用放缩法证明不等式的方法与技巧

合集下载

证明数列不等式之放缩技巧及缩放在数列中的应用大全[精选.]

证明数列不等式之放缩技巧及缩放在数列中的应用大全[精选.]

证明数列不等式之放缩技巧以及不等式缩放在数列中应用大全证明数列型不等式,其思维跨度大、构造性强,需要有较高的放缩技巧,充满思考性和挑战性。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩. 一、利用数列的单调性 例1.证明:当Z n n ∈≥,6时,(2)12nn n +<. 证法一:令)6(2)2(≥+=n n n c nn ,则0232)2(2)3)(1(1211<-=+-++=-+++n n n n n n n n n n c c , 所以当6n ≥时,1n n c c +<.因此当6n ≥时,66831.644n c c ⨯≤==< 于是当6n ≥时,2(2)1.2n n +< 证法二:可用数学归纳法证.(1)当n = 6时,66(62)48312644⨯+==<成立. (2)假设当(6)n k k =≥时不等式成立,即(2)1.2kk k +< 则当n =k +1时,1(1)(3)(2)(1)(3)(1)(3)1.222(2)(2)2k k k k k k k k k k k k k k++++++++=⨯<<++g 由(1)、(2)所述,当n ≥6时,2(1)12n n +<. 二、借助数列递推关系 例2.已知12-=n n a .证明:()23111123n n N a a a *++++<∈L . 证明:nn n n n a a 121121212211211111⋅=-⋅=-<-=+++Θ, ∴32])21(1[321)21(...12111112122132<-⋅=⋅++⋅+<+++=-+n n n a a a a a a S Λ. 例3. 已知函数f(x)=52168xx+-,设正项数列{}n a 满足1a =l ,()1n n a f a +=.(1) 试比较n a 与54的大小,并说明理由; (2) 设数列{}n b 满足n b =54-n a ,记S n =1ni i b =∑.证明:当n ≥2时,S n <14(2n-1).分析:比较大小常用的办法是作差法,而求和式的不等式常用的办法是放缩法。

用放缩法证明数列中的不等式

用放缩法证明数列中的不等式

用放缩法证明数列中的不等式数列的放缩法是一种通过递推关系以及寻找合适的不等式对数列进行估计的方法。

该方法在不失一般性的情况下,常常可以将原数列与一个已知数列进行比较,从而推导得出数列的性质。

本文将通过数学归纳法,对给定的数列进行放缩法证明,并给出详细推导过程。

假设我们有一个数列${a_n}$,其中$n \geq 1$。

我们要证明数列中的不等式,即要证明对于任意的$n \geq 1$,有$a_n \leq b_n$,其中${b_n}$是一个已知的数列。

我们将使用数学归纳法来证明这个结论。

首先,我们对$n=1$进行证明,即证明$a_1 \leq b_1$。

因为$n=1$是最小的情况,所以我们直接检验$a_1$和$b_1$的大小关系即可。

接下来,我们假设当$n=k$时,不等式$a_k \leq b_k$成立,即数列前$k$项满足不等式。

然后,我们要证明当$n=k+1$时,不等式$a_{k+1} \leq b_{k+1}$也成立。

根据数列的递推关系,我们可以推导出数列前$k+1$项的关系式:$$a_{k+1}=f(a_k)$$其中$f(x)$是一个函数,表示数列的递推关系。

由于我们已经假设在$n=k$时$a_k \leq b_k$成立,因此我们可以得到:$$a_{k+1} = f(a_k) \leq f(b_k)$$这是因为$f$是一个单调递增的函数,所以不等式保持不变。

根据已知数列${b_n}$的性质,我们可以得到:$$f(b_k) \leq b_{k+1}$$这里的不等式是基于对已知数列的假设,即已知数列${b_n}$满足这个不等式。

综合以上的不等式关系$$a_{k+1} \leq f(b_k) \leq b_{k+1}$$因此,当$n=k+1$时不等式$a_{k+1} \leq b_{k+1}$也成立。

根据数学归纳法原理,我们可以得出结论:对于任意的$n \geq 1$,数列${a_n}$满足不等式$a_n \leq b_n$。

用放缩法证明方法与技巧

用放缩法证明方法与技巧

二、常见的放缩法技巧 1、基本不等式、柯西不等式、排序不等式放缩
b bm (m 0, a b) . 2、糖水不等式放缩: a am
3、添(减)项放缩 4、先放缩,后裂项(或先裂项再放缩) 5、逐项放大或缩小:
三、常用公式
1 1 1 1. 2 k (k 1) k k (k 1)
0, a t a, a t a
n 1 n , 2 n n n 1 , n 1 1 n 1 , n(n 1) n 2 n 1 1 1 1 1 1 1 (3) 2 (n 1) n n 1 n(n 1) n n(n 1) n 1 n 2 2 1 2 (4) 2( n 1 n ) 2( n n 1) n 1 n n n n n n 1 a a a am , (5)若 a, b, m R ,则 b bm b b 1 1 1 1 1 1 1 2 n 1 (6) 1 2! 3! n! 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 (1 ) ( ) ( ) (7) (因为 ) 22 32 n2 2 2 3 n 1 n n 2 (n 1)n 1 1 1 1 1 1 1 n 1 (7) n 1 n 2 n 3 2n n 1 n 1 n 1 n 1 1 1 1 1 1 1 1 n 1 或 n 1 n 2 n 3 2n 2n 2n 2n 2n 2 1 1 1 1 1 1 n n 等等。 (8) 1 2 3 n n n n n
一、放缩法原理 为了证明不等式 A B , 我们可以找一个或多个中间变量 C 作比较, 即若能判定 A C, C B 同时成立, 那么 A B 显然正确。 所谓 “放” 即把 A 放大到 C,再把 C 放大到 B;反之,由 B 缩小经过 C 而变到 A, 则称为“缩” ,统称为放缩法。放缩是一种技巧性较强的不等变形,必 须时刻注意放缩的跨度,做到“放不能过头,缩不能不及” 。

用“放缩法”证明不等式的基本方法

用“放缩法”证明不等式的基本方法

用“放缩法”证明不等式的基本方法近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能力。

特别值得一提的是,高考中可以用“放缩法”证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点, 有极大的迁移性, 对它的运用往往能体现出创造性。

“放缩法”它可以和很多知识内容结合,对应变能力有较高的要求。

因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。

下面结合一些高考试题,例谈“放缩”的基本策略,期望对读者能有所帮助。

1、添加或舍弃一些正项(或负项)例1、已知*21().n n a n N =-∈求证:*122311...().23n n a a a n n N a a a +-<+++∈ 证明: 111211111111.,1,2,...,,2122(21)2 3.222232k k k k k k kk a k n a +++-==-=-≥-=--+-Q1222311111111...(...)(1),2322223223n n n n a a a n n n a a a +∴+++≥-+++=-->-*122311...().232n n a a a n nn N a a a +∴-<+++<∈ 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。

由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。

本题在放缩时就舍去了22k-,从而是使和式得到化简.2、先放缩再求和(或先求和再放缩) 例2、函数f (x )=xx 414+,求证:f (1)+f (2)+…+f (n )>n +)(2121*1N n n ∈-+. 证明:由f (n )=nn 414+=1-1111422n n>-+⋅ 得f (1)+f (2)+…+f (n )>n22112211221121⋅-++⋅-+⋅-Λ)(2121)2141211(41*11N n n n n n ∈-+=++++-=+-Λ.此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。

用放缩法证明数列中的不等式(共 32张PPT)

用放缩法证明数列中的不等式(共 32张PPT)

1 2n 1
2 n(n 1)
2(1 n
1) n 1
(n 3)
5. 2( n 1 n)
2
1 2
2
2( n n 1)
1)
(2i
2i 1)(2i
2)
2i1
1
1
(2i
1)(2i 1
1)
2i1
1
2i
(i 1
2)
n
11
1
1
1
i 1
ai
(ai
1)
2
(
2
1
22
) 1
(
2n1
1
2n
) 1
3
2n
1
3(n
2)
当n 1时,有 2 3 也成立.
常见的裂项放缩技巧:
1.
1 n2
1 n2 1
(n
1 1)(n
1)
1 1 1 2 n 1 n 1
用放缩法证明 数列中的不等式
放缩法证明数列不等式是数列中的难点内容,在近几
年的高考数列试题中都有考查.放缩法灵活多变,技巧性 要求较高,所谓“放大一点点就太大,缩小一点点又太 小”,这就让同学们找不到头绪,摸不着规律,总觉得高 不可攀!高考命题专家说:“放缩是一种能力.” 如何把 握放缩的“度”,使得放缩“恰到好处”,这正是放缩法 的精髓和关键所在!其实,任何事物都有其内在规律,放 缩法也是“有法可依”的,本节课我们一起来研究数列问
对1 n2
的 3 种放缩方法体现了
n
三种不同“境界”,得到
1 的三个“上界”,其中 5 最接近
k2
k 1
3
1
k2
k 1
2

放缩法证明不等式

放缩法证明不等式

放缩法证明不等式所谓放缩法,就是针对不等式的结构特征,运用不等式及有关的性质,对所证明的不等式的一边进行放大或缩小或两边放大缩小同时兼而进行,以达到证明结果的方法。

但无论是放大还是缩小都要遵循不等式传递性法则,保证放大还是缩小的连续性,不能牵强附会,须做到步步有据。

比如:证a <b ,可先证a <h 1,成立,而h 1<b 又是可证的,故命题得证。

数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。

“放缩法”可以和很多知识内容结合,对应变能力有较高的要求。

因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。

利用放缩法证明不等式,既要掌握放缩法的基本方法和技巧,又须熟练不等式的性质和其他证法。

做到放大或缩小恰到好处,才有利于问题的解决。

一、用放缩法证明不等式的基本策略1、运用放大、缩小分母或分子的办法来达到放缩的目的分式的放缩对于分子分母均取正值的分式,如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可.还可利用真分数的分子和分母加上同一个正数,则分数值变大;假分数的分子和分母加上同一个正数,则分数值变小来进行放缩. 例1、若a ,b ,c ,d 是正数.求证:12a b c d a b ca b db c da c d<+++<++++++++证明:a b c d a b c a b db c d a c d+++++++++++1abc da b c d a b c d a b c d a b c d>+++=++++++++++++又2a b c d a b c da b c a b d b c d a c d a b a b c d c d+++<+++=++++++++++++ 或a b c d a b ca b d b c da c d +++++++++++2a bb ca cb d a bcd a b c da b c da b c d++++<+++=++++++++++++(利用(0)a a mm b b m+<>+) ∴12a bcda b ca b d b c d a c d <+++<++++++++例2、求证:213121112222<++++n证明:∵nn n n n111)1(112--=-<∴2222111111*********232231nn nn++++<+-+-++-=-<-【变式】2222111171234n++++<∵nn n n n111)1(112--=-<∴2222211111111151171()()1232231424nn nn++++<++-++-=+-<-本题说明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即放不能太宽、缩不能太窄,真正做到恰到好处。

高考数学数列不等式证明题放缩法十种方法技巧总结(无师自通)

高考数学数列不等式证明题放缩法十种方法技巧总结(无师自通)

1. 均值不等式法例1 设.)1(3221+++⋅+⋅=n n S n !求证.2)1(2)1(2+<<+n S n n n例2 已知函数bxa x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121)()2()1(1−+>++++n n n f f f ! 例3 求证),1(221321N n n n C C C Cn n nn n n ∈>⋅>++++−!.例4 已知222121n a a a +++=L ,222121n x x x +++=L ,求证:n n x a x a x a +++!2211≤1.2.利用有用结论例5 求证.12)1211()511)(311)(11(+>−++++n n ! 例6 已知函数.2,,10,)1(321lg )(≥∈≤<⋅+−++++=∗n N n a nn a n x f xx x x 给定!求证:)0)((2)2(≠>x x f x f 对任意∗∈N n 且2≥n 恒成立。

例7 已知112111,(1).2n nna a a n n +==+++ )(I 用数学归纳法证明2(2)n a n ≥≥;)(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈L)例8 已知不等式21111[log ],,2232n n N n n ∗+++>∈>L 。

2[log ]n 表示不超过n 2log 的最大整数。

设正数数列}{n a 满足:.2,),0(111≥+≤>=−−n a n na a b b a n n n 求证.3,][log 222≥+<n n b ba n再如:设函数()x f x e x =−。

(Ⅰ)求函数()f x 最小值;(Ⅱ)求证:对于任意n N ∗∈,有1().1nn k k ene =<−∑ 例9 设n n na )11(+=,求证:数列}{n a 单调递增且.4<n a3. 部分放缩例10 设++=a na 21111,23a aa n ++≥L ,求证:.2<n a例11 设数列{}n a 满足()++∈+−=N n na a a n n n 121,当31≥a 时证明对所有,1≥n 有:2)(+≥n a i n ; 21111111)(21≤++++++na a a ii !. 4 . 添减项放缩例12 设N n n∈>,1,求证)2)(1(8)32(++<n n n . 例13 设数列}{n a 满足).,2,1(1,211!=+==+n a a a a nn n 证明12+>n a n 对一切正整数n 成立;5 利用单调性放缩: 构造函数例14 已知函数223)(x ax x f −=的最大值不大于61,又当]21,41[∈x 时.81)(≥x f (Ⅰ)求a 的值;(Ⅱ)设∗+∈=<<N n a f a a n n ),(,21011,证明.11+<n a n 例15 数列{}n x 由下列条件确定:01>=a x ,,211⎟⎟⎠⎞⎜⎜⎝⎛+=+n n n x a x x N n ∈. (I) 证明:对2≥n总有a x n≥;(II) 证明:对2≥n 总有1+≥n n x x6 . 换元放缩例16 求证).2,(1211≥∈−+<<∗n N n n n n例17 设1>a ,N n n ∈≥,2,求证4)1(22−>a n a n.7 转化为加强命题放缩例18 设10<<a ,定义a a a a a nn +=+=+1,111,求证:对一切正整数n 有.1>n a 例19 数列{}n x 满足.,212211nx x x x n n n +==+证明.10012001<x例20 已知数列{a n}满足:a 1=32,且a n=n 1n 13na n 2n N 2a n 1∗≥∈--(,)+- (1)求数列{a n }的通项公式;(2)证明:对一切正整数n 有a 1•a 2•……a n <2•n!8. 分项讨论例21 已知数列}{n a 的前n 项和n S 满足.1,)1(2≥−+=n a S n n n(Ⅰ)写出数列}{n a 的前3项321,,a a a ; (Ⅱ)求数列}{n a 的通项公式;(Ⅲ)证明:对任意的整数4>m ,有8711154<+++ma a a !.9. 借助数学归纳法例22(Ⅰ)设函数)10( )1(log )1(log )(22<<−−+=x x x x x x f ,求)(x f 的最小值;(Ⅱ)设正数n p p p p 2321,,,,!满足12321=++++n p p p p !,求证:np p p p p p p p n n −≥++++222323222121log log log log !10. 构造辅助函数法例23 已知()f x = 2ln 243x x +−,数列{}n a 满足()()*11 2 ,0211N n a f a n an ∈=<<−++(1)求()f x 在⎥⎦⎤⎢⎣⎡−021,上的最大值和最小值; (2)证明:102n a −<<; (3)判断n a 与1()n a n N ∗+∈的大小,并说明理由.例24 已知数列{}n a 的首项135a =,1321n n n a a a +=+,12n =L,,.(Ⅰ)求{}n a 的通项公式; (Ⅱ)证明:对任意的0x>,21121(1)3n na x xx ⎛⎞−−⎜⎟++⎝⎠≥,12n =L ,,; (Ⅲ)证明:2121n n a a a n +++>+L .例25 已知函数f(x)=x 2-1(x>0),设曲线y=f(x)在点(x n ,f(x n ))处的切线与x 轴的交点为(x n+1,0)(n∈N *). (Ⅰ) 用x n 表示x n+1; (Ⅱ)求使不等式1n n x x +≤对一切正整数n 都成立的充要条件,并说明理由;(Ⅲ)若x 1=2,求证:.31211111121−≤++++++n n x x x !例1 解析 此数列的通项为.,,2,1,)1(n k k k a k !=+=2121)1(+=++<+<k k k k k k ∵,)21(11∑∑==+<<∴nk n n k k S k ,即.2)1(22)1(2)1(2+<++<<+n n n n S n n n注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2ba ab +≤,若放成1)1(+<+k k k 则得2)1(2)3)(1()1(21+>++=+<∑=n n n k S nk n ,就放过“度”了!②根据所证不等式的结构特征来选取所需要的重要不等式,这里3,2=n 等的各式及其变式公式均可供选用。

不等式放缩技巧十法

不等式放缩技巧十法

第六章 不等式第二节 不等式放缩技巧十法证明不等式,其基本方法参阅<数学是怎样学好的>(下册)有关章节.这里以数列型不等式的证明为例说明证明不等式的一个关键问题: 不等式的放缩技巧。

证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下十种:一 利用重要不等式放缩1. 均值不等式法例1 设.)1(3221+++⋅+⋅=n n S n 求证.2)1(2)1(2+<<+n S n n n 解析 此数列的通项为.,,2,1,)1(n k k k a k=+=2121)1(+=++<+<k k k k k k , )21(11∑∑==+<<∴nk n nk k S k ,即.2)1(22)1(2)1(2+<++<<+n n n n S n n n 注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2ba ab +≤,若放成1)1(+<+k k k 则得2)1(2)3)(1()1(21+>++=+<∑=n n n k S nk n ,就放过“度”了! ②根据所证不等式的结构特征来选取所需要的重要不等式,这里na a n a a a a a a nnnnn n22111111++≤++≤≤++其中,3,2=n 等的各式及其变式公式均可供选用。

例 2 已知函数bxa x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121)()2()1(1-+>++++n n n f f f [简析] 411()11(0)141422x x x xf x x ==->-≠++∙ 1(1)()(1)22f f n ⇒++>-⨯211(1)(1)2222n+-++-⨯⨯ 1111111(1).42222n n n n -+=-+++=+- 例3 求证),1(221321N n n n C C C C n n nnnn∈>⋅>++++- .简析 不等式左边123nn n n n C C C C ++++=12222112-++++=-n nn n n 122221-⋅⋅⋅⋅⋅> =212-⋅n n ,故原结论成立.【例4】已知222121n a a a +++=,222121n x x x +++=,求证:n n x a x a x a +++ 2211≤1.【解析】使用均值不等式即可:因为22(,)2x y xy x y R +≤∈,所以有22222211221122222n n n n a x a x a x a x a x a x ++++++≤+++2222221212111.2222nna a a x x x ++++++=+=+= 其实,上述证明完全可以改述成求n n x a x a x a +++ 2211的最大值。

高中数学讲义:放缩法证明数列不等式

高中数学讲义:放缩法证明数列不等式

放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。

本节通过一些例子来介绍利用放缩法证明不等式的技巧1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 )(2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和:若()()()121,2,,n a f a f a f n >>>L ,则:()()()1212n a a a f f f n +++>+++L L (3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数注:这两条性质均要注意条件与结论的不等号方向均相同2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点:① 等差数列求和公式:12nn a a S n +=×,n a kn m =+(关于n 的一次函数或常值函数)② 等比数列求和公式:()()1111n n a q S q q -=¹-,n n a k q =×(关于n 的指数类函数)③ 错位相减:通项公式为“等差´等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

用放缩法证明不等式时如何放缩

用放缩法证明不等式时如何放缩
+—
n + C 以 十D
又 因 为 2 =( 1 + 1 ) c n o + c +c A+c +c 1 +
十 八 槲1 > 2 川, 所 以 n ) > 者 。
3 “ 添舍” 放缩
< 2。
通过对 不等 式的一 边进行 添项 或减项 以达 到解题 目的 , 这是常规思路 。
的氛 围 , 为开展探究活 动做好思 想上 、 心理上 的准备。在探 究 解决 了学生 的学习态度 、 学习 习惯 问题 , 使教 学质 量的提高和 过程 中 , 教师 要通 过巡视 、 观察 、 参 与讨 论等方 式给 学生 以积 学生 学习能力 的发 展有了可靠保证 。 同时 , 也 创设了富有生机
1 分 式 放 缩

证明: 由题意 知 , ( , z ) 一 n 丁=
" 十 l
, ’ 十

一 n 丁= ( 1 一
"十 l
, _ 十

) 一
r 一 : : 二 1 丝 ± 2
3 , 所 以只须证 2 一 >2 n +1 ,
n + l
n + l 2 1 ( n + 1 ) ( 2 1 )’
个分式若 分子变大则 分式值变 大 ,若分 母变大 则分式
又因为 n EA r 且
值 变小 , 一个真 分式 , 分子、 分母 同时 加上 同一个 正数 则分式 值 变大 , 利用这些 性质 , 可达到证题 目的 。 例 1 :已知 a 、 b 、 c为三 角 形 的三 边 ,求 证 : 1 < L +


证明 : 由题 设得 a 2 + a b + b a + b, 于是( 口 + ) >a 2 +a b + +— + — , 又 口 , b , c为三 角形 的 边 , 故 + a +b +c ’a +b +c 。 a+b +c ’ ~ “’ ’ 。 — — n 工’ 。 b 2 =a + b , 又a + b >0 , 得 n + >l , 又 < 1( 日 + 6 ) i l i i ( 日 + 6 ) =

放缩法证明不等式例题

放缩法证明不等式例题

放缩法证明不等式一、放缩法原理为了证明不等式B A ≤,我们可以找一个或多个中间变量C 作比较,即若能判定B C ,C A ≤≤同时成立,那么B A ≤显然正确。

所谓“放”即把A 放大到C,再把C 放大到B ;反之,由B 缩小经过C 而变到A,则称为“缩”,统称为放缩法。

放缩是一种技巧性较强的不等变形,必须时刻注意放缩的跨度,做到“放不能过头,缩不能不及”。

二、常见的放缩法技巧1、基本不等式、柯西不等式、排序不等式放缩 2、糖水不等式放缩:)b a ,0m (ma mb a b >≥++≤. 3、添(减)项放缩4、先放缩,后裂项(或先裂项再放缩)5、逐项放大或缩小:)1n (n 1n 1)1n (n 12-<<+ 21n 2)1n (n n +<+<)12)(32(1)12(12--<-n n n )12)(12(1)12(12+->-n n n )22(21)12(12+<+n n n三、例题讲解例1:设a 、b 、c 是三角形的边长,求证cb a cb ac b a c b a -++-++-+≥3例2:设a 、b 、c ≥0,且3=++c b a ,求证abc c b a 23222+++≥29例3:已知*21().n n a n N =-∈求证:*122311...().23n n a a a n n N a a a +-<+++∈例4:函数f (x )=xx 414+,求证:f (1)+f (2)+…+f (n )>n +)(2121*1N n n ∈-+.例5:已知a n =n ,求证:∑nk=1 ka 2k<3.例6: 已知数列{}n a ,,132a =,113(2,*)21n n n na a n n N a n --=≥∈+-.(1)求数列{}n a 的通项公式;(2)对一切正整数n ,不等式123!n a a a a n λ⋅⋅<⋅恒成立,试求正整数的最小值。

例谈证明不等式的四种常用措施

例谈证明不等式的四种常用措施

=
cos2 a, a

(0,
π 2
)

æ è
x
+
1 x
öøæèç
y
+
1 y
ö
÷
ø
=
æ
ç
sin2
a
è
+
1 sin2a
öæ
֍
cos2
a
øè
+
1 cos2a
ö
÷
ø
=
sin4 a
+
cos4a - 2 sin2a 4 sin22a
cos2 a
+
2

( ) =
4 - sin2a 2 + 16 , 4 sin22a
(x)
=
(
cos sin
α β
)x
+
(
cos sin
β α
)x,
且x < 0,
α,β ∈
æ è
0,
π 2
öø,若
f (x) > 2, 求证:α + β >
π 2
.
证明:假设0
<
α
+
β

π 2
,
由α, β

(0,π2 )可得0
<
α

π 2
-
β

π 2


cos
α

cosæè
π 2
-
β
ö ø
=
sin
β
>
1)
=
2n2
+

放缩法证明数列不等式经典例题

放缩法证明数列不等式经典例题

放缩法证明数列不等式经典例题放缩法证明数列不等式放缩法是一种证明数学不等式的方法,它利用一些基本的放缩技巧来推导出更复杂的不等式。

下面介绍几种常用的放缩技巧:1.$\frac{1}{n(n+1)}<\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right)$证明:将右边的式子化简得到$\frac{1}{n(n+1)}<\frac{1}{2n}-\frac{1}{2(n+1)}$,再将右边的两项合并得到$\frac{1}{n(n+1)}<\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right)$。

2.$\frac{n}{n+1}<\sqrt{\frac{n}{n+1}}<\frac{n+1}{n}$证明:将右边的式子平方得到$\frac{n}{n+1}<\frac{n}{n+1}<\frac{(n+1)^2}{n(n+1)}$,再将中间的式子平方根得到$\frac{n}{n+1}<\sqrt{\frac{n}{n+1}}<\frac{n+1}{n}$。

3.$\frac{1}{n^2}<\frac{1}{n(n-1)}-\frac{1}{(n+1)n}$证明:将右边的式子通分得到$\frac{1}{n(n-1)}-\frac{1}{(n+1)n}=\frac{1}{n(n+1)}-\frac{1}{n(n-1)}$,再将右边的两项合并得到$\frac{1}{n^2}<\frac{1}{n(n-1)}-\frac{1}{(n+1)n}$。

4.$\frac{2}{n(n-1)}<\frac{1}{n-1}-\frac{1}{n+1}$证明:将右边的式子通分得到$\frac{1}{n-1}-\frac{1}{n+1}=\frac{2}{n(n+1)}$,再将右边的式子倒数得到$\frac{2}{n(n-1)}<\frac{1}{n-1}-\frac{1}{n+1}$。

多样性放缩巧证不等式

多样性放缩巧证不等式

数学篇思维之锥再借助“反函数定义域是原函数值域”这一性质,确定原函数的值域。

例2求函数y =e x-1e x +1的值域.解先证明y =e x-1+1有反函数,为此,可设x 1<x 2,且x 1,x 2∈R,y 1-y 2=e x 1-1e x 1+1-e x 2-1e x 2+1=2(e x 1-e x 2)(e x 1+1)(e x 2+1)<0所以函数y 为增函数,存在反函数,这样即可求出其反函数为y -1=In1+x 1-.此函数的定义域为x ∈(-1,1),故原函数的值域为y ∈(-1,1).评注函数与它的反函数的定义域和值域是一种互逆关系,通过反函数的定义域可以明确出原函数的值域。

“正难则反”策略表现形式三:命题———逆否命题法逆否命题法,即通过证明它的逆否命题成立,从而达到证明原命题成立的一种证明方法。

在判断某些命题的真假时,若判断原命题的真假存在困难,此时,可以转换思维方向,通过变更命题形式,从逆否命题入手,判断出它的逆否命题的真假,从而明确原问题的真假。

例3已知f (x )为R上的增函数,(1)证明:命题“若a +b ≥0,则f (a )+f (b )≥f (-a )+f (-b )”为真命题;(2)写出(1)中命题的逆命题并判断其真假,且加以证明。

证明(1)∵a +b ≥0∴a ≥-b ,b ≥-a ∵f (x )为R上的增函数∴f (a )≥f (-b ),f (b )≥f (-a ),∴f (a )+f (b )≥f (-a )+f(-b )故命题“若a +b ≥0,则f (a )+f (b )≥f (-a )+f (-b )”为真命题。

(2)(1)的逆命题为“已知函数f (x )为R上的增函数,若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0”为真命题。

要判断该逆命题的真假,只需判断该逆命题的否命题“若a +b <0,则f (a )+f (b )<f (-a )+f (-b )”的真假即可。

数学所有不等式放缩技巧及证明方法

数学所有不等式放缩技巧及证明方法

文档收集于互联网,已重新整理排版word 版本可编辑•欢迎下载支持.高考数学所有不等式放缩技巧及证明方法一、裂项放缩畀 2 15例1.⑴求芥门 --------- 7的值; (2)求证:>2 7T V —・A=1 4* — 1Ar = l k3例2・⑴求证:1 +丄+丄+・・・+ —>1-一!一> 2)32 52⑵Li ), 6 2(2n-1)1 1 1 1 114 16 364n 2 2 4n⑶求证丄+12+空+」"•…⑵i2 2-4 2-4-6 2-4-6••…2n例 3•求证: ---- - ---- <i + l +l + ... + -L<-(n +1)( 2/1 + 1)4 9 ir 3例4・(2008年全国一卷)设函数f ⑴二X-H1U.数列仇}满足0<q<l ・% 明:畋+】>b.例 5.已知",加 e 他,兀 > -1,S,” 二 r n + T +3川 + …+ 心求证:/严 < (m +1)5,, <(〃 + 1严 -1例 6.已知® = 4" - T , T n= ------ 二 ----- ,求证:£+◎+◎人 < —.a { + a 2 + ・• • + a n2例7.已知坷=1, £ = < W (mi,"Z),求证:亠*亠+ •..+亠>逅(耐®訓) W - l(n = 2k 、k wZ) 护2 ・x 3 化・x 5.. 4丁 /、 In 2a In 3a In n a hr -n-l例 9.求证——<^—^^>2)例 10.求证:—+ - + ・・・ + —< ln(n + 1) < 1 + —4-・・• +」■2 3 77 + 1 2 n例 11.求证:(1 + \(1 +、•….(1 + ^-Xe 和(1 + ;)(1 + 厶)•….(1 + 点)<辰 2! 3! n\ 9 81 3" 例 12•求证:(1 +1 x 2) • (1 + 2 x 3) ••…[1 + n(n +1)] > 严I12例14.已知4=1。

20181207放缩法证明不等式

20181207放缩法证明不等式
2
(2)若 f (x) 在定义域内为增函数,求a 的取值范围;
(3)设 g(x) f (x) x2 1 ,当a 1 时,
求证:① g(x) 0在其定义域内恒成立;
求证:②
ln 22 ln 32 22 32

ln n2 n2

2n2 n 1
2n 1

例4. 证明: x2ex-lnx>1 .
O
1
x
x 1
x 1
x
≤lnx≤ x ≤ 1
y x
y
2
y=x-1
y=lnx
y x1 x
O
1
x
x1 ≤
x 1 x≤lnx≤ x-1
x
2
(0<x≤1)
6.(本小题满分 14 分)设函数 f (x) ln x x2 ax 。 (1)若 f (x) 在x 1 处取得极值,求a 的值;
O
1
x
方法三:
方法四:
又由
f '(x0)=0
得:( x02
2 x0 ) ex0

1 x0

0
e x0

1 x02 ( x0
2)
x02 e x0

1 x0 2
f (x)≥ f (x0)=
x02ex0 ln x0 =
1 x0 2 ln x0
构造函数 h(x)=
1 ln x x2
,
x


放缩法证明不等式
放缩的方法
1。运用基本不等式和常见结论进行放缩 2。运用切线方程进行放缩 3。运用题目给出的不等式进行放缩。 4。运用参数范围进行放缩
切线放缩原理及常见的切线放缩
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用放缩法证明不等式的方法与技巧一.常用公式 1.)1(11)1(12-<<+k k k k k 2.12112-+<<++k k kk k3.22k k≥()4≥k 4.1232k k ⨯⨯⨯⋅⋅⋅⨯≥(2≥k )5.⎥⎦⎤⎢⎣⎡--≤!!(!k k k 1)11211(待学) 6.b a b a +≤+ (待学)二.放缩技巧所谓放缩的技巧:即欲证A B ≤,欲寻找一个(或多个)中间变量C ,使A C B ≤≤, 由A 到C 叫做“放”,由B 到C 叫做“缩”.常用的放缩技巧 (1)若0,,t a t a a t a >+>-<(2)<>11>n >= (3)21111111(1)1(1)(1)1n n n n n n n n n n-=<<=->++-- (4)=<=<= (5)若,,a b m R +∈,则,a a a a m b b m b b+><+ (6)21111111112!3!!222n n -+++⋅⋅⋅+<+++⋅⋅⋅+(7)2221111111111(1)()()232231n n n+++⋅⋅⋅+<+-+-+⋅⋅⋅+--(因为211(1)n n n <-) (7)1111111112321111n n n n n n n n n +++⋅⋅⋅+≤++⋅⋅⋅+=<+++++++或11111111123222222n n n n n n n n n +++⋅⋅⋅+≥++⋅⋅⋅+==+++(8)1+⋅⋅⋅+>⋅⋅⋅+== 三.常见题型(一).先求和再放缩: 1.设11112612(1)n S n n =+++++,求证:1n S <2.设1n b n =(n N *∈),数列2{}n n b b +的前n 项和为n T ,求证:34n T <(二).先放缩再求和: 3.证明不等式:11112112123123n++++<⨯⨯⨯⨯⨯⨯⨯4.设222111123nS n =++++(1)求证:当2n ≥时,21n nS n <<+; (2)试探究:当2n ≥时,是否有65(1)(21)3n n S n n <<++?说明理由.5.设135212462n n b n -=⋅⋅⋅⋅,求证: (1)n b <(2)1231n b b b b ++++<6.设na n =,212()n n n b a a +=+求证(1)12n n a a +<+(2)*123()1n nb b b b n N n ++++<∈+7. 设2(1)n b n =+,(1)n a n n =+, 求证:1122111512n n a b a b a b +++<+++…8. 蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图. 其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以()f n 表示第n 个图的蜂巢总数.(4),(5)f f 的值,并求()f n 的(1)试给出表达式(不要求证明); (2)证明:11114(1)(2)(3)()3f f f f n ++++<.9.(10广州)设n S 为数列}{na 的前n 项和,对任意的∈n N*,都有()1nn S m ma =+-m (为常数,且0)m >.(1)求证:数列}{na 是等比数列;(2)设数列}{na 的公比()m f q =,数列{}nb 满足()1112,nn b a b f b -== (2n ≥,∈n N *),求数列{}n b 的通项公式;(3)在满足(2)的条件下,求证:数列{}2n b 的前n 项和8918n T <.10.(010深圳)在单调递增数列{}n a 中,11a =,22a =,且21221,,n n n a a a -+成等差数列,22122,,n n n a a a ++成等比数列,1,2,3,n =.(1)分别计算3a ,5a 和4a ,6a 的值; (2)求数列{}n a 的通项公式(将n a 用n 表示); (3)设数列1{}n a 的前n 项和为n S ,证明:42n nS n <+,n *∈N .2.证:1nb n=21111()(2)22n b b b n n n n +==-++1324352n n n T b b b b b b b b +=+++11111111111[()()()()()]2132435462n n =-+-+-+-++-+ 11113(1)22124n n =+--<++ . 3.证明:1111112123123n++++⨯⨯⨯⨯⨯⨯⨯ <211111222n -++++1122n -=-<24.解:(1)∵当2n ≥时,21111(1)1n n n n n<=---∴2221111111111[(1)()()]2322311n n n ++++<+-+-++--+=121n -+2< 又∵21111(1)1n n n n n >=-++ ∴11111(1)()()2231nS n n >-+-++-+1111nn n =-=++ ∴当2n ≥时,21n nS n <<+.(2)∵22144112()4(21)(21)2121n n n n n n =<=--+-+ ∴222111111111112[()()()]2335572121n n n ++++<+-+-++--+=52321n -+53< 当2n ≥时,要6(1)(21)nn S n n >++只需61(1)(21)n nn n n >+++即需216n +>,显然这在3n ≥时成立 而215144S =+=,当2n ≥时6624(1)(21)(21)(41)5n n n ⨯==++++ 显然5445> 即当2n ≥时6(1)(21)nnS n n >++也成立综上所述:当2n ≥时,有65(1)(21)3n n S n n <<++.5.证法一:∵22414,nn -<∴222(21)(21)4(21)(21)4(21).n n n n n n n -+<⇒-+<-∴212n n -< ∴1352113521124623572121n n n n n--⋅⋅⋅⋅<⋅⋅⋅⋅=++.………………10分 证法二:212n n -<=,下同证法一. …………10分 证法三:(利用对偶式)设135212462n n A n -=⋅⋅,246235721n nB n =⋅⋅+, 则121n n A B n =+.又22414n n -<,也即212221n nn n -<+,所以n n A B <,也即2121n n nA AB n <=+, 又因为0n A >,所以n A <.即135212462n n -⋅⋅⋅⋅<………………10分 证法四:(数学归纳法)①当1n =时,112x =<命题成立; ②假设n k =时,命题成立,即135212462k k -⋅⋅< 则当1n k =+时,13521212124622(1)2(1)k k k k k k -++⋅⋅⋅<=++2222222211(21)(23)4(1)4(1)234(23)(1)(483)(484)14(23)(1)4(23)(1)k k k k k k k k k k k k k k k k +++-+-=++++++-++-==<++++22114(1)23k k k +∴<++ <即135212124622(1)k k k k -+⋅⋅⋅<+ 故当1n k =+时,命题成立.综上可知,对一切非零自然数n ,不等式②成立. ………………10分②由于122121212121k k k k k <<+--+++-,所以1212121k b k k k <<+--+, 从而12(31)(53)(2121)211n b b b n n n ++<-+-+++--=+-.也即12211n n b b b a ++<+-………………14分6. 证明:(法一)111211232112(1)211(),9(1)(1)1111223(1)n n n n n n n nn n n n a a a a a a a a n n b a a n n n n b b b n n +++++>⋅∴<=+⋅+∴<<+++∴++++<+++⋅⋅+即分b11111111223111nn n n n =-+-++-=-=+++ ………………12分 (法二)(1)当212411,(),21192n b =====⨯+时右右,显然成立 …………5分(2)假设n k =时,21212()123k k b b b k k ++++<+++ ………………7分22222222221()1232(2)(23)4(1)(2)(1)(23)(1)(23)(2)(23)[(2)(1)]4(32)(1)(23)(2)k k k k k k k k k k k k k k k k k k k k k k k k ++-++++++++-++=++⋅+++-++++=++⋅+ 2212110(1)(23)(2)21()123211112(1)1k k k k k k k k k k k b b b k k +-=<++⋅++∴+<+++++∴+++<=+++分即当1n k =+时,不等式成立,由(1)(2)可得原不等成立。

…………12分 6. 证明:(法一)111211232112(1)211(),9(1)(1)1111223(1)n n n n n n n nn n n n a a a a a a a a n n b a a n n n n b b b n n +++++>⋅∴<=+⋅+∴<<+++∴++++<+++⋅⋅+即分b11111111223111nn n n n =-+-++-=-=+++ ………………12分 (法二)(1)当212411,(),21192n b =====⨯+时右右,显然成立 …………5分(2)假设n k =时,21212()123k k b b b k k ++++<+++ ………………7分22222222221()1232(2)(23)4(1)(2)(1)(23)(1)(23)(2)(23)[(2)(1)]4(32)(1)(23)(2)k k k k k k k k k k k k k k k k k k k k k k k k ++-++++++++-++=++⋅+++-++++=++⋅+ 2212110(1)(23)(2)21()123211112(1)1k k k k k k k k k k k b b b k k +-=<++⋅++∴+<+++++∴+++<=+++分即当1nk =+时,不等式成立,由(1)(2)可得原不等成立。

相关文档
最新文档