第四节控制系统根轨迹绘制.ppt
自动控制原理 第四章根轨迹
第四章根轨迹法4-1 根轨迹法的基本概念4-2 常规根轨迹的绘制法则4-3 广义根轨迹4-1 根轨迹法的基本概念一、根轨迹的概念根轨迹:系统中某个参数从零到无穷变化时,系统闭环特征根在s平面上移动的轨迹。
根指的是闭环特征根(闭环极点)。
根轨迹法是根据开环传递函数与闭环传递函数的关系,通过开环传递函数直接分析闭环特征根及系统性能的图解法。
K =0 s 1=0 s 2=-40 < K <1s 1 s 2为不等的负实根K =1s 1=-2 s 2=-21 < K < ∞s 1s2 实部均为-2由根轨迹可知:1)当K =0时,s 1=0,s 2=-1,这两点恰是开环传递函数的极点,同时也是闭环特征方程的极点.2)当0<K < 1 时,s 1,2都是负实根,随着k 的增长,s 1从s 平面的原点向左移,s 2从-1点向右移。
3) 当K = 1时, s 1,2= -2,两根重合在一起,此时系统恰好处在临界阻尼状态。
4) 1 <K <∞,s 1,2为共轭复根,它们的实部恒等于-2,虚部随着K 的增大而增大,系统此时为欠阻尼状态。
★在s平面上,用箭头标明K增大时,闭环特征根移动的方向,以数值表明某极点处的增益大小。
有了根轨迹图就可以分析系统的各种性能:(1)稳定性:根轨迹均在s的左半平面,则系统对所有K>0都是稳定的。
(2)稳态性能:如图有一个开环极点(也是闭环极点)s=0。
说明属于I型系统,阶跃作用下的稳态误差为0。
在速度信号V0t作用下,稳态误差为V0/K,在加速度信号作用下,稳态误差为∞。
(3)动态性能:过阻尼临界阻尼欠阻尼K越大,阻尼比ξ越小,超调量σ%越大。
由此可知:1、利用根轨迹可以直观的分析K的变化对系统性能的影响。
2、根据性能指标的要求可以很快确定出系统闭环特征根的位置;从而确定出可变参数的大小,便于对系统进行设计。
由以上分析知:根轨迹与系统性能之间有着密切的联系,但是,高阶方程很难求解,用直接解闭环特征根的办法来绘制根轨迹是很麻烦的。
自动控制理论 第四章根轨迹分析法PPT课件
s3 不是根轨迹上的点。
根据相角方程得系 统的根轨迹为:
第一节 根轨迹的基本概念
作业习题: 4-2 4-3 4-7
返回
第四章 根轨迹分析法
第二节 绘制根轨迹的基本方法
根据根轨迹方程,无需对闭环特征方程式 求解,只需寻找所有满足相角方程的 s ,便可 得到闭环特征方程式根的轨迹。同时,可由幅
值方程来确定根轨迹所对应的Kr值。
闭s环s22 +特K2rs=征0+↑KKr 方1r=程s110 式 特征-2 方程-1的根0 σ
(1R)左(从s) 半根- 平轨s面(迹sK+r为2可) 稳C知(s定): 极点;右半平面为 不稳Kr定极s1点;虚s2轴 上为0临界0极点。-2
(2)有01<2呈Kr过<-11-阻1+时j 尼,状-系1-1-态j统。
根据根轨迹的基本特征和关键点,就能比较 方便地近似绘制出根轨迹曲线。
根轨迹基本特征为以下八条:
第二节 绘制根轨迹的基本方法
一、根轨迹的对称性和分布性 二、根轨迹的起点和终点 三、实轴上的根轨迹段 四、根轨迹的渐近线 五、根轨迹的分离点和会合点 六、根轨迹的出射角和入射角 七、根轨迹与虚轴的交点 八、开环极点与闭环极点的关系
p2
p1
-2
0σ
环传递函数的极点
第二节 绘制根轨迹的基本方法
2. 终点
根轨迹方程:
m
i
n=1((ss--pzji))=
-
1 Kr
m
j =1
Kr
i n=1((ss--pzji))=0
j =1
m
则 i =1(s-zi) =0 即 s=zi
8 8
m条根轨迹终止于开环传递函数的零点
自动控制原理-第4章 根轨迹
又 ∵ 根轨迹方程
n
n
(spi) sn( pi)sn 1L
n
m
Kim 1
i 1 m
snm( pi zj)snm 1L
(szj) sm( zj)sm 1L
i 1
j 1
j 1
j 1
n
m
∴ sn-m-1项系数对应相等
(nm)(a) pi zj
n
m
i1
j1
(2k 1) ,
nm
pi zi
闭环零、极点与开环零、极点的关系
闭环传递函数 (s) G(s)
1G(s)H(s)
开环传递函数 Gk(s)G(s)H(s)
f
l
(s zi)
(s z j)
G (s) KG
i 1 q
H
(s)
K
H
j 1 h
(s pi)
(s p j)
i 1
j 1
f
l
(szi)(szj)
Gk(s)G(s)H(s)K
如何应用根轨迹方程在[s]平面上找到闭环极点。
解: G ( s ) K 0 .5 K K * s(2 s 1) s(s 0.5) s(s 0.5)
K * 0.5 K 开 环 极 点 p1 0, p2 0.5 无开环零点 根据相角方程
s2
p2 4 5 o -0.5 s1
135o
p1 0
m
(s z j)
K j1 n
1
(s pi)
i1
m
n
(szj) (spi)(2k1)
j1
i1
k0,1,2,L
(1)相角条件是决定闭环根轨迹的充要条件; 在测量相角时,规定以逆
自动控制原理(胡寿松版)课件第四章
第一节 根轨迹的基本概念
二、根轨迹与系统性能
根轨迹图可以分析系统的各种性能: ω j ∞ ↑ 稳定性: 根轨迹均在s的左半平 Kr 面,则系统对所有k>0的值是稳定的。 s K =0 1 1 s1 2 r 0 σ -1 稳态性能:如图有一个开环极点 -2 -1 s=0,说明属于I型系统,阶跃作用 Kr ∞ 下的稳态误差为0。 动态性能:过阻尼 临界阻尼 欠阻 尼。 K越大,阻尼比 越小,超调量σ%越大。
第四章 根轨迹分析法
第一节 根轨迹的基本概念
当系统的某个参数变化时,特征方程的根随 之在S平面上移动,系统的性能也跟着变化。研究 S 平面上根的位置随参数变化的规律及其与系统 性能的关系是根轨迹分析法的主要内容。
第一节 根轨迹的基本概念
一、根轨迹
设系统的结构如图 K r变化时,闭环特征 Kr 根在 s平面上的轨迹 : 极点;右半平面为 C(s) 2+2s+K s1 s2 Kr 不稳定极点;虚轴 R(s) =s∞ ω r j ↑ -2 0 0 上为临界极点。 闭环特征方程式 Kr 1 -1 -1 1 2 (2) 0<Kr<1时,系统 s 0 s2 +2s+K Kr=0 1r= s1 -1-j -1+j 2 0 σ -1 有呈过阻尼状态。 -2 特征方程的根 -1 -1+j∞ -1-j∞ Kr (3) 当 时,系统 ∞Kr=1 s1.2 =-1± 1-Kr ∞ 呈临界阻尼状态 。 得相应的闭环特征根值: (4) 1<Kr<∞时,系统呈欠阻尼状态。
↑
↑
第一节 根轨迹的基本概念
三、闭环零、极点与开环零、极点的关系
系统传递函数为
G( s) ( s) 1 G(s) H (s)
自动控制原理第第四章 线性系统的根轨迹法
2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2
根轨迹法(自动控制原理)ppt课件精选全文完整版
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法
自动控制原理2011第4章
=0
s1, 2 j3.74
K = 60
10+K
14
补充规则
规则八:闭环极点之和
系统满足n-m≥2时,系统闭环极点之和等于
开环极点之和
规则九:闭环极点之积
系统的n-m≥2且有开环零点位于原点时,系
统闭环极点之积就等于开环极点之积
15
返回
2 p 3 s180 [ 0.s 3) * s ( s 3K * j ) ( s 0 ) ( s 6)] 65 .6 ( 212 K (0 5 6 1 j1 1 j1) 5 3) ( ⑤分离点 .6 * 90* 141 11.4 ) 43.8 2.5 180 (26 K 135.163 K 3940 1 105 1a 0 j 1 1 1 s1 K * 0 41 0 * 65.6 0.212 K * K ds 0 3K * d d 5渐近线与实轴的夹角为 1 j d 6 0 d①根轨迹有5支 1 j d * 3 1 34 K * 3 (2k .2 1) ③实轴上的根 0 5 4 ,0 * .6 * 0.212 66 d 65135d K 0 142 s* 123 s 0 51,26, .0 s K 0 极点 45,,0,3 ,k K 0 K a 2 轨迹位于0-3 -1 0 j K 1 j 3940 105 K * 0.163 K *05 1 1 ,* 35.6 0 -3 -6 -5 用试探法求得分离点为45 及-5-6之间 a1 1.34 , 零点 45 , * * -5.53 0 a 2 3,无穷远 K K * 2 d 5.53 0 135 , 135 * (65.6 0.212 K ) S 33K 0 a 4 a * * K K 将 K * 35.6 代入辅助方程, 解得 S j1.34
自动控制原理第四章根轨迹法
第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)
第4章 控制系统的根轨迹分析
绘制根轨迹如图4-13所示。
第4章 控制系统的根轨迹分析
图4-13 例4-5系统的根轨迹
第4章 控制系统的根轨迹分析
图中根轨迹与虚轴的交点可从系统临界稳定的条件
得到τ=1。τ=1时系统的特征方程为
得与虚轴交点的坐标为jω=±j。从根轨迹得到系统稳定时τ
的取值范围为0<τ<1。
第4章 控制系统的根轨迹分析
θj(j=1,2,3,4)。选取实轴上一点s0,若s0为根轨迹上的点,必满足
相角条件,有
第4章 控制系统的根轨迹分析
图4-5 实轴上根轨迹相角示意
第4章 控制系统的根轨迹分析
下面分别分析开环零、极点对相角条件的影响,进而分
析对实轴上根轨迹的影响。
(1)共轭复数极点p4和p5到点s0的向量的相角和为
φ4+φ5=2π,共轭复数零点到s0点的向量的相角和也为2π。
(2)实轴上,s0点左侧的开环极点p3和开环零点z2到点s0所
构成的向量的夹角φ3和θ2均为零度。
(3)实轴上,s0点右侧的开环极点p1、p2和开环零点z1到点
s0 所构成的向量的夹角φ1、φ2和θ1均为π。
第4章 控制系统的根轨迹分析
第4章 控制系统的根轨迹分析
若系统稳定,由劳斯表的第一列系数,有以下不等式成立:
得0<K* <78.47。
由此可知,当 Kc* =78.47时,系统临界稳定,此时根轨迹穿
过虚轴。K* =78.4ω 值由以下辅助方程确定:
将 K* =78.47代入辅助方程,得
解得s=±j2.16。
第4章 控制系统的根轨迹分析
对于例4-1,其在实轴上的根轨迹一条始于开环极点,止于
开环零点(根轨迹位于-2到-5之间),另两条始于开环极点,止于
第4章 线性系统的根轨迹法(《自动控制原理》课件)
如果用试凑的方法由相角条件来绘制根轨迹, 如果用试凑的方法由相角条件来绘制根轨迹 将会非常不方 人们利用前面介绍的几个式子, 便. 人们利用前面介绍的几个式子 导出一些绘制根轨迹的法则 利用导出的法则, 可方便地绘制出根轨迹的大至形状, 利用导出的法则 可方便地绘制出根轨迹的大至形状 叫概略根 轨迹, 轨迹 这在利用根轨迹对系统进行初步分析和设计时已基本可用 了.
(2) 当0<K<=0.25时, 一个根的绝对值随 的增大而增大 另 的增大而增大, 时 一个根的绝对值随K的增大而增大 一个根的绝对值随K的增大而减小 两根的变化轨迹如下图所示: 的增大而减小, 一个根的绝对值随 的增大而减小 两根的变化轨迹如下图所示 jω ω σ -2 -1.5 -1 0
当K=0.25时, 两根相等 均为 时 两根相等, 均为-1.5 (3) 0.25<K<+∞ 时, 两根为共軛复根 且其实部均为 两根为共軛复根, 且其实部均为-1.5 , 而 +∞ 虚部的绝对值随K的增大而增大 两根的变化轨迹如下图所示: 的增大而增大, 虚部的绝对值随 的增大而增大 两根的变化轨迹如下图所示 jω ω σ
4-2 根轨迹绘制的基本法则
本节通过一个例子, 介绍绘制根轨迹的七条法则, 本节通过一个例子 介绍绘制根轨迹的七条法则 但对法则 不予推导和证明. 不予推导和证明 需指出的是, 需指出的是 绘制根轨迹的前提是必须已知闭环系统的开环 传递函数的零点和极点的具体数值, 一般以K’为参变量 为参变量. 传递函数的零点和极点的具体数值 一般以 为参变量 某闭环系统的开环传递函数为: 例: 某闭环系统的开环传递函数为
阶数. 阶数 K叫开环系统的增益 K’叫开环系统的根轨迹增益 叫开环系统的增益, 叫开环系统的根轨迹增益, 叫开环系统的增益 叫开环系统的根轨迹增益 K与K’的本质相同 仅它们间的值有一系数关系, 即: 与 的本质相同, 仅它们间的值有一系数关系 的本质相同
第四章 根轨迹法 matlab simulink与控制系统仿真 第三版 课件
二、根轨迹对称于实轴
闭环极点为 实数→在实轴上 复数→共轭→对称于实轴
返回子目录
28
三、根轨迹的起点与终点
起于开环极点,终于开环零点。
由根轨迹方程有:
m
i 1 n
(s (s
zi ) pi)
1 K*
i1
29
起点 K* 0 → spi 0→ s pi
终点 K* → szi 0 → s zi
n
1
m
1
i1 dpi j1 dzj
z 式中: j 为各开环零点的数值;
p i 为各开环极点的数值。
50
例4-6
•已知系统的开环传递函数
G(s)H(s) K*(s1) s23s3.25
试求闭环系统的根轨迹分离点坐标d,并概 略绘制出根轨迹图。
51
解:根据系统开环传递函数求出开环极点
p 1 1 .5j1 ,p 2 1 .5j1
• 在实际应用中,用相角方程绘制根轨迹, 而模值方程主要用来确定已知根轨迹上某一点
的 K * 值。
20
例4-1
已知系统的开环传递函数 G (s)H (s)2K/(s2)2
试证明复平面上点 s1 2j4 ,s2 2j4 是该系统的闭环极点。
证明: 该系统的开环极点 p1 2, p2 2
若系统闭环极点为 s1 , s2
分离角计算公式
d1 l[2 (k1)π jm 1
n
dzj dsi]
il1
(4-45)
56
式中:
d 为分离点坐标;
z j为开环零点; si为当 kkd时,l除 个重极点外 其他 nl个非重根。
所谓会合角是指根轨迹进入重极点处 的切线与实轴正方向的夹角。
自动控制原理第四章根轨迹法(管理PPT)
根轨迹法的优化建议
结合其他方法
将根轨迹法与其他分析方 法(如频率响应法)相结 合,以获得更全面的系统 性能分析。
ቤተ መጻሕፍቲ ባይዱ开发软件工具
开发专门用于根轨迹分析 的软件工具,以提高分析 的效率和准确性。
加强实践应用
在实际工程中加强根轨迹 法的应用,通过实践不断 优化和完善该方法。
05
CATALOGUE
根轨迹法与其他控制方法的比较
根轨迹分析的实例
假设一个开环传递函数为 G(s)H(s) = (s+1)(s+2)/(s^2+2s+5),对其进行 根轨迹分析。
分析根轨迹图,确定系统的稳定性、 动态性能和系统参数的影响。
根据开环传递函数,绘制出根轨迹图 ,并标注出系统的极点和零点。
根据根轨迹图进行系统设计和优化, 例如调整开环传递函数的增益参数, 以改善系统的性能。
对于非线性系统,根轨迹法可能无法给出准确的描述和分析。
04
CATALOGUE
根轨迹法的改进与优化
根轨迹法的局限性与挑战
参数敏感性
根轨迹法对系统参数的微小变化非常敏感,可能导致根轨迹的剧 烈变化,影响系统的稳定性。
无法处理非线性系统
根轨迹法主要适用于线性系统,对于非线性系统的分析存在局限性 。
计算复杂度较高
和设计。
对于具有特定性能指标要求的系统,如 快速响应、低超调量等,可以根据系统 特性和性能要求选择适合的控制方法,
如状态反馈控制器等。
06
CATALOGUE
根轨迹法的实际应用案例
根轨迹法在工业控制系统中的应用
根轨迹法在工业控制系统中广泛应用于系统的分析和设计。通过绘制根轨迹图,可以直观地 了解系统性能的变化,如稳定性、响应速度和超调量等。
自动控制原理4 第四节控制系统根轨迹绘制
显然,s1 0.48,不在根轨迹上。分离点为:s2 3.52 。
19
4.4 控制系统根轨迹的绘制
20
4.4 控制系统根轨迹的绘制
比较正负反馈的根轨迹方程:
m
(s zi )
若开环传递函数为:
Gk (s) Kg
i 1 n
(s pj)
j 1
则正负反馈的根轨迹方程分别为:
m
(s zi )
5
4
141.9
3
2
j2.5
Imag Axis
1
0.9
0
-1
-2
j2.5
-3
-4
-5
-4
-3
-2
-1
0
1
2
Real Axis
8
4.4 控制系统根轨迹的绘制
[例4-7]设开环系统传递函数为:Gk
(s)
(s
kg (s 1) 0.1)(s 0.5)
试绘制根轨迹。
[解]:⑴开环零点 z1 1,开环极点 p1 0.1, p2 0.5, 根轨迹有两支。起点在极点处,终点一支在开环零点处。 一支在无穷远处。
1
j4
1 (1 2 3)
( tg 1 4 tg 14 90) 141 .9
3
根据对称性,可知-3-j4处的出射
角 2 为: 2 141 .9 ⑤与虚轴的交点:闭环特征方程为:
s4 8s3 37s2 50s kg 0 劳斯阵为:
2
3 2
3
1
0 j4
s4
1
s3
8
⑥会合点与分离点(重根点):分离角为 d
2
由N(s)D(s) N (s)D(s) 0 得:4s3 24s2 74s 50 0
天津大学812 自动控制原理课件 第4章 线性系统的根轨迹法
二、根轨迹方程
根轨迹:当系统某一参数由0变化到无穷大时,闭环系统特征根在s平面上 的轨迹。 由(4-1)可得闭环系统的特征方程为 1 G(s) H (s) 0 由(4-3)式得
(s z )
j
m
K*
(s p )
i i
m
j n
1 1e j ( 2 k 1)
( k 0,1,2,
n m n * i j i i 1 j 1 i 1
例:要求系统闭环主导极点的阻尼比为0.5,试确定系统的根轨迹增益K*、 闭环主导极点和系统开环增益K。
K* G( s) H ( s) , s(s 3)(s 2 2s 2)
ξ =0.5
解:过原点作ξ=0.5的等阻尼线, 等阻尼线与根轨迹分支的交点 即为待求的一个闭环极点 0.41 j 0.71 ,另一共轭闭环极点为 0.41 j 0.71 ; 由根轨迹增益公式,可得2.63,; 由开环传函可得开环增益为 K K * 1 0;.44
j 1
m
z j pi
j 1, j i
n
Pj Pi
Pi 180o
同理可证终止角公式。
例4-3 P148 设系统的开环传递函数为
K * (s 1.5)(s 2 j )(s 2 j ) G( s) s(s 2.5)(s 0.5 j1.5)(s 0.5 1.5 j )
连续变化,则根轨迹连续变化;由于代数方程的根关于 实轴对称,根轨迹也关于实轴对称。
法则3:根轨迹的渐近线:当开环极点数n大于开环零数m时,有n-m条根 轨迹分支沿着与实轴交角为 a 、交点为 a 的一组渐近线趋向无 穷远处,其中:
根轨迹ppt课件.ppt
3.分析方法及思路 1)从数学模型的建立看开环传递函数的特点: 物理元件→典型环节→开环结构→闭环结构→系统数学模型
(1)开环结构中的典型环节直接对应着开环传递函数的零极 点,-------很容易获得;
(2)各个典型环节中的参数可以直接反映系统的物理参数, 这一点对分析系统和改造系统非常有利; (3)可以直接求取稳态误差; (4)同各种传递函数(如闭环传递函数和误差传递函数)有 简单的关系。 2)一个美好的愿望: 开环零极点图+开环增益→闭环零极点全部可能的分布图→ 分析系统的三大类性能。
j 1 n i 1
)
(s z
j 1 n i 1
j
)
s ( s pi )
(s p )
i
则幅值条件和相角条件可以进一步写成如下实用形式:
幅值条件:
G1 ( s ) H1 ( s )
sz
j 1 n i 1
m
j
s p
1 K*
基本公式
i
幅值条件:
第四章 根轨迹法
4.1 4.2 4.3 4.4 根轨迹法的基本概念 根轨迹绘制的基本规则 广义根轨迹 线性系统性能的根轨迹分析法
一、本章内容提要: 1.介绍已知系统开环传递函数的极点、零 点的条件下确定闭环系统的根轨迹法,并分 析系统参量变化时对闭环极点位置的影响; 2.根据闭环特征方程得到相角条件和幅值 条件由此推出绘制根轨迹的基本法则; 3.根轨迹绘制:常规根轨迹、参数根轨迹 、根轨迹曲线族、零度根轨迹; 4.根轨迹法分析系统性能
三、本章重点、关键、难点 1.重点:根轨迹的绘制和利用根轨迹 图分析控制系统 2.关键点:根轨迹方程,幅值条件, 相角条件 3.难点:广义根轨迹的绘制
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16
❖ 出射角和入射角:
m
出 (所有开环零点到该极点的矢量幅角) i 1
kg 2)[( s
3)2
16 ]
,画根轨迹。
[解] :①标出四个开环极点:0,-2, 3 j4。有四条根轨迹。
②实轴上根轨迹区间是:[-2,0];
③渐进线倾角: (2k 1) , 3 ,与实轴的交点为:
nm
44
p j zi 0 2 6 2
nm
4
Saturday, March 20, 2021
R(s) G(s)
+
H (s)
C(s)
开环传递函数为:Gk (s) G(s)H (s) 闭环传递函数为:(s) G(s)
1 G(s)H (s)
Saturday, March 20, 2021
14
相应的跟轨迹方程为:Gk (s) 1 幅值条件和相角条件为:
Gk (s) 1, Gk (s) 2k , (k 0,1,2,...) 与负反馈系统根轨迹比较,幅值条件相同,相角条件
6
⑦绘制根轨迹,如下图所示。
5
4
141.9
3
2
j2.5
Imag Axis
1
0.9
0
-1
-2
j2.5
-3
-4
-5
-4
-3Leabharlann -2-10
1
2
Real Axis
Saturday, March 20, 2021
7
特殊情况:对于开环传递函数 Gk (s)有零极点相对消的情况。
如:G(s)
kg
R(s)
, H (s) s 1
第四节 控制系统根轨迹的绘制
Saturday, March 20, 2021
1
前面学习了根轨迹的基本概念和绘制基本准则(性质), 这里将手工绘制控制系统根轨迹的步骤罗列如下:
标注开环极点“ ”和零点○“ ”;
确定实轴上的根迹区间;
画出n-m条渐进线。其与实轴的交点(称为重心)和倾角分
别为:
pj
zi
利用前几步得到的信息分绘离制角根轨d 迹n。
注意:
后两步可能不存在;
在判断大致形状时,需知道根轨迹的支数、连续性和对称性。
Saturday, March 20, 2021
3
一、 单回路负反馈系统的根轨迹
前面所讨论的根轨迹(180度根轨迹)是基于单回路负反
馈系统的。
[例]开环传递函数为:Gk
(s)
s(s
4
④-3+4j处的出射角1 : 1 (1 2 3)
1
j4
( tg 1 4 tg 14 90 ) 141 .9
3
2
根据对称性,可知-3-j4处的出射
角 2 为:
2 141 .9
3 2
⑤与虚轴的交点:闭环特征方程为: s4 8s3 37s2 50s kg 0 劳斯阵为:
s
-0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6 -1.8 -2.0
k 8.58 14.57 18.28 20.01 20.0 18.47 15.59 11.49 6.28 gd
可见分离点在-0.8~-1.0之间,近似取-0.9。
Saturday, March 20, 2021
(s 1)(s 2)
-
G(s)
C(s)
则:Gk (s)
G(s)H (s)
kg ,引起特
s2
H (s)
征方程阶数的下降。处理方法见下图:
R(s) 1 H (s)
G(s)H (s)
-
C(s) (s) 1 Gk (s) H (s) 1 Gk (s)
式中:Gk (s) G(s)H (s)
1 '(s) H (s)
以开环传递函数Gk 系统 (s)的极点由
(s)
'
绘制根轨迹可得 ' (s)的极点。闭环 (s)和 1 组合而成。
H (s)
由零极点相对消减少的极点由 1 的极点来补充。见下页图。
H (s)
Saturday, March 20, 2021
12
Gk
(s)
kg (s 1) (s 1)(s 2)
Saturday, March 20, 2021
不同。负反馈系统的相角条件(2k 1) 是180度等相角条 件;而正反馈系统的相角条件 2k 是0度等相角条件。
注意:
负反馈系统根轨迹称为180度根轨迹或简称为根轨迹;
正反馈系统根轨迹称为0度根轨迹或补根轨迹。
Saturday, March 20, 2021
15
绘制0度根轨迹的基本准则:
❖ 对称性和连续性同常规根轨迹;
2021
0
0
即为根轨迹与虚轴的交点。
5
⑥会合点与分离点(重根点):分离角为 d
2
由 N ' (s)D(s) N (s)D' (s) 0 得:4s3 24s2 74s 50 0
由上式可求出分离点。但高阶方程求解困难,可采用 下述近似方法:
kg (s4 8s3 37s2 50s)
我们知道,分离点在负实轴[-2,0]区间上,所以当s在实 数范围内变化时, k g最大时为分离点。
❖ 起点、终点和根轨迹支数同常规根轨迹;
❖ 渐进线:与实轴的交点同常规根轨迹;但倾斜角不同, 为: 2k , k 0,1,2... ,有n-m个角度。
nm
❖ 实轴上的根轨迹:其右方实轴上的开环零极点之和为偶 数(包括0)的区域。 ❖分离点、会合点和分离角:同常规根轨迹;
Saturday, March 20, 2021
;
(2k
1)
,k
0,1,2,3...
nm
nm
计算极点处的出射角和零点处入射角:
出射角 (从其他极点到该极点的矢量幅角)
(从其他零点到该极点的矢量幅角)
入射角 (从各个极点到该零点的矢量幅角)
(从其他零点到该零点的矢量幅角)
Saturday, March 20, 2021
2
计算根轨迹和虚轴的交点; 计算会合点和分离点:由N'(s)D(s)- N(s)D'(s) 0求解
13
二、 多回路系统的根轨迹
简单处理办法:将多回路系统等效为单回路系统,再绘制 180度根轨迹或参量根轨迹。
三、 正反馈系统的根轨迹
以上我们讨论的都是闭环负反馈系统的根轨迹绘制准则。 在实际的复杂系统中,可能有局部的正反馈的结构。正反馈系 统的根轨迹绘制准则与负反馈系统根轨迹略有不同。如下图所 示系统:
3
1
0 j4
s4
1
37 kg 当劳斯阵某一行全为零时,有共
s3
8
50 0 轭虚根。这时,kg 192 .2 。
s2 30.75
kg 0 辅助方程为:30.75s2 192.2 0 ,
s1 1537.5 8kg 0 0 解得共轭虚根为:s1,2 j2.5
30.75
s0
Saturday,
Marckhg20,