第四节控制系统根轨迹绘制.ppt

合集下载

自动控制原理 第四章根轨迹

自动控制原理 第四章根轨迹

第四章根轨迹法4-1 根轨迹法的基本概念4-2 常规根轨迹的绘制法则4-3 广义根轨迹4-1 根轨迹法的基本概念一、根轨迹的概念根轨迹:系统中某个参数从零到无穷变化时,系统闭环特征根在s平面上移动的轨迹。

根指的是闭环特征根(闭环极点)。

根轨迹法是根据开环传递函数与闭环传递函数的关系,通过开环传递函数直接分析闭环特征根及系统性能的图解法。

K =0 s 1=0 s 2=-40 < K <1s 1 s 2为不等的负实根K =1s 1=-2 s 2=-21 < K < ∞s 1s2 实部均为-2由根轨迹可知:1)当K =0时,s 1=0,s 2=-1,这两点恰是开环传递函数的极点,同时也是闭环特征方程的极点.2)当0<K < 1 时,s 1,2都是负实根,随着k 的增长,s 1从s 平面的原点向左移,s 2从-1点向右移。

3) 当K = 1时, s 1,2= -2,两根重合在一起,此时系统恰好处在临界阻尼状态。

4) 1 <K <∞,s 1,2为共轭复根,它们的实部恒等于-2,虚部随着K 的增大而增大,系统此时为欠阻尼状态。

★在s平面上,用箭头标明K增大时,闭环特征根移动的方向,以数值表明某极点处的增益大小。

有了根轨迹图就可以分析系统的各种性能:(1)稳定性:根轨迹均在s的左半平面,则系统对所有K>0都是稳定的。

(2)稳态性能:如图有一个开环极点(也是闭环极点)s=0。

说明属于I型系统,阶跃作用下的稳态误差为0。

在速度信号V0t作用下,稳态误差为V0/K,在加速度信号作用下,稳态误差为∞。

(3)动态性能:过阻尼临界阻尼欠阻尼K越大,阻尼比ξ越小,超调量σ%越大。

由此可知:1、利用根轨迹可以直观的分析K的变化对系统性能的影响。

2、根据性能指标的要求可以很快确定出系统闭环特征根的位置;从而确定出可变参数的大小,便于对系统进行设计。

由以上分析知:根轨迹与系统性能之间有着密切的联系,但是,高阶方程很难求解,用直接解闭环特征根的办法来绘制根轨迹是很麻烦的。

自动控制理论 第四章根轨迹分析法PPT课件

自动控制理论 第四章根轨迹分析法PPT课件

s3 不是根轨迹上的点。
根据相角方程得系 统的根轨迹为:
第一节 根轨迹的基本概念
作业习题: 4-2 4-3 4-7
返回
第四章 根轨迹分析法
第二节 绘制根轨迹的基本方法
根据根轨迹方程,无需对闭环特征方程式 求解,只需寻找所有满足相角方程的 s ,便可 得到闭环特征方程式根的轨迹。同时,可由幅
值方程来确定根轨迹所对应的Kr值。
闭s环s22 +特K2rs=征0+↑KKr 方1r=程s110 式 特征-2 方程-1的根0 σ
(1R)左(从s) 半根- 平轨s面(迹sK+r为2可) 稳C知(s定): 极点;右半平面为 不稳Kr定极s1点;虚s2轴 上为0临界0极点。-2
(2)有01<2呈Kr过<-11-阻1+时j 尼,状-系1-1-态j统。
根据根轨迹的基本特征和关键点,就能比较 方便地近似绘制出根轨迹曲线。
根轨迹基本特征为以下八条:
第二节 绘制根轨迹的基本方法
一、根轨迹的对称性和分布性 二、根轨迹的起点和终点 三、实轴上的根轨迹段 四、根轨迹的渐近线 五、根轨迹的分离点和会合点 六、根轨迹的出射角和入射角 七、根轨迹与虚轴的交点 八、开环极点与闭环极点的关系
p2
p1
-2

环传递函数的极点
第二节 绘制根轨迹的基本方法
2. 终点
根轨迹方程:
m
i
n=1((ss--pzji))=
-
1 Kr
m
j =1
Kr
i n=1((ss--pzji))=0
j =1
m
则 i =1(s-zi) =0 即 s=zi
8 8
m条根轨迹终止于开环传递函数的零点

自动控制原理-第4章 根轨迹

自动控制原理-第4章 根轨迹

又 ∵ 根轨迹方程
n
n
(spi) sn( pi)sn 1L
n
m
Kim 1
i 1 m
snm( pi zj)snm 1L
(szj) sm( zj)sm 1L
i 1
j 1
j 1
j 1
n
m
∴ sn-m-1项系数对应相等
(nm)(a) pi zj
n
m
i1
j1
(2k 1) ,
nm
pi zi
闭环零、极点与开环零、极点的关系
闭环传递函数 (s) G(s)
1G(s)H(s)
开环传递函数 Gk(s)G(s)H(s)
f
l
(s zi)
(s z j)
G (s) KG
i 1 q
H
(s)
K
H
j 1 h
(s pi)
(s p j)
i 1
j 1
f
l
(szi)(szj)
Gk(s)G(s)H(s)K
如何应用根轨迹方程在[s]平面上找到闭环极点。
解: G ( s ) K 0 .5 K K * s(2 s 1) s(s 0.5) s(s 0.5)
K * 0.5 K 开 环 极 点 p1 0, p2 0.5 无开环零点 根据相角方程
s2
p2 4 5 o -0.5 s1
135o
p1 0
m
(s z j)
K j1 n
1
(s pi)
i1
m
n
(szj) (spi)(2k1)
j1
i1
k0,1,2,L
(1)相角条件是决定闭环根轨迹的充要条件; 在测量相角时,规定以逆

自动控制原理(胡寿松版)课件第四章

自动控制原理(胡寿松版)课件第四章

第一节 根轨迹的基本概念
二、根轨迹与系统性能
根轨迹图可以分析系统的各种性能: ω j ∞ ↑ 稳定性: 根轨迹均在s的左半平 Kr 面,则系统对所有k>0的值是稳定的。 s K =0 1 1 s1 2 r 0 σ -1 稳态性能:如图有一个开环极点 -2 -1 s=0,说明属于I型系统,阶跃作用 Kr ∞ 下的稳态误差为0。 动态性能:过阻尼 临界阻尼 欠阻 尼。 K越大,阻尼比 越小,超调量σ%越大。
第四章 根轨迹分析法
第一节 根轨迹的基本概念
当系统的某个参数变化时,特征方程的根随 之在S平面上移动,系统的性能也跟着变化。研究 S 平面上根的位置随参数变化的规律及其与系统 性能的关系是根轨迹分析法的主要内容。
第一节 根轨迹的基本概念
一、根轨迹
设系统的结构如图 K r变化时,闭环特征 Kr 根在 s平面上的轨迹 : 极点;右半平面为 C(s) 2+2s+K s1 s2 Kr 不稳定极点;虚轴 R(s) =s∞ ω r j ↑ -2 0 0 上为临界极点。 闭环特征方程式 Kr 1 -1 -1 1 2 (2) 0<Kr<1时,系统 s 0 s2 +2s+K Kr=0 1r= s1 -1-j -1+j 2 0 σ -1 有呈过阻尼状态。 -2 特征方程的根 -1 -1+j∞ -1-j∞ Kr (3) 当 时,系统 ∞Kr=1 s1.2 =-1± 1-Kr ∞ 呈临界阻尼状态 。 得相应的闭环特征根值: (4) 1<Kr<∞时,系统呈欠阻尼状态。


第一节 根轨迹的基本概念
三、闭环零、极点与开环零、极点的关系
系统传递函数为
G( s) ( s) 1 G(s) H (s)

自动控制原理第第四章 线性系统的根轨迹法

自动控制原理第第四章 线性系统的根轨迹法

2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2

根轨迹法(自动控制原理)ppt课件精选全文完整版

根轨迹法(自动控制原理)ppt课件精选全文完整版
1 K (s z1 )( s z2 )....( s zm ) 0 (s p1 )( s p2 )....( s pn )
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法

自动控制原理2011第4章

自动控制原理2011第4章

=0
s1, 2 j3.74
K = 60
10+K
14
补充规则
规则八:闭环极点之和
系统满足n-m≥2时,系统闭环极点之和等于
开环极点之和
规则九:闭环极点之积
系统的n-m≥2且有开环零点位于原点时,系
统闭环极点之积就等于开环极点之积
15
返回
2 p 3 s180 [ 0.s 3) * s ( s 3K * j ) ( s 0 ) ( s 6)] 65 .6 ( 212 K (0 5 6 1 j1 1 j1) 5 3) ( ⑤分离点 .6 * 90* 141 11.4 ) 43.8 2.5 180 (26 K 135.163 K 3940 1 105 1a 0 j 1 1 1 s1 K * 0 41 0 * 65.6 0.212 K * K ds 0 3K * d d 5渐近线与实轴的夹角为 1 j d 6 0 d①根轨迹有5支 1 j d * 3 1 34 K * 3 (2k .2 1) ③实轴上的根 0 5 4 ,0 * .6 * 0.212 66 d 65135d K 0 142 s* 123 s 0 51,26, .0 s K 0 极点 45,,0,3 ,k K 0 K a 2 轨迹位于0-3 -1 0 j K 1 j 3940 105 K * 0.163 K *05 1 1 ,* 35.6 0 -3 -6 -5 用试探法求得分离点为45 及-5-6之间 a1 1.34 , 零点 45 , * * -5.53 0 a 2 3,无穷远 K K * 2 d 5.53 0 135 , 135 * (65.6 0.212 K ) S 33K 0 a 4 a * * K K 将 K * 35.6 代入辅助方程, 解得 S j1.34

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法

第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)

第4章 控制系统的根轨迹分析

第4章 控制系统的根轨迹分析

绘制根轨迹如图4-13所示。
第4章 控制系统的根轨迹分析
图4-13 例4-5系统的根轨迹
第4章 控制系统的根轨迹分析
图中根轨迹与虚轴的交点可从系统临界稳定的条件
得到τ=1。τ=1时系统的特征方程为
得与虚轴交点的坐标为jω=±j。从根轨迹得到系统稳定时τ
的取值范围为0<τ<1。
第4章 控制系统的根轨迹分析
θj(j=1,2,3,4)。选取实轴上一点s0,若s0为根轨迹上的点,必满足
相角条件,有
第4章 控制系统的根轨迹分析
图4-5 实轴上根轨迹相角示意
第4章 控制系统的根轨迹分析
下面分别分析开环零、极点对相角条件的影响,进而分
析对实轴上根轨迹的影响。
(1)共轭复数极点p4和p5到点s0的向量的相角和为
φ4+φ5=2π,共轭复数零点到s0点的向量的相角和也为2π。
(2)实轴上,s0点左侧的开环极点p3和开环零点z2到点s0所
构成的向量的夹角φ3和θ2均为零度。
(3)实轴上,s0点右侧的开环极点p1、p2和开环零点z1到点
s0 所构成的向量的夹角φ1、φ2和θ1均为π。
第4章 控制系统的根轨迹分析
第4章 控制系统的根轨迹分析
若系统稳定,由劳斯表的第一列系数,有以下不等式成立:
得0<K* <78.47。
由此可知,当 Kc* =78.47时,系统临界稳定,此时根轨迹穿
过虚轴。K* =78.4ω 值由以下辅助方程确定:
将 K* =78.47代入辅助方程,得
解得s=±j2.16。
第4章 控制系统的根轨迹分析
对于例4-1,其在实轴上的根轨迹一条始于开环极点,止于
开环零点(根轨迹位于-2到-5之间),另两条始于开环极点,止于

第4章 线性系统的根轨迹法(《自动控制原理》课件)

第4章 线性系统的根轨迹法(《自动控制原理》课件)

如果用试凑的方法由相角条件来绘制根轨迹, 如果用试凑的方法由相角条件来绘制根轨迹 将会非常不方 人们利用前面介绍的几个式子, 便. 人们利用前面介绍的几个式子 导出一些绘制根轨迹的法则 利用导出的法则, 可方便地绘制出根轨迹的大至形状, 利用导出的法则 可方便地绘制出根轨迹的大至形状 叫概略根 轨迹, 轨迹 这在利用根轨迹对系统进行初步分析和设计时已基本可用 了.
(2) 当0<K<=0.25时, 一个根的绝对值随 的增大而增大 另 的增大而增大, 时 一个根的绝对值随K的增大而增大 一个根的绝对值随K的增大而减小 两根的变化轨迹如下图所示: 的增大而减小, 一个根的绝对值随 的增大而减小 两根的变化轨迹如下图所示 jω ω σ -2 -1.5 -1 0
当K=0.25时, 两根相等 均为 时 两根相等, 均为-1.5 (3) 0.25<K<+∞ 时, 两根为共軛复根 且其实部均为 两根为共軛复根, 且其实部均为-1.5 , 而 +∞ 虚部的绝对值随K的增大而增大 两根的变化轨迹如下图所示: 的增大而增大, 虚部的绝对值随 的增大而增大 两根的变化轨迹如下图所示 jω ω σ
4-2 根轨迹绘制的基本法则
本节通过一个例子, 介绍绘制根轨迹的七条法则, 本节通过一个例子 介绍绘制根轨迹的七条法则 但对法则 不予推导和证明. 不予推导和证明 需指出的是, 需指出的是 绘制根轨迹的前提是必须已知闭环系统的开环 传递函数的零点和极点的具体数值, 一般以K’为参变量 为参变量. 传递函数的零点和极点的具体数值 一般以 为参变量 某闭环系统的开环传递函数为: 例: 某闭环系统的开环传递函数为
阶数. 阶数 K叫开环系统的增益 K’叫开环系统的根轨迹增益 叫开环系统的增益, 叫开环系统的根轨迹增益, 叫开环系统的增益 叫开环系统的根轨迹增益 K与K’的本质相同 仅它们间的值有一系数关系, 即: 与 的本质相同, 仅它们间的值有一系数关系 的本质相同

第四章 根轨迹法 matlab simulink与控制系统仿真 第三版 课件

第四章 根轨迹法 matlab simulink与控制系统仿真 第三版 课件
分支数=开环极点数 =开环特征方程的阶数
二、根轨迹对称于实轴
闭环极点为 实数→在实轴上 复数→共轭→对称于实轴
返回子目录
28
三、根轨迹的起点与终点
起于开环极点,终于开环零点。
由根轨迹方程有:
m
i 1 n
(s (s
zi ) pi)
1 K*
i1
29
起点 K* 0 → spi 0→ s pi
终点 K* → szi 0 → s zi
n
1
m
1
i1 dpi j1 dzj
z 式中: j 为各开环零点的数值;
p i 为各开环极点的数值。
50
例4-6
•已知系统的开环传递函数
G(s)H(s) K*(s1) s23s3.25
试求闭环系统的根轨迹分离点坐标d,并概 略绘制出根轨迹图。
51
解:根据系统开环传递函数求出开环极点
p 1 1 .5j1 ,p 2 1 .5j1
• 在实际应用中,用相角方程绘制根轨迹, 而模值方程主要用来确定已知根轨迹上某一点
的 K * 值。
20
例4-1
已知系统的开环传递函数 G (s)H (s)2K/(s2)2
试证明复平面上点 s1 2j4 ,s2 2j4 是该系统的闭环极点。
证明: 该系统的开环极点 p1 2, p2 2
若系统闭环极点为 s1 , s2
分离角计算公式
d1 l[2 (k1)π jm 1
n
dzj dsi]
il1
(4-45)
56
式中:
d 为分离点坐标;
z j为开环零点; si为当 kkd时,l除 个重极点外 其他 nl个非重根。
所谓会合角是指根轨迹进入重极点处 的切线与实轴正方向的夹角。

自动控制原理第四章根轨迹法(管理PPT)

自动控制原理第四章根轨迹法(管理PPT)

根轨迹法的优化建议
结合其他方法
将根轨迹法与其他分析方 法(如频率响应法)相结 合,以获得更全面的系统 性能分析。
ቤተ መጻሕፍቲ ባይዱ开发软件工具
开发专门用于根轨迹分析 的软件工具,以提高分析 的效率和准确性。
加强实践应用
在实际工程中加强根轨迹 法的应用,通过实践不断 优化和完善该方法。
05
CATALOGUE
根轨迹法与其他控制方法的比较
根轨迹分析的实例
假设一个开环传递函数为 G(s)H(s) = (s+1)(s+2)/(s^2+2s+5),对其进行 根轨迹分析。
分析根轨迹图,确定系统的稳定性、 动态性能和系统参数的影响。
根据开环传递函数,绘制出根轨迹图 ,并标注出系统的极点和零点。
根据根轨迹图进行系统设计和优化, 例如调整开环传递函数的增益参数, 以改善系统的性能。
对于非线性系统,根轨迹法可能无法给出准确的描述和分析。
04
CATALOGUE
根轨迹法的改进与优化
根轨迹法的局限性与挑战
参数敏感性
根轨迹法对系统参数的微小变化非常敏感,可能导致根轨迹的剧 烈变化,影响系统的稳定性。
无法处理非线性系统
根轨迹法主要适用于线性系统,对于非线性系统的分析存在局限性 。
计算复杂度较高
和设计。
对于具有特定性能指标要求的系统,如 快速响应、低超调量等,可以根据系统 特性和性能要求选择适合的控制方法,
如状态反馈控制器等。
06
CATALOGUE
根轨迹法的实际应用案例
根轨迹法在工业控制系统中的应用
根轨迹法在工业控制系统中广泛应用于系统的分析和设计。通过绘制根轨迹图,可以直观地 了解系统性能的变化,如稳定性、响应速度和超调量等。

自动控制原理4 第四节控制系统根轨迹绘制

自动控制原理4 第四节控制系统根轨迹绘制

显然,s1 0.48,不在根轨迹上。分离点为:s2 3.52 。
19
4.4 控制系统根轨迹的绘制
20
4.4 控制系统根轨迹的绘制
比较正负反馈的根轨迹方程:
m
(s zi )
若开环传递函数为:
Gk (s) Kg
i 1 n
(s pj)
j 1
则正负反馈的根轨迹方程分别为:
m
(s zi )
5
4
141.9
3
2
j2.5
Imag Axis
1
0.9
0
-1
-2
j2.5
-3
-4
-5
-4
-3
-2
-1
0
1
2
Real Axis
8
4.4 控制系统根轨迹的绘制
[例4-7]设开环系统传递函数为:Gk
(s)
(s
kg (s 1) 0.1)(s 0.5)
试绘制根轨迹。
[解]:⑴开环零点 z1 1,开环极点 p1 0.1, p2 0.5, 根轨迹有两支。起点在极点处,终点一支在开环零点处。 一支在无穷远处。
1
j4
1 (1 2 3)
( tg 1 4 tg 14 90) 141 .9
3
根据对称性,可知-3-j4处的出射
角 2 为: 2 141 .9 ⑤与虚轴的交点:闭环特征方程为:
s4 8s3 37s2 50s kg 0 劳斯阵为:
2
3 2
3
1
0 j4
s4
1
s3
8
⑥会合点与分离点(重根点):分离角为 d
2
由N(s)D(s) N (s)D(s) 0 得:4s3 24s2 74s 50 0

天津大学812 自动控制原理课件 第4章 线性系统的根轨迹法

天津大学812  自动控制原理课件 第4章 线性系统的根轨迹法

二、根轨迹方程
根轨迹:当系统某一参数由0变化到无穷大时,闭环系统特征根在s平面上 的轨迹。 由(4-1)可得闭环系统的特征方程为 1 G(s) H (s) 0 由(4-3)式得
(s z )
j
m
K*
(s p )
i i
m
j n
1 1e j ( 2 k 1)
( k 0,1,2,
n m n * i j i i 1 j 1 i 1
例:要求系统闭环主导极点的阻尼比为0.5,试确定系统的根轨迹增益K*、 闭环主导极点和系统开环增益K。
K* G( s) H ( s) , s(s 3)(s 2 2s 2)
ξ =0.5
解:过原点作ξ=0.5的等阻尼线, 等阻尼线与根轨迹分支的交点 即为待求的一个闭环极点 0.41 j 0.71 ,另一共轭闭环极点为 0.41 j 0.71 ; 由根轨迹增益公式,可得2.63,; 由开环传函可得开环增益为 K K * 1 0;.44

j 1
m
z j pi

j 1, j i

n
Pj Pi
Pi 180o
同理可证终止角公式。
例4-3 P148 设系统的开环传递函数为
K * (s 1.5)(s 2 j )(s 2 j ) G( s) s(s 2.5)(s 0.5 j1.5)(s 0.5 1.5 j )
连续变化,则根轨迹连续变化;由于代数方程的根关于 实轴对称,根轨迹也关于实轴对称。
法则3:根轨迹的渐近线:当开环极点数n大于开环零数m时,有n-m条根 轨迹分支沿着与实轴交角为 a 、交点为 a 的一组渐近线趋向无 穷远处,其中:

根轨迹ppt课件.ppt

根轨迹ppt课件.ppt

3.分析方法及思路 1)从数学模型的建立看开环传递函数的特点: 物理元件→典型环节→开环结构→闭环结构→系统数学模型
(1)开环结构中的典型环节直接对应着开环传递函数的零极 点,-------很容易获得;
(2)各个典型环节中的参数可以直接反映系统的物理参数, 这一点对分析系统和改造系统非常有利; (3)可以直接求取稳态误差; (4)同各种传递函数(如闭环传递函数和误差传递函数)有 简单的关系。 2)一个美好的愿望: 开环零极点图+开环增益→闭环零极点全部可能的分布图→ 分析系统的三大类性能。
j 1 n i 1
)
(s z
j 1 n i 1
j
)
s ( s pi )
(s p )
i
则幅值条件和相角条件可以进一步写成如下实用形式:
幅值条件:
G1 ( s ) H1 ( s )
sz
j 1 n i 1
m
j
s p

1 K*
基本公式
i
幅值条件:
第四章 根轨迹法
4.1 4.2 4.3 4.4 根轨迹法的基本概念 根轨迹绘制的基本规则 广义根轨迹 线性系统性能的根轨迹分析法
一、本章内容提要: 1.介绍已知系统开环传递函数的极点、零 点的条件下确定闭环系统的根轨迹法,并分 析系统参量变化时对闭环极点位置的影响; 2.根据闭环特征方程得到相角条件和幅值 条件由此推出绘制根轨迹的基本法则; 3.根轨迹绘制:常规根轨迹、参数根轨迹 、根轨迹曲线族、零度根轨迹; 4.根轨迹法分析系统性能
三、本章重点、关键、难点 1.重点:根轨迹的绘制和利用根轨迹 图分析控制系统 2.关键点:根轨迹方程,幅值条件, 相角条件 3.难点:广义根轨迹的绘制
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16
❖ 出射角和入射角:
m
出 (所有开环零点到该极点的矢量幅角) i 1
kg 2)[( s
3)2
16 ]
,画根轨迹。
[解] :①标出四个开环极点:0,-2, 3 j4。有四条根轨迹。
②实轴上根轨迹区间是:[-2,0];
③渐进线倾角: (2k 1) , 3 ,与实轴的交点为:
nm
44
p j zi 0 2 6 2
nm
4
Saturday, March 20, 2021
R(s) G(s)
+
H (s)
C(s)
开环传递函数为:Gk (s) G(s)H (s) 闭环传递函数为:(s) G(s)
1 G(s)H (s)
Saturday, March 20, 2021
14
相应的跟轨迹方程为:Gk (s) 1 幅值条件和相角条件为:
Gk (s) 1, Gk (s) 2k , (k 0,1,2,...) 与负反馈系统根轨迹比较,幅值条件相同,相角条件
6
⑦绘制根轨迹,如下图所示。
5
4
141.9
3
2
j2.5
Imag Axis
1
0.9
0
-1
-2
j2.5
-3
-4
-5
-4
-3Leabharlann -2-10
1
2
Real Axis
Saturday, March 20, 2021
7
特殊情况:对于开环传递函数 Gk (s)有零极点相对消的情况。
如:G(s)
kg
R(s)
, H (s) s 1
第四节 控制系统根轨迹的绘制
Saturday, March 20, 2021
1
前面学习了根轨迹的基本概念和绘制基本准则(性质), 这里将手工绘制控制系统根轨迹的步骤罗列如下:
标注开环极点“ ”和零点○“ ”;
确定实轴上的根迹区间;
画出n-m条渐进线。其与实轴的交点(称为重心)和倾角分
别为:
pj
zi
利用前几步得到的信息分绘离制角根轨d 迹n。
注意:
后两步可能不存在;
在判断大致形状时,需知道根轨迹的支数、连续性和对称性。
Saturday, March 20, 2021
3
一、 单回路负反馈系统的根轨迹
前面所讨论的根轨迹(180度根轨迹)是基于单回路负反
馈系统的。
[例]开环传递函数为:Gk
(s)
s(s
4
④-3+4j处的出射角1 : 1 (1 2 3)
1
j4
( tg 1 4 tg 14 90 ) 141 .9
3
2
根据对称性,可知-3-j4处的出射
角 2 为:
2 141 .9
3 2
⑤与虚轴的交点:闭环特征方程为: s4 8s3 37s2 50s kg 0 劳斯阵为:
s
-0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6 -1.8 -2.0
k 8.58 14.57 18.28 20.01 20.0 18.47 15.59 11.49 6.28 gd
可见分离点在-0.8~-1.0之间,近似取-0.9。
Saturday, March 20, 2021
(s 1)(s 2)
-
G(s)
C(s)
则:Gk (s)
G(s)H (s)
kg ,引起特
s2
H (s)
征方程阶数的下降。处理方法见下图:
R(s) 1 H (s)
G(s)H (s)
-
C(s) (s) 1 Gk (s) H (s) 1 Gk (s)
式中:Gk (s) G(s)H (s)
1 '(s) H (s)
以开环传递函数Gk 系统 (s)的极点由
(s)
'
绘制根轨迹可得 ' (s)的极点。闭环 (s)和 1 组合而成。
H (s)
由零极点相对消减少的极点由 1 的极点来补充。见下页图。
H (s)
Saturday, March 20, 2021
12
Gk
(s)
kg (s 1) (s 1)(s 2)
Saturday, March 20, 2021
不同。负反馈系统的相角条件(2k 1) 是180度等相角条 件;而正反馈系统的相角条件 2k 是0度等相角条件。
注意:
负反馈系统根轨迹称为180度根轨迹或简称为根轨迹;
正反馈系统根轨迹称为0度根轨迹或补根轨迹。
Saturday, March 20, 2021
15
绘制0度根轨迹的基本准则:
❖ 对称性和连续性同常规根轨迹;
2021
0
0
即为根轨迹与虚轴的交点。
5
⑥会合点与分离点(重根点):分离角为 d
2
由 N ' (s)D(s) N (s)D' (s) 0 得:4s3 24s2 74s 50 0
由上式可求出分离点。但高阶方程求解困难,可采用 下述近似方法:
kg (s4 8s3 37s2 50s)
我们知道,分离点在负实轴[-2,0]区间上,所以当s在实 数范围内变化时, k g最大时为分离点。
❖ 起点、终点和根轨迹支数同常规根轨迹;
❖ 渐进线:与实轴的交点同常规根轨迹;但倾斜角不同, 为: 2k , k 0,1,2... ,有n-m个角度。
nm
❖ 实轴上的根轨迹:其右方实轴上的开环零极点之和为偶 数(包括0)的区域。 ❖分离点、会合点和分离角:同常规根轨迹;
Saturday, March 20, 2021
;
(2k
1)
,k
0,1,2,3...
nm
nm
计算极点处的出射角和零点处入射角:
出射角 (从其他极点到该极点的矢量幅角)
(从其他零点到该极点的矢量幅角)
入射角 (从各个极点到该零点的矢量幅角)
(从其他零点到该零点的矢量幅角)
Saturday, March 20, 2021
2
计算根轨迹和虚轴的交点; 计算会合点和分离点:由N'(s)D(s)- N(s)D'(s) 0求解
13
二、 多回路系统的根轨迹
简单处理办法:将多回路系统等效为单回路系统,再绘制 180度根轨迹或参量根轨迹。
三、 正反馈系统的根轨迹
以上我们讨论的都是闭环负反馈系统的根轨迹绘制准则。 在实际的复杂系统中,可能有局部的正反馈的结构。正反馈系 统的根轨迹绘制准则与负反馈系统根轨迹略有不同。如下图所 示系统:
3
1
0 j4
s4
1
37 kg 当劳斯阵某一行全为零时,有共
s3
8
50 0 轭虚根。这时,kg 192 .2 。
s2 30.75
kg 0 辅助方程为:30.75s2 192.2 0 ,
s1 1537.5 8kg 0 0 解得共轭虚根为:s1,2 j2.5
30.75
s0
Saturday,
Marckhg20,
相关文档
最新文档