2016年第十四届小学“希望杯”全国数学邀请赛培训题(五年级)
(完整)最新五年级希望杯近几年试题
(完整)最新五年级希望杯近⼏年试题2010年第⼋届⼩学“希望杯”全国数学邀请赛五年级第1试试题1、计算 10.37×3.4+1.7×19.26=。
2、已知1.08÷1.2÷2.3=10.8÷□,其中□表⽰的数是。
3、计算:1.825gg-0.8g=。
(8、5、8的上⾯有循环点)4、有三个⾃然数a ,b ,c ,已知b 除以a ,得商3余3;c 除以a ,得商9余11。
则c b ,得到的余数是。
5、已知300=2×2×3×5×5,则300⼀共有不同的约数。
6、在99个连续的⾃然数中,最⼤的数是最⼩的数的25.5倍,那么这99个⾃然数的平均数是。
7、要往码头运28个同样⼤⼩的集装箱,每个集装箱的质量是1560千克。
现安排⼀辆载重6吨的卡车运送这些集装箱,卡车车厢的⼤⼩最多可以容纳5个集装箱,则这辆卡车⾄少需往返趟。
8、⼩晴做道菜:“⾹葱炒蛋”,需7道⼯序,时间如下:洗葱,切葱花打蛋搅拌蛋液和葱花洗锅烧热锅烧热油烧菜1分钟半分钟 1分钟半分钟半分钟半分钟 2分钟做好这道菜⾄少要分钟。
9、⼀项特殊的⼯作必须⽇夜有⼈看守,如果安排8⼈轮流值班,当值⼈员为3⼈,那么,平均每⼈每天⼯作⼩时。
10、甲、⼄两商店中某商品的定价相同。
甲商店按定价销售这种商品,销售额是7200元;⼄商店按定价的⼋折销售,⽐甲商店多售出15件,销售额与甲商店相同。
则甲商店售出件这种商品。
11、夜⾥下了⼀场⼤雪,早上,⼩龙和爸爸⼀起步测花园⾥⼀条环形⼩路的长度,他们从同⼀点同向⾏⾛。
⼩龙每步长54厘⽶,爸爸每步长72厘⽶,两⼈各⾛完⼀圈后⼜都回到出发点,这时雪地上只留下60个脚印。
那么这条⼩路长⽶。
12、⼀艘客轮在静⽔中的航⾏速度是26千⽶/时,往返于A 、B 两港之间,河⽔的流速是6千⽶/时。
如果客轮在河中往返4趟公⽤13⼩时,那么A 、B 两港之间相距千⽶。
2016年第十四届小学“希望杯”全国数学邀请赛培训100题(六年级)
2016年六年级希望杯培训题1.计算:(1+0.2%+2%+20%)×(0.2%+2%+20%+200%)-(1+0.2%+2%+20%+200%)(0.2%+2%+20%)2.计算:2016×334 ×1.3+3÷223(1+3+5+7+9)×20+43.计算:11 -13 11 ×12 ×13 +12 -14 12 ×13 ×14 +13 -15 13 ×14 ×15 +…+ 12014 -1201612014 ×12015 ×120164.观察下面的一列数,找出规律,求a,b. 1,2,6,15,31,56,a,141,b,2865.112016 +12015 +12014 +12013 +12012 +12011的整数部分是 .6.若x+y=56 ,m+n=35 ,求xm+yn+xn+ym 的值.7.若两个不同的数字A 、B 满足AAB3=7B +0.6•,求A+B.8.定义:[a]表示不超过数a 的最大整数,如[0.1]=0,[8.23]=8. 求[ 53 ]+[ 75 ]+[ 97 ]+ … +[ 9795 ]+[ 9997 ]的值.9.比较 1111322224 和 2222544446 的大小.10.若P=2015201520162016 -2014201420152015 ,Q=2014201420152015 -2013201320142014 ,R=12015 -12016 。
比较P 、Q 、R的大小.11.若一个分数的分子减少10%,分母增加20%,则新分数比原分数减少了 %.12.一个分数,若分母减1,化简后得到13 ;若分子加4,化简后得到12,求这个分数.13.将一个三位数的百位数字减1,十位数字减2,个位数字减3,得到了一个新的三位数。
2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第1试).doc
2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第1试)2016 年第十四届小学希望杯全国数学邀请赛试卷(六年级第 1 试)一、以下每题 6 分,共 120 分 1.(6 分)计算:121 +12 . 2.(6 分)将化成小数,小数部分从左到右第 2016 个数字是. 3.(6 分)观察下面一列数的规律,这列数从左到右第 100 个数是.,,,, 4.(6 分)已知 a 是 1 到 9 中的一个数字,若循环小数 0.1 = ,则 a= . 5.(6 分)若四位数能被 13 整除,则 A+B+C 的最大值是. 6.(6 分)某自行车前轮的周长是 1 米,后轮的周长是 1 米,则当前轮比后轮多转 25 圈时,自行车行走了米. 7.(6 分)定义 a*b=2{ }+3{ },其中符号{x}表示 x 的小数部分,如{2.016}=0.016.那么,1.4*3.2= .【结果用小数表示】 8.(6 分)下列两个算式中,不同的字母代表不同的数字,相同的字母代表相同的数字,则 x+y+z+u= . 9.(6 分)如图,时钟显示 9:15,此时分针与时针的夹角是度.10.(6 分)如图,在正方形 ABCD 中,点 E 在边 AD 上,AE=3ED,点 F 在边 DC 上,当 S △ BEF 最小时,S △ BEF :S 正方形 ABCD 的值是. 11.(6 分)如图,三张卡片的正面各有一个数,它们的反面分别写有质数 m,n,p,若三张卡片正反两面的两个数的和都相等,则 m+n+p 的最小值是. 12.(6 分)3 2014 +4 2015 +5 2016 的个位数字是.(注:a m 表示 m 个 a 相乘) 13.(6 分)一个分数,若分母减 1,化简后得,若分子加 4,化简后得,这个分数是. 14.(6 分)如图是由 5 个相同的正方形拼接而成,其中点 B、P、C 在同一直线上,点 B、N、F 在同一条直线上,若直线 BF 左侧阴影部分的面积是直线 BF右侧阴影部分的面积的 2 倍,则 MN:NP= . 15.(6 分)在如图所示的 1012 的网格图中,猴子 KING 的图片是由若干圆弧和线段组成,其中最大的圆的半径是 4,图中阴影部分的面积是.(圆周率取 3)16.(6 分)若 2 a 3 b 5 c 7 d =252000,则从自然数 a、b、c、d 中任取 3 个组成三位数,这个三位数可被 3 整除并且小于 250 的概率是.17.(6 分)有一项工程,甲单独做需要 6 小时,乙单独做需 8 小时,丙单独做需 10 小时,上午 8 时三人同时开始,中间甲有事离开,如果到中午 12 点工程才完成,则甲离开的时间是上午时分. 18.(6 分)已知四位数,甲、乙、丙三人的结论如下:甲:个位数字是百位数字的一半;乙:十位数字是百位数字的 1.5 倍;丙:四个数字的平均数是 4.根据上面的信息可得: = . 19.(6 分)用棱长为 m 的小正方体拼成一个棱长为 12 的大正方体,现将大正方体的表面(6 个面)涂成红色,其中只有一个面是红色的小正方体与只有两个面是红色的小正方体的个数相等,则 m= . 20.(6 分)有一群猴子要将 A 地的桃子搬运到 B 地,每隔 3 分钟有一只猴子从A 地出发走向 B 地,全程需要 12 分钟,有一只兔子从 B 地跑步到 A 地,它出发的时候,恰有一只猴子到达 B 地,在路上它又遇到了 5 只迎面走来的猴子,继续向前到达 A 地,这时候.恰好又有一只猴子从 A 地出发,若兔子跑步的速度是 3 千米/小时,则 A、B 两地相距.2016 年第十四届小学希望杯全国数学邀请赛试卷(六年级第 1 试)参考答案与试题解析一、以下每题 6 分,共 120 分 1.(6 分)计算:121+12 .【分析】把 121 看作 100+21,再两次根据乘法分配律简算即可.【解答】解:121 +12 =(100+21) +12 =100 +21 +12 =52+13 +12 =52+(13+12)=52+25 =52+21 =73.【点评】完成本题要注意分析式中数据,运用合适的简便方法计算. 2.(6 分)将化成小数,小数部分从左到右第 2016 个数字是 5 .【分析】首先找到循环小数的循环节,用 2016 除以循环节找余数即可.【解答】解:依题意可知: = . 20163=672.那么第 2016 个数字就是 5.故答案为:5 【点评】本题考查对周期问题的理解和运用,关键是找到周期和余数,问题解决. 3.(6 分)观察下面一列数的规律,这列数从左到右第 100 个数是.,,,,【分析】分子是奇数列,分母是公差为 3 的等差数列,根据高斯求和相关公式:末项=首项+(项数﹣1)公差解答即可.【解答】解:分子:1+(100﹣1)2 =1+992 =199 分母:2+(100﹣1)3 =2+993 =299 所以,这列数从左到右第 100 个数是.故答案为:.【点评】本题考查了高斯求和相关公式:末项=首项+(项数﹣1)公差的灵活应用. 4.(6 分)已知 a 是1 到 9 中的一个数字,若循环小数 0.1 = ,则 a= 6 .【分析】0.1 化成分数是,则可得 = ,然后解关于 a 的一元二次方程即可.【解答】解:根据题意可, = 化简可得: a 2 +9a﹣90=0 (a+15)(a﹣6)=0 解得:a=﹣15(舍去),或 a=6,故答案为:6.【点评】本题考查了循环小数与分数的互化,以及因式分解. 5.(6 分)若四位数能被 13 整除,则 A+B+C 的最大值是 26 .【分析】要使 A+B+C 的最大值,最好使 A、B、C 三个字母都是数字 9,然后分 3个 9,2 个 9,1 个 9,来检验即可.【解答】解:首先考虑三个都是 9,即 =2999,检验可得 2999 不能被 13 整除;再考虑两个 9,一个 8,检验可得 2899 能被 13 整除,所以 a+b+c 的最大值为:8+9+9=26;故答案为:26.【点评】解答本题要结合数位知识和数字的特征解答. 6.(6 分)某自行车前轮的周长是 1 米,后轮的周长是 1 米,则当前轮比后轮多转 25 圈时,自行车行走了 300 米.【分析】可以先求得自行车后轮走的圈数,根据题意,每一圈前轮比后轮多走:1 ﹣1 = 米,前轮比后轮多转 25 圈,即多走了 251 = ,则可以求得前轮走的圈数,再用圈数乘以后轮的周长,即可得知自行车行走的路程.【解答】解:根据分析,先求得自行车后轮走的圈数,根据题意,每一圈前轮比后轮多走:1 ﹣1 = 米,前轮比后轮多转 25 圈,即多走了 251 = ,则可以求得后轮走的圈数: =200(圈);自行车行走了:2001 =300 米.故答案是:300.【点评】本题考查了分数和百分数的应用,突破点是:先求自行车后轮走的圈数,再求行程. 7.(6 分)定义 a*b=2{ }+3{ },其中符号{x}表示 x 的小数部分,如{2.016}=0.016.那么,1.4*3.2= 3.7 .【结果用小数表示】【分析】重点理解*{}的意义【解答】解: 1.4*3.2 =2{ }+3{ } =2{0.7}+3{0.7 }=20.7+3 =1.4+2.3 =3.7 故答案是 3.7 【点评】理解新定义内容,结合分数和小数之间的转换计算比较方便. 8.(6 分)下列两个算式中,不同的字母代表不同的数字,相同的字母代表相同的数字,则 x+y+z+u= 18 .【分析】显然,由第一个算式可知,x、y 中肯定有一个为 0,由第二个算式可知,x 不能为 0,故 y=0,又 y﹣x=x,得 x=5,由第二个算式,两个两位数相减和为一位数,则 z=4,再由第一个算式,不难求得其它字母代表的数字,最后求和.【解答】解:根据分析,由第一个算式可知,x、y 中肯定有一个为 0,由第二个算式可知, x 不能为 0,故 y=0,又 y﹣x=x,得 x=5;由第二个算式,两个两位数相减和为一位数,则 z=4;再由第一个算式,u=9,综上,x+y+z+u=5+0+4+9=18.故答案是:18.【点评】本题考查了整数的裂项和拆分,本题突破点是:从两个算式中求得每个字母代表的数字. 9.(6 分)如图,时钟显示 9:15,此时分针与时针的夹角是 172.5 度.【分析】在 9 点整时,分针每转一个大格式是 30 度,分针每分钟转 6 度,分针与时针的夹角是330=90 度,分针每分钟比时针多转(6﹣0.5)=5.5 度的夹角,15 分后,分针每分钟比时针多转 5.515=82.5(度),所以 9 点 15 分,时钟的分针与时针的夹角是:90+82.5=172.5(度);据此解答.【解答】解:根据分析,按顺时针计算: 330=90(度),(6﹣0.5)15 =5.515 =82.5(度),90+82.5=172.5(度);答:时钟显示 9:15,此时分针与时针的夹角是 172.5 度.故答案为:172.5.【点评】本题是钟面追及问题,难点是确定分针比时针每份追及的角度;注意分针每转一个大格式是 30 度,分针每分钟转 6 度. 10.(6 分)如图,在正方形 ABCD 中,点 E 在边 AD 上,AE=3ED,点 F 在边 DC上,当 S △ BEF 最小时,S △ BEF :S 正方形 ABCD 的值是 1:8 .【分析】按题意,显然 F 点在 DC 边上运动,当 F 点运动到 D 点时,三角形 BEF的面积最小,此时不难求得 S △ BEF :S 正方形 ABCD 的值.【解答】解:根据分析,F 点在 DC 边上运动,当 F 点运动到 D 点时,三角形 BEF 的面积最小,故如图:∵AE=3EDS △ BEF=S △ BDE== =S △ BEF : S 正方形 ABCD=1 : 8 故答案是:1:8 【点评】本题考查了三角形的面积,突破点是:利用 BEF 的面积的最小值,求得S △ BEF :S 正方形 ABCD 的值. 11.(6 分)如图,三张卡片的正面各有一个数,它们的反面分别写有质数 m,n,p,若三张卡片正反两面的两个数的和都相等,则 m+n+p 的最小值是 57 .【分析】根据题意可得,47+m=53+n=71+p,则 m=71+p﹣47,n=71+p﹣53,然后代入式子 m+n+p,讨论 p 的取值即可求出最小值.【解答】解:根据题意可得, 47+m=53+n=71+p,则 m=71+p﹣47=24+p,n=71+p﹣53=18+p,代入式子 m+n+p 可得, m+n+p =71+p﹣47+71+p﹣53+p =42+3p p=2、3、5、7 偶质数 2 不和题意舍去;当 p=3 时,n=18+p=18+3=21,21 不是质数,舍去;当 p=5 时,n=18+p=18+5=23,m=24+5=29,21、29 都是质数符合题意;所以,m+n+p 的最小值是: m+n+p =42+3p =42+35 =42+15 =57.故答案为:57.【点评】本题考查了极值问题与质数问题的综合应用,关键是统一到一个未知数上进行列举讨论.12.(6 分)3 2014 +4 2015 +5 2016 的个位数字是 8 .(注:a m 表示 m 个 a 相乘)【分析】可以分别求出 3 2014 、4 2015 、5 2016 的个位数字,再求和,即可得出原式结果的个位数字.【解答】解:根据分析,先求 3 2014 的个位数字,∵3 1 =3,3 2 =9,3 3 =27,3 4 =81,3 5 =243,显然 3 n 个位数为 3、9、7、1 按周期 4 循环出现,而 3 2014 =3 503*4+ 2 ,3 2014的个位数字为 9;然后求 4 2015 的个位数字,∵4 1 =4,4 2 =16,4 3 =64,4 4 =256,45 =1024,显然 4 n 个位数为 4、6 按周期 2 循环出现,而 4 2015 =4 1007 2 + 1 ,4 2015的个位数字为 4;最后求 5 2016 的个位数字,∵5 1 =5,5 2 =25,5 3 =125,5 4 =625,显然 5 n 个位数均为 5,5 2016 的个位数字为 5, 3 2014 +4 2015 +5 2016 的个位数字=9+4+5=18,故个位数字为:8 故答案是:8.【点评】本题考查了乘积的个位数,突破点是:利用乘积个位数的周期性求得原式的个位数. 13.(6 分)一个分数,若分母减 1,化简后得,若分子加 4,化简后得,这个分数是.【分析】设原来这个分数是,若分母减去 1,就变成,这与相等,若分子加 4,这个分数就变成了,这与相等,由此列出方程进行求解,得出x 和 y 的取值,从而得出这个分数.【解答】解:设原来这个分数是,则: = 那么 3y=x﹣1 x=3y+1; =x=2y+8,则: 3y+1=2y+8 3y﹣2y=8﹣1 y=7 x=27+8=22 所以这个分数就是.故答案为:.【点评】解决本题先设出数据,根据分数的变化情况找出等量关系列出方程求解即可. 14.(6 分)如图是由 5 个相同的正方形拼接而成,其中点 B、P、C 在同一直线上,点 B、N、F 在同一条直线上,若直线 BF 左侧阴影部分的面积是直线 BF右侧阴影部分的面积的 2 倍,则 MN:NP= 1:5 .【分析】可以将图形进行分割和拼接,最后得出两个长方形的面积之比,从而线段之比不难求得.【解答】解:根据分析,设正方形的边长为a,如图,过 P 点作 PDBD 交 BD于 D,∵OF=AB,PE=DP,S △ ONF =S △ ABN ,S △ PEC =S △ BDP ,左边阴影部分的面积=S △ ONF +S 四边形 BNMG =S 四边形 ABGM ;右边阴影部分的面积=S △ ABP +S △ PEC =S 矩形 APDB ,由题意,左边阴影部分的面积=2右边阴影部分的面积,(AMAB):(APAB)=2:1AM:AP=2:1故 AP= AM=EC,FC=EF+EC=2.5a,又因 NP= FC= ,故 MN=MP﹣NP=1.5a﹣ = a,MN:NP= a: =1:5,故答案为:1:5.【点评】本题考查了三角形的面积,突破点是:利用线段的比例关系,求得面积比,再求得线段的比例. 15.(6 分)在如图所示的 1012 的网格图中,猴子 KING 的图片是由若干圆弧和线段组成,其中最大的圆的半径是 4,图中阴影部分的面积是 21.5 .(圆周率取 3)【分析】按题意,可以将猴子 KING 的图中空白部分分割,而阴影部分的面积可以用圆的面积减去中间空白部分的面积,中间空白部分由一个长方形和两个半圆,以及两个圆组成.【解答】解:由图可知,圆的直径有 8 个方格,故可得:每个小方格的边长=88=1, a 和 b 部分的面积=2 1 2 = = =4.5;c 和d 部分的面积= =4=43=12;矩形的面积=25=10;最大的圆的面积=4 2 =163=48,故阴影部分的面积=最大的圆的面积﹣a 和 b 部分的面积﹣c 和 d 部分的面积﹣c和 d 之间的矩形的面积 =48﹣4.5﹣12﹣10=21.5.故答案是:21.5.【点评】本题考查了圆的面积,突破点是:利用大圆的面积减去中间空白部分的面积即可求得阴影部分的面积. 16.(6 分)若 2 a 3 b 5 c 7d =252000,则从自然数 a、b、c、d 中任取 3 个组成三位数,这个三位数可被3 整除并且小于 250 的概率是.【分析】首先分析将数字 252000 分解质因数求出 abcd 分别代表的数字是多少,同时枚举法即可.【解答】解:首先将 252000 分解质因数为 73 2 2 5 5 3 a=5,b=2,c=3,d=1.组成三位数共有 =432=24 个.小于 250 的数字有 1 开头的数字共 123,125,132,135,152,153 共 6 种.能被 3 整除的数有 123,132,153,135.数字 2 开头的有 213,215,231,235 共 4 个.3 的倍数有 213,231 共 2 种.概率为 = 故答案为:.【点评】本题考查对概率的理解和运用,关键问题是找到组成的三位数共有多少个.问题解决. 17.(6 分)有一项工程,甲单独做需要 6 小时,乙单独做需 8 小时,丙单独做需 10 小时,上午 8 时三人同时开始,中间甲有事离开,如果到中午 12 点工程才完成,则甲离开的时间是上午 8 时 36 分.【分析】甲乙丙的工作时间知道,工作效率即可知道.乙丙的工作时间已知,工作量可求.剩余的总量就是甲的总量,甲的效率已知,可以求出甲的工作时间.【解答】解:甲乙丙的效率分别为,乙丙工作共 4 小时,()4= ,甲工作总量为:1﹣ = ,甲的工作时间: = (小时),甲工作时间为:(分),甲离开的时间为 8:36.故答案为:8:36.【点评】此题为典型的分人工程,可根据乙丙工作效率和时间求出工作总量.再根据工作总量差求出甲的总量和所求的工作时间,问题解决. 18.(6 分)已知四位数,甲、乙、丙三人的结论如下:甲:个位数字是百位数字的一半;乙:十位数字是百位数字的 1.5 倍;丙:四个数字的平均数是 4.根据上面的信息可得: = 4462 .【分析】可以根据每个人的话判断 ABCD 的值,由甲的话可知,百位上的数字必为偶数,由三人的话可得出关系式,再求解,分别求得ABCD 的值.【解答】解:根据分析,由甲的话可知,百位上的数字必为偶数,由三人的话可得出关系式,A+B+C+D=44A+2D+21.5D+D=16 A=16﹣6D;∵1A9,116﹣6D9 ,又∵D 为非负整数,D=2,A=16﹣62=4;综上,B=22=4,C=1.54=6,=4462 故答案是:4462.【点评】本题考查位置原则,突破点是:利用千位上的数字的取值范围,确定 A的值,再判断其它的数字. 19.(6 分)用棱长为 m 的小正方体拼成一个棱长为 12 的大正方体,现将大正方体的表面(6 个面)涂成红色,其中只有一个面是红色的小正方体与只有两个面是红色的小正方体的个数相等,则 m= 3 .【分析】用棱长为 m 的小正方体拼成一个棱长为 12的大正方体,则大正方体的每条棱上含有 12m 个小正方体,可设 12m=n,即大正方体的每条棱上含有 n 个小正方体,由于一面涂色的处在每个面的中间,有 6(n﹣2) 2 个,两面涂色的处在 12 条棱的中间上,有 12(n﹣2)个,根据只有一个面是红色的小正方体与只有两个面是红色的小正方体的个数相等,列方程求得n的值,进而求得 m 的值即可.【解答】解:由题意知,大正方体的每条棱上含有 12m 个小正方体,设 12m=n,即大正方体的每条棱上含有 n 个小正方体, 6(n﹣2) 2 =12(n﹣2)(n﹣2) 2 =2(n﹣2) n﹣2=2 n=4 因为 12m=4 所以 m=3 答:m=3.故答案为:3.【点评】根据立体图形的知识可知:三个面均为红色的是各顶点处的小正方体,在各棱处,除去顶点处的正方体的有两面红色,在每个面上,除去棱上的正方体都是一面红色,所有的小正方体的个数减去有红色的小正方体的个数即是没有涂色的小正方体. 20.(6 分)有一群猴子要将 A 地的桃子搬运到 B 地,每隔 3 分钟有一只猴子从A 地出发走向 B 地,全程需要 12 分钟,有一只兔子从 B 地跑步到 A 地,它出发的时候,恰有一只猴子到达 B 地,在路上它又遇到了 5 只迎面走来的猴子,继续向前到达 A 地,这时候.恰好又有一只猴子从 A 地出发,若兔子跑步的速度是 3 千米/小时,则 A、B 两地相距 300 米.【分析】首先得出兔子的速度3千米/时=50米/分钟;设猴子的速度是x 米/分钟,则 AB 相距 12x 米,从出发到达 A 地,兔子相当于碰到 6 只猴子出发,每只猴子时间相差 3 分钟,那么每两只猴子之间的路程就是 3x 米,这个路程除以猴子和兔子的速度和,就是两只猴子之间兔子需要的时间,再乘 6,就是兔子行驶的总时间;用两地之间的总路程 12x 米除以兔子的速度,也是兔子行驶的总时间,由此列出方程求出兔子行驶的时间,再乘兔子的速度,即可求出 AB之间的距离.【解答】解:3 千米/时=50 米/分设猴子的速度是 x 米/分,则: 6= 解得:x=25 1225=300(米)答:A、B 两地相距 300 米.故答案为:300 米.【点评】此题解答的关键在于分别表示出出兔子跑步的时间,再根据等量关系列出方程求解.。
第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)
2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)一、填空题(每小题5分,共60分)1.(5分)计算:3×1.3+3÷2=.2.(5分)已知 a=0.5,b=,则a﹣b是的倍.3.(5分)若+++<,则自然数x的最小值为.4.(5分)定义:如果a:b=b:c,那么b称为a和c的比例中项;如1:2=2:4,则2是1和4的比例中项.已知 0.6是0.9和x的比例中项,是和y的比例中项,则x+y=.5.(5分)A,B,C 三人单独完成一项工程所用的时间如图1所示,若A上午8:00开始工作,27分钟后,B和C加入,三人一起工作,则他们完成这项工作的时刻是时;分.6.(5分)如图,A、B盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转动,若指针指向A盘的数字是a,指针指向B盘的数字是b,则两位ab是质数的概率为.7.(5分)在算式“×8=×5”中,不同的汉字代表不同的数字,则“”所代表的六位偶数是.8.(5分)如图,在正方形ABCD中,点E在边AD上,点F在边DC上,AE =2ED,DF=3FC.则△BEF的面积与正方形ABCD的面积比值为.9.(5分)如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中的阴影部分面积是.(π=3)10.(5分)已知三个最简真分数的分母分别是 6,15 和 20,它们的乘积是,则在这三个最简真分数中,最大的数是.11.(5分)将100个乒乓球放入从左到右排成一行的26个盒子中,如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15,那么最右边的盒子中有乒乓球个.12.(5分)两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与段蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧分钟.二、解答题(每小题15分,共60分)每题都要写出推算过程.13.(15分)如图所示,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.14.(15分)解方程:[x]×{x}+x=2{x}+9,其中[x]表示如x的整数部分,{x}表示x的小数部分.如[3.14]=3,{3.14}=0.14.(要求写出所有的解)15.(15分)阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的话:阿春:“大家取的糖果个数都不同”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下的糖果的”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?16.(15分)甲、乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的 3 倍.甲乙在离山顶 150 米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)参考答案与试题解析一、填空题(每小题5分,共60分)1.(5分)计算:3×1.3+3÷2= 6 .【解答】解:3×1.3+3÷2=3.75×1.3+3×=0.375×13+3×=×13+3×=(13+3)×=16×=6故答案为:6.2.(5分)已知 a=0.5,b=,则a﹣b是的13 倍.【解答】解:(a﹣b)÷=(0.5﹣)÷=(﹣)÷=÷=13;故答案为:13.3.(5分)若+++<,则自然数x的最小值为 3 .【解答】解:+++<+++<<x>≈2.6因为x是自然数,所以x的最小值为3.答:自然数x的最小值为3.故答案为:3.4.(5分)定义:如果a:b=b:c,那么b称为a和c的比例中项;如1:2=2:4,则2是1和4的比例中项.已知 0.6是0.9和x的比例中项,是和y的比例中项,则x+y=0.48 .【解答】解:依据题意得:0.9:0.6=0.6:x0.9x=0.6×0.60.9x=0.36x=0.36÷0.9x=0.4;:=:yy=×y=÷y=0.08x+y=0.4+0.08=0.48.故答案为:0.48.5.(5分)A,B,C 三人单独完成一项工程所用的时间如图1所示,若A上午8:00开始工作,27分钟后,B和C加入,三人一起工作,则他们完成这项工作的时刻是9 时;57 分.【解答】解:由题意可知A的效率是,B的效率是,C的效率是,A工作27分钟,转换成小时单位是,A工作量是=,剩余工作总量为,三个人的效率和是,工作时间为:(小时),在8:27分再加上1.5小时是9:57分.故答案为:9:57.6.(5分)如图,A、B盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转动,若指针指向A盘的数字是a,指针指向B盘的数字是b,则两位ab是质数的概率为35% .【解答】解:数字1开始的质数有11,13,17数字2开始的质数有23数字3开始的数字有31,37数字5开始的质数有53共计7个质数.组成两位数的情况有1开始的后面可以是1,2,3,5,7共5种.2,3,5开始的分别有5种.计算5+5+5+5=4×5=20种%=35%故答案为:35%7.(5分)在算式“×8=×5”中,不同的汉字代表不同的数字,则“”所代表的六位偶数是256410 .【解答】解:依题意可知:(+)×8=整理得:=×4992;7995与4992有公因数39,可以约分.×205=×128;此时205和128互质,说明是205的倍数,是128的倍数,根据题目要求本身要为偶数,且这六个数不可以重复.当为205的2倍时满足.故答案为:2564108.(5分)如图,在正方形ABCD中,点E在边AD上,点F在边DC上,AE =2ED,DF=3FC.则△BEF的面积与正方形ABCD的面积比值为.【解答】解:依题意可知:设正方形的边长为12.正方形的面积为12×12=144.阴影的面积为:S=144﹣(12×8+4×9+3×12)=60.△BEF的面积与正方形ABCD的面积比值为60:144化简为5:12.故答案为:.9.(5分)如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中的阴影部分面积是 4.5 .(π=3)【解答】解:见上图,根据分析可得,大等腰三角形面积为:2×(2×2)÷2=4,半圆面积为:3×(2÷2)2÷2=1.5,小等腰三角形面积为:2×(2÷2)÷2=1,弓形面积为:1.5﹣1=0.5,整体阴影面积为:4+0.5=4.5,答:图中的阴影部分面积是 4.5.故答案为:4.5.10.(5分)已知三个最简真分数的分母分别是 6,15 和 20,它们的乘积是,则在这三个最简真分数中,最大的数是.【解答】解:依题可知设这三个数分别为,因为,则abc=60.将60分解60=2×2×3×5,因为三个分数均为真分数,故c=3,a=5,b=4.所以最大是.综上所述最大分数是.故答案为:.11.(5分)将100个乒乓球放入从左到右排成一行的26个盒子中,如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15,那么最右边的盒子中有乒乓球 6 个.【解答】解:根据分析,26盒分成:26÷4=6(组)…2(个).∵任意相邻的 4 个盒子中乒乓球的个数和都是 15,所以处于位置1,5,9…25 的盒子里球的个数均为 4.最右边的盒子中有乒乓球:100﹣(15×6+4)=6(个).故答案是:612.(5分)两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与段蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧150 分钟.【解答】解:根据分析,21﹣16=5,15﹣11=4,则:两段蜡烛的比为21:16=(21×4):(16×4)=84:64;18分钟后:15:11=(15×5):(11×5)=75:55,长蜡烛燃烧了:84﹣75=9份,段蜡烛也燃烧了:64﹣55=9份,每份燃烧了:18÷9=2分钟,较长的蜡烛还能燃烧:75×2=150分钟.故答案是:150.二、解答题(每小题15分,共60分)每题都要写出推算过程.13.(15分)如图所示,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.【解答】解:(1)根据观察,图①中有12小正方体;图②有1+22个小正方体;图③有1+22+32个小正方体;图④有1+22+32+42个小正方体;图⑤有1+22+32+42+52个小正方体;图⑥有1+22+32+42+52+62=91个小正方体,故答案是:91.(2)堆积体的表面积包括:前后2面、左右2面和上下2面.图⑩中有12+22+32+42+52+62+72+82+92+102=385个小正方体,表面积为:2×(1+2+3+…+10)+2×(1+2+3+…+10)+2×10×10=420.故答案为:420.14.(15分)解方程:[x]×{x}+x=2{x}+9,其中[x]表示如x的整数部分,{x}表示x的小数部分.如[3.14]=3,{3.14}=0.14.(要求写出所有的解)【解答】解:根据分析,设x的整数部分为a,a≥1;x的小数部分为b,0≤b<1,依题意:ab+a+b=2b+9,整理得:(a﹣1)(b+1)=8,∵1≤b+1<2,∴4<a﹣1≤8,且a﹣1为整数.①当a﹣1=8,即a=9,b=0,x=9;②当a﹣1=7,a=8,b=,x=;③当a﹣1=6,即a=7,b=,x=;④当a﹣1=5,即a=6,b=,x=.综上,方程的解为:x=9;x=;x=;x=.故答案是:x=9;x=;x=;x=.15.(15分)阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的话:阿春:“大家取的糖果个数都不同”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下的糖果的”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?【解答】解:(1)根据题意,阿春是第1个取糖果的,因为阿美取了剩下的全部糖果,所以阿美是最后1个取糖果的;因为阿天和阿丽不能在倒数第2的位置,否则跟最后1个的个数相同,所以阿真是倒数第2个取糖果的,所以阿真是第4个取糖果的.(2)若使这盒糖果最少,则倒数第1个人取1颗,则倒数第2个人取:1×(÷)=2(颗)1+2+(1+2)+(1+2+3)+4=3+3+6+4=16(颗)答:这盒糖果最少有16颗.16.(15分)甲、乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的 3 倍.甲乙在离山顶 150 米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.【解答】解法一:在离山顶 150 米处相遇时,两人的路程差为200米,甲、乙的速度比为8:7,因此甲上山路程为×8=1600,这1600米中有50米是假设继续上山的结果,因此山底到山顶的路程=1600﹣50=1550米.解法二:设甲上山的速度是x,则下山的速度是3x.乙上山的速度是y,则下山的速度是3y,山顶到山底的距离为s.,由①得,由②得,∴,∴s=1550(米),综上所述答案为1550米.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 15:47:00;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
希望杯第一届至第十届五年级试题与答案
10.三个武术队进行擂台赛,每队派 6 名选手,先由两队各出 1 名选手上擂台比武,负者下台,不再上 台,胜者继续同其它队的一位选手比武,负者下台,和胜者不同队的双一位选手上台……继续下去。当有 两个队的选手全部被击败时,余下的队即获胜。这时最少要进行_____场比武。
1 6
11.两种饮水器若干个,一种容量 12 升水,另一种容量 15 升水。153 升水恰好装满这些饮水器,其中 15 升容量的_____个。
14.小光前天登录到数理天地网站 ,他在首页看到"您是通过什么方式知道本网站的?" 调查,他查看了投票结果,发现投票总人数是 500 人,"杂志"项的投票率是 68%。当他昨天再次登录数理 天地网站时,发现"杂志"项的投票率上升到 72%,则当时的投票总人数至少是_____ 。
的四位数是
。
8. a , b , c 都是质数,并且 a + b =33, b + c =44, c + d =66,那么 d =
,
BA
9.如果A◆B= A B ,那么1◆2-2◆3-3◆4-…-2002◆2003-2003◆2004=
。
10.用1-8这八个自然数中的四个组成四位数,从个位到千位的的数字依次增大,且任意两个数字的
1.计算
_______ 。
2.将 1、2、3、4、5、6 分别填在右图中的每个方格内,使折叠成的正方体中对面数字的 和相等。
3.在纸上画 5 条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:
景区
千岛湖 张家界 庐山 三亚 丽江 大理 九寨沟 鼓浪屿
气温(℃) 11/1
算英语,平均分是91分。小永三门功课的平均成绩是
2020年第十四届小学数学“梦想杯”全国数学邀请赛试卷(六年级第1试)
故答案为:5
3.(6 分)观察下面一列数的规律,这列数从左到右第 100 个数是
.
,,, , …
【解答】解:分子:1+(100﹣1)×2 =1+99×2 =199 分母:2+(100﹣1)×3
第 4页(共 14页)
=2+99×3 =299 所以,这列数从左到右第 100 个数是 .
故答案为: .
4.(6 分)已知 a 是 1 到 9 中的一个数字,若循环小数 0.1 = ,则 a= 6 .
北京天昭新闻网 ## 北京天昭新闻网,服务于北京本地用户的新闻资讯网站,为全球用户 24 小时提供全面及时的中文 新闻资讯。
第 6页(共 14页)
宁波头条新闻 ## 宁波头条新闻随时随地掌握宁波本地事、宁波头条、宁波新闻、宁波资讯、等宁波本地生活信息服务!
个数相等,则 m=
.
20.(6 分)有一群猴子要将 A 地的桃子搬运到 B 地,每隔 3 分钟有一只猴子从 A 地出发走
向 B 地,全程需要 12 分钟,有一只兔子从 B 地跑步到 A 地,它出发的时候,恰有一只
猴子到达 B 地,在路上它又遇到了 5 只迎面走来的猴子,继续向前到达 A 地,这时候.恰
【解答】解:根据分析,F 点在 DC 边上运动,当 F 点运动到 D 点时,三角形 BEF 的面 积最小,故 如图:
∵AE=3ED ∴S△BEF=S△BDE=
=
=
∴S△BEF:S 正方形 ABCD=1:8 故答案是:1:8 11.(6 分)如图,三张卡片的正面各有一个数,它们的反面分别写有质数 m,n,p,若三 张卡片正反两面的两个数的和都相等,则 m+n+p 的最小值是 57 .
. .
希望杯5年级考前100题题目和答案
第十五届(2017年)小学“希望杯”全国数学邀请赛五年级培训题1. 计算:2016×20172017-2017×20162016.2. 计算:32.2÷2.7+386÷54-4.88÷0.27.3. 计算:6051×0.125-0.375×1949+3.75×1.2.5. 用[a]表示不超过 a的最大整数,{a}表示 a 的小数部分,即{a}=a-[a],定义一种运算“⊕”:a⊕b=(a-b)÷(b+1),求[3.9]⊕{5.6}+[4.7]的值.6. 找规律,填数:0,2,12,36,80,150,252,______,_______,…7. 如图 1 所示的七个圆填入七个连续自然数,使每相邻圆的数之和等于连线上的数,求这七个自然数的和.8. 有一串数,最前面的 4 个数是 2,0,1,6,从第 5 个数起,每一个数是它前面相邻 4 个数之和的个位数字,问在这一串数中,会依次出现 2,0,1,7 这 4个数吗?9. 小华在电脑上玩一种游戏:输入一个大于零的自然数,则输出的数比输入的数扩大一倍还多 1,若先输入的数既不是质数,也不是合数,再将输出的数输入,…则输出的数中,首先超过100的数是多少?10. 从1123个1×1的正方形纸片中,依次取出 1个,3个,5个,7 个,…,(2n-1)个,求最大的n.11. 已知x是两位数,y是一位数,若1123=x× x+11y× y,求x+y.12. 20152015+20162016+20172017的个位数字是多少?(定义:x n表示n个 x相乘)13. 1×2×3×4×…×2016×2017 的积的末尾有多少个连续的 0?14. 111a是四位数,若111a-3是7的倍数,求自然数a.15. 有三个连续的自然数,它们的和是三位数,并且是 31 的倍数,求这三个数的和的最小值.16. 若是四位数,并且-3是7的倍数,那么a + b有多少个不同的值?17. 100 名同学面向老师站成一行.大家先从左至右按 1,2,3,…依次报数;再让报数是 4 的倍数的同学向后转,接着又让报数是 5 的倍数的同学向后转. 问:背向老师的有多少人?18. 一个自然数,它除了 1以外的两个不同约数的和最大是 60,求这个自然数.19. 三位数中,被6 除,余数是5的有多少个?20. 有一类四位数,除以5余3,除以7余6,除以9余6,求这类四位数中最小的数.21. 求被 7除余5,被8除余2的最小的三位数.22. 是三位数,若-a可被13整除,求自然数a的最小值.23 .是三位数,若+1 是7的倍数,-1是13的倍数,求自然数 a.24. ,求a÷7 得到的余数.25. 五年级(2)班同学分为 5 组,按组活动.第一组到第五组的人数分别是 12 人,6人,10人,13人,7 人. 其中有一个小组需要留在教室,其余四组去操场跑步和跳绳,若跑步的人数比跳绳的人数的 2 倍多5人,则留在教室的是第几组?26. 小华将连续偶数 2,4,6,8,10,…逐个相加,结果是2016. 验算时发现漏加了一个数,那么,这个漏加的数是多少?27. 三个质数的平方和是 390,这三个质数分别是多少?28. 3个不同的质数 a,b,c满足a+b=c,且 b× c=143,求a×(b+c)的值.29. 下面是著名的百羊问题.原文如下:《算法统宗》(明)程大位甲赶羊群逐草茂,乙拽一羊随其后,戏问甲及一百否? 甲云所说无差谬,所得这般一群凑,再添半群小半群,得你一只来方凑,玄机奥妙谁猜透?原文的意思是说,一个牧羊人赶着一群羊,有人牵着一只羊从后面跟来,问牧羊人:“你这群羊有 100 只吗?”牧羊人说:“如果我再有这样一群羊,加上这群羊的一半,再加上一半的一半,连同你这一只羊,就刚好满 100 只.”请问牧羊人赶着多少只羊?30. 用两个 3,三个 2,两个1可以组成多少个互不相同的七位数?31. 从1 到2017的所有奇数的平方数中,个位数是 5的有几个?32. 从1 到101这101 个自然数中,(1) 至少选出_____个才能保证其中一定有两个数的和是 7的倍数;(2) 如果要保证其中一定有两个数的和是 6的倍数至少要选出______个.33. A,B,C,D四人久别重逢.(1) 四人站成一排照相,问有多少种站法?(2) 四人围成一圈照相有多少种站法?34. 电视台打算 3天播完 6集电视剧,其中可以有若干天不播,共有多少种播出的方法?35. 属相各异的 12 位同学按鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、犬、猪的顺序围成一圈传递一袋不足 200 颗糖的幸运礼包.每人接到礼包后取出一颗糖,然后将礼包往下传.属牛的最牛,先取糖,将礼包传给属虎的同学,…,若最后取到糖的同学属龙,则(1) 礼包里至少有多少颗糖?(2) 礼包里至多有多少颗糖?36. 纸箱中有赤,橙,黄,绿,青,蓝,紫七色袜子,每种袜子都是单色,且数量足够多,那么从中至少取多少只袜子可以保证有一双同色的袜子?37. 五年(1)班有 46 名学生参加 3 项活动.其中有 24 人参加了数学小组,20 人参加了语文小组,参加美术小组的人数是既参加数学小组又参加美术小组人数的 4倍,又是3项都参加的人数的 8倍,既参加美术小组也参加语文小组的人数是 3项都参加的人数的 3 倍,既参加数学小组又参加语文小组的有 10 人,问参加美术小组的人数是多少?38. 有1 克、2克、4 克、8克、16 克重的砝码 5枚,若只能在一边放砝码,问:(1) 用这些砝码可称出多少种不同的重量?(2) 若4克的砝码破损后只剩下 3克,则可称出多少种不同的重量?39. 小明家住在一条胡同里,这条胡同里的门牌从 1号、2号、…连续下去.全胡同所有住户的门牌号之和减去小明家的门牌,其结果为265. 则(1) 这条胡同共有多少家住户?(2) 小明家的门牌是几号?40. 数一数,图2中共有多少个三角形?41. (1) 图3中有多少个长方形(包括正方形)?(2) 图3中包含*的长方形有多少个(包括正方形)?42. 波兰数学家尔宾斯基(Sierpinski)在1915年提出了尔宾斯基三角形. 以下是它的构造方法:①取一个实心的等边三角形;②沿三边中点的连线,将它分成四个小三角形;③去掉中间的那一个小三角形;④对其余三个小三角形重复②③④.这样下去可以重复无数次操作,如图 4 所示. 如果原来的大等边三角形面积为256,那么在 4次操作之后,三角形中被去掉的空白部分面积为多少?43. 如图 5,8个小等边三角形组成了一个梯形.(1) 数一数图5中有几个等边三角形;(2) 若去掉一个三角形,使得三角形的总数减少 1个,你能办得到么?减少两个呢?44. 所谓闭折线,就是一些线段首尾相接构成一个回路.比如五角星,它是一个有5条边的闭折线,并且它的 5条边互相相交,共有5个交点(不包括线段的端点交点). 请问:一个有 6 条边的闭折线,它的 6 条边之间最多可以有多少个交点(不包括线段的端点交点)?45. 如图 6,将正面为白色,背面为红色,面积为 105 的长方形彩纸背面向正面折起一部分,使这部分重合到彩纸,这时,白色彩纸的面积只剩下了原来的0.2倍,求被折起的这部分(阴影部分)的面积.46. 如图 7,长方形 ABCD 中,△ABP 的面积为 30,△CDQ 的面积为 35,求阴影部分的面积.47. 如图 8,8边形的 8个角都是 135°.已知 AB=EF,BC=20,DE=10,GF=30,求AH的长.48. 如图 9,四边形 ABCD 是一个正方形,梯形 AEBD 的面积是 26,△AOE 的面积比△BOD的面积小 10,求正方形的边长.49. 如图 10,直角梯形 ABCD 中,DF⊥BC,AB=10,DE 的长度是 EF 的 4 倍,阴影部分的面积为90. 求梯形ABCD的面积.50. 如图 11,在梯形 ABCD中,AB=15,CD=5,梯形的面积为80,求△AOB的面积.51. 如图 12,过平行四边形 ABCD 的一点 P 作边的平行线 EF,GH,若平行四边形BEPH的面积为 4,平行四边形PFDG的面积为7,求△PAC 的面积.52. 如图 13,△ABC 中,试在AB上取点E,在AC 上取点F,D,连接 EF,ED,BD,使得△AEF,△EDF,△BDE,△BCD 的面积都相等(说出一种方法即可,但要证明其正确性).53. 如图 14(a)边长分别为 13,5 的两个正方形叠放在一起,两个正方形部的阴影部分的面积差为M. 如图14(b)边长分别为15, 9的两个正方形叠放在一起,两个正方形部的阴影部分的面积差为 N. 试比较 M与N 的大小.54. 在边长是 2米的等边三角形任意丢放 5颗小石子,则总有两颗小石子的距离不大于1米,请说出理由.55. 大伯利用一堵旧墙 AB,用长 50m 的篱笆围成一个留有 1m 宽的门的梯形场地CDEF(CD∥EF),如图15所示.若DE的长为 10m,则梯形场地 CDEF的最大面积是多少?56. 如图 16,ABCD 是正方形,AEGD,EFHG,FBCH 都是长方形,若图 16 中所有长方形(含正方形)的周长之和为190,EF=5,求正方形ABCD的面积.57. 用2017 个等腰直角三角形能不能拼成一个正方形? 请说明理由. (注:等腰直角三角形不要求一样大).、58. 一只乌鸦从其鸟巢飞出,飞向其巢北10 千米东7千米的A地,在 A地它发现有一个稻草人,所以就转向巢北 4 千米东 5 千米的 B 地飞去,在 B 地吃了一些谷物后立即返巢,其所飞的途径构成了一个三角形,这个三角形的面积为多少平方千米?59. 图 17 是一个正方体纸盒的展开图,当折叠成纸盒时,与点 1 重合的点的编号有哪些?60. 一组积木组成的图形,从正面看是,从侧面看是,则(1) 这组积木最少是用多少块正方体积木摆出来的?(2) 这组积木最多是用多少块正方体积木摆出来的?61. 甲、乙、丙在猜一个完全平方的两位数.甲说:它的因数个数为奇数,而且它比90大.乙说:它是奇数,而且它比 80小.丙说:它是偶数,而且它比 100小.如果他们三个人每个人都有半句真话,半句假话,那么这个数是多少?62. 如图 18,三根绳子系在一起,现在要在绳子的某处点火,如果每分钟火燃烧的距离是1,那么至少需要几分钟才能烧光这些绳子?63. 已知“西门鸡翅”的价格是3元钱2个鸡翅,“好伦哥”的价格是20元自助餐(无论吃多少个鸡翅都是 20 元),请根据图 19 中的对话判断,小笨至少能吃多少个鸡翅?64. 小笨得到了一笔压岁钱,但却忘了具体有多少钱. 他只记得这个三位数的各位数字之和是17,其中十位数字比个位数字大 1. 如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大 198. 请你帮小笨算算,这笔压岁钱有多少元?65. 某次考试共有 12 道判断题.小聪划了 7 个钩和 5 个叉,结果对了 8 道;小笨划了 3 个钩和9 个叉,结果对了 10 道;大壮一道不会,索性全部打叉,那么他至少可以蒙对多少道题?66. 如图 20,在空格填入数字 1~4,使得每行、每列和每个粗线围成的区域里数字都是1~4恰好各一个,若M+N>4,则 M× N 的值是多少?67. 有 61 个人坐成一横排.首先,正中间的一个人站起来,然后,按下述方法大家都或坐或站:(1) 如果邻座的人站起来,那么1秒钟后自己也站起来;(2) 站起1秒钟后坐下;(3) 如果左右邻座的人都是站着的,那么即使过了 1秒钟,自己仍然坐着.那么最初的那个人站起7秒钟后,有几个人站着?68. 某学生俱乐部有 11 个成员,他们的名字分别是 A~K.这些人分为两派,一派人总说实话,另一派人总说谎话.某日,老师问:“11 个人里面,总说谎话的有几个人?”那天,J 和K休息,余下的9个人这样回答:那么这个学生俱乐部的 11 个成员中,总说谎话的有多少个人?69. 某单位空降一名总经理,五位职员了解了这位经理的一些情况,现列表如下:这五位职员了解的情况,每人只有1项是正确的,请判定该经理的情况.70. 班长小英让 x 名同学去种少于 100棵的树苗.若每人种7棵,则余下 5棵;若每人种8棵,则有1 人只须种6棵. 求:(1)人数x; (2)树苗的棵数.71. 全家四口人,父亲比母亲大 3岁,姐姐比弟弟大 2岁. 4年前他们全家的年龄之和是58岁,而现在是 73岁. 问现在母亲的年龄是多少岁?72. 有一根木棍有三种刻度,第一种刻度将木棍分成 10 等份,第二种刻度将木棍分成12等份,第三种刻度将木棍分成15等份.如果沿每条刻度线将木棍锯断,请问木棍共被锯成多少段?73. 某快递公司已囤积部分快件,但仍有快件不断运来,公司决定用快递专车将快件分给客户,若 9 辆车发货,12 小时运完;若用 8 辆车发货,16 小时可以运完. 问:如果先用6 辆车运,3小时后需再增加几辆车,再过5小时可以运完?74. 10 点多的某个时刻,小明发现 1 分钟后表的时针与 1 分钟前表的分针夹角是180°,那么现在是 10点几分?75. 三堆苹果共 48 个. 先从第一堆中拿出与第二堆个数相等的苹果放入第二堆,再从第二堆中拿出与第三堆个数相等的苹果放入第三堆,最后又从第三堆中拿出与第一堆个数相等的苹果放入第一堆,这时三堆苹果数恰好相等.第一堆苹果原来有多少个?76. 甲、乙共有 26 颗糖.甲先拿走乙的一半,乙发现后,也拿走了甲的一半. 甲不服气,又偷偷拿了乙 5颗糖,此时甲比乙多 2颗,问:乙刚开始时有多少颗糖果?77. 甲、乙两车同时从 A,B两地相向而行,在距A地70千米处第一次相遇.各自到达对方出发地后立即返回,途中又在距 A 地 50 千米处相遇. 问:A,B 两地相距多少千米?78. 一列火车速度不变地驶过长为 600米的铁路桥需 1分钟,以相同的速度完全穿过长为2200米的隧道需要 3分钟,问:火车长多少米? (从车头上桥到车尾离桥即为完全驶过铁路桥)79. 华从家到学校上课,先用每分钟 80 米的速度走了 3 分钟,发现这样走下去将迟到3分钟;于是她就改用每分钟 110米的速度前进,结果提前了 3分钟到校.华家离学校有多远?80. 有 A,B,C 三辆车同时从同一地点出发,沿同一条公路追赶前面的一个骑车人,这三辆车分别用 6分钟、10 分钟、12 分钟追上骑车人.现在知道 A车每小时行24 千米,B车每小时行 20千米,那么,C 车每小时行多少千米?81. 某人沿着电车道旁的便道以 4.5千米每小时的速度步行,每14.4 分钟有一辆电车迎面开过,每 24 分钟有一辆电车从后面追过来,如果电车按相等的时间间隔以同一速度不停的往返运行,问:电车发车间隔是多少分?82. 星期六小王去球馆打球,去时发现家中的钟没电了,于是换上电池,把钟暂时调整到 8 时整,到球馆时球馆的钟刚好是 8 时整,打球到 11 时整,他以原速度回家发现家中的钟刚好是 12 时整,小王根据这些时间关系再次调整了时间,如果小王在路上的速度是 60米/分钟,请问:(1) 从家到球馆的路程是多少米?(2) 小王到家的准确时间是几点?83. 某汽车从 A 地开往 B 地,如果在计划行驶时间的前一半时间每小时行驶 30千米,而后一半时间每小时行驶 50千米,则按时到达;但汽车以每小时行驶 40千米的速度从A地行驶至离 A,B 中点还差 40 千米的地方发生故障,而停车检修半小时,此后以50 千米每小时的速度行驶,仍按时到达B地,问:(1) 原计划时间是几小时?(2) A,B两地的距离是多少千米?84. 甲、乙两名同学从山脚开始爬山,到达山顶后立即下山,在山脚和山顶之间不断往返运动. 已知山坡长 360 米,甲上山的速度是乙上山的速度的 1.5 倍,并且甲乙下山的速度是各自上山速度的 1.5 倍. 当甲第三次到达山顶时,乙所在的位置距山顶多少米?85. 熊大和熊二清晨起床后去学校的环形跑道上跑步锻炼,已知环形跑道的一周是 400 米,两只熊分别在相距 80 米的 A,B 两处同时跑,熊大每秒跑 3 米,熊二每秒跑2米,那么熊大和熊二几秒后第一次相遇?86. 甲、乙二人在一条相距 20 千米的平直公路的两处同时同向骑自行车(时速不超过 60 千米)前进,一小时后两人相距 15 千米,已知乙的时速比甲的时速的 2倍少10 千米,求甲,乙二人的时速.87. 加工一批零件,如果甲先做4 小时,乙再加入一起做,完成时甲比乙多做 400个,如果乙先做 4 小时,甲再加入一起做,完成时甲比乙多做 40 个. 如果一开始甲乙就一起做,那么,完成时甲比乙多做多少个?88. 猴子 A,B 一起上山摘桃子,猴子 B 单独摘完需要 50 天,如果猴子 A 第一天摘,猴子B第二天摘,这样交替摘,恰好整天数可摘完. 如果猴子 B 第一天摘,猴子 A 第二天摘,这样交替摘,恰好比上次轮流的方法多用半天摘完,那么猴子A单独摘完需要多少天?89. 一个玻璃容器里所装的糖水中含有10克糖,再倒入浓度为5%的糖水200克,配成浓度为2.5%的糖水. 那么原来这个玻璃容器的水有多少克?90. 用黑、白两种颜色的皮块缝制而成的足球,黑色皮块是正五边形,白色皮块是正六边形,若一个球上共有黑、白皮块 32 块,则(1) 黑色皮块有多少块?(2) 白色皮块有多少块?91. 小聪与小笨一起爬楼梯上楼,小聪家住 5层,小笨算了一下,自己的速度必须是小聪的2倍,这样才可以与小聪同时到达各自家中,那么小笨家住几层?92. 一个牧民买了一头母羊,每年能生 2只公羊, 4只母羊,每只小母羊两年后,又可以每年生6只羊,其中2只公羊,4只母羊.这样从今年开始到第 4年底,一共有多少只羊?93. 一辆长途汽车的起点是甲站,终点是丙站,中途停靠乙站. 从甲站到乙站和从乙站到丙站的票价都是 2元,而从甲站到丙站的票价是 3元,一天这辆长途汽车离开甲站时载有 45 名乘客,到了乙站有 12 人下车,19 人上车,那么该长途汽车这一天的车票收入是多少元?94. 甲、乙两人共带 90 千克行坐飞机旅行,机场规定:每人所带行重量不超过规定重量免费,超出部分重量按标准收费.两人分开带行分别收费是 16.8元和13.2 元;如果由一人带行就要收 42元.问:免费规定重量是不超过多少千克?95. 大壮加工一批产品,他每加工出一件正品,得报酬0.75元,每加工出一件次品,罚款1.50元,这天他加工的正品是次品的 7倍,得到11.25 元的报酬. 那么他这天加工出几件次品?96. 一个工人与用人单位签订了一个月的短期合同,双方约定,每工作一天得 80元,不上班不但没工资,且每天要倒扣10元.月末结账时,该工人领到工资 2030元,问这个工人工作了多少天?97. 顾客和店主有如下对话:顾客:老板,这件商品多少元?店主:这件商品五折减 5角和六折减6角的结果一样.顾客:按“五折减5 角”的优惠价买可以么?店主:不行!顾客:按“九折减9 角”的优惠价来买可以吗?店主:不行!问:(1) 这件商品的单价是多少?(2) 店主为什么坚持不卖?98. 小聪赶着一头猪到山外的生猪收购站去卖,过秤知猪重150斤,他和收购站的工作人员有如下对话:收购员:你这头猪肚子这么大又这么重,是不是故意让猪吃了很咸的猪食,然后大量喝水造成的?不收!小聪:我们家有诚信的家风,绝不会这样!请收购吧,我走了很远的山路才到这里.收购员:如果马上收购,猪的重量要打九折,如果你明天早上来,当面再称猪的重量,收购价提高两成五,两种选择由你确定!请帮助小聪作出选择,并说明理由.99. 一种商品,甲店:“买四赠一”,乙店:“优惠”,如果只从经济方面考虑,你选择去哪家商店?100. 有27位客人来某厂参观学习,厂领导派车去火车站接人,厂里有两种车子:可乘 3 人(司机除外)的小轿车和可乘 7 人(司机除外)的面包车,若要求车子全都满载,请确定派车的方案.参考答案1. 02. 13. 304. 105. 5.56. 392,5767. 358. 不会9. 12710. 3311. 3512. 813. 50214. 615. 18616. 1317. 3518. 40 或4519. 15020. 120321. 13822. 123. 9 24. 425. 4或 526. 5427. 2,5,1928. 4829. 3630. 21031. 20232. 47,3733. 24,634. 2835. 19636. 837. 2438. 31,2739. 23,1140. 1641. 360,10842. 17543. 10,可以44. 745. 4246. 6547. 2048. 649. 168.7550. 4551. 1.552. 略53. M = N54. 略55. 20556. 10057. 可以58. 1159. 2, 660. 3,961. 8162. 2163. 1464. 47665. 766. 967. 868. 969. 姓黄,男性,年薪240.万元,硕士学历70. 7,5471. 3172. 2873. 874. 2375. 2276. 1677. 13078. 20079. 2000 80. 1981. 1882. 1800,11:3083. 3,12084. 12085. 32086. 15,20;或5,087. 22088. 2589. 59090. 12,2091. 992. 9793. 16194. 2095. 396. 2697. 1元.98. 略99. 乙100. 9 辆小车或者 2 辆小车 3 辆面包车。
2016年第十四届小学“希望杯”全国数学邀请赛试卷(五年级第1试)
2016年第十四届小学“希望杯”全国数学邀请赛试卷(五年级第1试)一、填空题(共20小题,每小题3分,满分60分)1.(3分)20.16×32+2.016×680=.2.(3分)小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是.3.(3分)某房间内的一堵墙上挂有一面镜子,且这堵墙的对面有一块电子表,李明聪镜中看到电子表显示的时间如图所示,则此时的实际时间是.4.(3分)如果自然数a、b、c、d除以6都余4,则a+b+c+d除以3,所得的余数是.5.(3分)三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.6.(3分)将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)7.(3分)如图,若每个小正方形的边长是2,则图中阴影部分的面积是.8.(3分)某商店的同种点心有大小两种包装礼盒,大盒85.6元一盒,内有点心32块,小盒46.8元一盒,内有点心15块,若王雷用654元买了9盒点心,则他可得点心块.9.(3分)如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.10.(3分)两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.11.(3分)14袋糖果每袋的平均重量经四舍五入到小数点后第一位等于90.2克,已知每袋糖果的重量都是整数,则这14袋糖果的总重量是.12.(3分)从数字1,2,3,4,5中任意取4个组成四位数,则这些四位数的平均数是.13.(3分)某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B两人各自答题,得分之和是58分,A比B多得14分,则A答对道题.14.(3分)如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四边形EFGH=平方米.15.(3分)有一个三位数A,在它的某位数字的前面添上小数点后得数B,若A ﹣B=478.8,则A=.16.(3分)商店里有若干个柚子和西瓜,其中西瓜个数是柚子个数的3倍.如果每天卖出30个西瓜和20个柚子,3天后,西瓜个数比柚子个数的4倍少26.则商店里原有个柚子.17.(3分)已知a、b、c是3个彼此不同的质数,若a+b×c=37,则a+b﹣c最大是.18.(3分)李双骑车以320米分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用17分钟,则李双推车步行的速度是米/分钟.19.(3分)如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D 重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=厘米.20.(3分)解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.2016年第十四届小学“希望杯”全国数学邀请赛试卷(五年级第1试)参考答案与试题解析一、填空题(共20小题,每小题3分,满分60分)1.(3分)20.16×32+2.016×680=2016.【分析】把2.016×680变形为20.16×68,然后根据乘法的分配律简算即可.【解答】解:20.16×32+2.016×680=20.16×32+20.16×68=20.16×(32+68)=20.16×100=2016故答案为:2016.【点评】本题利用具体的算式考查了学生对于乘法分配律的理解.2.(3分)小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是B.【分析】共有6只小猫咪,278÷6=46…2,容易得出答案.【解答】解:共有6只小猫咪,每发6条鱼重复出现,而278÷6=46…2,余数是2,则最后一个领到鱼干的小猫咪是B.故答案为:B.【点评】关键是找出周期,本题周期=6.3.(3分)某房间内的一堵墙上挂有一面镜子,且这堵墙的对面有一块电子表,李明聪镜中看到电子表显示的时间如图所示,则此时的实际时间是02:55.【分析】根据镜面对称的性质求解,在平面镜中的像与实际的实物,恰好左右或上下颠倒,关于镜面对称;据此解答即可.【解答】解:画图如下:所以,此时的实际时间是02:55.故答案为:02:55.【点评】本题考查了镜面对称知识,得到相应的对称轴是解答本题的关键,难点是作出相应的对称图形;注意2、5的关于竖直的一条直线的轴对称图形是5、2.4.(3分)如果自然数a、b、c、d除以6都余4,则a+b+c+d除以3,所得的余数是1.【分析】自然数a、b、c、d除以6都余4,则a、b、c、d都可以表示为6×整数+4,后面分析就简单了.【解答】解:因为自然数a、b、c、d除以6都余4,所以a、b、c、d都可以表示为:6×整数+4,四个这样的数的和是:6×整数+16,除以3余1,所得的余数是1.答案是1.【点评】能被6整除,一定能被3整除,只需要把四个余数加起来,看除以3余几,就是答案.5.(3分)三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小326.【分析】最大的三位偶数是998,要使A最小,则要让其他的4个数(B、C、D、E)尽量最大,由于三位偶数A、B、C、D、E满足A<B<C<D<E,所以E 最大是998,D最大是996,C最大是994,B最大是992,用5个数的和4306减去B、C、D、E这4个数的和就是A的值;据此解答.【解答】解:最大的三位偶数是998,要满足A最小且A<B<C<D<E,则E最大是998,D最大是996,C最大是994,B最大是992,4306﹣(998+996+994+992)=4306﹣3980=326,所以此时A最小是326.故答案为:326.【点评】解答此题关键是明确最大的三位偶数是998,要使A最小,则要让其他的4个数(B、C、D、E)尽量最大.6.(3分)将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是151.(1步指每“加”或“减”一个数)【分析】加15,减12,加3,…,就相当于每一个计算周期运算3步,增加:15﹣12+3=6,则26÷3=8…2,即运算26步经过了8的计算周期,再加15,减12各一次,然后用100加上6×8,再加上15,再减去12即可.【解答】解:每一个计算周期运算3步,增加:15﹣12+3=6,则26÷3=8…2,所以,100+6×8+15﹣12=100+48+3=151答:得到的结果是151.故答案为:151.【点评】这一类问题一般要利用余数的知识来解答.这就要求我们对题目要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,然后利用除法算式求出余数,最后根据余数得出正确的结果.7.(3分)如图,若每个小正方形的边长是2,则图中阴影部分的面积是72.【分析】可以将图中阴影部分的三角形进行剪切和拼接,变成都是小正方形组成的图形,最后再数出正方形的个数,即可求得阴影部分的面积.【解答】解:根据分析,如图,将阴影部分进行剪切和拼接后得:此时,图中阴影部分的小正方形个数为:18个,每个小正方形的面积为:2×2=4,故阴影部分的面积=18×4=72.故答案是:72.【点评】本题考查了剪切和拼接,突破点是:将阴影部分进行剪切和拼接,数出小正方形的个数,从而求得阴影部分的面积.8.(3分)某商店的同种点心有大小两种包装礼盒,大盒85.6元一盒,内有点心32块,小盒46.8元一盒,内有点心15块,若王雷用654元买了9盒点心,则他可得点心237块.【分析】设大合x 盒,小盒y 盒,依题意有方程:85.6x +46.8(9﹣x )=654解方程可知大小各多少盒,进而可求出块数.【解答】设大合x 盒,小盒y 盒,依题意有方程:85.6x +46.8(9﹣x )=654解方程得x=6,9﹣6=3.所以大合6盒,小盒3盒,共有32×6+15×3=237块.答:可得点心237块.【点评】本题如果用算术法求解,要用假设法.可先假设9盒全是15块一盒的,应花钱46.8×9=437.4元,比实际少232.8元,这是把其中的大合看成了小盒, 1大合看成了1小盒少算85.6﹣46.8=38.8元,大合有232.8÷38.8=6盒,小盒9﹣6=3盒.9.(3分)如图,在梯形ABCD 中,若AB=8,DC=10,S △AMD =10,S △BCM =15,则梯形ABCD 的面积是 45 .【分析】△ADM 、△BCM 、△ABM 都等高,所以S △ABM :(S △ADM +S △BCM )=8:10=4:5,已知S △AMD =10,S △BCM =15,即可求出S △ABM 的面积,进而求出梯形ABCD 的面积.【解答】解:△ADM 、△BCM 、△ABM 都等高,所以S △ABM :(S △ADM +S △BCM )=8:10=4:5,已知S △AMD =10,S △BCM =15,所以S △ABM 的面积是:(10+15)×=20,梯形ABCD 的面积是:10+15+20=45;答:梯形ABCD 的面积是45.故答案为:45.【点评】本题关键是明确等高的三角形,面积比等于对应底的比.突破口是得到S△ABM:(S△ADM+S△BCM)=8:10.10.(3分)两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是12.【分析】首先要知道最大公约数和最小公倍数是如何求得的,最大公约数是两个数的公有质因数的积,最小公倍数是两个数的公有质因数和独有因数的积,所以用最小公倍数除以最大公约数就得到了两个数的独有因数的积,并且两个数的独有因数应该是互质的,然后根据质因数求出差最小的两个数即可.【解答】解:因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与5,所以差最小的是:9和5,所以这两个数分别是:9×3=275×3=1527﹣15=12答:这两个数的差最小是12.故答案为:12.【点评】本题考查了最大公因数和最小公倍数,解题关键是:最小公倍数除以最大公因数就得到了两个数的独有因数的积,并且两个数的独有因数应该是互质的.11.(3分)14袋糖果每袋的平均重量经四舍五入到小数点后第一位等于90.2克,已知每袋糖果的重量都是整数,则这14袋糖果的总重量是1263克.【分析】首先判断出这14袋糖果每袋的平均重量大于等于90.15和小于90.25之间,这14袋糖果的总重量大于或等于90.15×14=1262.1克和小于90.25×14=1263.5之间,然后求出这14袋糖果的总重量即可.【解答】解:用四舍五入取近似值的方法精确到一位小数能得到90.2的数值范围是:(大于等于90.15和小于90.25之间)所以这14袋糖果的总重量大于或等于90.15×14=1262.1克和小于90.25×14=1263.5之间,因为每袋糖果的重量都是整数,所以糖果的总重量也是整数,在1262.1和1263.5之间只有1263是整数,所以这14袋糖果的总重量是1263克.答:这14袋糖果的总重量是1263克.故答案为:1263克.【点评】解答此题的关键是判断出这14袋糖果每袋的平均重量大于等于90.15和小于90.25之间.12.(3分)从数字1,2,3,4,5中任意取4个组成四位数,则这些四位数的平均数是3333.【分析】千位上从5个数字有选择一个,就有5种选择的方法,百位上从剩下的4个数字中选择一个有4种不同的选择方法,十位上从剩下的3个数字中选择一个有3种选法,个位上从剩下的2个数字中选择一个有2种选法,它们的积就是全部的选择方法;5×4×3×2=120(种);组成的四位数中,千位上是1的有24个数字,同理百位上是2,3,4,5的各有24个数字,十、个位上是1,2,3,4,5的也各有24个数字,即1,2,3,4,5在每个数位上各出现的24次,出现的次数相同,所以所有四位数的平均数的个位、十位、百位、千位都是1,2,3,4,5这5个数字的平均数.【解答】解:5×4×3×2=120(个),1×4×3×2=24(个),即1,2,3,4,5在每个数位上各出现的24次,可以组成120个不同的四位数;(1+2+3+4+5)÷5=3;那么平均数的各个位上的数字都是3,这个平均数就是3333.答:这些四位数的平均数是3333.故答案为:3333.【点评】根据乘法原理求出可以组成四位数的个数,再根据这些四位数的特点,找出它们的平均数.13.(3分)某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B两人各自答题,得分之和是58分,A比B多得14分,则A答对8道题.【分析】因为得分之和是58分,A比B多得14分,根据和差公式可得A得了(58+14)÷2=36分,假设全部答对,则应得分为10×5=50分,则共相差50﹣36=14分,因为答错一道或不答和答对一道相差2+5=7分,所以答错14÷7=2道题.【解答】解:(58+14)÷2=72÷2=36(分)答错:(5×10﹣36)÷(2+5)=14÷7=2(道)答对:10﹣2=8道.故答案为:8.【点评】本题考查了和差问题与鸡兔同笼问题的综合应用,解答此类题的关键是用假设法,也可以用方程进行解答.14.(3分)如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四边形EFGH=32平方米.减去S 【分析】将图中面积相等的图形标出来,即等积变形,即长方形S长方形ABCD四边形后剩的八个三角形的面积可分成两半,一半再四边形EFGH中,长方形XYZR从而由此可以求得S.四边形EFGH【解答】解:根据分析,如下图所示:长方形S=S长方形XYZR+△AEF+△EFR+△FBG+△FGX+△HCG+△HGY+△DHE+△长方形ABCDHEZ=S长方形XYZR+2×(a+b+c+d)⇒60=4+2×(a+b+c+d)⇒a+b+c+d=28=△EFR+△FGX+△HGY+△HEZ+S长方形XYZR四边形S四边形EFGH=a+b+c+d+S长方形XYZR=28+4=32(平方米).故答案是:32.【点评】本题考查了等积变形,本题突破点是:利用等积变形,将四边形的面积分割成四个三角和一个长方形,最后求和.15.(3分)有一个三位数A,在它的某位数字的前面添上小数点后得数B,若A ﹣B=478.8,则A=532.【分析】A﹣B=478.8,差是一位小数,说明B也是一位小数,原来的三位数A 变成一位小数就缩小了10倍,也就是A﹣B的差是B的9倍,用478.8除以9即可求出B,再把B的小数点向右移动一位就是A.【解答】解:A﹣B=478.8,则:B是A缩小10倍得到的478.8÷(10﹣1)=478.8÷9=53.2那么A=53.2×10=532.故答案为:532.【点评】此题应认真分析,通过观察数字得出:小数点,必在十位和个位之间,再根据差倍公式求解即可.16.(3分)商店里有若干个柚子和西瓜,其中西瓜个数是柚子个数的3倍.如果每天卖出30个西瓜和20个柚子,3天后,西瓜个数比柚子个数的4倍少26.则商店里原有176个柚子.【分析】首先找到题中的等量关系,表示出所有的数量列方程即可.【解答】解:依题意可知:3天后卖出90个西瓜和60个柚子.数量差为30个.设后来柚子是x个,西瓜是4x﹣26个.那么原来柚子是x+60个,原来西瓜是4x ﹣26+90;4x+90﹣26=3(x+60),x=116.故答案为:176【点评】本题的考查差倍问题的理解和运用,方程比较简单容易理解,问题解决.17.(3分)已知a、b、c是3个彼此不同的质数,若a+b×c=37,则a+b﹣c最大是32.【分析】要使a+b﹣c的值最大,就要使c的值最小,最小的质数是2,所以c=2;则可得:a=37﹣b×c=37﹣2b,然后再使b最小即可.当b=3时,a+3×2=37,a=31正好a、b、c都是质数将其分别代入a+b﹣c,得32【解答】解:要使a+b﹣c的值最大,就要使c的值最小,最小的质数是2,所以c=2;则可得:a=37﹣b×c=37﹣2b,要使a最大,则使b最小,b最小是3,所以,a最大是:a=37﹣2×3=31,所以,a+b﹣c最大是:a+b﹣c=31+3﹣2=32;答:a+b﹣c最大是32.故答案为:32.【点评】本题解答的突破口是先确定减数c=2,然后根据:因为b在与c的乘积中,所以只有使b尽量的小,才能保证a尽量的大解答即可.18.(3分)李双骑车以320米分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用17分钟,则李双推车步行的速度是72米/分钟.【分析】首先把李双原来骑车的速度看作单位“1”,用李双原来骑车的速度乘1.5,求出修完车后李双骑车的速度是多少;然后根据路程÷速度=时间,分别用1800除以修车前后李双骑车的速度,求出修车前后李双骑1800米用的时间各是多少,再用修车前李双骑1800米用的时间减去修车后李双骑1800米用的时间,求出修车后李双骑1800米少用多少分钟;最后用李双到达B地比预计多用的时间减去15,再加上修车后李双骑1800米少用的时间,求出李双步行5分钟的路程比同样的路程骑车用的时间多几分钟,再用李双骑车的速度乘李双步行5分钟的路程,骑车需要的时间,求出李双步行的路程是多少,再用它除以5,求出李双推车步行的速度是多少即可.【解答】解:1800÷320﹣1800÷(320×1.5)=5.625﹣3.75=1.875(分钟)320×[5﹣(17﹣15+1.875)]÷5=320×[5﹣3.875]÷5=320×1.125÷5=360÷5=72(米/分钟)答:李双推车步行的速度是72米/分钟.故答案为:72.【点评】此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握,解答此题的关键是求出李双步行5分钟的路程比同样的路程骑车用的时间多几分钟.19.(3分)如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D 重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=2厘米.【分析】△ABC 的周长是16 厘米,因为△ABC 是等腰三角形,且顶点A与底边的中点D重合,所以△AEF 的周长等于△ABC 的周长的一半;可得△AEF 的周长为16÷2=8 (厘米),△AEF 和四边形BCEF周长和为8+10=18(厘米),18厘米正好比△ABC的周长是16厘米多了两条EF的长度,所以EF=(18﹣16)÷2=1 (厘米),又因为EF是中位线;则BC=2 EF=2(厘米).【解答】解:△ABC的周长是16厘米,可得△AEF的周长为:16÷2=8 (厘米),△AEF 和四边形BCEF周长和为:8+10=18(厘米),所以BC=18﹣16=2(厘米),答:BC=2厘米.故答案为:2.【点评】本题关键是根据和差公式以及中位线的性质求出EF的长度,再进一步求出BC的长度.20.(3分)解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需30分钟.【分析】假设每人每分钟修大坝1份,先求出洪水冲毁大坝速度:(10×45﹣20×20)÷(45﹣20)=2(份);然后求出大坝原有的份数45×10﹣2×45=360(份);再让14人中的2人修冲毁大坝的份数,剩下的14﹣2=12人修原有的360份,可求出需要的时间,据此解答.【解答】解:假设每人每分钟修大坝1份洪水冲毁大坝速度:(10×45﹣20×20)÷(45﹣20)=(450﹣400)÷25=50÷25=2(份)大坝原有的份数45×10﹣2×45=450﹣90=360(份)14人修好大坝需要的时间360÷(14﹣2)=360÷12=30(分钟)答:14人修好大坝需30分钟.故答案为:30.【点评】牛吃草的问题关键的是求出青草的生长速度和草地原有的草的份数.。
2016年希望杯初赛真题及解析(五年级)
第十四届小学“希望杯”全国数学邀请赛五年级 第1试试题一、 以下每题6分,共120分.1. 计算: 20.16322.016680⨯+⨯=______.【答案】2016【考点】乘法巧算【解析】2.016320 2.0166802.016(320680)2.01610002016⨯+⨯=⨯+=⨯= 2. 小猫咪A 、B 、C 、D 、E 、F 排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后再到队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是______.【答案】B【考点】周期问题【解析】观察发现,A 、B 、C 、D 、E 、F 为一组不断重复出现,因此是以6为周期的周期现象,2786=46÷……2,因此最后一个领到鱼干的小猫咪是B .3. 某房间内的一堵墙上挂有一面镜子,且这堵墙的对面有一块电子表,李明从镜子中看到电子表显示的时间如图2所示,则此时的实际时间是______.【答案】2:55【考点】电子钟表【解析】从镜子看到的是22:50,通过反射原理,结果是2:55.4. 如果自然数a 、b 、c 、d 、e 除以6都余4,则a b c d +++除以3,所得的余数是______.【答案】1【考点】带余除法【解析】a 、b 、c 、d 的余数都是4,则444416,+++=163=51÷……5. 三位偶数A 、B 、C 、D 、E 满足A <B <C <D <E,若4306A B C D E ++++=,则A 最小是______.【答案】326【考点】偶数,最值问题【解析】A 最小,则B 、C 、D 、E 要尽可能的最大,最大的三位偶数分别为998,996,994,992,所以4306998996994992326A =----=.6. 将100按“加15,减12,加3,加15,减12,加3,……”的顺序不断重复运算,运算26步后,得到的结果是______.(1步指每“加”或“减”一个数).【答案】151【考点】周期问题【解析】100一直按照“加15,减12,加3”的顺序进行运算,151236-+=,把每3步看为一组,每组都能使结果加3,263=82÷……,最后的结果为100861512151+⨯+-=.7. 如图3,若每个小正方形的边长是2,则图中的阴影面积是______.【答案】72【考点】复杂几何,巧求面积【解析】运用平移法,最后阴影部分有18个小正方形,每个小正方形的边长为2,所以阴影部分的面积是2218=72⨯⨯.8. 某商店的同种点心有大小两种包装礼盒,大盒85.6元1盒,内有点心32块,小盒46.8元一盒,内有点心15块.若王雷用654元买了9盒点心,则他可得点心____块.【答案】237【考点】经济问题,方程法解应用题【解析】王雷用654元买了9盒蛋糕,设大盒买了x 盒,则小盒买了(9)x -盒.85.646.8(9)65438.8232.86x x x x ⨯+⨯-===所以大盒礼盒买了6盒,小盒礼盒买了3盒.总共有点心326153237(.⨯+⨯=块)9. 如图4,在梯形ABCD 中,若AB =8,DC =10,15BCM S ∆=,则梯形ABCD 的面积是______.【答案】45【考点】梯形面积【解析】101525AMD BCM S S ∆+=+=,所以梯形的高252105h =⨯÷=,梯形的面积是(810)5245.+⨯÷=10. 两个数的最大公约数和最小公倍数分别是3和135,则这两个数的差最小是______.【答案】12【考点】数论,最大公约数,最小公倍数.【解析】最大公约数和最小公倍数分别是3和135,1353=45÷,45=335⨯⨯,差最小是3(95)12,⨯-=则这两个数的差最小是12.11. 14袋糖果每袋的平均重量经四舍五入到小数小数点后第一位等于90.2克.若每袋糖果的重量都是整数,则这14袋糖果的总重量是_______克.【答案】1263【考点】数论,最大公约数,最小公倍数.【解析】90.2141262.8⨯=,所以总总量1263克.12. 从数字1,2,3,4,5中任意取4个组成四位数,则这些四位数的平均数是_______.【答案】3333【考点】位值原理,平均数问题【解析】从5个数中任意选取4个数,总共有5432=120(⨯⨯⨯种)可能,根据位值原理,千位上的数的和为(12345)241000360000,++++⨯⨯=百位上的数的和为(12345)2410036000,++++⨯⨯=十位上的数的和为(12345)24103600,++++⨯⨯=个位上的数的和为(12345)24360,++++⨯=所以平均数为(360+3600+36000+360000)1203333÷=.13. 某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A 、B 两人各自答题,得分之和是58,A 比B 多得14分,则A 答对_______道题.【答案】8【考点】和差倍问题,鸡兔同笼,方程法解应用题【解析】A 得分:(5814)236+÷=(分),设A 答对x 道题.52(10)368x x x --==,,所以A 答对8道题.14. 如图5,若60ABCD S =长方形平方米,4XYZR S =长方形平方米,则EFGH S =______平方米.【答案】32【考点】复杂几何【解析】观察发现,11112222EFR AFRE EDH EDHZ HGY HCGY GFX GBFX S S S S S S S S ∆∆∆∆====,,,, 所以11()=(604)43222EFGH ABCD XYZR XYZR S S S S =-+-+=(平方米). 15. 有一个三位数A ,在它的某位数字的前面添上小数点后得到数B ,若478.8A B -=,则A =_______.【答案】532【考点】差倍问题【解析】A 在添了小数点之后与原来的差为一位小数,所以小数点向添在了个位与十位之间,数字缩小了10倍,设原来的数A 为x ,0.1478.8,532x x x -==.16. 商店里有若干个柚子和西瓜,其中西瓜个数是柚子个数的3倍,如果每天卖出30个西瓜和20个柚子,3天后,西瓜个数比柚子个数的4倍少26,则商店里原有______个柚子.【答案】176【考点】和差倍问题【解析】每天卖出西瓜30个,柚子20个,3天后共卖出西瓜90个,柚子60个.s 原来西瓜个数是柚子个数的3倍,设柚子个数为x ,则西瓜为3x390(60)426,390424026,176x x x x x -=-⨯--=--=所以原来有柚子176个.17. 已知a 、b 、c 是3个彼此不同的质数,若37a b c +⨯=,则a b c +-最大是______.【答案】32【考点】质数,最值问题【解析】a 、b 、c 是3个彼此不同的质数,符合题意的有:27537;317237;1113237;237237;313237+⨯=+⨯=+⨯=+⨯=+⨯=a b c +-最大,则a =31,b =3,c =2, 32a b c +-=.18. 李双骑车以320米/分钟的速度从A 地驶向B 地,途中因自行车故障推车继续向前步行,5分钟到距B 地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B 地,到达B 地时,比预计时间多用17分钟,则李双推车步行的速度是_____.【答案】72【考点】行程问题,方程解应用题【解析】设步行推车的路程为x ,比预计时间多用17分钟,而其中有15分钟是修车时间,实际上行车时间只比预计多2分钟,可列以下方程:320 1.5480/(1800)320251800480(1800)320 6.75360x x x ⨯=+÷+=+÷+÷==(米分钟)推车步行的速度是360572÷=(米/分钟)。
“希望杯”数学邀请赛培训题1
“希望杯”数学邀请赛培训题1一.选择题(以下每题的四个选择支中,仅有一个是正确的)1.-7的绝对值是( )(A )-7 (B )7 (C )-71 (D )71 2.1999-{1998-[1999-(1998-1999)]}的值等于( )(A )-2001 (B )1997 (C )2001 (D )19993.下面有4个命题:①存在并且只存在一个正整数和它的相反数相同.②存在并且只存在一个有理数和它的相反数相同.③存在并且只存在一个正整数和它的倒数相同.④存在并且只存在一个有理数和它的倒数相同.其中正确的命题是:( )(A )①和② (B )②和③ (C )③和④ (D )④和①4.4ab 2c 3的同类项是( )(A )4bc 2a 2 (B )4ca 2b 3 (C )41ac 3b 2 (D )41ac 2b 3 5.某工厂七月份生产某产品的产量比六月份减少了20%,若八月份产品要达到六月份的产量,则八月份的产量比七月份要增加( )(A )20% (B )25% (C )80% (D )75%6.21,116,158,2413四个数中,与137的差的绝对值最小的数是 ( ) (A )21 (B )116 (C )158 (D )2413 7.如果x =―41,Y =0.5,那么X 3―Y 3―2X 的值是( )(A )0 (B )1613 (C )165 (D )―165 8.ax +b =0和mx +n =0关于未知数x 的同解方程,则有 ( )(A )a 2+m 2>0 (B )m b ≥an (C )mb ≤an (D )mb =an9.(-1)+(-1)-(-1)×(-1)÷(-1)的结果是( )(A )-1 (B )1 (C )0 (D )210.下列运算中,错误的是( )(A )2X 2+3X 2=5X 2(B )2X 2-3X 2=-1(C )2X 2·3X 2=6X 4 (D )2X 4÷4X 3=2X 11.已知a <0,化简aa a -,得( )(A )2 (B )1 (C )0 (D )-2 12.计算(-1)2000+(-1)1999÷|-1|的结果是( )(A )0 (B )1 (C )-1 (D )213.下列式子中,正确的是( )(A )a 2·a 3=a 6 (B )(x 3)3=x 6 (C )33=9 (D )3b ·3c =9bc14.-|-3|的相反数的负倒数是( )(A )-31 (B )31 (C )-3 (D )3 15.十月一日亲朋聚会,小明统计大家的平均年龄恰是38岁,老爷爷说,两年前的十月一日也是这些人相聚,那么两年前相聚时大家的平均年龄是( )(A )38岁 (B )37岁 (C )36岁 (D )35岁16.若a <0,则4a +7|a |等于( )(A )11a (B )-11a (C )-3a (D )3a17.若有理数x ,y 满足|2x -1|+(y +2)2=0,则xy 的值等于 ( )(A )-1 (B )1 (C )-2 (D )218.有理数a ,b ,c 在数轴上对应的点如图所示,则下面式子中正确的是 ( )(A )c +b >a +b (C )ac >ab (B )cb <ab (D )cb >ab 19.不等式1254-x <1的正整数解有( )(A )2个 (B )3个 (C )4个 (D )5个 20.某计算机系统在同一时间只能执行一项任务,且完成该任务后才能执行下一项任务,现有U ,V ,W 的时间分别为10秒,2分和15分,一项任务的相对等待时间为提交任务到完成该任务的时间与计算机系统执行该任务的时间之比,则下面四种执行顺序中使三项任务相对等候时间之和最小的执行是 ( )(A )U ,V ,W (B )V ,W ,U (C )W ,U ,V (D )U ,W ,V22.第一届希望杯的参赛人数是11万,第十届为148万,则第届参赛人数的平均增长率最接近的数值是 ( )(A )21.8% (B )33.5% (C )45% (D )50%23.已知X 和Y 满足3X +4Y =2,X -Y <1,则( )(A )X =76(B )Y =-71 (C )X >76 (D )Y >-71 24.下面的四句话中正确的是 ( )(A )正整数a 和b 的最大公约数大于等于a (B )正整数a 和b 的最小公倍数大于等于ab(C )正整数a 和b 的最大公约数小于等于a (D )正整数a 和b 的公倍数大于等于ab25.已知a ≤2,b ≥-3,c ≤5,且a -b +c =10,则a +b +c 的值等于( )(A )10 (B )8 (C )6 (D )4二、填空题26.53的相反数除-6的绝对值所得的结果是_________. 27.用科学记数法表示:890000=_____________.c b a x28.用四舍五入法,把1999.509取近似值(精确到个位),得到的近似数是________.29.已知两个有理数-12.43和-12.45.那么,其中的大数减小数所得的差是________.30.已知1999a m b 3与-11a 2b n 是同类项,则-m n =________.31.|-41|的负倒数与-|4|的倒数之和等于________. 32.近似数0.1990的有效数字是________.33.甲、乙、丙、丁四个数之和等于-90,甲数减-4,乙数加-4,丙数乘-4,丁数除-4彼比相等,则四个数中的最大的一个数比最小的一个数大________.34.已知式子-421241________. 35.(4212-+1137÷11324-83)÷1251=_________. 36.已知角a 的补角等于角a 的3.5倍,则角a 等于________度.37.已知方程(1.9x -1.1)-(21-x )=0.9(3x -1)+0.1,则解得x 的值是________. 38.甲楼比丙楼高24.5米,乙楼比丙楼高15.6米,则乙楼比甲楼低_____米.39.如图,四个小三角形中所填四个数之和等于零,则这四个数绝对值之和等于________. 40.关于x 的方程3mx +7=0和2x +3n =0是同解方程,那么(mn )2=_______.41.方程组⎩⎨⎧2000219992=-=-y x y x 的解是____________________. 42.小明骑车自甲地经乙地,先上坡后下坡,到达乙地后立即返回甲地,共用34分钟,已知上坡速度是400米/分,下坡速度是450米/分,则甲地到乙地的路程是________米.43.父亲比小明大24岁,并且1998年的年龄是小明2000年年龄的3倍,则小明1999年时的年龄是________岁.44.已知19991a 3n -m b n -m 和9999b 7-n a m +10是同类项,则m 2+n 2=_________. 45.(5x -7)∶(3y +2)=1∶2,并且(y -3)∶(4x -1)=1∶3.则x 2-y 2=__________.46.m ,n ,l 都是二位的正整楼,已知它们的最小公倍数是385,则m +n +l 的最大值是________.47.甲瓶食盐水浓度为8%,乙瓶食盐水浓度为12%,两瓶食盐水共重1000克,把甲、乙两瓶食盐后的浓度是10.08%,则甲瓶食盐水重____________克.48.如图所示的五角星形中共可数出________个三角形.49.已知a =1999,则|3a 3-2a 2+4a -1|-|3a 3-3a 2+3a +-2001|=__________.50.已知数串1,1,2,3,5,8,13,……,从第3个数起每个数都等于它前面相邻的两个数之和,那么,数串中第1999个数被3除所得的余数是________.51.将一个长为a ,宽为b 的矩形分为六个相同的小矩形,然后在矩形中画出形如字母M 的图形,记字母M 的图形面积为S ,则S =________.52.有理数-3,+8,-21,0.1,0,31,-10.5,-0.4中,所有正数的和填在下式的〇中,所有负数的和填在正式下式的□中,并计算出下式的结果填在等号左边的横线上.〇÷□=________.53.填数计算:〇中填入最小的自然数,△中填入最小的非负数,□中填入不小于-5且小于3的整数的个数,将下式的计算结果写在等号右边的横线上.(〇+□)×△=________. 54.从集合{-3,-2,-1,4,5}中取出三个不同的数,可能得到的最大乘积填在□中,可-能得到的最小乘积填在〇中并将下式计算的结果写在等号右边的横线上.-(-□)÷〇=________.55.计算:)4151()3141()2131(1|4151||3141||2131|1------------=________. 56.有这样一个衡量体重是否正常的简单算法.一个男生的标准体重(以公斤为单位)是其身高(以厘米为单位)减去110.正常体重在标准体重减标准体重的10%和加标准体重的10之间.已知甲同学身高161厘米,体重为W ,如果他的体重正常,则W 的公斤数的取值范围是_________.57.若A 是有理数,则(-a )+|a |+|-a |+(-|a |)的最小值是____________. 58.计算:)100011)(99911()511)(411)(311)(211(10201970198019902000-------++-+- =________. 59.有理数a ,b ,c 在数轴上的位置如图所示,化简|a +b |-|b -1|-|a -c |-|1-c |=___________.60.X 是有理数,则|x -221100|+|x +22195|的最小值是_____. x 2.4 -1 -5.761.如图,C 是线段AB 的中点,D 是线段AC 的中点,已知图中所有线段的长度之和为23,则线段AC 的长度为_____.62.设m 和n 为非负整数,已知5m +3和3n +1的最小公倍数为36,m +n =________.63.甲、乙同在一百米起跑线处,甲留在原地未动,乙则以每秒7米的速度跑向百米终点,5秒后甲听到乙的叫声,看到乙跌倒在地,已知声音的传播速度是每秒340米,这时乙已经跑了_____米.(精确到个位)64.现有一个代数式x (x -1)(x -2)(x -3)…(x -19)(x -20),x =10.5时该数式的值为a ,x =9.5时该代数式的值为b ,则a+b =_______.65.如图,一个面积为50平方厘米的正方形与另一个小正方形并排放在一下起,则△ABC 的面积是________平方厘米. 66.在六位数25xy 52中x ,y 皆是大于7的数码,这个六位数被11整除,那么,四位数1xy 5=_________.67.今有1分,2分和5分的硬币共计15枚,共值5角2分,则三种硬币个数的乘积是____________. 68.数学小组中男孩子数大于小组总人数的40%小于50%,则这个数学小组的成员至少有_________人.69.用三个数码1和三个数码2可以组成________个不同的四位数.70.在三位数中,百位比十位小,并且十位比个位小的数共有________个.71.在100~1999这一千九百个自然数中,十位与个位数字相同的共有________个.72.有人问毕达哥拉斯,他的学校中有多少学生,他回答说:“一半学生学数学,四分之一学音乐,七分之一正休息,还剩三个女学生.”问毕达哥拉斯的学校中有多少学生?答:毕达哥拉斯的学校中有________个学生.73.丢番图(二世纪时希腊数学家)的基碑上的墓志铭记载:“哲人丢番图,在此处埋葬,寿命相当长,六分之一是童年,十二分之一是少年,又过了生命的七分之一,娶了新娘,五年后生了个儿郎,不幸儿子只活了父亲寿命的一半,先父四年亡,丢番图到底寿多长?”答:丢番图的寿命是________岁.74.有人问某儿童,有几个兄弟、有几个姐妹,他回答说:“有几个兄弟,就有几个姐妹.”再问他妹妹,有几个兄弟、几个姐妹,她回答说:“我的兄弟是姐妹的两倍.”问他们兄弟、姐妹各几人?答:他们有兄弟________人,姐妹________人.75.甲对乙说:“我像你这样大岁数的那年,你的罗数等于我今年岁数的一半,当你到我这样大岁数的时候,我的岁数是你今年岁数的二倍少7岁.”两人现年各多少岁?答:甲现年________岁,乙现年________.三、解答题76.一辆公共汽车由起点站到终点站(含起点站与终点站在内)共行驶8个车站.已知前6个车站共上车100人,除终点站外共下车总计80人,问从前6站上车而在终点下车的乘客共有多少人?77.已知代数式dcx b ax ++2,当x =-1,0,1时的值分别为-1,2,2,而且d 不等于0,问当x =2时该代数式的值是多少?78.如图,在一环行轨道上有三枚弹子同时沿逆时针方向运动.已知甲于第10秒钟时追上乙,在第30秒时追上丙,第60秒时甲再次追上乙,并且在第70秒时再次追上丙,问乙追上丙用了多少时间?79.有理数a ,b ,c 均不为0,且a +b +c =0,设x =||bb c a c b c b a +++++,试求代数x 19-99x +2000之值.80.已知a ,b 为整数,n =10a +b ,如果17|a -5b ,请你证明:17|n .C A B C AD B。
2016年第十四届小学“希望杯”全国数学邀请赛试卷(五年级第1试)
2016年第十四届小学“希望杯”全国数学邀请赛试卷(五年级第1试)一、填空题(共20小题,每小题3分,满分60分)1.(3分)20.16×32+2.016×680=.2.(3分)小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是.3.(3分)某房间内的一堵墙上挂有一面镜子,且这堵墙的对面有一块电子表,李明聪镜中看到电子表显示的时间如图所示,则此时的实际时间是.4.(3分)如果自然数a、b、c、d除以6都余4,则a+b+c+d除以3,所得的余数是.5.(3分)三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.6.(3分)将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)7.(3分)如图,若每个小正方形的边长是2,则图中阴影部分的面积是.8.(3分)某商店的同种点心有大小两种包装礼盒,大盒85.6元一盒,内有点心32块,小盒46.8元一盒,内有点心15块,若王雷用654元买了9盒点心,则他可得点心块.9.(3分)如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.10.(3分)两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.11.(3分)14袋糖果每袋的平均重量经四舍五入到小数点后第一位等于90.2克,已知每袋糖果的重量都是整数,则这14袋糖果的总重量是.12.(3分)从数字1,2,3,4,5中任意取4个组成四位数,则这些四位数的平均数是.13.(3分)某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B两人各自答题,得分之和是58分,A比B多得14分,则A答对道题.14.(3分)如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四边形EFGH=平方米.15.(3分)有一个三位数A,在它的某位数字的前面添上小数点后得数B,若A ﹣B=478.8,则A=.16.(3分)商店里有若干个柚子和西瓜,其中西瓜个数是柚子个数的3倍.如果每天卖出30个西瓜和20个柚子,3天后,西瓜个数比柚子个数的4倍少26.则商店里原有个柚子.17.(3分)已知a、b、c是3个彼此不同的质数,若a+b×c=37,则a+b﹣c最大是.18.(3分)李双骑车以320米分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用17分钟,则李双推车步行的速度是米/分钟.19.(3分)如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D 重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=厘米.20.(3分)解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.2016年第十四届小学“希望杯”全国数学邀请赛试卷(五年级第1试)参考答案与试题解析一、填空题(共20小题,每小题3分,满分60分)1.(3分)20.16×32+2.016×680=2016.【分析】把2.016×680变形为20.16×68,然后根据乘法的分配律简算即可.【解答】解:20.16×32+2.016×680=20.16×32+20.16×68=20.16×(32+68)=20.16×100=2016故答案为:2016.【点评】本题利用具体的算式考查了学生对于乘法分配律的理解.2.(3分)小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是B.【分析】共有6只小猫咪,278÷6=46…2,容易得出答案.【解答】解:共有6只小猫咪,每发6条鱼重复出现,而278÷6=46…2,余数是2,则最后一个领到鱼干的小猫咪是B.故答案为:B.【点评】关键是找出周期,本题周期=6.3.(3分)某房间内的一堵墙上挂有一面镜子,且这堵墙的对面有一块电子表,李明聪镜中看到电子表显示的时间如图所示,则此时的实际时间是02:55.【分析】根据镜面对称的性质求解,在平面镜中的像与实际的实物,恰好左右或上下颠倒,关于镜面对称;据此解答即可.【解答】解:画图如下:所以,此时的实际时间是02:55.故答案为:02:55.【点评】本题考查了镜面对称知识,得到相应的对称轴是解答本题的关键,难点是作出相应的对称图形;注意2、5的关于竖直的一条直线的轴对称图形是5、2.4.(3分)如果自然数a、b、c、d除以6都余4,则a+b+c+d除以3,所得的余数是1.【分析】自然数a、b、c、d除以6都余4,则a、b、c、d都可以表示为6×整数+4,后面分析就简单了.【解答】解:因为自然数a、b、c、d除以6都余4,所以a、b、c、d都可以表示为:6×整数+4,四个这样的数的和是:6×整数+16,除以3余1,所得的余数是1.答案是1.【点评】能被6整除,一定能被3整除,只需要把四个余数加起来,看除以3余几,就是答案.5.(3分)三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小326.【分析】最大的三位偶数是998,要使A最小,则要让其他的4个数(B、C、D、E)尽量最大,由于三位偶数A、B、C、D、E满足A<B<C<D<E,所以E 最大是998,D最大是996,C最大是994,B最大是992,用5个数的和4306减去B、C、D、E这4个数的和就是A的值;据此解答.【解答】解:最大的三位偶数是998,要满足A最小且A<B<C<D<E,则E最大是998,D最大是996,C最大是994,B最大是992,4306﹣(998+996+994+992)=4306﹣3980=326,所以此时A最小是326.故答案为:326.【点评】解答此题关键是明确最大的三位偶数是998,要使A最小,则要让其他的4个数(B、C、D、E)尽量最大.6.(3分)将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是151.(1步指每“加”或“减”一个数)【分析】加15,减12,加3,…,就相当于每一个计算周期运算3步,增加:15﹣12+3=6,则26÷3=8…2,即运算26步经过了8的计算周期,再加15,减12各一次,然后用100加上6×8,再加上15,再减去12即可.【解答】解:每一个计算周期运算3步,增加:15﹣12+3=6,则26÷3=8…2,所以,100+6×8+15﹣12=100+48+3=151答:得到的结果是151.故答案为:151.【点评】这一类问题一般要利用余数的知识来解答.这就要求我们对题目要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,然后利用除法算式求出余数,最后根据余数得出正确的结果.7.(3分)如图,若每个小正方形的边长是2,则图中阴影部分的面积是72.【分析】可以将图中阴影部分的三角形进行剪切和拼接,变成都是小正方形组成的图形,最后再数出正方形的个数,即可求得阴影部分的面积.【解答】解:根据分析,如图,将阴影部分进行剪切和拼接后得:此时,图中阴影部分的小正方形个数为:18个,每个小正方形的面积为:2×2=4,故阴影部分的面积=18×4=72.故答案是:72.【点评】本题考查了剪切和拼接,突破点是:将阴影部分进行剪切和拼接,数出小正方形的个数,从而求得阴影部分的面积.8.(3分)某商店的同种点心有大小两种包装礼盒,大盒85.6元一盒,内有点心32块,小盒46.8元一盒,内有点心15块,若王雷用654元买了9盒点心,则他可得点心237块.【分析】设大合x 盒,小盒y 盒,依题意有方程:85.6x +46.8(9﹣x )=654解方程可知大小各多少盒,进而可求出块数.【解答】设大合x 盒,小盒y 盒,依题意有方程:85.6x +46.8(9﹣x )=654解方程得x=6,9﹣6=3.所以大合6盒,小盒3盒,共有32×6+15×3=237块.答:可得点心237块.【点评】本题如果用算术法求解,要用假设法.可先假设9盒全是15块一盒的,应花钱46.8×9=437.4元,比实际少232.8元,这是把其中的大合看成了小盒, 1大合看成了1小盒少算85.6﹣46.8=38.8元,大合有232.8÷38.8=6盒,小盒9﹣6=3盒.9.(3分)如图,在梯形ABCD 中,若AB=8,DC=10,S △AMD =10,S △BCM =15,则梯形ABCD 的面积是 45 .【分析】△ADM 、△BCM 、△ABM 都等高,所以S △ABM :(S △ADM +S △BCM )=8:10=4:5,已知S △AMD =10,S △BCM =15,即可求出S △ABM 的面积,进而求出梯形ABCD 的面积.【解答】解:△ADM 、△BCM 、△ABM 都等高,所以S △ABM :(S △ADM +S △BCM )=8:10=4:5,已知S △AMD =10,S △BCM =15,所以S △ABM 的面积是:(10+15)×=20,梯形ABCD 的面积是:10+15+20=45;答:梯形ABCD 的面积是45.故答案为:45.【点评】本题关键是明确等高的三角形,面积比等于对应底的比.突破口是得到S△ABM:(S△ADM+S△BCM)=8:10.10.(3分)两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是12.【分析】首先要知道最大公约数和最小公倍数是如何求得的,最大公约数是两个数的公有质因数的积,最小公倍数是两个数的公有质因数和独有因数的积,所以用最小公倍数除以最大公约数就得到了两个数的独有因数的积,并且两个数的独有因数应该是互质的,然后根据质因数求出差最小的两个数即可.【解答】解:因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与5,所以差最小的是:9和5,所以这两个数分别是:9×3=275×3=1527﹣15=12答:这两个数的差最小是12.故答案为:12.【点评】本题考查了最大公因数和最小公倍数,解题关键是:最小公倍数除以最大公因数就得到了两个数的独有因数的积,并且两个数的独有因数应该是互质的.11.(3分)14袋糖果每袋的平均重量经四舍五入到小数点后第一位等于90.2克,已知每袋糖果的重量都是整数,则这14袋糖果的总重量是1263克.【分析】首先判断出这14袋糖果每袋的平均重量大于等于90.15和小于90.25之间,这14袋糖果的总重量大于或等于90.15×14=1262.1克和小于90.25×14=1263.5之间,然后求出这14袋糖果的总重量即可.【解答】解:用四舍五入取近似值的方法精确到一位小数能得到90.2的数值范围是:(大于等于90.15和小于90.25之间)所以这14袋糖果的总重量大于或等于90.15×14=1262.1克和小于90.25×14=1263.5之间,因为每袋糖果的重量都是整数,所以糖果的总重量也是整数,在1262.1和1263.5之间只有1263是整数,所以这14袋糖果的总重量是1263克.答:这14袋糖果的总重量是1263克.故答案为:1263克.【点评】解答此题的关键是判断出这14袋糖果每袋的平均重量大于等于90.15和小于90.25之间.12.(3分)从数字1,2,3,4,5中任意取4个组成四位数,则这些四位数的平均数是3333.【分析】千位上从5个数字有选择一个,就有5种选择的方法,百位上从剩下的4个数字中选择一个有4种不同的选择方法,十位上从剩下的3个数字中选择一个有3种选法,个位上从剩下的2个数字中选择一个有2种选法,它们的积就是全部的选择方法;5×4×3×2=120(种);组成的四位数中,千位上是1的有24个数字,同理百位上是2,3,4,5的各有24个数字,十、个位上是1,2,3,4,5的也各有24个数字,即1,2,3,4,5在每个数位上各出现的24次,出现的次数相同,所以所有四位数的平均数的个位、十位、百位、千位都是1,2,3,4,5这5个数字的平均数.【解答】解:5×4×3×2=120(个),1×4×3×2=24(个),即1,2,3,4,5在每个数位上各出现的24次,可以组成120个不同的四位数;(1+2+3+4+5)÷5=3;那么平均数的各个位上的数字都是3,这个平均数就是3333.答:这些四位数的平均数是3333.故答案为:3333.【点评】根据乘法原理求出可以组成四位数的个数,再根据这些四位数的特点,找出它们的平均数.13.(3分)某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B两人各自答题,得分之和是58分,A比B多得14分,则A答对8道题.【分析】因为得分之和是58分,A比B多得14分,根据和差公式可得A得了(58+14)÷2=36分,假设全部答对,则应得分为10×5=50分,则共相差50﹣36=14分,因为答错一道或不答和答对一道相差2+5=7分,所以答错14÷7=2道题.【解答】解:(58+14)÷2=72÷2=36(分)答错:(5×10﹣36)÷(2+5)=14÷7=2(道)答对:10﹣2=8道.故答案为:8.【点评】本题考查了和差问题与鸡兔同笼问题的综合应用,解答此类题的关键是用假设法,也可以用方程进行解答.14.(3分)如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四边形EFGH=32平方米.减去S 【分析】将图中面积相等的图形标出来,即等积变形,即长方形S长方形ABCD四边形后剩的八个三角形的面积可分成两半,一半再四边形EFGH中,长方形XYZR从而由此可以求得S.四边形EFGH【解答】解:根据分析,如下图所示:长方形S=S长方形XYZR+△AEF+△EFR+△FBG+△FGX+△HCG+△HGY+△DHE+△长方形ABCDHEZ=S长方形XYZR+2×(a+b+c+d)⇒60=4+2×(a+b+c+d)⇒a+b+c+d=28=△EFR+△FGX+△HGY+△HEZ+S长方形XYZR四边形S四边形EFGH=a+b+c+d+S长方形XYZR=28+4=32(平方米).故答案是:32.【点评】本题考查了等积变形,本题突破点是:利用等积变形,将四边形的面积分割成四个三角和一个长方形,最后求和.15.(3分)有一个三位数A,在它的某位数字的前面添上小数点后得数B,若A ﹣B=478.8,则A=532.【分析】A﹣B=478.8,差是一位小数,说明B也是一位小数,原来的三位数A 变成一位小数就缩小了10倍,也就是A﹣B的差是B的9倍,用478.8除以9即可求出B,再把B的小数点向右移动一位就是A.【解答】解:A﹣B=478.8,则:B是A缩小10倍得到的478.8÷(10﹣1)=478.8÷9=53.2那么A=53.2×10=532.故答案为:532.【点评】此题应认真分析,通过观察数字得出:小数点,必在十位和个位之间,再根据差倍公式求解即可.16.(3分)商店里有若干个柚子和西瓜,其中西瓜个数是柚子个数的3倍.如果每天卖出30个西瓜和20个柚子,3天后,西瓜个数比柚子个数的4倍少26.则商店里原有176个柚子.【分析】首先找到题中的等量关系,表示出所有的数量列方程即可.【解答】解:依题意可知:3天后卖出90个西瓜和60个柚子.数量差为30个.设后来柚子是x个,西瓜是4x﹣26个.那么原来柚子是x+60个,原来西瓜是4x ﹣26+90;4x+90﹣26=3(x+60),x=116.故答案为:176【点评】本题的考查差倍问题的理解和运用,方程比较简单容易理解,问题解决.17.(3分)已知a、b、c是3个彼此不同的质数,若a+b×c=37,则a+b﹣c最大是32.【分析】要使a+b﹣c的值最大,就要使c的值最小,最小的质数是2,所以c=2;则可得:a=37﹣b×c=37﹣2b,然后再使b最小即可.当b=3时,a+3×2=37,a=31正好a、b、c都是质数将其分别代入a+b﹣c,得32【解答】解:要使a+b﹣c的值最大,就要使c的值最小,最小的质数是2,所以c=2;则可得:a=37﹣b×c=37﹣2b,要使a最大,则使b最小,b最小是3,所以,a最大是:a=37﹣2×3=31,所以,a+b﹣c最大是:a+b﹣c=31+3﹣2=32;答:a+b﹣c最大是32.故答案为:32.【点评】本题解答的突破口是先确定减数c=2,然后根据:因为b在与c的乘积中,所以只有使b尽量的小,才能保证a尽量的大解答即可.18.(3分)李双骑车以320米分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用17分钟,则李双推车步行的速度是72米/分钟.【分析】首先把李双原来骑车的速度看作单位“1”,用李双原来骑车的速度乘1.5,求出修完车后李双骑车的速度是多少;然后根据路程÷速度=时间,分别用1800除以修车前后李双骑车的速度,求出修车前后李双骑1800米用的时间各是多少,再用修车前李双骑1800米用的时间减去修车后李双骑1800米用的时间,求出修车后李双骑1800米少用多少分钟;最后用李双到达B地比预计多用的时间减去15,再加上修车后李双骑1800米少用的时间,求出李双步行5分钟的路程比同样的路程骑车用的时间多几分钟,再用李双骑车的速度乘李双步行5分钟的路程,骑车需要的时间,求出李双步行的路程是多少,再用它除以5,求出李双推车步行的速度是多少即可.【解答】解:1800÷320﹣1800÷(320×1.5)=5.625﹣3.75=1.875(分钟)320×[5﹣(17﹣15+1.875)]÷5=320×[5﹣3.875]÷5=320×1.125÷5=360÷5=72(米/分钟)答:李双推车步行的速度是72米/分钟.故答案为:72.【点评】此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握,解答此题的关键是求出李双步行5分钟的路程比同样的路程骑车用的时间多几分钟.19.(3分)如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D 重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=2厘米.【分析】△ABC 的周长是16 厘米,因为△ABC 是等腰三角形,且顶点A与底边的中点D重合,所以△AEF 的周长等于△ABC 的周长的一半;可得△AEF 的周长为16÷2=8 (厘米),△AEF 和四边形BCEF周长和为8+10=18(厘米),18厘米正好比△ABC的周长是16厘米多了两条EF的长度,所以EF=(18﹣16)÷2=1 (厘米),又因为EF是中位线;则BC=2 EF=2(厘米).【解答】解:△ABC的周长是16厘米,可得△AEF的周长为:16÷2=8 (厘米),△AEF 和四边形BCEF周长和为:8+10=18(厘米),所以BC=18﹣16=2(厘米),答:BC=2厘米.故答案为:2.【点评】本题关键是根据和差公式以及中位线的性质求出EF的长度,再进一步求出BC的长度.20.(3分)解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需30分钟.【分析】假设每人每分钟修大坝1份,先求出洪水冲毁大坝速度:(10×45﹣20×20)÷(45﹣20)=2(份);然后求出大坝原有的份数45×10﹣2×45=360(份);再让14人中的2人修冲毁大坝的份数,剩下的14﹣2=12人修原有的360份,可求出需要的时间,据此解答.【解答】解:假设每人每分钟修大坝1份洪水冲毁大坝速度:(10×45﹣20×20)÷(45﹣20)=(450﹣400)÷25=50÷25=2(份)大坝原有的份数45×10﹣2×45=450﹣90=360(份)14人修好大坝需要的时间360÷(14﹣2)=360÷12=30(分钟)答:14人修好大坝需30分钟.故答案为:30.【点评】牛吃草的问题关键的是求出青草的生长速度和草地原有的草的份数.。
2016第十四届希望杯2试_五年级解析
3/5
资料下载、家长交流、信息分享权威论坛:
左斜侧方圆圈中数之和. M 12 3 5 7 81
12 3 81 40 2
12 1680 1692
11. 一堆珍珠共 6468 颗, 若每次取相同的质数颗, 若干次后刚好取完, 不同的取法有 a 种; 若每次取相同的奇数颗,若干次后刚好取完,不同的取法有 b 种,则 a b _________. 【答案】16 【考点】分解质因数 【解析】 6468 2 2 7 7 3 11 ,其中质数有:2、3、7、11,即取法有 4 种, a 4 ;其 中奇数有: 1、 3、 7、 11、3 7 、3 11 、7 7 、7 11 、3 7 7 、3 7 11 、7 7 11 、 3 7 7 11 ,即取法有 12 种, b 12 ;所以, a b 4 12 16 .
【答案】0.25 【考点】计算 【解析】 10 2 0.3 0.3 0.04 0.04 0.05
10 2 0.3 0.3 0.04 0.04 0.05 10 2 0.05
0.25
2.
小磊买 3 块橡皮, 5 支铅笔需付 10.6 元.若他买同品种的 4 块橡皮, 4 支铅笔需付 12 元, 则一块橡皮的价格是_________元. 【答案】2.2 元 【考点】消去问题 【解析】 3 橡+5 铅=10.6 元 4 橡+4 铅=12 元 橡+铅=3 元 橡-铅=1.4 元 橡皮: 3 1.4 2 2.2 (元)
小书灯家长社区整理发布 让家长无忧·让学习无忧
4பைடு நூலகம்5
资料下载、家长交流、信息分享权威论坛:
小学五年级希望杯数学全国数学邀请赛试题 (1)
第十五届小学“希望杯”全国数学邀请赛五年级 第1试试题2017年3月19日 上午8:30至10:00 以下每题6分,共120分。
1、计算:1.25×6.21×16+5.8= .2、观察下面数表中的规律,可知=x .3、图1是一个由26个相同的小正方体堆成的几何体,它的底层由45⨯个小正方体构成。
如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有块。
4、非零数字a , b , c 能组成6个没有重复数字的三位数,且这6个数的和是5994,则这6个数中任意一个数都被9整除.(填“能”或“不能”)5、将4个边长为 2 的正方形如图放置在桌面上,则它们在桌面上所能覆盖的面积是 .6、6个大于0的连续奇数的乘积是135135,则这6个数中最大的是 .7、A ,B 两桶水同样重,若从A 桶中倒2.5千克水到B 桶中,则B 桶中水的重量是A 桶中水的重量的6倍,那么B 桶原来有水 千克. 8、如图是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则c b a ⨯-的值是 .9、同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人。
若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学有 人。
10、如图,小正方形的面积是1,则图中阴影部分的面积是 .11、6个互不相同的非零自然数的平均数是12,若将其中一个两位数ab 换成ba (a ,b 是非零数字),那么这6个数的平均数变为15,所以满足条件的ab 共有 个。
12、如图,在ABC ∆中,D ,E 分别是AB ,AC 的中点,且图中两个阴影部分(甲和乙)的面积差是5.04,则ABC ∆的面积是 。
13、松鼠A ,B ,C 共有松果若干,松鼠A 原有松果26颗,从中拿出10颗平凡给B ,C ,然后松鼠B 拿出自己的18颗松果平分给A ,C ,最后松鼠C 把自己现有松果的一半平分给A ,B ,此时3只松鼠的松果数量相同。
[学科竞赛]历届希望杯五年级及培训题及华杯赛
历届希望杯真题第一届小学“希望杯”全国数学邀请赛五年级(第2试)一、填空(每题4分,共60分)1.计算:423×2.52125×1.05=________。
2.一个四位数,给它加上小数点后比原数小2003.4,这个四位数是________ 。
3.六位数2003□□能被99整除,它的最后两位数是______________ 。
4.如图1,两个正方形的边长分别是6厘米和2厘米,阴影部分的面积是________平方厘米。
5.用1元、5元、10元、50元、100元人民币各一张,2元、20元人民币各两张,在不找钱的情况下,最多可以支付_____种不同的款额。
6.桌面上4枚硬币向上的一面都是"数字",另一面都是"国徽",如果每次翻转3枚硬币,至少_____次可使向上的一面都是"国徽"。
7.向电脑输入汉字,每个页面最多可输入1677个五号字。
现在页面中有1个五号字,将它复制后粘贴到该页面,就得到2个字;再将这2个字复制后粘贴到该页面,就得到4个字。
每次复制和粘贴为1次操作,要使整修页面都排满五号字,至少需要_____次操作。
8.图2中的每个小方格都是面积为1的正方形,面积为2的矩形有_____个。
9.由于潮汐的长期作用,月球自转周期与绕地球公转周期恰好相同,这使得月球总是以相同的一面对着我们。
在地球上最多能看到50%的月球面积,从一张月球照片中最多能看到_____50%的月球面积。
(填“大于”、“小于”或“等于”)10.三个武术队进行擂台赛,每队派6名选手,先由两队各出1名选手上擂台比武,负者下台,不再上台,胜者继续同其它队的一位选手比武,负者下台,和胜者不同队的双一位选手上台……继续下去。
当有两个队的选手全部被击败时,余下的队即获胜。
这时最少要进行_____场比武。
11.两种饮水器若干个,一种容量12升水,另一种容量15升水。
153升水恰好装满这些饮水器,其中15升容量的_____个。
希望杯五年级历届试题及答案
2011年第九届初赛1.计算:1.25×31.3×24=。
2.把0.123,0.2,0.1,0.12按照从小到大的顺序排列:<<<3.先将从1开场的自然数排成一列:1415......然后按一定的规律分组:1,23,456,7891,01112,131415,......在分组后的数中,有一个十位数,这个十位数是。
4.如图1,从A到B,有条不同的路线。
〔不能重复经过同一个点〕5.数数,图2中有个正方形。
6.—个除法算式中.被除数、除数、商与余数都是自然数,并且商与余数相等假设被除数是47.那么除数是,余数是。
7.如果六位数2011□□能被90整除.那么它的最后两位数是。
8.如果一个自然数的约数的个数是奇数,我们称这个自然数为"希望数〞。
那么,1000以内最大的"希望数〞是。
9.将等边三角形纸片按图3所示步骤折叠3次〔图3中的虚线是三边的中点的连线然后沿过两边的中点的直线减去一角〔如图4〕将剩下的纸片展开,平铺.得到的图形是。
10.如图5,甲、乙两人按箭头方向从A点问时出发,沿着正方形ABCD的边行走,正方形ABCD 的边长是100米,甲的速度是乙的速度的1.5倍,两人在E点第一次相遇,那么三角形ADE 的面积比EBC三角形的面积大平方米。
11.星期天早晨,哥哥和弟弟去练习跑步。
哥哥每分钟跑110米,弟弟每分钟跑80米。
弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米。
那么,哥哥跑了米。
12.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本那么还差2元。
那么,笔记本每个元,笔每支元。
13.数学家维纳是控制论的创始人。
在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄。
维纳的问答很有趣,他说:"我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0〜9这10个数字全都用上了,不重也不漏。
2016年第十四届小学“希望杯”全国数学邀请赛试卷(五年级第2试)
2016年第十四届小学“希望杯”全国数学邀请赛试卷(五年级第2试)一、填空题(每题5分,共60分).1.(5分)10÷(2÷0.3)÷(0.3÷0.04)÷(0.04÷0.05)= .2.(5分)小磊买3块橡皮,5支铅笔需付10.6元,若他买同品种的4块橡皮,4支铅笔需付12元,则一块橡皮的价格是元.3.(5分)将1.41的小数点向右移动两位,得a,则a﹣1.41的整数部分是.4.(5分)定义:m⊗n=m×m﹣n×n,则2⊗4﹣4⊗6﹣6⊗8﹣…﹣98⊗100= .5.(5分)从1~100这100个自然数中去掉两个相邻的偶数,剩下的数的平均数是50,则所去掉的两个数的乘积是.6.(5分)如图,四边形ABCD是正方形,ABGF和FGCD都是长方形,点E在AB 上,EC交FG于点M.若AB=6,△ECF的面积是12,则△BCM的面积是.7.(5分)在一个除法算式中,被除数是12,除数是小于12的自然数,则可能出现的不同余数之和是.8.(5分)如图,是某几何体从正面和左面看到的图形,若该几何体是由若干个棱长为1的正方形垒成的,则这个几何体的体积最小是.9.(5分)正方形A、B、C、D的边长依次是15,b,10,d(b,d都是自然数),若它们的面积满足SA =SB+SC+SD,则b+d= .10.(5分)根据图所示的规律,推知M= .11.(5分)一堆珍珠共6468颗,若每次取质数颗,若干次后刚好取完,不同的取法有a种;若每次取奇数颗,若干次后刚好取完,不同的取法有b种,则a+b= (每次取珍珠的颗数相同)12.(5分)若A是质数,并且A﹣4,A﹣6,A﹣12,A﹣18也是质数,则A= .二、解答题(每题15分,共60分).13.(15分)张强骑车从公交的A站出发,沿着公交路线骑行,每分钟行250米,一段时间后,一辆公交车也从A站出发,每分钟行450米,并且每行驶6分钟需靠站停1分钟.若这辆公交车出发15分钟的时候追上张强,则该公交车出发的时候,张强已经骑过的距离是多少米?14.(15分)如图,水平方向和竖直方向上相邻两点之间的距离都是m,若四边形ABCD的面积是23,则五边形EFGHI的面积是.15.(15分)定义:[a]表示不超过数a的最大自然数,如[0.6]=0,[1.25]=1.若[5a﹣0.9]=3a+0.7,则a的值.16.(15分)有4个书店共订400本《数理天地》杂志,每个书店订了至少98本,至多101本,问:共有多少种不同的订法?2016年第十四届小学“希望杯”全国数学邀请赛试卷(五年级第2试)参考答案与试题解析一、填空题(每题5分,共60分).1.(5分)10÷(2÷0.3)÷(0.3÷0.04)÷(0.04÷0.05)= 0.25 .【分析】根据除法的性质a÷(b÷c)=a÷b×c以及乘法的交换律与结合律简算即可.【解答】解:10÷(2÷0.3)÷(0.3÷0.04)÷(0.04÷0.05)=10÷2×0.3÷0.3×0.04÷0.04×0.05=(10÷2)×(0.3÷0.3)×(0.04÷0.04)×0.05=5×1×1×0.05=0.25故答案为:0.25.【点评】仔细观察算式特点,通过转化的数学思想,使复杂的问题简单化.2.(5分)小磊买3块橡皮,5支铅笔需付10.6元,若他买同品种的4块橡皮,4支铅笔需付12元,则一块橡皮的价格是 2.2 元.【分析】根据“3块橡皮,5支铅笔需付10.6元;”知道买12块橡皮和20支铅笔需付的钱数,再根据“他买同品种的4块橡皮,4支铅笔需付12元.“可求出他买同品种的20块橡皮,20支铅笔的总钱数;两数相减就是8块橡皮的钱数,那问题即可解决.【解答】解:解:(12×5﹣10.6×4)÷(5×4﹣3×4)=(60﹣42.4)÷8=17.6÷8=2.2(元);答:每每块橡皮2.2元.故答案为:2.2.【点评】解答除以的关键是,合理利用题中的条件,构造新的数量关系,列式解答即可.(5分)将1.41的小数点向右移动两位,得a,则a﹣1.41的整数部分是139 .3.【分析】将1.41的小数点向右移动两位就变成141,再用141减1.41求出差,从而得出其整数部分即可.【解答】解:将1.41的小数点向右移动两位是141,即a=141,a﹣1.41=141﹣1.41=139.59,139.59的整数部分是139.故答案为:139.【点评】解决本题关键是掌握小数点移动的规律:一个小数的小数点向左移动一位,这个小数就缩小了10倍;移动两位,这个小数就缩小了100倍;移动三位,这个小数就缩小了1 000倍…;同理,如果一个小数的小数点向右移动一位,这个小数就扩大了10倍;移动两位,这个小数就扩大了100倍;移动三位,这个小数就扩大了1 000倍….4.(5分)定义:m⊗n=m×m﹣n×n,则2⊗4﹣4⊗6﹣6⊗8﹣…﹣98⊗100= 9972 .【分析】m⊗n=m×m﹣n×n=m2﹣n2【解答】解:原式=2⊗4﹣4⊗6﹣6⊗8﹣…﹣98⊗100=(22﹣42)﹣(42﹣62)﹣(62﹣82)﹣…﹣(982﹣1002)=22﹣42﹣42+62﹣62+82﹣…﹣982+1002=1002+22﹣42﹣42=10000+4﹣16﹣16=9972故答案为:9972.【点评】充分理解新定义,注意数列的加减抵消.同时注意每一个符号都是“﹣”.计算过程中添加括号减少失误率.注意此题并不需要平方差公式展开.5.(5分)从1~100这100个自然数中去掉两个相邻的偶数,剩下的数的平均数是50,则所去掉的两个数的乘积是5624 .【分析】首先求出从1~100这100个自然数的和是多少,再用剩下的数的平均数乘100﹣2,求出剩下的数的和是多少,进而求出去掉的两个数是多少;然后把去掉的两个数相乘即可.【解答】解:(1+2+…+99+100)﹣50×(100﹣2)=(1+100)×100÷2﹣4900=5050﹣4900=150因为去掉的两个数是相邻的偶数,所以去掉的两个数是:74、76,所以去掉的两个数的乘积是:74×76=5624故答案为:5624.【点评】此题主要考查了平均数问题,要熟练掌握,解答此题的关键是分别求出从1~100这100个自然数的和、剩下的数的和各是多少.6.(5分)如图,四边形ABCD是正方形,ABGF和FGCD都是长方形,点E在AB 上,EC交FG于点M.若AB=6,△ECF的面积是12,则△BCM的面积是 6 .【分析】可以先利用线段之间的比例,求得面积比,FM和MG的比例,可以通过三角形ECF的面积求得.【解答】解:根据分析,由△ECF的面积是12,可知,×FM×BG+×FM×CG=12,⇒×FM×(BG+GC)=×FM×BC=12⇒FM=,⇒MG=6﹣4=2,∴△BCM的面积:△ECF的面积=MG:FM=2:4=1:2,∴△BCM的面积=△ECF的面积=×12=6.故答案是:6【点评】本题考查了三角形的面积,突破点是:利用线段之间的比例,求得面积比,FM和MG的比例,可以通过三角形ECF的面积求得.7.(5分)在一个除法算式中,被除数是12,除数是小于12的自然数,则可能出现的不同余数之和是15 .【分析】被除数÷除数=商…余数,除数是小于12的自然数.0不能做除数,从1到11分类枚举.1,2,3,4,6都是12的因数余数为0,然后枚举其他除数.【解答】解:因为1,2,3,4,6是12的因数,所以余数为0,12÷5=2…2,12÷7=1…5,12÷8=1…4,12÷9=1…3,12÷10=1…2,12÷11=1…1,则不同余数相加为5+4+3+2+1=15.故答案为:15.【点评】本题需要特别注意的是说不同余数的和.不是所有余数的和,因此出现两个2只能加1个.8.(5分)如图,是某几何体从正面和左面看到的图形,若该几何体是由若干个棱长为1的正方形垒成的,则这个几何体的体积最小是 6 .【分析】首先分析图中的2个方块的位置,左视图中在左边是正视图是在第四个位置,需要同时满足这2个条件即可.【解答】解:依题意可知:画出俯视图的一种:在4号木块上是有2个木块即可满足条件.那么这个几何体的最小体积就是6块,1×6=6.故答案为:6【点评】本题考查对三视图的理解和分析,关键是找到图中的2个木块的位置.问题解决.9.(5分)正方形A、B、C、D的边长依次是15,b,10,d(b,d都是自然数),若它们的面积满足SA =SB+SC+SD,则b+d= 13或15 .【分析】按题意,则有:SA =SB+SC+SD⇒152=b2+102+d2,故可以求得b和d的平方和,根据b和d是自然数,可以得到b和d的值,从而求得b+d的值.【解答】解:根据分析,SA =SB+SC+SD⇒152=b2+102+d2,⇒b2+d2=125,∵b和d是自然数,∴①b=2,d=11,b+d=13;②b=10,d=5,b+d=15,故答案是:13或15.【点评】本题考查了等积变形,本题突破点是:可以求得b和d的平方和,根据b和d是自然数,可以得到b和d的值,从而求得b+d的值.10.(5分)根据图所示的规律,推知M= 1692 .【分析】首先发现数字的规律是数字和的关系,每一个方块都是前面所有的圆圈与12的和.根据这个规律即可求解.【解答】解:依题意可知:首先看规律是12+3=15;15+5=20;…每一个方块加上圆圈就是下一各数字.同时发现20=12+3+527=12+3+5+7规律总结圆圈的数字是以3为首项的公差为2的等差数列,每下一个方块就是之前的所以数字和.M=12+3+5+7+9+11+ (81)项数为+1=40.M=12+=12+84×20=1692故答案为:1692【点评】本题考查对数字规律的理解与运用,关键是发现数字和的规律结合等差数列.同时注意求项数时有加1,问题解决.11.(5分)一堆珍珠共6468颗,若每次取质数颗,若干次后刚好取完,不同的取法有a种;若每次取奇数颗,若干次后刚好取完,不同的取法有b种,则a+b= 13 (每次取珍珠的颗数相同)【分析】由于每次取珍珠的颗数相同,若干次正好取完,则取的个数是6468的因数,可先将6468分解质因数后,根据因数中质数与奇数的多少,即可确定分别有多少种取法,进而求出共有多少种取法.【解答】解:6468=2×2×3×7×7×11.由此可知,6468的因数中质数有2,3,7、11.则若每次取质数颗,若干次后刚好取完,不同的取法有4种.又3×7=21,3×7×7=147,7×7=49,7×7×11=539,3×7×7×11=1617,则若每次取奇数颗,若干次后刚好取完,不同的取法有9种:每次分别取:1、3,7,11,21,49,147,539,1617颗.则a+b=4+9=13.故答案为:13.【点评】首先将6468分解质数是完成本题的关键.完成本题要注意确定6468奇数因数的个数.12.(5分)若A是质数,并且A﹣4,A﹣6,A﹣12,A﹣18也是质数,则A= 23 .【分析】首先分析100以内的质数,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97.共25个,找到数字相差2的A﹣4,A﹣6质数工有多少组.再找出数字A.A﹣4相差4和相差6的.最后找到一定是大于18的质数.【解答】解:依题意可知:A﹣18是质数,所以A>18,A﹣6>12,A﹣4>14枚举出相差2符合题意的质数共有(17,19),(29,31),(41,43),(59,61),(71,73)五组.∵A﹣4与A相差4,把组合中较大的数字加上4是质数则符合题意.∴19+4=23(符合),31+4=35(不符合),43+4=47(符合),61+4=65(不符合),73+4=77(不符合).∵A﹣6与A﹣12相差6,较小的数字减去6还是质数.17﹣6=11(符合),41﹣6=35(不符合).同时满足A﹣18也是质数,与A﹣12相差6,11﹣6=5(符合条件).∴A,A﹣4,A﹣6,A﹣12,A﹣18是23,19,17,11,5.故答案为:23.【点评】100以内的质数是重点考察内容,然后根据其中一个条件相差2的质数能够筛选出很多不符合的数字,在根据条件一步一步筛选,.在接下来的计算中比较容易枚举.同时不要忘记检验.二、解答题(每题15分,共60分).13.(15分)张强骑车从公交的A站出发,沿着公交路线骑行,每分钟行250米,一段时间后,一辆公交车也从A站出发,每分钟行450米,并且每行驶6分钟需靠站停1分钟.若这辆公交车出发15分钟的时候追上张强,则该公交车出发的时候,张强已经骑过的距离是多少米?【分析】首先分析公交车的周期时间是7分钟,然后把公交车的时间和距离对比张强的时间和距离,做差即可求解.【解答】解:依题意可知:公交车每7分钟比张强多行驶(450﹣250)×6﹣250×1=950(米);因为15÷7=2…1(分).公交车行驶2次后再行1分钟即可追上张强.所以该公交车出发时,张强行驶的距离为:950×2+(450﹣250)=2100(米);另解再15分钟内张强骑行了:250×15=3750(米);公交车实际行驶了15﹣2=13(分),行驶的距离是450×13=5850(米).再这个时间公交车落后张强5850﹣3750=2100(米);答:该公交车出发的时候,张强已经骑过的距离是2100米.【点评】本题是考查追击问题的理解和综合运用,关键问题是找到行驶的距离.根据公交车的时间周期即可求解,问题解决.14.(15分)如图,水平方向和竖直方向上相邻两点之间的距离都是m,若四边形ABCD的面积是23,则五边形EFGHI的面积是28 .【分析】格点面积=(内部格点数+周界格点数÷2﹣1)×2,据此数出内部格点=23,可数、周界格点数,求出图中五边形的面积是多少即可.根据S四边形ABCD 知(10+5÷2﹣1)×2=23,那么五边形EFGHI的面积为(12+6÷2﹣1)×2,解决问题.【解答】解:(12+6÷2﹣1)×2=14×2=28答:五边形EFGHI的面积是28.古达安慰:28.【点评】先数出内部格点数和周边的格点数,然后根据毕克定理:(内部格点数+周界格点数÷2﹣1)×2求解.15.(15分)定义:[a]表示不超过数a的最大自然数,如[0.6]=0,[1.25]=1.若[5a﹣0.9]=3a+0.7,则a的值.【分析】理解新定义的意义,[5a﹣9]在两个相邻整数之间,即3a+0.7≤5a﹣0.9≤3a+1.7【解答】解:3a+0.7≤5a﹣0.9≤3a+1.73a+1.6≤5a≤3a+2.61.6≤2a≤2.60.8≤a≤1.3∴2.4≤3a≤3.93.1≤3a+0.7≤4.6∵3a+0.7是整数3a+0.7=4a=1.1综上所述:a=1.1【点评】充分理解新定义.放在两个自然数中间找出a的范围.16.(15分)有4个书店共订400本《数理天地》杂志,每个书店订了至少98本,至多101本,问:共有多少种不同的订法?【分析】4个书店共订400本,每个书店订了至少98本,至多101本,可以先每个书店分98本,余下8本再分给这4个书店.【解答】解:先每个书店分98本,还余下8本,为题转化为把8本书分给4个书店,每个书店可以分0、1、2、3本,可能的分配情况有:这4类,①3、3、2、0分配情况有×=12种,②3、3、1、1分配情况有=6种,③3、2、2、1分配情况有×=12种,④2、2、2、2分配情况有1种,所以共有:12+6+12+1=31种订法,共有31种不同的订法.【点评】把分400本书转化成分8本书,有利于简化分析问题.。
2016年小学五年级希望杯全国数学邀请赛试题(第二试)(含解析)
得分
二、解答题
12.小磊买3块橡皮,5支铅笔需付10.6元;若他买同品种的4块橡皮,4支铅笔需付12元,则一块橡皮的价格是________________元。
13.张强骑车从公交车的A站出发,沿着公交路线骑行,每分钟行250米,一段时间后,一辆公交车也从A站出发,每分钟行450米,并且每行驶6分钟需靠站停1分钟。若这辆公交车出发15分钟的时候追上张强,则该公交车出发的时候,张强已经骑过的距离是多少米?
和差基本公式:(和+差)÷2=较大数,(和—差)÷2=较大数。
1——100这100个数的和是:1+2+3+4+……+100=5050;
剩下的98个数的和是:50×98=4900,则去掉的两个偶数的和是:5050—4900=150;差是2,有和差公式可知这两个数分别为:
(150+2)÷2=76;(150—2)÷2=74,所以这两个数的乘积是:76×74=5624。
14.如图4,水平方向和竖直方向上相邻两点之间的距离都是m,若四边形ABCD的面积是23,求五边形EFGHI的面积。
15.定义:[a]表示不超过数a的最大自然数,如[0.6]=0,[1.25]=1。若[5a—0.9]=3a+0.7,求a的值。
16.有4个书店共订400本《数理天地》杂志,每个书店订了至少98本,至多101本,问:共有多少种不同的订法?
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
一、填空题
1.10÷(2÷0.3)÷(0.3÷0.04)÷(0.04÷0.05)=________________。
2.将1.41的小数点向右移动两位,得a,则a—1.41的整数部分是________________。
3.定义:m n=m×m—n×n,则2 4—4 6—6 8—8 10—……—98 100=________________。
“希望杯”全国数学邀请赛真题五年级.docx
“希望杯” 全国数学邀请赛真题(五年级)第一届小学“希望杯”五年级第 1 试一、填空题1.计算= _______ 。
2.将 1、 2、3、 4、 5、 6 分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画 5 条直线,最多可有 _______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。
5.,各表示一个两位数,若和它的反序数+=139,则=_______ 。
6.三位数的差被 99 除,商等于 _______ 与 _______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图 2 中,正方形有 _______ 个,三角形有 _______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:在第 (4) 块牌子中,?表示的数是_______ 。
9.正方形的一条对角线长 13 厘米,这个正方形的面积是平方厘米。
10. 六位自然数 1082□□能被 12 整除,末两位数有种情况。
11. 右边的除法算式中,商数是。
第1页共87页12.比 2/3 大,比 3/4 小的分数有无穷多个,请写出三个:。
、B、C、D、E 五位同学进行乒乓球循环赛,比赛进行了一段时间后, A 赛了 4 场, B 赛了 3 场, C赛了 2 场, D赛了1场,这时, E 赛了场。
14. 观察 5*2 = 5+55= 60,7*4 = 7+77+ 777+ 7777= 8638,推知 9*5 的值是。
15. 警察查找一辆肇事汽车的车牌号,一位目击者对数字很敏感,他提供情况说:―第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的 4 倍刚好比后两位数少 2‖。
警察此判断该车牌号可能是。
16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。
小光,小亮二人随意往桌上扔放这个木块。
规定:当小光扔时,如果朝上的一面写的是偶数,得 1 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年第十四届小学“希望杯”全国数学邀请赛培训题(五年级)1、计算:2015+201.5+20.15+985+98.5+9.85的值。
2、201.5×2016.2016-201.6×2015.2015。
..3、(0.45+0.2) ÷1.2×11。
4、计算:0.875×0.8+0.75×0.4+0.5×0.2。
5、定义A&B=A×A÷B,求3&(2&1)的值。
6、定义新运算○+,它的运算规则是:a ○+b =a ×b +2a,求2.5○+9.6。
7、规定:a △b =(b -0.2a)(a -0.2b ),a □b =ab -a +b,求5△(4□3)的值。
8、在下面的每个方框中填入符号“+”,“-”,“×”,“÷”中的一个,且每个符号恰用一次,使计算结果最小。
300□9□7□5□39、a ,b ,c 都是质数,若a +b =13,b +c =28,求a ,b ,c 的乘积。
10、若两个自然数的乘积是75,且这两个自然数的差小于15,求这两个数和的个位数字。
11、A 、B 都是自然数,A >B ,且A ×B =2016,求A -B 的最大值。
12、有6个连续的奇数,其中最大的奇数是最小的奇数的3倍,求这6个奇数的和。
13、有一个两位数,在它的两个数字中间添加2个0,所得到的数是原来数的56倍,求原来的两位数。
14、有一个四位数,在它的某位数字的前面添上一个小数点后,再和原来的四位数相加得2036.16,求这个四位数。
15、已知两个自然数的乘积是2016,这两个数的最小公倍数是168,求这两个数的最大公约数。
16、两个数的最大公约数和最小公倍数分别是4和80,求这两个数。
17、2016的约数中,偶数有多少个?18、有6个数排成一列,从第2个数起每个数都是前一个数的2倍,且6个数的和是78.75,求第2个数。
19、从左到右排列的31个数,到第16个数为止,后面一个数比前面相邻的数大3;从第16个数开始,到第31个数为止,后面的数比前面的数小4,若31个数的和是2012。
求16个数。
20、已知a,b,c是3个质数,若a×(b+c) =105,求a,b,c三个数中最大的一个数。
21、p,q均为质数,且3p+5q=31,求q p的最大值。
(注:n a表示n个a相乘)22、有一列小数2.41, 41.3, 3.51, 51.4, 4.61…,从第二个数开始,每个数都是它前一个数的小数部分和整数部分互换后加0.1所得,当某一个数的数字中首次出现0时,不再继续,求这个列数的和。
23、按顺序排列一串数,从第3个数起,每一个数都等于其前面两个数的和。
如果这串数的第2个数为20.16,第10个数201.6,求前面8个数的和。
24、对于大于0的自然数n,定义:n! =1×2×3×…×n,如2016!=1×2×3×…×2016,求1!+2!+3!+4!+…+2015!+2016!的个位数字。
25、888888÷999的余数是多少?26、一个自然数b乘以3后,乘积的最后三位数是103,求b的最小值。
27、求能被3,5,7整除的最小的四位数。
28、有一个自然数除4余2,除6余4,除9余7,求这个数最小是多少?29、若被28整除的最小三位数是a,最大的三位数是b,求a+b。
30、在1~50的自然数中所有不能被3整除的数的和是多少?31、在1~100的自然数中,不是3或7的倍数的数有多少个?32、一个三位数自然数abc减去它的各位数之和,得到□58,期中□代表某一个数字,求a的值。
33、每台学习机的价格是a元(a是整数,且a≤800)。
若24个小朋友买了同一款学习机共花了A387B元,求a。
34、用300元买单价分别是8元,12元的两种商品,若钱恰好用完,则最多可以买多少件商品。
35、有7个自然数,它们的平均数介于17.5和17.7之间,求这7个数的和。
36、有7个排成一列的数,它们的平均数是19,前3个数的平均数是15,后5个数的平均数是23。
求第3个数。
37、用数字1,2,3可以组成多个三位数(数字不能重复),求所组成所有三位数的平均数。
38、15个小于10的数的平均数是8.4,去掉最大的数后,平均数是8.3,求这15个数中的最大数。
39、有3张上面分别写有2,3,5的卡片,随意从中取出至少1张组成一个数。
问:组成的数中,共有多少个质数?40、王老师安排甲、乙、丙、丁四人组队参加团体知识竞赛,此次竞赛共有A、B、C、D 四题,每人只能答一题,如果A题只有甲和乙会做,丁不会做B题,那么有多少种不同的安排方法。
41、一个小数的整数部分是两个相邻的不为零的数字m和n,且m>n,小数部分是由两个大于m的不同数字构成的,则满足条件的小数有多少个?42、数一数,图1中有多少个三角形?图143、在图2适当的位置补充一个小正方形,使得到的图形可以折成一个正方体,有几种方法?图244、如图3、正方形ABCD的边长为2,M,E,N,F分别为DA,AB,BC,CD的中点。
求图中所有三角形面积的和。
45、两个相同的直角三角形如图4重叠在一起,求阴影部分的面积。
46、求图5中甲和乙两部分的面积差。
47、如图6,长方形ABCD的长是12cm,直角△AED的直角边ED的长是8cm。
若△ABF 的面积比△FEC的面积大12cm2,求长方形的宽。
48、如图7,长方形面积是72平方厘米,A是长的三等分点,B是宽的中点,求阴影部分的面积。
49、如图8,在平行四边形ABCD中,点M在对角线AC上,BM延长线交AD于点F。
若△ABM的面积是3cm2,△BCM的面积是5cm2。
求△BCF的面积。
50、如图9,在梯形ABCD中,上底BC=3,下底AD=9,梯形的高是4,点N在AB上,若△NBC的面积是四边形ANCM面积的一半且与△MCD的面积相等,求DM。
51、如图10,把小正方形ABCD放在大正方形EFGH的上面,已知小正方形的面积为4平方厘米,大正方形的面积是36平方厘米,求梯形ABGH的面积.52、如图11,已知△ABC,延长BC到F,使得FC=BC,延长CA到D,使得DA=2AC,延长AB 到E,使得BE=3AB。
若△ABC的面积为112,求△DFE的面积。
53、如图12,把三角形DEF的各边向外延长1倍后得到三角形ABC。
若三角形DEF的面积为201.6平方米.求△ABE的面积。
54、一个长方形围墙,长是宽的4倍。
改建后,长减少了3m,宽增加了2m,面积增加了14m2,求围墙原来的面积。
55、如图13,已知点A′、B′、C′、D′分别是正方形ABCD四边的中点,点A"、B"、C"、D"是四边形A′B′ C′D′四边的中点,若正方形ABCD的面积为20,求四边形A"B"C"D"的面积.56、如图14,梯形ABCD中,上底AB是6厘米,梯形的高BE是4厘米,且E是CD的中点,BF将梯形分成面积相等的两部分。
求△BEF的面积。
57、如图15,三角形 ABC 中,AC = 17,S△ABO = 10.5,S△BCO=25.2,求 DC。
58、如图16,Rt△ABC中,点D、E为边CB的三等分点,点F为边AB的中点,若AC=3,CB=6,求图中所有三角形的面积。
59、如图17,某模型的平面图是由10个相同的小长方形组成,若该模型的平面图的面积为20,求小长方形的周长。
60、图18中的数据表示的是所在长方形的面积,根据数据求阴影部分的面积。
61、如图19,一个大长方形被分成8个小长方形,其中的5个小长方形的面积分别为8,10,10,16,63。
求阴影部分的面积。
62、如图20,四边形ABCD的面积为59.5,被分成四个小三角形,其中的两个小三角形的面积标在图中。
求阴影三角形的面积。
63、如图21,1个大正六边形内部有7个同样的小正六边形,求大正六边形面积是空白部分(去掉阴影部分之外的部分)面积的几倍。
=14,求四边形64、如图22,水平方向和竖直方向上相邻两点之间的距离都是a,S△ABCDEFG的面积。
65、如图23,正方体的三个侧面上分别写着“上、前、右”,与这三个侧面相对的侧面上分别写着“下、后、左”,下图左边的四个图中,有多少个图是正方体的展开图。
66、把一个长、宽、高分别是15、10、5的长方体木块分割成3块小长方体后,表面积最多增加多少?67、正方体的八个顶点上分别写有1〜8这8个数字,而每条边的中点上的数字是这条边端点上的两个数字的平均数。
如果上底面的四个中点处的数字和是a,下底面的四个中点处的数字和是b,且 b-a = 14,求这个正方体的上底面的四个顶点上的数字。
68、小明参加玩一个游戏,游戏规定:在一张纸上写有多个5和 7,将纸上的任意两个数的和也写在纸上。
若出现23,就获得胜利。
问:小明能获胜吗?69、甲、乙、丙、丁、戊五个盒子中依次装有1,3,5,7,9块糖。
第一位小朋友从装糖最多的盒子中取4块糖放入其它盒子中各一块。
第二位小朋友也从装糖最多的盒子中取4块糖放入其它盒子中各一块糖,如此继续下去,…,当第100个小朋友放完糖后,丁盒中有多少块糖?70、小丽用60元买了8个盒子,其中圆盒子5元1个,内有3张卡片;方盒子9元1个,内有5张卡片。
求打开盒子后可得到多少张卡片?71、某种瓶子每瓶最多可盛水1.8千克,若用它向同一规格的水桶中装水,则45瓶水刚好装满10个水桶,求一个水桶可盛水多少千克。
72、甲、乙、丙三人一同参加数学竞赛,在25道赛题中,甲答对了23道,乙答对了21道,丙答对了20道,三人都答对的题至少有多少道?73、某电影院有26排座位,后一排比前一排多1个座位,最后一排有45个座位,求这个影院一共有多少个座位。
74、一本书共有N页,从第一页到第N页按顺序编了页码后,共用945个数字,求这本书共有多少页。
75、甲、乙两同学计划在假期阅读同一套书,甲同学计划前10天每天读15页,以后每天读20页,在开学前正好读完。
而乙同学计划前10天每天读18页,以后每天读25页,在开学前9天就能读完。
那么假期共有多少天?(假期多于20天)76、现有面值1元、5元、10元的人民币共33张,共计187元,若5元的人民币比1元的人民币少5张,求3种面值的人民币各有多少张?77、要完成一个项目,甲单独做21天后再由乙单独做12天。
如果甲、乙两人合作14天,也可以完成该项目。
则乙单独完成这个项目需多少天?78、水果店将2千克苹果,3千克梨,5千克桔子拼成水果拼盘。