与水平方向的夹角为30°.(1)求小物块A受到的水平拉力大小;(2)撤去水平拉力,求:①当PO与水平方向的夹角为45°时,物块A的速率是物块B的速率的几倍?②物块A在运动过程中的最大速度.5.如图所示,左侧为一个半径为R的半球形的碗固定在水平桌面上,碗口水平,O点为球心,碗的内表面及碗口光滑。
专题1关联速度模型-高一物理讲义(人教2019)
![专题1关联速度模型-高一物理讲义(人教2019)](https://img.taocdn.com/s3/m/8362a29b85254b35eefdc8d376eeaeaad1f316e6.png)
第五章 抛体运动 专题1 关联速度模型课程标准核心素养1. 能利用运动的合成与分解的知识,分析关联速度问题.2. 建立常见的绳关联模型和杆关联模型的解法.1、物理观念:理解关联速度模型。
2、科学思维:探究关联速度的分解方法。
3、科学探究:实际速度为合速度,按运动的效果分解速度。
4、科学态度与责任:能按运动分解思想解决关联速度问题。
知识点01 关联速度1.两物体通过不可伸长的轻绳(杆)相连,当两物体都发生运动,且物体运动的方向不在绳(杆)的直线上,两物体的速度是关联的.(下面为了方便,统一说“绳”).2.处理关联速度问题的方法:首先认清哪个是合速度、哪个是分速度.物体的实际速度一定是合速度,分解时两个分速度方向应取沿绳方向和垂直绳方向. 3.常见的速度分解模型情景图示定量结论v =v ∥=v 物cos θv 物′=v ∥=v 物cos θv ∥=v ∥′即v 物cos θ=v 物′cos α目标导航知识精讲v ∥=v ∥′即v 物cos α=v 物′cos β【即学即练1】如图所示,人用轻绳通过光滑轻质定滑轮拉穿在光滑竖直杆上的物块A ,人以速度v 0向左匀速拉绳,某一时刻,定滑轮右侧绳与竖直杆的夹角为θ,左侧绳与水平面的夹角为α,此时物块A 的速度v 1为( ) A .v 0sin αcos θ B.v 0sin αsin θ C .v 0cos αcos θ D.v 0cos αcos θ【答案】 D 【解析】将人、物块的速度分别分解,如图所示,人和A 沿绳方向的分速度大小相等,可得 v 0cos α=v 1cos θ,所以v 1=v 0cos αcos θ,D 正确. 【即学即练2】如图所示,一轻杆两端分别固定质量为m A 和m B 的小球A 和B (A 、B 均可视为质点).将其放在一个光滑球形容器中从位置1开始下滑,当轻杆到达位置2时球A 与球形容器球心等高,其速度大小为v 1,已知此时轻杆与水平面成θ=30°角,球B 的速度大小为v 2,则( ) A .v 2=12v 1B .v 2=2v 1C .v 2=v 1D .v 2=3v 1【答案】 C 【解析】小球A 与球形容器球心等高,速度v 1方向竖直向下,速度分解如图所示,有v 11=v 1sin 30°=12v 1,由几何知识可知小球B 此时速度方向与杆成α=60°角,因此v 21=v 2cos 60°=12v 2,两球沿杆方向的速度相等,即v 21=v 11,解得v 2=v 1,故选C.考法01 与绳子联系的关联速度【典例1】如图,汽车甲用绳以速度v 1拉着汽车乙前进,乙的速度为v 2,甲、乙都在水平面上运动,则此时甲、乙两车的速度之比为( ) A .cos α∶1 B .1∶cos α C .sin α∶1D .1∶sin α能力拓展【答案】 A 【解析】将汽车乙的速度分解为沿绳方向和垂直于绳方向,如图,沿绳方向的分速度等于汽车甲的速度,所以v 2cos α=v 1,则甲、乙两车的速度之比为cos α∶1. 故选A.考法02 与杆联系的关联速度【典例2】如图所示,一个长直轻杆两端分别固定小球A 和B ,竖直放置,两球质量均为m ,两球半径忽略不计,杆的长度为L .由于微小的扰动,A 球沿竖直光滑槽向下运动,B 球沿水平光滑槽向右运动,当杆与竖直方向的夹角为θ时(图中未标出),关于两球速度v A 和v B 的关系,下列说法正确的是( ) A .若θ=30°,则A 、B 两球的速度大小相等 B .若θ=60°,则A 、B 两球的速度大小相等 C .v A =v B tan θ D .v A =v B sin θ 【答案】 C 【解析】当杆与竖直方向的夹角为θ时,根据运动的分解可知(如图所示),沿杆方向两分速度大小相等,v A cos θ=v B sin θ,即v A =v B tan θ.当θ=45°时,v A =v B ,故选C.题组A 基础过关练1.如图所示,一辆货车利用跨过光滑定滑轮的轻质缆绳提升一箱货物,已知货箱的质量为M ,货物的质量为m ,货车以速度v 向左做匀速直线运动,重力加速度为g ,则在将货物提升到图示的位置时,下列说法正确的是( )A .缆绳中的拉力F T 等于(M +m )gB .货箱向上运动的速度大于vC .货箱向上运动的速度等于cos vθD .货箱向上运动的速度一直增大【答案】D【解析】BC .将货车的速度进行正交分解,如图所示由于绳子不可伸长,货箱和货物整体向上运动的速度和货车速度沿着绳子方向的分量相等,故v 1=v cosθ则货箱向上运动的速度小于v ,故BC 错误;AD .由于θ不断减小,cos θ增大,故v 1增大,所以货箱和货物整体向上做加速运动,加速度向上,故拉力T F 大于()M m g +,故A 错误,D 正确。
高中物理绳杆关联速度问题
![高中物理绳杆关联速度问题](https://img.taocdn.com/s3/m/8f4fce43591b6bd97f192279168884868762b8a1.png)
高中物理绳杆关联速度问题
高中物理中的绳杆关联速度问题,主要是指通过绳子或杆连接的两个物体在运动过程中,其速度之间的关系问题。
在这个问题中,需要理解并掌握关联速度的概念和规律。
1. 速度规律:在绳、杆等连接的两个物体运动过程中,它们的速度通常是不一样的。
但是,两个物体沿绳或杆方向的速度大小是相等的,我们称之为关联速度。
2. 解决关联速度问题的一般步骤:
确定合运动,即物体的实际运动。
确定合运动的两个实际作用效果,一是沿绳(或杆)方向的平动效果,这个效果改变速度的大小;二是沿垂直于绳(或杆)方向的转动效果,这个效果改变速度的方向。
即将实际速度分解为垂直于绳(或杆)和平行于绳(或杆)方向的两个分量。
按平行四边形定则进行分解,作出运动矢量图。
根据沿绳(或杆)方向的速度相等列方程求解。
3. 常见的模型:
车拉船模型:当车匀速前进,速度为v,当绳与水平方向成α角时,船速v′是多少?
在解决这类问题时,需要仔细分析物体的运动状态和相互作用,理解关联速度的概念和规律,按照一定的步骤进行求解。
这有助于提高物理问题的解决能力和物理思维的培养。
高一物理绳子关联速度题目
![高一物理绳子关联速度题目](https://img.taocdn.com/s3/m/e1853ee7cd22bcd126fff705cc17552707225e86.png)
选择题当一根绳子绕过一个定滑轮,一端固定,另一端以速度v拉动时,绳子中点的速度是?A. v/2B. vC. √2vD. 2v(正确答案)一个物体通过一根绳子悬挂在天花板上,当物体以速度v上升时,绳子与天花板连接点的速度是?A. v/2B. v(正确答案)C. 2vD. 无法确定两根相同的绳子一端相连,另一端分别固定在两点上,当一根绳子以速度v1拉直时,另一根绳子的速度是?A. v1/2B. v1C. 与v1无关(正确答案)D. 2v1一个滑轮组由两个定滑轮和两个动滑轮组成,当物体以速度v上升时,拉动物体的绳子的速度是?A. v/2B. vC. 2v(正确答案)D. 4v一根绳子绕过一个动滑轮,当绳子的一端以速度v拉动时,动滑轮的速度是?A. v/2(正确答案)B. vC. 2vD. 无法确定两根绳子分别绕过两个定滑轮,一端相连,另一端以速度v1和v2拉动,则两绳子连接点的速度是?A. (v1+v2)/2(正确答案)B. |v1-v2|C. √(v12+v22)D. 无法确定一个物体通过两根绳子悬挂在天花板上,当物体以速度v下降时,每根绳子的速度是?A. v/2B. v(正确答案)C. √2vD. 2v一根绳子绕过一个动滑轮和一个定滑轮组成的滑轮组,当绳子的一端以速度v拉动时,动滑轮的速度是?A. v/3(正确答案)B. v/2C. vD. 2v两根绳子一端相连,另一端分别固定在两点上,并绕过两个定滑轮,当一根绳子以速度v1拉直时,另一根绳子的速度与其的关系是?A. 总是等于v1B. 总是小于v1C. 由滑轮的位置和绳子的长度决定(正确答案)D. 总是大于v1。
高一物理:小船渡河问题和关联速度(斜牵引速度)模型
![高一物理:小船渡河问题和关联速度(斜牵引速度)模型](https://img.taocdn.com/s3/m/897f94ff370cba1aa8114431b90d6c85ec3a8868.png)
小船渡河问题和关联速度(斜牵引速度)模型题型一运动的合成与分解关于合运动的位移和分运动的位移,下列说法正确的是()A.合运动的位移可能小于分运动位移中最小的一个分位移B.合运动的位移不可能小于分运动位移中最小的一个分位移C.合运动的位移一定小于任何一个分位移D.合运动的位移一定大于其中一个分位移【解题技巧提炼】1.运动性质的判断变化:非匀变速运动不变:匀变速运动共线:直线运动不共线:曲线运动2.判断两个直线运动的合运动性质,关键看合初速度方向与合加速度方向是否共线.两个互成角度的分运动合运动的性质两个匀速直线运动匀速直线运动一个匀速直线运动、一个匀变速直线运动匀变速曲线运动两个初速度为零的匀加速直线运动匀加速直线运动两个初速度不为零的匀变速直线运动如果v合与a合共线,为匀变速直线运动3.合运动与分运动的关系(1)等时性:合运动和分运动经历的时间相等,即同时开始、同时进行、同时停止.(2)独立性:一个物体同时参与几个分运动,各分运动独立进行,不受其他运动的影响.(3)等效性:各分运动的规律叠加起来与合运动的规律有完全相同的效果.题型二小船渡河模型如图所示,两次渡河时船相对于静水的速度大小和方向都不变。
已知第一次实际航程为A至B,位移为x1,实际航速为v1,所用时间为t1,由于水速增大,第二次实际航程为A至C,位移为x2,实际航速为v2,所用时间为t2则()A .t 2>t 1,v 2=211x v x B .t 2>t 1,v 2=112x v x C .t 2=t 1,v 2=211x v x D .t 2=t 1,v 2=112x v x 【解题技巧提炼】1.合运动与分运动合运动→船的实际运动v 合→平行四边形对角线2.两类问题、三种情景渡河时间最短当船头方向垂直河岸时,渡河时间最短,最短时间t min =d v 船渡河位移最短如果v 船>v 水,当船头方向与上游河岸夹角θ满足v 船cos θ=v 水时,合速度垂直河岸,渡河位移最短,等于河宽d如果v 船<v 水,当船头方向(即v 船方向)与合速度方向垂直时,渡河位移最短,等于dv 水v 船3.解题方法:小船渡河问题有两类:一是求渡河时间,二是求渡河位移。
高一物理奥赛7:关联速度
![高一物理奥赛7:关联速度](https://img.taocdn.com/s3/m/b3442dcaa1c7aa00b52acb44.png)
高一物理奥赛7:速度关联类问题求解1. 在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?2. A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少?3.均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.4. 一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图5-7所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ).5. S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点 S ′在屏上移动的瞬时速度v 为多大?解答:1. 命题意图:考查分析综合及推理能力,B 级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图5-4所示分解,从而得出错解v 物=v 1=v cos θ.解题方法与技巧:解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图5-5所示.过C点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD ①由速度的定义:物体移动的速度为v 物=t BC t s ∆=∆∆1 ②人拉绳子的速度v =tBD t s ∆=∆∆2 ③ 由①②③解之:v 物=θcos v 解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图5-6所示进行分解.其中:v =v 物cos θ,使绳子收缩.v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动.所以v 物=θcos v 解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功.人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以v 物=θcos v2.v B cos α=v A cos β3. v A =v B tan α;a A =a B tan α图5-4 图5-5图5-64.选取物与棒接触点B为连结点.(不直接选A点,因为A点与物块速度的v的关系不明显).因为B点在物块上,该点运动方向不变且与物块运动方向一致,故B点的合速度(实际速度)也就是物块速度v;B点又在棒上,参与沿棒向A点滑动的速度v1和绕O点转动的线速度v2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v2=v sinθ.设此时OB长度为a,则a=h/sinθ.令棒绕O点转动角速度为ω,则:ω=v2/a=v sin2θ/h.故A的线速度v A=ωL=vL sin2θ/h.5. 由几何光学知识可知:当平面镜绕O逆时针转过30°时,则:∠SOS′=60°,OS′=L/cos60°.选取光点S′为连结点,因为光点S′在屏上,该点运动方向不变,故该点实际速度(合速度)就是在光屏上移动速度v;光点S′又在反射光线OS′上,它参与沿光线OS′的运动.速度v1和绕O点转动,线速度v2;因此将这个合速度沿光线OS′及垂直于光线OS′的两个方向分解,由速度矢量分解图5′—1可得:v1=v sin60°,v2=v cos60°又由圆周运动知识可得:当线OS′绕O转动角速度为2ω.则:v2=2ωL/cos60°vc os60°=2ωL/cos60°,v=8ωL.。
专题03 关联速度模型-【模型与方法】2023-2024学年高一物理同步模型易点通(人教版2019必
![专题03 关联速度模型-【模型与方法】2023-2024学年高一物理同步模型易点通(人教版2019必](https://img.taocdn.com/s3/m/ba5b0dd9a1116c175f0e7cd184254b35eefd1a84.png)
专题03 关联速度模型1.“关联”速度关联体一般是两个或两个以上由轻绳或轻杆联系在一起,或直接挤压在一起的物体,它们的运动简称为关联运动。
一般情况下,在运动过程中,相互关联的两个物体不是都沿绳或杆运动的,即二者的速度通常不同,但却有某种联系,我们称二者的速度为“关联”速度。
2.“关联”速度分解的步骤(ⅰ)确定合运动的方向:物体实际运动的方向就是合运动的方向,即合速度的方向。
(ⅰ)确定合运动的两个效果。
用轻绳或可自由转动的轻杆连接的物体的问题―→⎩⎪⎨⎪⎧效果1:沿绳或杆方向的运动效果2:垂直绳或杆方向的运动相互接触的物体的问题―→⎩⎪⎨⎪⎧效果1:垂直接触面的运动效果2:沿接触面的运动(ⅰ)画出合运动与分运动的平行四边形,确定它们的大小关系。
3.常见的速度分解模型 (1)绳牵联模型单个物体的绳子末端速度分解:如图甲所示,v ⅰ一定要正交分解在垂直于绳子方向,这样v ⅰ的大小就是拉绳的速率,注意切勿将绳子速度分解。
甲 乙两个物体的绳子末端速度分解:如图乙所示两个物体的速度都需要正交分解,其中两个物体的速度沿着绳子方向的分速度是相等的,即v A ⅰ=v B ⅰ。
如图丙所示,将圆环的速度分解成沿绳方向和垂直于绳方向的分速度,B 的速度与A 沿绳方向的分速度相等,即v A ⅰ=v B ⅰ。
丙 丁 (2)杆牵联模型如图丁所示,将杆连接的两个物体的速度沿杆和垂直于杆的方向正交分解,则两个物体沿杆方向的分速度大小相等,即v A ⅰ=v B ⅰ。
【模型演练1】(2024上·甘肃兰州·高一兰州一中校考期末)如图在水平力F 作用下,物体B 沿水平面向左运动,物体A 恰好匀速下降。
以下说法正确的是( )【答案】C【详解】AB .由于绳不可伸长,故B 沿绳方向的分速度等于A 的速度,即B A cos v v α=A 匀速下降过程,α在增大,故B v 增大,即物体B 正向左做加速运动,由三角函数关系可知,并不是匀加速运动,故AB 错误;C .A 匀速下降,绳上拉力T 不变,B 在竖直方向平衡,满足B sin N m g T α=-可知N 减小,由f N μ=可知,地面对B 的摩擦力减小,故C 正确; D .斜绳与水平方向成30°角时,代入关系式B A cos v v α=得示位置时,两绳子与水平面的夹角分别为30β=、60α=则( )A .当β由30增大到45过程中,A 的平均速度小于vB .当β由45增大到60过程中,A 的平均速度大于vC .当β由30增大到45过程中,绳中拉力先减小后增大D .当β由45增大到60过程中,绳中拉力先减小后增大 330tan 45hh h -=-2230sin 60h h h +=+221)0.8445tan 60hh h x --≈>的位移大,故A 的平均速度大于v ,故45增大到60过程中,有30增大到45过程中,.物体B以速度v向右匀速运动,根据平衡条件与53)3730增大到45过程中,绳中拉力先减小后增大,当45增60过程中,绳中拉力一直增大,故正确,D错误。
物理高一必修二关联速度知识点
![物理高一必修二关联速度知识点](https://img.taocdn.com/s3/m/5a3af6cef71fb7360b4c2e3f5727a5e9846a2768.png)
物理高一必修二关联速度知识点速度是物理学中一个重要的概念,它描述了物体在单位时间内的位移变化。
在高中物理的学习过程中,学生们会接触到许多与速度相关的知识点。
本文将介绍高一必修二中与速度相关的几个重要知识点,包括平均速度、瞬时速度、速度的合成与分解、加速度等。
一、平均速度平均速度是指物体在一段时间内的位移与时间的比值。
它的计算公式为:平均速度 = 总位移 / 总时间例如,一个物体初位置为A,末位置为B,物体从A点运动到B点所需时间为t,那么物体的平均速度可以表示为:平均速度 = (B点位置 - A点位置) / t二、瞬时速度瞬时速度是指物体在某一瞬间的速度。
在数学上,瞬时速度可以通过求解物体的瞬时位移与瞬时时间的比值来得到。
瞬时速度可以表示为:瞬时速度 = ds/dt其中,ds表示瞬时位移,dt表示瞬时时间。
在实际问题中,通常可以通过计算物体在极短时间内的位移和时间来逼近瞬时速度。
三、速度的合成与分解速度的合成是指当一个物体同时具有多个速度时,将这些速度合成为一个总速度的过程。
合成速度的方法可以使用平行四边形法则或三角法则。
例如,一个物体以速度v1沿x轴正方向运动,同时以速度v2沿y轴正方向运动,那么物体的合成速度可以表示为:合成速度= √(v1² + v2²)相反地,速度的分解是指将一个速度分解为多个分速度的过程。
分解速度的方法可以使用正弦定理或余弦定理。
例如,一个物体以速度v沿某一斜面上升,可以将这个速度分解为分速度v1和v2,其中v1表示物体在垂直于斜面方向上的分速度,v2表示物体在斜面上的分速度。
四、加速度加速度是速度变化的量度,描述了物体单位时间内速度的变化率。
它的计算公式为:加速度 = (末速度 - 初速度) / 时间在高一必修二中,我们主要学习了匀变速直线运动,该运动下的加速度为常数。
当物体在匀变速直线运动中,我们也可以用加速度的公式来计算位移和时间的关系。
例如,一个物体的初速度为v0,加速度为a,它在时间t内的位移可以计算为:位移 = v0t + (1/2)at²其中,v0t表示初速度v0在时间t内的位移,(1/2)at²表示由于加速度a造成的额外位移。
5.2 运动的合成与分解之关联速度模型 课件-2024-2025学年高一下学期物理人教版必修2
![5.2 运动的合成与分解之关联速度模型 课件-2024-2025学年高一下学期物理人教版必修2](https://img.taocdn.com/s3/m/3976b99eba4cf7ec4afe04a1b0717fd5360cb2f1.png)
2时球A与球形容器的球心等高,其速度大小为v1,已知此时轻杆与水平
方向成θ=30°角,B球的速度大小为v2,则
1
A.v2=2v1
C.v =v
√
2
1
B.v2=2v1
D.v2= 3v1
v1
v2
沿绳(杆)方向速度相等
关 联 速 度 模 型
1
能利用运动的合成与分解的知识,分
析关联速度问题.
2
建立常见的绳关联模型和杆关联模型的
速度分解的方法.
想一想:
用绳拉船靠岸时,拉绳的速度和船的速度有什么关系呢?
关联速度问题
如图,岸上的小车A以速度v匀速向左运动,绳跨过光滑轻质定滑轮和小
船B相连于P点.
(1)在相等的时间内,小车A和小船B运动的位移相等吗?
体A和B,它们通过一根绕过光滑轻质定滑轮O的不可伸长的轻绳相连接,
物体A以速率vA=10 m/s匀速运动,在绳与轨道成30°角时,物体B的速度
大小vB为
A.5 m/s
C.20 m/s
5 3
B. 3 m/s
√
20 3
D. 3 m/s
v⊥
vB
v∥
绳关联速度
3.如图所示,人用轻绳通过光滑轻质定滑轮拉穿在光滑竖直杆上的物块A,
速度?
如图,P点速度可以分解为沿
v
A
v
v船
绳方向的分速度和垂直于绳方
向的分速度.
C
B
v∥
αPΒιβλιοθήκη v⊥小船渡河问题(4)若某时刻连接船的绳与水平方向的夹角为α ,则船的速度是多大?
v
A
高一物理必修二【关联速度问题】专题
![高一物理必修二【关联速度问题】专题](https://img.taocdn.com/s3/m/681790673d1ec5da50e2524de518964bcf84d21e.png)
高一物理必修二【关联速度问题】专题1.“关联”速度关联体一般是两个或两个以上由轻绳或轻杆联系在一起的物体,它们的运动简称为关联运动。
一般情况下二者的速度通常不同,但却有某种联系,我们称二者的速度为“关联”速度。
2.“关联”速度分解的步骤(1)确定合运动的方向:物体实际运动的方向就是合运动的方向,即合速度的方向。
(2)确定合运动的两个效果效果1:沿绳或杆方向的运动;效果2:垂直绳或杆方向的运动。
(3)画出合运动与分运动的平行四边形,确定它们的大小关系。
3.常见的速度分解情形(如图所示)(多选)如图所示,将质量为2m的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m的小环,小环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d。
现将小环从与定滑轮等高的A处由静止释放,当小环沿直杆下滑距离也为d时(图中B处),下列说法正确的是(重力加速度为g)()A.小环刚释放时轻绳中的张力一定大于2mgB.小环到达B处时,重物上升的高度为(2-1)dC.小环在B处的速度与重物上升的速度大小之比等于2 2D.小环在B处的速度与重物上升的速度大小之比等于 2[思路点拨](1)由题图显示的几何关系,可找出重物上升的高度。
(2)小环实际上是沿杆下落,该运动是合运动,绳的运动是分运动。
(3)绳子绕过定滑轮与重物相连,所以重物上升速度的大小等于小环沿绳方向的分速度的大小。
[解析]小环释放后,其下落速度v增大,绳与竖直杆间的夹角θ减小,而v1=v cos θ,故v1增大,由此可知小环刚释放时重物具有向上的加速度,绳中张力一定大于2mg,A项正确;小环到达B处时,绳与直杆间的夹角为45°,重物上升的高度h=(2-1)d,B项正确;如图所示,将小环速度v进行正交分解,则v1=v cos 45°=22v,所以小环在B处的速度与重物上升的速度大小之比等于2,C项错误,D项正确。
[答案]ABD[名师点评]“四步”巧解关联速度问题第一步:先确定合运动,物体的实际运动就是合运动;第二步:确定合运动的两个实际作用效果,一是使绳或杆伸缩的效果,二是使绳或杆转动的效果;第三步:按平行四边形定则进行分解,作出运动矢量图;第四步:根据沿绳(或杆)牵引方向的速度相等列方程。
1.速度关联问题
![1.速度关联问题](https://img.taocdn.com/s3/m/28a76cde89eb172ded63b7a2.png)
9、速度关联问题 题型一、 杆端关联【例题1】如图所示,A 、B 两小球用轻杆连接,A 球只能沿内壁光滑的竖直槽运动,B 球处于光滑水平面内。
开始时杆竖直,A 、B 两球静止。
由于微小的扰动,B 开始沿水平面向右运动。
当轻杆与水平方向的夹角为θ时,A 球的速度v A 与B 球的速度v B 满足的关系是( )A. v A =v B ·cot θB. v A =v B ·tan θC. v A =v B ·sin θD. v A =v B ·cos θ〖变式1—1〗如图所示,A 、B 两小球用轻杆连接,A 球只能沿内壁光滑的竖直槽运动,B 球处于光滑水平面内。
开始时杆竖直,A 、B 两球静止。
由于微小的扰动,B 开始沿水平面向右运动。
在A 球下滑到底端的过程中,下列选项正确的是( )A.B 球的速度先增大后减小B. B 球的速度先减小后增大C.A 球到达竖直槽底部时,B 球的速度为0D. A 球到达竖直槽底部时,B 球的速度不为0〖变式1—2〗在光滑的水平面内建立如图所示的直角坐标系,长为L 的光滑细杆AB 的两个端点A 、B 被分别约束在x 轴和y 轴上运动,现让A 沿x 轴正方向以v 0匀速运动,已知P 点为杆的中点,当杆AB 与x 轴的夹角为θ时,下列关于P 点的运动轨迹或P 点的运动速度大小v 的表达式正确的是( )A .P 点的运动轨迹是一条直线B .P 点的运动轨迹是圆的一部分C .P 点的运动速度大小v =v 0·tan θD .P 点的运动速度大小v =v 02sin θ【例题2】如图所示,AB 杆以恒定角速度ω绕A 点由竖直位置开始顺时针旋转,并带动套在固定水平杆OC 上的小环M 运动。
则小环M 的速度大小变化情况是(小环仍套在AB 和OC 杆上)( )A.保持不变B. 一直增大C.一直减小D. 先增大后减小〖变式2—1〗如图所示的装置中,AB 杆水平固定,另一细杆可绕AB 杆上方距AB 杆高为h 的O 轴以角速度ω转动,两杆都穿过P 环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关联速度问题(高一)
河南省信阳高级中学陈庆威
绳子末端速度的分解问题,是“运动的合成与分解”中的一个难点也是易错点。
同学们在处理此类问题时,往往因搞不清哪一个是合速度(实际速度),哪一个是分速度而导致解题失败。
希望能通过下面几个例题,帮助同学们消除解题中的困惑。
例1:如图1的A所示,在河岸上利用定滑轮拉绳使小船靠岸,拉绳的速度为v,当绳与水平面成θ角时,船的速度是多少?
解析:
方法一:
图1
1、找关联点(A点)
2、判断合速度(水平向左)
3、速度的合成与分解(沿绳子与垂直绳子)
4、验证正误(新位置在两坐标轴方向上)
船的实际运动是水平运动,它产生的实际效果可以从图B中的A点为例说明:A是绳子和船的公共点,一是A点沿绳的收缩方向的运动,二是A点绕O点沿顺时针方向的转动,所以,船的实际速度v可分解为船沿绳方向的速度v1和垂直于绳的速度v2,如图1所示。
由图可知:v=v1/cosθ
方法二:微元法:如图C
1、关联点在很短时间内经过一小位移S
2、绳子缩短了S′=OA-OB=PA=Scosθ<S
3、速度比即是位移比。
例2.如图2所示,一辆匀速行驶的汽车将一重物提起,在此过程中,重物A的运动情况是()
A.加速上升,且加速度不断增大
B.加速上升,且加速度不断减小
C.减速上升,且加速度不断减小
D.匀速上升
解析:物体A的速率即为左段绳子上移的速率,而左段绳子上移的速率与右段绳子在沿着绳长方向的分速率是相等的。
右段绳子实际上同时参与两个运动:沿绳方向拉长及向上摆动。
将右段绳子与汽车相连的端点的运动速度v沿绳子方向和与绳子垂直方向分解,如图3所示,则沿绳方向的速率即为物体A的速率
v A=v1=vsinθ。
随着汽车的运动,θ增大,v A=v1增大,故A应加速上升。
由v-t图线的意义知,其斜率为加速度,在0°~90°范围内,随θ角的增大,曲线y=sinθ的斜率逐渐减小,所以A上升的加速度逐渐减小。
答案 B
点评本题主要考查了运动的分解,解题的关键是要分清合速度与分速度。
一般情况下,物体相对于给定的参考系(一般为地面)的实际运动就是合运动,本例中,汽车的实际运动就是合运动。
另外,运动的分解要按照它的实际效果进行。
例3.如图4所示,以速度v沿竖直杆匀速下滑的物体A用轻绳通过定滑轮拉物体B,当绳与水平面夹角为θ时,物体B的速度为()A.vB.θC.θD.V/sinθ
图4图5
解析:如图5,将A的速度分解为沿绳子方向和垂直于绳子方向,,根据平行四边形定则得,v B=vsinθ.故B正确,A、C、D错误.故选B.例4.如图6所示,均匀直杆上连着两个小球A、B,不
计一切摩擦.当杆滑到如图位置时,B球水平速度为v B,加
速度为a B,杆与竖直夹角为α,求此时A球速度和加速
度大小?
图6 解析:分别对小球A和B的速度进行分解,设杆上的速度为v
则对A球速度分解,分解为沿着杆方向和垂直于杆方向的两个速度。
v=v A cos?
对B球进行速度分解,得到v=v B sin?
联立得到v A=v B tan?
加速度也是同样的思路,得到a A=a B tan?
例5.如图所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳
与水平面的夹角分别为α和β时,B 车的速度是
多
少?
解析:
右边的绳子的速度等于A 车沿着绳子方向的分速度,设绳子速度为v 。
将A 车的速度分解为沿着绳子的方向和垂直于绳子的方向,则v =v A cos ? 同理,将B 车的速度分解为沿着绳子方向和垂直于绳子的方向,则v =v B cos ? 由于定滑轮上绳子的速度都是相同的,得到A B v v αβcos cos = 例6.如图所示,一块橡皮用细线悬挂于O 点,用钉子靠着线的左侧,沿与水平方向成30°的斜面向右以速度v 匀速运动,运动中始终保持悬线竖直,则橡皮运动的速度()
A .大小为v ,方向不变和水平方向成60°
B .大小为v ,方向不变和水平方向成60°
C .大小为2v ,方向不变和水平方向成60°
D .大小和方向都会改变
解析:橡皮沿与水平方向成300的斜面向右以速度v 匀速运动,由于橡皮沿与水平方向成300的斜面向右以速度v 匀速运动的位移一定等于橡皮向上的位移,故在竖直方向以相等的速度匀速运动,根据平行四边形定则,可知合速度也是一定的,故合运动是匀速运动;根据平行四边形定则求得合速度大小为v 3,方向不变和水平方向成60°.
故选B .(此题与2013年江苏单科题相似)。