二次函数与特殊四边形

合集下载

中考数学 精讲篇 中考压轴题重难点突破七 二次函数与几何综合题 类型四

中考数学 精讲篇 中考压轴题重难点突破七 二次函数与几何综合题 类型四

由勾股定理得 BC2=22+32=13,CG2=1+(2-n)2,BG2=4+n2,
①若∠BCG=90°,则 BC2+CG2=BG2,

13+1+(2-n)2=4+n2,解得
7 n=2,此时点
G
的坐标为1,27.
②若∠CBG=90°,则 CB2+BG2=CG2,
即 13+4+n2=1+(2-n)2,解得 n=-3,此时点 G 的坐标为(1,-3). ③若∠CGB=90°,则 CG2+BG2=BC2,
即 1+(2-n)2+4+n2=13,解得 n=1+ 3或 n=1- 3, 此时点 G 的坐标为(1,1+ 3)或(1,1- 3).
7 综上所述,点 G 的坐标为1,2或(1,-3)或(1,1+ 3)或(1,1- 3).
【思路点拨】 要使以 B,C,G,H 为顶点的四边形是矩形,只需△BCG 是直角三角形即 可,可分为①∠BCG=90°;②∠CBG=90°;③∠CGB=90°三种情况, 分别利用勾股定理列方程即可求解.
类型四:二次函数与特殊四边形问题
如图,在平面直角坐标系中,已知抛物线 y=ax2+bx+2(a≠0)与 x 轴交于 A(-1,0),B(3,0)两点,与 y 轴交于点 C. (1)求该抛物线的解析式;
解:由题意知抛物线经过 A(-1,0),B(3,0),
a-b+2=0,
a=-23,
∴9a+3b+2=0,解得b=43.
等及勾股定理得:AQ2=CQ2,
∴12+q2=(2-q)2,解得
3 q=4.
由中点坐标公式得-1+0=0+x,0+2=q+y,
∴x=-1,y=54,即 I-1,45.
②若 AC 是菱形的边,由菱形性质得:QI∥AC,QI=AC. ∵当点 A 向右平移 1 个单位,向上平移 2 个单位得到点 C. ∴点 I(或 Q)向右平移 1 个单位,向上平移 2 个单位得到点 Q(或 I), 即 x+1=0,y+2=q 或 0+1=x,q+2=y, ∴x=-1 或 x=1.

二次函数背景下的特殊四边形存在性判定(解析版)

二次函数背景下的特殊四边形存在性判定(解析版)

备战2020年中考数学压轴题之二次函数专题06 二次函数背景下的特殊四边形存在性判定【方法综述】知识准备:特殊四边形包括平行四边形、菱形、矩形和正方形。

它们的判定方法如下:平行四边形的判定方法:两组对边分别平行的四边形是平行四边形;两组对角分别相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形两条对角线互相平分的四边形是平行四边形;矩形判的定方法有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形有三个角是直角的四边形是矩形菱形判定方法有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形四条边相等的四边形是矩形正方形的判定方法平行四边形+矩形的特性;平行四边形+菱形的特性解答时常用的技巧:(1).根据平行四边形的对角线互相平分这条性质,应用中点坐标公式,可以采用如下方法:已知点A、B、C三点坐标已知,点P在某函数图像上,是否存在以点A、B、C、P为顶点的四边形为平行四边形,求点P的坐标。

如,当AP、BC为平行四边形对角线时,由中点坐标公式,可得a+m=c+e,n+b=d+f则m= c+e-a;n= d+f-b,点P坐标可知,将其带入到函数关系式进行验证,如果满足函数关系式,即为所求P点,同理,根据分类讨论可以得到其它情况的解答方法。

(2).菱形在折叠的情况下,可以看成是等腰三角形以底边所在直线折叠所得,因此,菱形的存在性讨论,亦可以看做等腰三角形的存在性讨论。

(3).矩形中的直角证明出来常规直角的探究外,还有主要是否由隐形圆的直径所对圆周角得到。

【典例示范】类型一平行四边形的存在性探究例1:如图,在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P,Q,B,O为顶点的四边形为平行四边形(要求PQ∥OB),直接写出相应的点Q的坐标.【答案】(1)y=12x2+x-4;(2)当m=-2时,S有最大值,S最大=4;(3)满足题意的Q点的坐标有三个,分别是(-2+2-,(-2-2+,(-4,4).【思路引导】(1)已知抛物线与x轴的两个交点的横坐标,一般选用两点式,利用待定系数法求解即可;(2)利用抛物线的解析式表示出点M 的纵坐标,从而得到点M 到x 轴的距离,然后根据三角形面积公式表示并整理即可得解,根据抛物线的性质求出第三象限内二次函数的最值,然后即可得解;(3)利用直线与抛物线的解析式表示出点P 、Q 的坐标,然后求出PQ 的长度,再根据平行四边形的对边相等列出算式,然后解关于x 的一元二次方程即可得解.【解析】(1)设抛物线的解析式为y=a (x+4)(x -2),把B (0,-4)代入得,-4=a×(0+4)(0-2),解得a=12, ∴抛物线的解析式为:y=12(x+4)(x -2),即y=12x 2+x -4; (2)过点M 作MD ⊥x 轴于点D ,设M 点的坐标为(m ,n ), 则AD=m+4,MD=-n ,n=12m 2+m -4, ∴S=S △AMD +S 梯形DMBO -S △ABO =111(4)()(4)()44222m n n m +-+-+--⨯⨯= -2n -2m -8=-2×(12m 2+m -4)-2m -8=-m 2-4m =-(m+2)2+4(-4<m <0);∴S 最大值=4.(3)设P (x ,12x 2+x -4). ①如图1,当OB 为边时,根据平行四边形的性质知PQ ∥OB ,∴Q 的横坐标等于P 的横坐标,又∵直线的解析式为y=-x ,则Q (x ,-x ).由PQ=OB ,得|-x -(12x 2+x -4)|=4,解得x=0,-4,-x=0不合题意,舍去.由此可得Q (-4,4)或(-2--2-;②如图2,当BO 为对角线时,知A 与P 应该重合,OP=4.四边形PBQO 为平行四边形则BQ=OP=4,Q 横坐标为4,代入y=-x 得出Q 为(4,-4).故满足题意的Q 点的坐标有四个,分别是(-4,4),(4,-4),(-,2-,(-2-.【方法总结】本题是二次函数综合题,交点式求解析式,二次函数与三角形面积最值问题的公共底的辅助线的做法要注意,二次函数中存在平行四边形的方法,要分别对已知边的分别为平行四边形的边或是对角线进行分类讨论.针对训练1.如图,二次函数的图象与x 轴交于A 、B 两点,与y 轴交于点C ,已知点A (﹣4,0).(1)求抛物线与直线AC 的函数解析式;(2)若点D (m ,n )是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S ,求S 关于m 的函数关系式;(3)若点E 为抛物线上任意一点,点F 为x 轴上任意一点,当以A 、C 、E 、F 为顶点的四边形是平行四边形时,请求出满足条件的所有点E 的坐标.【答案】(1)(2)S=﹣m 2﹣4m+4(﹣4<m <0)(3)(﹣3,2)、(,﹣2)、(,﹣2)【解析】 (1)∵A (﹣4,0)在二次函数y=ax 2﹣x+2(a≠0)的图象上, ∴0=16a+6+2,解得a=﹣, ∴抛物线的函数解析式为y=﹣x 2﹣x+2; ∴点C 的坐标为(0,2),设直线AC 的解析式为y=kx+b ,则, 232(0)2y ax x a =-+≠122y x =+32--32-3212123204{2k b b=-+=解得,∴直线AC 的函数解析式为:;(2)∵点D (m ,n )是抛物线在第二象限的部分上的一动点,∴D (m ,﹣m 2﹣m+2),过点D 作DH ⊥x 轴于点H ,则DH=﹣m 2﹣m+2,AH=m+4,HO=﹣m ,∵四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积,∴S=(m+4)×(﹣m 2﹣m+2)+(﹣m 2﹣m+2+2)×(﹣m ),化简,得S=﹣m 2﹣4m+4(﹣4<m <0);(3)①若AC 为平行四边形的一边,则C 、E 到AF 的距离相等,∴|y E |=|y C |=2,∴y E =±2.当y E =2时,解方程﹣x 2﹣x+2=2得,x 1=0,x 2=﹣3,∴点E 的坐标为(﹣3,2);当y E =﹣2时,解方程﹣x 2﹣x+2=﹣2得,x 1=,x 2=,∴点E 的坐标为(,﹣2)或(,﹣2);②若AC 为平行四边形的一条对角线,则CE ∥AF ,∴y E =y C =2,∴点E 的坐标为(﹣3,2).综上所述,满足条件的点E 的坐标为(﹣3,2)、(,﹣2)、(,﹣2).1{22k b ==122y x =+123212321212321212321232123232-32-+32-32-32--32-+2.(云南省弥勒市2019届九年级上学期期末考试数学试题)如图,抛物线y =x 2−2x −3与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式;(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 四个点为顶点的四边形是平行四边形?如果存在,写出所有满足条件的F 点坐标(请直接写出点的坐标,不要求写过程);如果不存在,请说明理由.【答案】(1)A(−1,0),B(3,0),y =−x −1。

中考数学解答题压轴题突破 重难点突破八 二次函数与几何综合题 类型四:二次函数与特殊四边形问题

中考数学解答题压轴题突破 重难点突破八 二次函数与几何综合题 类型四:二次函数与特殊四边形问题

同Ⅰ)可得 NG=FM=3,OF=t-3,
∵∠OFB=∠FPM,
∴tan ∠OFB=tan ∠FPM,
OB FM 4
3
∴OF=PM,即t-3=-21t2+t+4,
1+ 201 1- 201 解得 t1= 4 ,t2= 4 (舍),
∴F
2014-11,0.
综上,点 F 的坐标为(2,0)或
形问题
[眉山:2022T26;泸州:2022T23;达州:2021T25(3); 凉山州:2021T28;绵阳:2020T24;德阳:2020T25]
4.(2022·眉山第 26 题 12 分)在平面直角坐标系中,抛物线 y=-x2- 4x+c 与 x 轴交于点 A,B(点 A 在点 B 的左侧),与 y 轴交于点 C,且点 A 的坐标为(-5,0). (1)求点 C 的坐标; (2)如图①,若点 P 是第二象限内抛物线上一动点,求点 P 到直线 AC 距 离的最大值;
解:(1)由二次函数 y=x2+bx+c 的图象与 x 轴相交于点 A(-1,0)和
点 B(3,0),得 1-b+c=0, 9+3b+c=0,
b=-2, 解得c=-3.
(2)①∵点 P(m,n)在抛物线 y=x2-2x-3 上, ∴P(m,m2-2m-3), ∵过点 P 作 x 轴的垂线交直线 l:y=x 于点 Q, ∴Q(m,m),∴PQ=-m-232+241,
(2)过点 P 作 PE⊥AC 于点 E,过点 P 作 PF⊥x 轴交 AC 于点 H,如图①. ∵A(-5,0),C(0,5),∴OA=OC, ∴△AOC 是等腰直角三角形,∴∠CAO=45°, ∵PF⊥x 轴,∴∠AHF=45°=∠PHE, ∴△PHE 是等腰直角三角形,
PH ∴PE= 2,∴当 PH 最大时,PE 最大,

中考数学解答题压轴题突破 重难点突破七 二次函数综合题 类型四:二次函数与特殊四边形问题

中考数学解答题压轴题突破 重难点突破七 二次函数综合题 类型四:二次函数与特殊四边形问题
解:存在.令x=0,代入y=-x2+6x-5,得y=-5, ∴点C的坐标为(0,-5).
Ⅰ)如答图①,连接AC,分别过点A,B作对边的平行线交于 点F. 在▱ ACBF中,∵C(0,-5)向右平移1个单位长度,再向上平 移5个单位长度得到A(1,0), ∴B(5,0)按照相同的平移方式得到F(6,5);
解:设点Q的坐标为(a,b),过点Q作QM∥x轴,过点B作BM∥y轴,交QM 于点M,过点F作FN∥y轴交QM于点N,过点E作EK∥x轴交BM于点K, ∴△BMQ≌△QNF≌△EKB, ∴NF=KB=MQ=|a+2|,QN=EK=BM=|b|, ∴点F的坐标为 (a-b,a+b+2), 点E的坐标为 (-2-b,a+2),
Ⅱ)如答图②,分别过点A,C作BC,AB的平行线交于点 F,在▱ ABCF中,∵B(5,0)向左平移5个单位长度,再向 下平移5个单位长度得到C(0,-5), ∴A(1,0)按照相同的平移方式得到F(-4,-5);
Ⅲ)如答图③,连接AC,分别过点B,C作对边的平行线交 于点F.在▱ ACFB中,∵A(1,0)向左平移1个单位长度,再 向下平移5个单位长度得到C(0,-5), ∴B(5,0)按照相同的平移方式得到F(4,-5); 综上所述,满足条件的点F分别为(6,5),(-4,-5)或 (4,-5).
(1)求抛物线的函数解析式; (2)把抛物线 y=x2+bx+c 平移,使得新抛物线的顶点 为点 P(2,-4).M 是新抛物线上一点,N 是新抛物线对 称轴上一点,直接写出所有使得以点 A,B,M,N 为顶点 的四边形是平行四边形的点 M 的坐标,并把求其中一个 点 M 的坐标的过程写出来.
解:(1)该抛物线的函数解析式为y=x2-72x-1. (2)满足条件的点M的坐标为 (2,-4),(6,12),(-2,12). 由题意可知,平移后抛物线的函数解析式为 y=x2-4x, 对称轴为直线x=2,如答图.

初三数学 二次函数与特殊平行四边形的综合问题教案

初三数学 二次函数与特殊平行四边形的综合问题教案

教学过程一、课堂导入二次函数的综合问题是中考压轴题常考题型之一,考点分值12分,难度较大。

主要考查形式为二次函数与一些简单几何图形的点存在性问题,既考查了学生的数形结合能力,又考查学生的计算能力。

此类问题出现后,大多学生都无从下手,主要是学生的综合能力、解题技巧及实战经验不足所致。

就本节二次函数与特殊平行四边形的点存在性问题,主要考查了学生能否将特殊平行四边形的性质与判定融入到二次函数,在函数图像中构造题意所需图形的能力。

二、复习预习相似三角形的概念及其性质1.定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。

2.性质定理:(1)相似三角形的对应角相等;(2)相似三角形的对应边成比例;(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比;(4)相似三角形的周长比等于相似比;(5)相似三角形的面积比等于相似比的平方.三、知识讲解考点1 二次函数的基础知识1.一般地,如果y=ax 2+bx+c (a ,b ,c 是常数且a ≠0),那么y 叫做x 的二次函数,它是关于自变量的二次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据.当b=c=0时,二次函数y=ax 2是最简单的二次函数.2.二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)的三种表达形式分别为:一般式:y=ax 2+bx+c ,通常要知道图像上的三个点的坐标才能得出此解析式;顶点式:y=a (x -h )2+k ,通常要知道顶点坐标或对称轴才能求出此解析式;交点式:y=a (x -x 1)(x -x 2),通常要知道图像与x 轴的两个交点坐标x 1,x 2才能求出此解析式;对于y=ax 2+bx+c 而言,其顶点坐标为(-2b a ,244ac b a ).对于y=a (x -h )2+k 而言其顶点坐标为(h ,k ),•由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点.1. 矩形定义:有一角是直角的平行四边形叫做矩形.注意:矩形(1)是平行四边形;(2)四个角是直角.2. 矩形的性质性质1 矩形的四个角都是直角;性质2 矩形的对角线相等,具有平行四边形的所以性质。

压轴题06二次函数与特殊四边形存在性问题(四大类型)-2023年中考数学压轴题专项训练(全

压轴题06二次函数与特殊四边形存在性问题(四大类型)-2023年中考数学压轴题专项训练(全

2023年中考数学压轴题专项训练压轴题06二次函数与特殊四边形存在性问题(四大类型)题型一:二次函数与平行四边形存在性问题例1.(2023•泽州县一模)综合与探究.如图1,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与直线l交于B,C 两点,其中点A的坐标为(﹣2,0),点C的坐标为(﹣1,﹣4).(1)求二次函数的表达式和点B的坐标.(2)若P为直线l上一点,Q为抛物线上一点,当四边形OBPQ为平行四边形时,求点P的坐标.(3)如图2,若抛物线与y轴交于点D,连接AD,BD,在抛物线上是否存在点M,使∠MAB=∠ADB?若存在,请直接写出点M的坐标;若不存在,请说明理由.题型二:二次函数与矩形存在性问题例2.(2023•歙县校级模拟)如图,若二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0)、B(4,0),与y轴交于点C,连接BC.(1)求该二次函数的解析式;(2)若点Q是抛物线上一动点,在平面内是否存在点K,使以点B、C、Q、K为顶点,BC为边的四边形是矩形?若存在请求出点K的坐标;若不存在,请说明理由.题型三: 二次函数与菱形存在性问题例3.(2023春•沙坪坝区校级月考)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过A(0,1),B (4,﹣1).直线AB交x轴于点C,P是直线AB上方且在对称轴右侧的一个动点,过P作PD⊥AB,垂足为D,E为点P关于抛物线的对称轴的对应点.(1)求抛物线的函数表达式;(2)当√5PD+PE的最大值时,求此时点P的坐标和√5PD+PE的最大值;(3)将抛物线y关于直线x=3作对称后得新抛物线y',新抛物线与原抛物线相交于点F,M是新抛物线对称轴上一点,N是平面中任意一点,是否存在点N,使得以C,F,M,N为顶点的四边形是菱形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.题型四: 二次函数与正方形存在性问题例4.(2023•前郭县一模)如图,在平面直角坐标系中,抛物线y=x2﹣4x+c与y轴相交于点A(0,2).(1)求c的值;(2)点B为y轴上一点,其纵坐标为m(m≠2),连接AB,以AB为边向右作正方形ABCD.①设抛物线的顶点为P,当点P在BC上时,求m的值;②当点C在抛物线上时,求m的值;③当抛物线与正方形ABCD有两个交点时,直接写出m的取值范围.一.解答题(共20小题)1.(2023春•兴化市月考)已知:二次函数y=ax2+2ax﹣8a(a为常数,且a>0)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)分别求点A、B的坐标;(2)若△ABC是直角三角形,求该二次函数相应的表达式;(3)当a=12时,一次函数y=12x+b的图象过B点,与二次函数的对称轴交于Q点,N为一次函数图象上一点,过N点作y的平行线交二次函数图象于M点,当D、M、N、Q四点组成的四边形是平行四边形时,求N点的坐标.2.(2023春•沙坪坝区校级月考)如图1,在平面直角坐标系中,抛物线y=ax2+bx+8(a≠0)与x轴交于点B(﹣4,0),点C(8,0),与y轴交于点A.点D的坐标为(0,4).(1)求二次函数的解析式及点C的坐标.(2)如图1,点F为该抛物线在第一象限内的一动点,过E作FE∥CD,交CD于点F,求EF+√55DF的最大值及此时点E的坐标.(3)如图2,在(2)的情况下,将原抛物线绕点D旋转180°得到新抛物线y',点N是新抛物线y'上一点,在新抛物线上的对称轴上是否存在一点M,使得点D,E,M,N为顶点的四边形为平行四边形,若存在,请直接写出点M的坐标,并写出其中一个点M的求解过程.3.(2023•武清区校级模拟)在平面直角坐标系中,二次函数y=ax2+bx+3的图象与x轴交于A(﹣4,0),B(2,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)抛物线上是否存在点Q,且满足AB平分∠CAQ,若存在,求出Q点坐标;若不存在,说明理由;(3)点N为x轴上一动点,在抛物线上是否存在点M,使以B,C,M,N为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,说明理由.4.(2023春•承德县月考)已知二次函数y=14x2−32x−4与x数轴交于点A、B(A在B的左侧),与y轴交于点C,连接BC.发现:点A的坐标为,求出直线BC的解析式;拓展:如图1,点P是直线BC下方抛物线上一点,连接PB、PC,当△PBC面积最大时,求出P点的坐标;探究:如图2,抛物线顶点为D,抛物线对称轴交BC于点E,M是线段BC上一动点(M不与B、C两点重合),连接PM,设M点的横坐标为m(0<m<8),当m为何值时,四边形PMED为平行四边形?5.(2023春•梅江区校级月考)如图,在平面直角坐标系中,△AOC绕原点O逆时针旋转90°得到△DOB,其中OA=1,OC=3.(1)若二次函数经过A、B、C三点,求该二次函数的解析式;(2)在(1)条件下,在二次函数的对称轴l上是否存在一点P,使得P A+PC最小?若P点存在,求出P点坐标;若P点不存在,请说明理由.(3)在(1)条件下,若E为x轴上一个动点,F为抛物线上的一个动点,使得B、C、E、F构成平行四边形时,求E点坐标.6.(2022秋•云州区期末)综合与探究如图,二次函数y=ax2+bx+4的图象经过x轴上的点A(6,0)和y轴上的点B,且对称轴为直线x=7 2.(1)求二次函数的解析式.(2)点E位于抛物线第四象限内的图象上,以OE,AE为边作平行四边形OEAF,当平行四边形OEAF 为菱形时,求点F的坐标与菱形OEAF的面积.(3)连接AB,在直线AB上是否存在一点P,使得△AOP与△AOB相似,若存在,请直接写出点P坐标,若不存在,请说明理由.7.(2023春•开福区校级月考)【定义】对于函数图象上的任意一点P(x,y),我们把x+y称为该点的“雅和”,把函数图象上所有点的“雅和”的最小值称为该函数的“礼值”.根据定义回答问题:(1)①点P(9,10)的“雅和”为;(直接写出答案)②一次函数y=3x+2(﹣1≤x≤3)的“礼值”为;(直接写出答案)(2)二次函数y=x2﹣bx+c(bc≠0)(3≤x≤5)交x轴于点A,交y轴于点B,点A与点B的“雅和”相等,若此二次函数的“礼值”为1﹣b,求b,c的值;(3)如图所示,二次函数y=x2﹣px+q的图象顶点在“雅和”为0的一次函数的图象上,四边形OABC 是矩形,点B的坐标为(5,﹣3),点O为坐标原点,点C在x轴上,当二次函数y=x2﹣px+q的图象与矩形的边有四个交点时,求p的取值范围.8.(2023春•无锡月考)在平面直角坐标系中,O为坐标原点,二次函数y=ax2﹣2ax﹣3a(a>0)的图象分别与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,过点B作BC的垂线交对称轴于点M,以BM、BC为邻边作矩形BMNC.(1)求A、B的坐标;(2)当点N恰好落在函数图象上时,求二次函数的表达式;(3)作点N关于MC的对称点N',则点N'能否落在函数图象的对称轴上,若能,请求出二次函数的表达式;若不能,请说明理由.9.(2022秋•开福区校级期末)若凸四边形的两条对角线所夹锐角为60°,我们称这样的凸四边形为“美丽四边形”.(1)①在“平行四边形、矩形、菱形、正方形”中,一定不是“美丽四边形”的有;②若矩形ABCD是“美丽四边形”,且AB=1,则BC=;(2)如图1,“美丽四边形”ABCD内接于⊙O,AC与BD相交于点P,且对角线AC,为直径,AP=2,PC=8,求另一条对角线BD的长;(3)如图2,平面直角坐标系中,已知“美丽四边形”ABCD的四个顶点A(﹣2,0),C(1,0),B在第三象限,D在第一象限,AC与BD交于点O,且四边形ABCD的面积为6√3,若二次函数y=ax2+bx+c (a、b、c为常数,且a≠0)的图象同时经过这四个顶点,求a的值.10.(2022秋•南关区校级期末)在平面直角坐标系中,二次函数y=x2﹣2x+n(x>0)的图象记为G1,将G1绕坐标原点旋转180°得到图象G2,图象G1和G2合起来记为图象G.(1)若点P(﹣2,3)在图象G上,求n的值.(2)当n=﹣1时.①若O(t,1)在图象G上,求t的值.②当k≤x≤3(k<3)时,图象G对应函数的最大值为2,最小值为﹣2,直接写出k的取值范围.(3)当以A(﹣2,2),B(﹣2,﹣1),C(1,﹣1),D(1,2)为顶点的矩形ABCD的边与图象G有且只有3个公共点时,直接写出n的取值范围.11.(2022•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=1,b=3,且该二次函数的图象过点(1,1),求c的值;(2)如图所示,在平面直角坐标系xOy中,该二次函数的图象与x轴相交于不同的两点A(x1,0)、B (x2,0),其中x1<0<x2、|x1|>|x2|,且该二次函数的图象的顶点在矩形ABFE的边EF上,其对称轴与x轴、BE分别交于点M、N,BE与y轴相交于点P,且满足tan∠ABE=3 4.①求关于x的一元二次方程ax2+bx+c=0的根的判别式的值;②若NP=2BP,令T=1a2+165c,求T的最小值.阅读材料:十六世纪的法国数学家弗朗索瓦•韦达发现了一元二次方程的根与系数之间的关系,可表述为“当判别式Δ≥0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根x1、x2有如下关系:x1+x2=−b a,x1x2=ca”.此关系通常被称为“韦达定理”.12.(2023春•南关区月考)已知抛物线y=−12x2+bx+c(b、c是常数)的顶点B坐标为(﹣1,2),抛物线的对称轴为直线l,点A为抛物线与x轴的右交点,作直线AB.点P是抛物线上的任意一点,其横坐标为m,过点P作x轴的垂线交直线AB于点Q,过点P作PN⊥l于点N,以PQ、PN为边作矩形PQMN.(1)b=,c=.(2)当点Q在线段AB上(点Q不与A、B重合)时,求PQ的长度d与m的函数关系式,并直接写出d的最大值.(3)当抛物线被矩形PQMN截得的部分图象的最高点纵坐标与最低点纵坐标的距离为2时,求点P的坐标.13.(2023春•南关区校级月考)在平面直角坐标系中,抛物线y =﹣x 2+bx +c (b 、c 是常数)经过点A (﹣1,0)和点B (3,0).点P 在抛物线上,且点P 的横坐标为m . (1)求b 、c 的值;(2)当△P AB 的面积为8时,求m 的值;(3)当点P 在点A 的右侧时,抛物线在点P 与点A 之间的部分(包含端点)记为图象G ,设G 的最高点与最低点的纵坐标之差为h ,求h 与m 之间的函数关系式;(4)点Q 的横坐标为1﹣3m ,纵坐标为m +1,以PQ 为对角线构造矩形,且矩形的边与坐标轴平行.当抛物线在矩形内部的点的纵坐标y 随x 的增大而增大或y 随x 的增大而减小时,直接写出m 的取值范围.14.(2023•九台区校级一模)在平面直角坐标系中,已知抛物线y =x 2﹣2ax ﹣a (a 为常数). (1)若点(2,﹣1)在抛物线上. ①求抛物线的表达式;②当x 为何值时y 随x 的增大而减小?(2)若x ≤2a ,当抛物线的最低点到x 轴的距离恰好是1时,求a 的值;(3)已知A (﹣1,1)、B(−1,2a −12),连结AB .当抛物线与线段AB 有交点时,该交点为P (点P 不与A 、B 重合),将线段PB 绕点P 顺时针旋转90°得到线段PM ,以PM 、P A 为邻边构造矩形PMQA .当抛物线在矩形PMQA 内部(包含边界)图象所对应的函数的最大值与最小值的差为32时,直接写出a 的值.15.(2023•靖江市校级模拟)如图,在平面直角坐标系中,抛物线y=−12x2+bx+32与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+32,以PQ、QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时.直接写出m的取值范围.16.(2022秋•临朐县期末)如图,在平面直角坐标系中,O是坐标原点,菱形OABC的顶点A(3,4),C 在x轴的负半轴,抛物线y=ax2+bx+c的对称轴x=2,且过点O,A.(1)求抛物线y=ax2+bx+c的解析式;(2)若在线段OA上方的抛物线上有一点P,求△P AO面积的最大值,并求出此时P点的坐标;(3)若把抛物线y=ax2+bx+c沿x轴向左平移m个单位长度,使得平移后的抛物线经过菱形OABC的顶点B.直接写出平移后的抛物线解析式.17.(2023•道外区一模)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax+c经过点A (﹣4,0),点C(0,6),与x轴交于另一点B.(1)求抛物线的解析式;(2)点D为第一象限抛物线上一点,连接AD,BD,设点D的横坐标为t,△ABD的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点P为第四象限抛物线上一点,连接P A交y轴于点E,点F在线段BC上,点G在直线AD上,若tan∠BAD=12,四边形BEFG为菱形,求点P的坐标.18.(2023春•九龙坡区校级月考)如图,在平面直角坐标系中,抛物线y=12x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y轴于点C,连接BC,D为抛物线的顶点.(1)求该抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,过P作PE⊥BC于点E,过P作PF⊥x轴于点F,交直线BC于点G,求PE+PG的最大值,以及此时点P的坐标;(3)将抛物线y=12x2+bx+c沿射线CB方向平移,平移后的图象经过点H(2,﹣1),点M为D的对应点,平移后的抛物线与y轴交于点N,点Q为平移后的抛物线对称轴上的一点,且点Q在第一象限.在平面直角坐标系中确定点R,使得以点M,N,Q,R为顶点的四边形为菱形,请写出所有符合条件的点R的坐标,并写出求解点R的坐标的其中一种情况的过程.19.(2023•安徽一模)如图,在平面直角坐标系中,抛物线C 1:y =−14x 2+bx +c 的图象与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为(﹣4,0),点D 的坐标为(0,4).(1)求该二次函数的表达式及点C 的坐标;(2)若点F 为该抛物线在第一象限内的一动点,求△FCD 面积的最大值;(3)如图2,将抛物线C 1向右平移2个单位,向下平移5个单位得到抛物线C 2,M 为抛物线C 2上一动点,N 为平面内一动点,问是否存在这样的点M 、N ,使得四边形DMCN 为菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.20.(2023•九台区一模)在平面直角坐标系中,抛物线y =x 2+bx +c (b 、c 是常数)经过点(﹣2,﹣1),点(1,2).点A 在抛物线上,且点A 的横坐标为m (m ≠0).以点A 为中心,构造正方形POMN ,PQ =2|m |,且PQ ⊥x 轴.(1)求该抛物线对应的函数表达式;(2)若点B 是抛物线上一点,且在抛物线对称轴右侧.过点B 作x 轴的平行线交抛物线于另一点C ,连接BC .当BC =6时,求点B 的坐标;(3)若m <0,当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大或y 随x 的增大而减小时,求m 的取值范围;(4)当抛物线与正方形PQMN 的边只有2个交点,且交点的纵坐标之差为34时,直接写出m 的值.。

专题:二次函数背景下的特殊四边形存在性问题(学生版)

专题:二次函数背景下的特殊四边形存在性问题(学生版)

专题:二次函数背景下的特殊四边形存在性问题一、知识储备二、方法归纳1.平行四边形的存在性问题:①从边的关系出发,对边平行且相等可转化为:可以理解为点B 移动到点A ,点C 移动到点D ,移动路径完全相同.②从对角线关系出发,对角线互相平分转化为:可以理解为AC 的中点也是BD 的中点.图1图2图1可表示为⎩⎨⎧-=--=-C D B A C D B A y y y y x x x x ,图2可表示为 ⎪⎪⎩⎪⎪⎨⎧+=++=+2222D B C A DB C A y y y y x x x x 。

二者均可可以化为统一,以AC 、BD 为对角线时,可得:⎩⎨⎧+=++=+D B C ADB C A y y y y x x x x .2. 菱形的存在性问题:转化为平行四边形+等腰三角形(两点间的距离公式、两圆一线作等腰);3. 矩形的存在性问题:转化为平行四边形+直角三角形(勾股定理、Rt 斜中、隐形圆、构造K 型相似);4. 正方形的存在性问题:转化为平行四边形+等腰直角三角形(构造K 型全等)。

解题策略:一般情况下构成四边形的四个点中,有两个点是定点两个点是动点,我们常设一个动点(非二次函数上),利用图形位置与数量关系,表示出另一个动点(二次函数上),再将表示的点代入点的函数解析式求解即可。

三、典例分析例1:如图,已知直角坐标系中,抛物线与轴交于,两点,与轴交于点,点的坐标为,点的坐标分别为.(1)求抛物线的解析式;(2)有一动点从C 点出发,个单位的速度向点运动,过点作轴的垂线,交抛物线于点,交轴于点,连接、,设点运动的时间为秒. ①求出点的坐标(用表示);②当四边形为平行四边形时,求出的值;(3)点是抛物线对称轴上的一个动点,点是坐标平面内的一点,是否存在这样的点,,使得以、、、四点组成的四边形是矩形?若存在,请直接写出点的坐标;若不存在,请说明理由.2.如图,已知抛物线2y x bx c =++与x 轴相交于(1,0)A -,(,0)B m 两点,与y 轴相交于点(0,3)C -,抛物线的顶点为D . (1)求B 、D 两点的坐标;(2)若P 是直线BC 下方抛物线上任意一点,过点P 作PH x ⊥轴于点H ,与BC 交于点M ,设F 为y 轴一动点,当线段PM 长度最大时,求12PH HF CF ++的最小值;(3)在第(2)问中,当12PH HF CF ++取得最小值时,将OHF ∆绕点O 顺时针旋转60︒后得到△OH F '',过点F '作OF '的垂线与x 轴交于点Q ,点R 为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S ,使得点D 、Q 、R 、S 为顶点的四边形为菱形,若存在,请直接写出点S 的坐标,若不存在,请说明理由.24y ax bx =++x A B y C A (2,0)-B (8,0)D B Dx E x F CE OD D (04)t t <<D t DOCE t P Q P Q P Q B C Q四、课后练习1.如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中(3,4)A --,(0,1)B -. (1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB ∆面积的最大值; (3)将该抛物线向右平移2个单位长度得到抛物线21111(0)y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系中,二次函数的图象与一次函数的图象相交于、两点,与轴的负半轴交于点,交轴于点,,点坐标为. (1)求该二次函数的函数表达式;(2)为线段上一动点,将以所在直线为轴翻折,点的对称点为点,若有一个顶点在轴上,求点的坐标;(3)设点在抛物线的对称轴上,点在直线上,问是否存在这样的点、,使得以、、、为顶点的四边形是平行四边形?若存在,请直接写出点、的坐标;若不存在,请说明理由.3.如图1,抛物线与轴交于,两点(点在点的左侧),与轴交于点,直线与抛物线相交于另一点,点为抛物线的顶点.(1)求直线的解析式及点的坐标; (2)如图2,直线上方的抛物线上有一点,过点作于点,过点作平行于轴的直线交直线于点,当周长最大时,在轴上找一点,在上找一点,使得值最小,请求出此时点的坐标及的最小值;(3)在第(2)问的条件下,点为抛物线对称轴上的一点,在平面直角坐标系中是否存在点,使以点,,,为顶点的四边形为矩形?若存在,请直接写出点的坐标;若不存在,请说明理由.20)y ax bx a =++≠(0)y ax a a =-≠A B x C AB y D :1:2BD AD =B (1,0)M CB ACM ∆AM C N AMN ∆y N E F AB E F A C E F EF 2y x =-x A B A B yC :AE y ED BCE AE P P PF BC ⊥F P y BCG PFG ∆yM AE N 12PM MN NE ++N 12PM MN NE ++R S N E R SS。

2023年九年级数学中考专题训练——二次函数与特殊的四边形

2023年九年级数学中考专题训练——二次函数与特殊的四边形

中考专题训练——二次函数与特殊的四边形1.已知二次函数y=a(x﹣1)2+k的图象与x轴交于A,B两点,AB=4,与y轴交于C点,E为抛物线的顶点,∠ECO=135°.(1)求二次函数的解析式;(2)若P在第四象限的抛物线上,连接AE交y轴于点M,连接PE交x轴于点N,连接MN,且S△EAP=3S△EMN,求点P的坐标;(3)过直线BC上两点P,Q(P在Q的左边)作y轴的平行线,分别交抛物线于N,M,若四边形PQMN 为菱形,求直线MN的解析式.2.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a>0)与x轴交于点A(﹣2,0)和点B,与y轴交于点C,对称轴为直线x=12.(1)请用a的代数式表示C点坐标.(2)连接AC,BC,若△ABC的面积为10,求该抛物线的解析式.(3)在(2)的条件下,点P是直线y=x+2上一点(位于x轴下方),点Q是反比例函数y=kx(k>0)图象上一点,若以点A,C,P,Q为顶点的四边形是菱形,则直接写出k的值(不需要写出计算过程).3.如图,在平面直角坐标系中,抛物线y=x2+bx+c交x轴于A,B两点,交y轴于点C,直线y=x﹣3经过B,C两点.(1)求抛物线的解析式;(2)点P是第四象限内抛物线上的动点,过点P作PD⊥x轴于点D,交直线BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t.①求线段MN的长d与t之间的函数关系式(不要求写出自变量t的取值范围);②点Q是平面内一点,是否存在一点P,使以B,C,P,Q为顶点的四边形为矩形?若存在,请直接写出t 的值;若不存在,请说明理由.4.如图,抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)M在抛物线上,线段MA绕点M顺时针旋转90°得MD,当点D在抛物线的对称轴上时,求点M的坐标;(3)P在对称轴上,Q在抛物线上,以P,Q,B,C为顶点的四边形为平行四边形,直接写出点P的坐标.5.如图,在平面直角坐标系内,抛物线223=-++与x轴交于点A,C(点A在点C的左侧),与y轴y x x交于点B,顶点为D.点Q为线段BC的三等分点(靠近点C).△的周长最(1)点M为抛物线对称轴上一点,点E为对称轴右侧抛物线上的点且位于第一象限,当MQC △面积的最大值;小时,求CME(2)在(1)的条件下,当CME △的面积最大时,过点E 作EN x ⊥轴,垂足为N ,将线段CN 绕点C 顺时针旋转90°得到点N ,再将点N 向上平移16个单位长度.得到点P ,点G 在抛物线的对称轴上,请问在平面直角坐标系内是否存在一点H ,使点D ,P ,G ,H 构成菱形.若存在,请直接写出点H 的坐标,若不存在,请说明理由.6.如图,在平面直角坐标系中,抛物线y =-x 2+bx +c 经过点(0,6),其对称轴为直线x =32.在x 轴上方作平行于x 轴的直线l 与抛物线交于A 、B 两点(点A 在对称轴的右侧),过点A 、B 作x 轴的垂线,垂足分别为D 、C .设A 点的横坐标为m .(1)求此抛物线所对应的函数关系式.(2)当m 为何值时,矩形ABCD 为正方形.(3)当m 为何值时,矩形ABCD 的周长最大,并求出这个最大值.7.如图1,在平面直角坐标系中,抛物线249y x bx c =-++经过点()5,0A -和点()10B ,.(1)求抛物线的解析式及顶点D 的坐标;(2)点P 是抛物线上A 、D 之间的一点,过点P 作PE x ⊥轴于点E ,PG y ⊥轴,交抛物线于点G ,过点G 作GF x ⊥轴于点F ,当矩形PEFG 的周长最大时,求点P 的横坐标;(3)如图2,连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作DMN DBA ∠=∠,MN 交线段AD 于点N ,是否存在这样点M ,使得DMN ∆为等腰三角形?若存在,求出AN 的长;若不存在,请说明理由.8.如图,在平面直角坐标系xOy 中,二次函数y =x 2﹣2x +m (m >0)的对称轴与比例系数为5的反比例函数图象交于点A ,与x 轴交于点B ,抛物线的图象与y 轴交于点C ,且OC =3OB .(1)求点A 的坐标;(2)求直线AC 的表达式;(3)点E 是直线AC 上一动点,点F 在x 轴上方的平面内,且使以A 、B 、E 、F 为顶点的四边形是菱形,直接写出点F 的坐标.9.如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点0(1)A ,,(50)B ,,4(0)C ,.(1)求抛物线的解析式和对称轴;(2)P 是抛物线对称轴上的一点,求满足PA PC +的值为最小的点P 坐标(请在图1中探索); (3)在第四象限的抛物线上是否存在点E ,使四边形OEBF 是以OB 为对角线且面积为12的平行四边形?若存在,请求出点E 坐标,若不存在请说明理由.(请在图2中探索)10.在平面直角坐标系中,抛物线C 1:y=x²+bx+c 的图象与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3.0),与y 轴交于C (0,-3)(1)求抛物线C 1的表达式;(2)分别写出抛物线C 1关于B 点,关于A 点的对称抛物线C 2, C 3的函数表达式(3)设C 1的顶点为D ,C 2与x 轴的另一个交点为A 1顶点为D 1,C 3与x 轴的另一个交点为B 1,顶点为D 2,在以A 、B 、D 、A 1、B 1、D 1、D 2这七个点中的四个点为顶点的四边形中,求面积最大的四边形的面积.11.综合与探究如图,抛物线26y ax bx =++经过点A(-2,0),B(4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC ,(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.12.如图,在平面直角坐标系中,Rt ABC ∆的边BC 在x 轴上,90ABC ∠=,以A 为顶点的抛物线2y x bx c =-++经过点(3,0)C ,交y 轴于点(0,3)E ,动点P 在对称轴上.(1)求抛物线解析式;(2)若点P 从A 点出发,沿A B →方向以1个单位/秒的速度匀速运动到点B 停止,设运动时间为t 秒,过点P 作PD AB ⊥交AC 于点D ,过点D 平行于y 轴的直线l 交抛物线于点Q ,连接,AQ CQ ,当t 为何值时,ACQ ∆的面积最大?最大值是多少?(3)若点M 是平面内的任意一点,在x 轴上方是否存在点P ,使得以点,,,P M E C 为顶点的四边形是菱形,若存在,请直接写出符合条件的M 点坐标;若不存在,请说明理由.13.如图,已知抛物线2y ax bx c =++的顶点为()4,3A ,与y 轴相交于点()0,5B -,对称轴为直线l ,点M 是线段AB 的中点.(1)求抛物线的表达式;(2)写出点M 的坐标并求直线AB 的表达式;(3)设动点P ,Q 分别在抛物线和对称轴l 上,当以A ,P ,Q ,M 为顶点的四边形是平行四边形时,求P ,Q 两点的坐标.14.如图①,抛物线2y ax bx a b =+--与x 轴相交于()5,0A -、B 两点,过点A 的直线y x t =+与y 轴和抛物线相交于点C .(1)求抛物线的解析式和点C 的坐标;(2)点P 是抛物线上的一动点,当点P 在直线AC 的上方时,连接OP 、PC ,并把POC ∆沿着OC 翻折得到'P OC ∆,是否存在点P ,使得到四边形'POP C 为菱形,若存在,请求出点P 的坐标;若不存在,请说明理由.(3)如图②,动点E 在线段OA 上,过点E 作x 轴的垂线与AC 交于点M ,与拋物线交于点N ,试问:抛物线上是否存在点Q ,使EQN ∆与BEM ∆的面积相等时,线段NQ 的长度有最小值?若存在,请求出点Q 的坐标;若不存在,请说明理由.15.如图,已知抛物线1M :22y ax x =-与直线y x =的一个交点记为A ,点A 的横坐标是3.将抛物线1M :22y ax x =-向左平移3个单位,再向下平移3个单位,得到抛物线2M ,直线y x =与2M 的一个交点记为B ,点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF .(1)求抛物线1M 的表达式及顶点坐标;(2)当点C 的横坐标为2时,直线y x n =+恰好经过正方形CDEF 的顶点F ,求此时n 的值; (3)在点C 的运动过程中,若直线y x n =+与正方形CDEF 始终没有公共点,求n 的取值范围. 16.如图①,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于点A 、C ,与y 轴交于点B ,抛物线的顶点在直线4y x =-上,且横坐标为0,已知2OA =.(1)求抛物线的解析式;(2)如图②,将抛物线沿直线4y x =-平移得到新抛物线,设新抛物线顶点的横坐标为m ,在平移过程中,若新抛物线与直线AB 有且只有一个公共点,求m 的值;(3)设新抛物线的顶点为P ,在平移的过程中,在y 轴上是否存在一点Q ,使得以点A ,B ,P ,Q 为顶点的四边形为平行四边形,若存在,请求出Q 点的坐标;若不存在,请说明理由.17.如图,已知二次函数()31:430L y ax ax a a =-+>与x 轴交于A ,B 两点,与y 轴交于点C ,过点C 作直线//CD x 轴交抛物线1L 于一点D ,将抛物线1L 沿着直线CD 翻折,并向右平移m 个单位()0m ≥,得到抛物线2L ,抛物线2L 交直线CD 于E ,F 两点(E 在F 的左边),点M ,N 分别是1L ,2L 的顶点,连接CN ,NF ,FM ,MC 得到四边形CNFM.(1)当1a =,0m =时,直接写出抛物线2L 的解析式;(2)若点D ,E 是线段CF 三等分点,求m 的值;(3)在平移过程中,是否存在以点C ,N ,F ,M 为顶点的四边形是矩形的情形,若存在,求出m 应满足的关系式,若不存在,请说明理由.18.如图1,在平面直角坐标系中,抛物线y =﹣12x 2﹣72x ﹣3交x 轴于A ,B 两点(点A 在点B 的左侧),交y 轴于点C(1)求直线AC 的解析式;(2)点P 是直线AC 上方抛物线上的一动点(不与点A ,点C 重合),过点P 作PD ⊥x 轴交AC 于点D ,求PD 的最大值;(3)将△BOC 沿直线BC 平移,点B 平移后的对应点为点B ′,点O 平移后的对应点为点O ′,点C 平移后的对应点为点C ′,点S 是坐标平面内一点,若以A ,C ,O ′,S 为顶点的四边形是菱形,求出所有符合条件的点S 的坐标.19.已知抛物线23y ax bx =+-经过点(1,1)A -,(3,3)B -.把抛物线23y ax bx =+-与线段AB 围成的封闭图形记作G .(1)求此抛物线的解析式;(2)点P 为图形G 中的抛物线上一点,且点P 的横坐标为m ,过点P 作//PQ y 轴,交线段AB 于点Q .当APQ △为等腰直角三角形时,求m 的值;(3)点C是直线AB上一点,且点C的横坐标为n,以线段AC为边作正方形ACDE,且使正方形ACDE与图形G在直线AB的同侧,当D,E两点中只有一个点在图形G的内部时,请直接写出n的取值范围.20.如图,已知二次函数L1:y=mx2+2mx﹣3m+1(m≥1)和二次函数L2:y=﹣m(x﹣3)2+4m﹣1(m≥1)图象的顶点分别为M,N,与x轴分别相交于A、B两点(点A在点B的左边)和C、D两点(点C在点D的左边).(1)函数y=mx2+2mx﹣3m+1(m≥1)的顶点坐标为______;当二次函数L1,L2的y值同时随着x的增大而增大时,则x的取值范围是______;(2)当AD=MN时,判断四边形AMDN的形状(直接写出,不必证明);(3)抛物线L1,L2均会分别经过某些定点,①求所有定点的坐标;②若抛物线L1位置固定不变,通过左右平移抛物线L2的位置使这些定点组成的图形为菱形,则抛物线L2应平移的距离是多少?。

2021年中考二轮复习 二次函数与特殊平行四边形存在性问题探讨(含答案)

2021年中考二轮复习 二次函数与特殊平行四边形存在性问题探讨(含答案)

二次函数与特殊平行四边形存在性问题探讨【方法综述】知识准备:特殊四边形包括平行四边形、菱形、矩形和正方形。

它们的判定方法如下:矩形判的定方法有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形有三个角是直角的四边形是矩形菱形判定方法有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形四条边相等的四边形是矩形正方形的判定方法平行四边形+矩形的特性;平行四边形+菱形的特性解答时常用的技巧:(1).根据平行四边形的对角线互相平分这条性质,应用中点坐标公式,可以采用如下方法:已知点A、B、C三点坐标已知,点P在某函数图像上,是否存在以点A、B、C、P为顶点的四边形为平行四边形,求点P的坐标。

如,当AP、BC为平行四边形对角线时,由中点坐标公式,可得a+m=c+e,n+b=d+f则m= c+e-a;n= d+f-b,点P坐标可知,将其带入到函数关系式进行验证,如果满足函数关系式,即为所求P点,同理,根据分类讨论可以得到其它情况的解答方法。

(2).菱形在折叠的情况下,可以看成是等腰三角形以底边所在直线折叠所得,因此,菱形的存在性讨论,亦可以看做等腰三角形的存在性讨论。

(3).矩形中的直角证明出来常规直角的探究外,还有主要是否由隐形圆的直径所对圆周角得到。

【类型1】二次函数与矩形存在型问题【例1】.如图,直线y=x﹣3与坐标轴交于A、B两点,抛物线y=x2+bx+c经过点B,与直线y=x﹣3交于点E(8,5),且与x轴交于C,D两点.(1)求抛物线的解析式;(2)抛物线上有一点M,当∠MBE=75°时,求点M的横坐标;(3)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【变式训练】如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求出点A的坐标和点D的横坐标;(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,直接写出点P的坐标;若不能,请说明理由.【类型2】二次函数与矩形存在型问题【例2】如图,抛物线y=ax2+bx+52过点A(1,0),B(5,0),与y轴相交于点C.(1)求抛物线的解析式;(2)定义:平面上的任一点到二次函数图象上与它横坐标相同的点的距离,称为点到二次函数图象的垂直距离.如:点O到二次函数图象的垂直距离是线段OC的长.已知点E 为抛物线对称轴上的一点,且在x轴上方,点F为平面内一点,当以A,B,E,F为顶点的四边形是边长为4的菱形时,请求出点F到二次函数图象的垂直距离.(3)在(2)中,当点F到二次函数图象的垂直距离最小时,在以A,B,E,F为顶点的菱形内部是否存在点Q,使得AQ,BQ,FQ之和最小,若存在,请求出最小值;若不存在,请说明理由.【变式训练】如图,抛物线y=ax2+bx+4交x轴于点A(﹣1,0)、B(4,0),交y轴于点C,点P是直线BC上方抛物线上的一点.(1)求抛物线的解析式;(2)求△PBC的面积的最大值以及此时点P的坐标;(3)在(2)的条件下,将直线BC 向右平移74个单位得到直线l ,直线l 交对称轴右侧的抛物线于点Q ,连接PQ ,点R 为直线BC 上的一动点,请问在在平面直角坐标系内是否存在一点T ,使得四边形PQTR 为菱形,若存在,请直接写出点T 的坐标;若不存在,请说明理由.【类型3】二次函数与正方形存在型问题【例3】在平面直角坐标系中,抛物线y =−13x 2+bx +c 交x 轴于A (﹣3,0),B (4,0)两点,交y 轴于点C .(1)求抛物线的表达式;(2)如图,直线y =34x +94与抛物线交于A ,D 两点,与直线BC 交于点E .若M (m ,0)是线段AB 上的动点,过点M 作x 轴的垂线,交抛物线于点F ,交直线AD 于点G ,交直线BC 于点H .①当点F 在直线AD 上方的抛物线上,且S △EFG =59S △OEG 时,求m 的值;②在平面内是否存在点P ,使四边形EFHP 为正方形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【变式训练】.如图,已知直线y x c =-+交x 轴于点B ,交y 轴于点C ,抛物线23y ax bx =++经过点(1,0)A -,与直线y x c =-+交于B 、C 两点,点P 为抛物线上的动点,过点P 作PE x ⊥轴,交直线BC 于点F ,垂足为E .(1)求抛物线的解析式;(2)当点P 位于抛物线对称轴右侧时,点Q 为抛物线对称轴左侧一个动点,过点Q 作QD x ⊥轴,垂足为点D .若四边形DEPQ 为正方形时求点P 的坐标;(3)若PQF △是以点P 为顶角顶点的等腰直角三角形时,请直接写出点P 的横坐标.【巩固练习】1.如图,在平面直角坐标系中,二次函数y =﹣x 2+bx +c 的图象与x 轴交于A 、B 两点,A 点的坐标为(﹣3,0),B 点在原点的左侧,与y 轴交于点C (0,3),点P 是直线BC 上方的抛物线上一动点(1)求这个二次函数的表达式;(2)连接PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C (如图1所示),那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请此时点P 的坐标:若不存在,请说明理由; (3)当点P 运动到什么位置时,四边形ABCP 的面积最大,并求出其最大值.2.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.3.如图,抛物线y =x 2+2x 的顶点为A ,与x 轴交于B 、C 两点(点B 在点C 的左侧). (1)请求出A 、B 、C 三点的坐标;(2)平移抛物线,记平移后的抛物线的顶点为D ,与y 轴交于点E ,F 为平面内一点,若以A、D、E、F为顶点的四边形是正方形,且平移后的抛物线的对称轴在y轴右侧,请求出满足条件的平移后抛物线的表达式.【答案与解析】【类型1】二次函数与矩形存在型问题【例1】.如图,直线y=x﹣3与坐标轴交于A、B两点,抛物线y=x2+bx+c经过点B,与直线y=x﹣3交于点E(8,5),且与x轴交于C,D两点.(1)求抛物线的解析式;(2)抛物线上有一点M,当∠MBE=75°时,求点M的横坐标;(3)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【解答】解:(1)直线y=x﹣3与坐标轴交于A、B两点,则A(3,0)B(0,﹣3),把B、E点坐标代入二次函数方程,解得:抛物线的解析式y=x2﹣x﹣3…①,则:C(6,0);(2)符合条件的有M和M′,如下图所示,当∠MBE=75°时,∵OA=OB,∴∠MBO=30°,此时符合条件的M只有如图所示的一个点,MB直线的k为﹣,所在的直线方程为:y=﹣x﹣3…②,联立方程①、②可求得:x=4﹣4,即:点M的横坐标4﹣4;当∠M′BE=75°时,∠OBM′=120°,直线M′B的k值为﹣,其方程为y=﹣x﹣3,将M′B所在的方程与抛物线表达式联立,解得:x=,故:即:点M的横坐标4﹣4或.(3)存在.①当BC为矩形对角线时,矩形BP′CQ′所在的位置如图所示,设:P′(m,n),n=m2﹣m﹣3…③,P′C所在直线的k1=,P′B所在的直线k2=,则:k1•k2=﹣1…④,③、④联立得:=0,解得:m=0或6,这两个点分别和点B、C重合,与题意不符,故:这种情况不存在,舍去.②当BC为矩形一边时,情况一:矩形BCQP所在的位置如图所示,直线BC所在的方程为:y=x﹣3,则:直线BP的k为﹣2,所在的方程为y=﹣2x﹣3…⑤,联立①⑤解得点P(﹣4,5),则Q(2,8),情况二:矩形BCP″Q″所在的位置如图所示,此时,P″在抛物线上,其坐标为:(﹣10,32),Q″坐标为(﹣16,29).故:存在矩形,点Q的坐标为:(2,8)或(﹣16,29).【变式训练】如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求出点A的坐标和点D的横坐标;(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,直接写出点P的坐标;若不能,请说明理由.【解答】解:(1)当y=0时,ax2﹣2ax﹣3a=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵直线l:y=kx+b过A(﹣1,0),∴0=﹣k+b,即k=b,∴直线l:y=kx+k,∵抛物线与直线l交于点A,D,∴ax2﹣2ax﹣3a=kx+k,即ax2﹣(2a+k)x﹣3a﹣k=0,∵CD=4AC,∴点D的横坐标为4;(2)由(1)知,点D的横坐标为4,∴﹣3﹣=﹣1×4,∴k=a,∴直线l的函数表达式为y=ax+a;过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),则F(x,ax+a),EF=ax2﹣2ax﹣3a﹣ax﹣a=ax2﹣3ax﹣4a,∴S△ACE=S△AFE﹣S△CEF=(ax2﹣3ax﹣4a)(x+1)﹣(ax2﹣3ax﹣4a)x=(ax2﹣3ax﹣4a)=a(x﹣)2﹣a,∴△ACE的面积的最大值=﹣a,∵△ACE的面积的最大值为,∴﹣a=,解得a=﹣;(3)以点A、D、P、Q为顶点的四边形能成为矩形,令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得:x1=﹣1,x2=4,∴D(4,5a),∵抛物线的对称轴为直线x=1,设P(1,m),①若AD是矩形ADPQ的一条边,则易得Q(﹣4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ是矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∴52+(5a)2+32+(26a﹣5a)2=22+(26a)2,即a2=,∵a<0,∴a=﹣∴P(1,﹣);②若AD是矩形APDQ的对角线,则易得Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形APDQ是矩形,∴∠APD=90°,∴AP2+PD2=AD2,∴(﹣1﹣1)2+(8a)2+(1﹣4)2+(8a﹣5a)2=52+(5a)2,即a2=,∵a<0,∴a=﹣,∴P(1,﹣4),综上所述,点A、D、P、Q为顶点的四边形能成为矩形,点P(1,﹣)或(1,﹣4).【类型2】二次函数与矩形存在型问题【例2】如图,抛物线y=ax2+bx+52过点A(1,0),B(5,0),与y轴相交于点C.(1)求抛物线的解析式;(2)定义:平面上的任一点到二次函数图象上与它横坐标相同的点的距离,称为点到二次函数图象的垂直距离.如:点O到二次函数图象的垂直距离是线段OC的长.已知点E 为抛物线对称轴上的一点,且在x轴上方,点F为平面内一点,当以A,B,E,F为顶点的四边形是边长为4的菱形时,请求出点F到二次函数图象的垂直距离.(3)在(2)中,当点F到二次函数图象的垂直距离最小时,在以A,B,E,F为顶点的菱形内部是否存在点Q,使得AQ,BQ,FQ之和最小,若存在,请求出最小值;若不存在,请说明理由.【分析】(1)将A,B两点代入可求解析式.(2)分类讨论,以AB为边的菱形和以AB为对角线的菱形,抓住菱形边长为4和E的横坐标为3,可解F点坐标,即可求点F到二次函数图象的垂直距离.(3)构造三角形,根据两点之间线段最短,可得最短距离为AN,根据勾股定理求AN.【解析】(1)∵抛物线y=ax2+bx+52过点A(1,0),B(5,0),∴0=a+b+5 20=25a+5b+5 2∴a=12,b=﹣3∴解析式y=12x2﹣3x+52(2)当y=0,则0=12x2﹣3x+52∴x1=5,x2=1∴A(1,0),B(5,0)∴对称轴直线x =3,顶点坐标(3,﹣2),AB =4∵抛物线与y 轴相交于点C .∴C (0,52) 如图1①如AB 为菱形的边,则EF ∥AB ,EF =AB =4,且E 的横坐标为3∴F 的横坐标为7或﹣1∵AE =AB =4,AM =2,EM ⊥AB∴EM =2√3∴F (7,2√3),或(﹣1,2√3)∴当x =7,y =12×49﹣7×3+52=6∴点F 到二次函数图象的垂直距离6﹣2√3②如AB 为对角线,如图2∵AEBF 是菱形,AF =BF =4∴AB ⊥EF ,EM =MF =2√3∴F (3,﹣2√3)∴点F到二次函数图象的垂直距离﹣2+2√3(3)当F(3,﹣2√3)时,点F到二次函数图象的垂直距离最小如图3,以BQ为边作等边三角形BQD,将△BQF绕B逆时针旋转60°到△BDN位置,连接AN,作PN⊥AB于P∵等边三角形BQD∴QD=QB=BD,∵将△BQF绕B逆时针旋转60°到△BDN位置∴NB=BF=4,∠FBN=60°,DN=FQ∵AQ+BQ+FQ=AQ+QD+DN∴当AQ,QD,DN共线时AQ+BQ+FQ的和最短,即最短值为AN的长.∵AF=BF=4=AB,∴∠ABF=60°∴∠NBP=60°且BN=4,∴BP=2,PN=2√3∴AP=6在Rt△ANP中,AN=√36+12=4√3∴AQ+BQ+FQ的和最短值为4√3.【变式训练】如图,抛物线y=ax2+bx+4交x轴于点A(﹣1,0)、B(4,0),交y轴于点C,点P是直线BC上方抛物线上的一点.(1)求抛物线的解析式;(2)求△PBC的面积的最大值以及此时点P的坐标;(3)在(2)的条件下,将直线BC 向右平移74个单位得到直线l ,直线l 交对称轴右侧的抛物线于点Q ,连接PQ ,点R 为直线BC 上的一动点,请问在在平面直角坐标系内是否存在一点T ,使得四边形PQTR 为菱形,若存在,请直接写出点T 的坐标;若不存在,请说明理由.【分析】(1)将A (﹣1,0)、B (4,0)代入抛物线公式即可求得a ,b .(2)过P 点做平行于直线BC 的直线K ,当K 与抛物线恰有一个交点时,△PBC 面积最大,求得此时的P 点坐标.再过P 做垂直于直线BC 的直线k ,求得k 与直线BC 的交点,求得交点后发现,此时恰巧交点时C ,|BC |即为△PBC 的高,再利用三角形面积公式即可求解.(3)考查菱形的性质.菱形是一个极具对称性的图形,在进行求解时,对角线互相垂直平分.因此,两个相对点的坐标中点也是另外两个相对点的坐标中点.同时,利用菱形的四条边长相等进行求解.【解析】(1)将A (﹣1,0)、B (4,0)代入抛物线公式,如下:{0=a −b +40=16a +4b +4, 求得{a =−1b =3. 抛物线解析式为:y =﹣x 2+3x +4.(2)设P 到直线BC 的距离为d ,P 点坐标为(x ,﹣x 2+3x +4)(0<x <4),∵y =﹣x 2+3x +4交y 轴于点C ,令x =0,∴y =4,∴C (0,4),由B (4,0),C (0,4)两点求得直线BC 的解析式为:y +x ﹣4=0.做直线BC 的平行线K :y =﹣x +m ,因为K 与BC 平行,我们将K 平移,根据题意,点P 是直线BC 上方抛物线上的一点,∴随着K 平行移动,以BC 为底的△PBC 的高d 在逐渐增大,当K 与抛物线y =﹣x 2+3x +4恰有一个交点时,此时以BC 为底的△PBC 的高d 最大,即此时△PBC 面积最大. ∵此时K :y =﹣x +m 与抛物线y =﹣x 2+3x +4相交,且仅有一个交点,∴﹣x +m =﹣x 2+3x +4,m =8.∴直线K :y =﹣x +8.此时求K 和抛物线的交点为:﹣x +8=﹣x 2+3x +4,解得x =2,将x =2代入直线K :y =﹣x +8,解得y =6.因此P (2,6).现在我们来求P 到直线BC 的距离,即△PBC 的高d :过P 作垂直于BC 的直线k :y =x +m .∵P 在直线k 上,∴6=2+m ,∴m =4,直线k =x +4.直线K 与直线k 的交点为:{y =−x +4y =x +4, 解得交点坐标(0,4),即交点为C 点.因此的△PBC 的高d 即为B 点和C 点两点之间的距离,∴d =|BC |=√(2−0)2+(6−4)2=2√2.在△PBC 中,∵|BC |=4√2,△PBC 的面积的最大值S △PBC =12|BC |•d =12×4√2×2√2=8.(3)存在.直线BC 向右平移74个单位得到直线l , ∴l :y =﹣(x −74)+4=﹣x +234.{y =−x +234y =−x 2+3x +4,解得{x 1=72x 2=12. 二次函数y =﹣x 2+3x +4对称轴为x =32,∵直线l 交对称轴右侧的抛物线于点Q ,∴x =72,代入y =﹣x +234=94.∴Q (72,94). 设T (a ,b ).∵R 为直线BC 上的一动点,∴设R (x ,﹣x +4).在菱形中PQTR 中,|PR |=|QP |,(2﹣x )2+([6﹣(﹣x +4)]2=(2−72)2+(6−94)2解得x =±√2668, 当x =√2668时,点R 的坐标(√2668,4−√2668),此时T 点坐标为:T (√2668+32,14−√2668). 当x =−√2668时,R (−√2668,4+√2668),此时T (−√2668+32,14+√2668) 综上所述:T 存在两点,分别为:(√2668+32,14−√2668)或(−√2668+32,14+√2668). 【类型3】二次函数与正方形存在型问题【例3】在平面直角坐标系中,抛物线y =−13x 2+bx +c 交x 轴于A (﹣3,0),B (4,0)两点,交y 轴于点C .(1)求抛物线的表达式;(2)如图,直线y =34x +94与抛物线交于A ,D 两点,与直线BC 交于点E .若M (m ,0)是线段AB 上的动点,过点M 作x 轴的垂线,交抛物线于点F ,交直线AD 于点G ,交直线BC 于点H .①当点F 在直线AD 上方的抛物线上,且S △EFG =59S △OEG 时,求m 的值;②在平面内是否存在点P ,使四边形EFHP 为正方形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【分析】(1)根据抛物线解析式中a =−13和交x 轴于A (﹣3,0),B (4,0)两点,利用交点式可得抛物线的解析式;(2)①如图1,先利用待定系数法求直线BC 的解析式,联立方程可得交点E 的坐标,根据M (m ,0),且MH ⊥x 轴,表示点G (m ,34m +94),F (m ,−13m 2+13m +4),由S △EFG =59S △OEG ,列方程可得结论;②存在,根据正方形的性质得:FH =EF ,∠EFH =∠FHP =∠HPE =90°,同理根据M (m ,0),得H (m ,﹣m +4),F (m ,−13m 2+13m +4),分两种情况:F 在EP 的左侧,在EP 的右侧,根据EF =FH ,列方程可得结论.【解析】(1)∵抛物线y =−13x 2+bx +c 交x 轴于A (﹣3,0),B (4,0)两点, ∴y =−13(x +3)(x ﹣4)=−13x 2+13x +4;(2)①如图1,∵B (4,0),C (0,4),∴设BC 的解析式为:y =kx +n ,则{4k +n =0n =4,解得{k =−1n =4, ∴BC 的解析式为:y =﹣x +4,∴﹣x +4=34x +94,解得:x =1,∴E (1,3),∵M (m ,0),且MH ⊥x 轴,∴G (m ,34m +94),F (m ,−13m 2+13m +4), ∵S △EFG =59S △OEG ,∴12FG ×(x E −x F )=59×12ON (x E ﹣x G ), [(−13m 2+13m +4)﹣(34m +94)](1﹣m )=59×94(1−m),解得:m 1=34,m 2=﹣2;②存在,由①知:E (1,3),∵四边形EFHP 是正方形,∴FH =EF ,∠EFH =∠FHP =∠HPE =90°, ∵M (m ,0),且MH ⊥x 轴,∴H (m ,﹣m +4),F (m ,−13m 2+13m +4), 分两种情况:i )当﹣3≤m <1时,如图2,点F 在EP 的左侧,∴FH =(﹣m +4)﹣(−13m 2+13m +4)=13m 2−43m , ∵EF =FH ,∴13m 2−43m =1−m ,解得:m 1=1+√132(舍),m 2=1−√132,∴H (1−√132,7+√132),∴P (1,7+√132),ii )当1<m <4时,点F 在PE 的右边,如图3,同理得−13m 2+43m =m ﹣1,解得:m 1=1+√132,m 2=1−√132(舍), 同理得P (1,7−√132);综上,点P 的坐标为:(1,7+√132)或(1,7−√132). 【变式训练】.如图,已知直线y x c =-+交x 轴于点B ,交y 轴于点C ,抛物线23y ax bx =++经过点(1,0)A -,与直线y x c =-+交于B 、C 两点,点P 为抛物线上的动点,过点P 作PE x ⊥轴,交直线BC 于点F ,垂足为E .(1)求抛物线的解析式;(2)当点P 位于抛物线对称轴右侧时,点Q 为抛物线对称轴左侧一个动点,过点Q 作QD x ⊥轴,垂足为点D .若四边形DEPQ 为正方形时求点P 的坐标;(3)若PQF △是以点P 为顶角顶点的等腰直角三角形时,请直接写出点P 的横坐标.【解析】(1)抛物线23y ax bx =++经过点C ,则点C 坐标为(0,3),代入y x c =-+可得3c =,则直线BC 的解析式为3y x =-+.直线BC 经过点B ,则点B 坐标为(3,0)将点(1,0)A -、(3,0)B 代入抛物线23y ax bx =++解得1a =-,2b =∴抛物线的解析式为2y x 2x 3=-++.(2)抛物线的对称轴为12b x a=-=. ∴四边形DEPQ 为正方形,∴PQ PE =,//PQ x 轴.∴点Q 与点P 关于直线1x =对称.设点2(,23)P t t t -++,则2(1)PQ t =-,223PE t t =-++.∴22(1)23t t t -=-++,解得:t =t =t 2=2t =去)当t =)12P ,当t 2=()2P 22-,∴四边形DEPQ 为正方形时点P 的坐标为)2和()22-(3)点P 的横坐标为2或-1 ∴PQF △是以点P 为顶角顶点的等腰直角三角形∴∴QPF=∴PEB=90°∴//PQ x 轴∴点Q 与点P 关于直线1x =对称.设点()2,23P t t t -++,则2(1)PQ t =-,3(),F t t -+∴()2223(3)3PF t t t t t =-++--+=-+. ∴PQ PF =,∴22(1)||3t t t -=-+∣,解得:2t =或t 1=-或t =t =综上所述,点P 的横坐标为2或-1 【巩固练习】 1.如图,在平面直角坐标系中,二次函数y =﹣x 2+bx +c 的图象与x 轴交于A 、B 两点,A 点的坐标为(﹣3,0),B 点在原点的左侧,与y 轴交于点C (0,3),点P 是直线BC 上方的抛物线上一动点(1)求这个二次函数的表达式;(2)连接PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C (如图1所示),那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请此时点P 的坐标:若不存在,请说明理由; (3)当点P 运动到什么位置时,四边形ABCP 的面积最大,并求出其最大值.【答案】(1)y =﹣x 2﹣2x +3;(2)存在.P ,32);(3)P 点的坐标为(﹣32,154),四边形ABPC 的面积的最大值为758. 【方法引导】(1)利用待定系数法直接将B 、C 两点直接代入y =x 2+bx+c 求解b ,c 的值即可得抛物线解析式;(2)利用菱形对角线的性质及折叠的性质可以判断P 点的纵坐标为﹣32,令y =﹣32即可得x 2﹣2x ﹣3=﹣32,解该方程即可确定P 点坐标;(3)由于△ABC的面积为定值,当四边形ABCP的面积最大时,△BPC的面积最大;过P 作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线AC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得△BPC的面积,由此可得到关于四边形ABCP 的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABCP的最大面积及对应的P点坐标.【解析】(1)∵C点坐标为(0,3),∴y=﹣x2+bx+3,把A(﹣3,0)代入上式得,0=9﹣3b+3,解得,b=﹣2,∴该二次函数解析式为:y=﹣x2﹣2x+3;(2)存在.如图1,设P点的坐标为(x,﹣x2﹣2x+3),PP′交CO于E,当四边形POP'C为菱形时,则有PC=PO,连接PP′,则PE⊥CO于E,∴OE=CE=32,令﹣x2﹣2x+3=32,解得,x1,x2=22-+(不合题意,舍去).∴P,32).(3)如图2,过点P作y轴的平行线与BC交于点Q,与OA交于点F,设P (x ,﹣x 2﹣2x+3),设直线AC 的解析式为:y =kx+t ,则303k t t -+=⎧⎨=⎩,解得:13k t =⎧⎨=⎩, ∴直线AC 的解析式为y =x+3,则Q 点的坐标为(x ,x+3),当0=﹣x 2﹣2x+3,解得:x 1=1,x 2=﹣3,∴AO =3,OB =1,则AB =4,S 四边形ABCP =S △ABC +S △APQ +S △CPQ =12AB•OC+12QP•OF+12QP•AF =12×4×3+12[(﹣x 2﹣2x+3)﹣(x+3)]×3 =﹣32(x+32)2+758. 当x =﹣32时,四边形ABCP 的面积最大, 此时P 点的坐标为(﹣32,154),四边形ABPC 的面积的最大值为758. 【思路引导】此题考查了二次函数综合题,需要掌握二次函数解析式的确定、菱形的判定和性质以及图形面积的求法等知识,当所求图形不规则时通常要将其转换为其他规则图形面积的和差关系来求解.2.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32.(1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).【解析】(1)当y=0时,13x −43=0,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得{16a −12+c =0−−32a =32, 解得{a =1c =−4,抛物线的解析式为y=x 2﹣3x ﹣4; (2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点,∴设P (3a ,a ),则PC=3a ,PB=a .又∵PE=3PF ,∴PC PF =PB PE .∴∠FPC=∠EPB .∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴Q x+P x2=F x+E x2,Q y+P y2=F y+E y2,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E在点B的右侧时,设E(a,0),则BE=a﹣6.∵CF=3BE=3a﹣18,∴OF=3a﹣20.∴F(0,20﹣3a).∵PEQF为矩形,∴Q x+P x2=F x+E x2,Q y+P y2=F y+E y2,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=8或a=4(舍去).∴Q(2,﹣6).综上所述,点Q的坐标为(﹣2,6)或(2,﹣6).3.如图,抛物线y=x2+2x的顶点为A,与x轴交于B、C两点(点B在点C的左侧).(1)请求出A、B、C三点的坐标;(2)平移抛物线,记平移后的抛物线的顶点为D,与y轴交于点E,F为平面内一点,若以A、D、E、F为顶点的四边形是正方形,且平移后的抛物线的对称轴在y轴右侧,请求出满足条件的平移后抛物线的表达式.解:(1)∵抛物线y=x2+2x与x轴交于B、C两点,∴0=x2+2x,∴x1=0,x2=﹣2,∴点B(﹣2,0),点C(0,0),∵y=x2+2x=(x+1)2﹣1,∴点A(﹣1,﹣1);(2)设平移后抛物线的表达式为:y=(x+1﹣m)2﹣1+n(m>1),∴点D(m﹣1,﹣1+n),∵y=(x+1﹣m)2﹣1+n=x2+2×(1﹣m)x+m2﹣2m+n,∴点E(0,m2﹣2m+n),Ⅰ、如图1,当点D在点A的下方时,过点A作AM⊥y轴于N,过点D作DM⊥AM于M,∴∠ANE=∠AMD=90°,∵以A、D、E、F为顶点的四边形是正方形,∴AE=AD,∠EAD=90°,∴∠EAN+∠DAM=90°,∵∠AEN+∠EAN=90°,∴∠AEN=∠DAM,∴△AEN≌△DAM(AAS),∴AN=DM,EN=AM,∴1=﹣1﹣(﹣1+n),m﹣1﹣(﹣1)=m2﹣2m+n﹣(﹣1),∴n=﹣1,m=3,∴平移后抛物线的表达式为:y=(x﹣2)2﹣2;Ⅱ、如图2,点D在点A上方时,过点D作DM⊥y轴于N,过点A作AM⊥DM于M,同理可证△EDN≌△DAM,∴DN=AM,EN=DM,∴m﹣1=﹣1+n+1,m2﹣2m+n﹣(﹣1+n)=m﹣1+1,∴m=,n=,∴平移后抛物线的表达式为:y=(x﹣)2﹣,Ⅲ、当∠AED=90°时,同理可求:y=(x﹣1)2﹣1;综上所述:平移后抛物线的表达式为:y=(x﹣2)2﹣2或y=(x﹣)2﹣或y=(x﹣1)2﹣1.。

二次函数存在性问题(菱形、平行四边形、矩形)

二次函数存在性问题(菱形、平行四边形、矩形)

今天讲解二次函数背景下的四边形存在性问题.这里的四边形存在性问题,一般是以几种特殊的四边形为主,常考察的有平行四边形、菱形、 矩形、正方形.当然,三角形的存在性问题和四边形的存在性问题是一样, 如等腰三角形实际上和 菱形是一致的, 直角三角形和矩形是一样的, 等腰直角三角形和正方形是一致的.本文我们将重点讲解这类问题的求解逻辑以及注意事项,同时给大家理出一个比较通用的解题 模板.1如图,抛物线y = ax 2 + bx + 3 交x 轴于点A (−1, 0) 和点B (3, 0) ,与 y 轴交于点C ,连接BC , 交对称轴于点D .(1) 求抛物线的解析式;(2)点 P 是直线BC 上方的抛物线上点,连接PC ,PD .求 △PCD 的面积的最大值以及此时 点P 的坐标;(3)将抛物线y = ax 2 + bx + 3 向右平移 1 个单位得到新抛物线,新抛物线与原抛物线交于点E , 点F 是新抛物线的对称轴上的一点,点 G 是坐标平面内一点.当以D 、E 、F 、 G 四点为顶点的 四边形是菱形时,直接写出点F 的坐标,并写出求解其中一个点F 的坐标的过程.前两小问就不详说了,直接上结论, 抛物线解析式为y = −x 2 + 2x + 3 ;点 P | , | .( 3 15 )\2 4 )第 3 小问为菱形存在性问题, 以D 、E 、F 、 G 四点为顶点的四边形是菱形.四个点中, D , E 是定点,F 是平移后新抛物线对称轴上的动点,由于点F 的横坐标是确定的,只有纵坐标在变化, 我们可以称其为“G 如果只需要点F 的坐标,那么没有必要求解平移后抛物线的解析式.根据平移的性质,将原抛物线 向右平移 1 个单位长度, 那么原抛物线的对称轴也向右平移 1 个单位长度, 因此新抛物线的对称轴 为x = 2 ,几 F (2, m ) .但由于此时E 为量抛物线的交点,因此还是要把平移后的抛物线解析式求出 来,根据“左加右减”,平移后的抛物线解析式为y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立两抛物(|y = −x 2 + 2x + 3 ( 3 15 ) 线〈|ly = −x 2 + 4x ,解得E |\2 , 4 )| .菱形的探究相对是比较简单的,对于这类探究性问题,一般都是先从确定的信息入手.菱形是 以D 、E 、F 、 G 为顶点, 其中DE 为定线段,那么存在的可能有DE 是一条边,也可能是一条对 对角线.前面提到,等腰三角形和菱形的分析是一致的,这里我们结合等腰三角形的存在性问题一 起分析.由于 G 是“自由点”,可以随机应变,因此讨论以D 、E 、F 为顶点的三角形是等腰三角 形.同样, 由于定线段DE 可能是等腰三角形的一条腰,也可能是底边.当DE 为一条腰时,第一种情形是点D 为顶点,即DE = DF ,也即半动点F 到D 的距离和E 到D 的距离相等,因此点F 在以点D 为圆心, DE 为半径的圆上,作出该圆,如图 1 所示,可知此时圆与新抛物线的对称轴有两个交点F 1 ,F 2 ,结合图象可以判断,此时两个点应该都是满足的.那么 再加上对应的“自由点” G ,就是以DE 为边菱形了.当DE 为一条腰时, 另一种情形是点E 为顶点, 即ED = EF ,也即半动点F 到E 的距离和D 到E 的距离相等,因此点F 在以点E 为圆心, ED 为半径的圆上,作出该圆,如图 2 所示,可知此时 圆与新抛物线的对称轴同样有两个交点F 1 ,F 2 ,结合图象, 此时的F 3 存在和DE 共线的风险,因此后续需要检验一下.根据坐标可以知道,x E =,通常像这类圆心可能为两个点中点的,一般都要留个心眼, 检验一下.此时再加上对应的“自由点” G ,也是以DE 为边菱形.当DE 为底边时,则F 为顶点, 即FD = FE ,即 F 到线段DE 的两端点的距离相等,可知此时F 在线段DE 的垂直平分线上,作出线段DE 的垂直平分线,如图 3 所示,可知此时有一个交点F 5 .加 上对应的“自由点” G ,此时便是以DE 为对角线的菱形.对于等腰三角形和菱形的存在性问题,如上图情形,我们称其为“两圆一线”法.由于这类题一般不需要书写完整过程,因此在解题过程中,把准备工作做好, 即对应的点坐标, 解析式等先求出来, 动点坐标假设好, 再把定线段DE ,半定线段DF 、EF 长度表示出来. 根据上 述分析,结合“两圆一线”分别使得三条线段两两相等建立方程,即DE = DF ,DE = EF ,DF = EF , 求解出动点坐标即可.(实际解题过程中, 一般使用线段平方的形式.此外, 只需关注下方解析中公 式计算部分即可,文字叙述部分可忽略)此题还是比较友善的,只需求出F 坐标.如果需要求解点G 的坐标,则还要加一个步骤.这里 以DEG 1F 1 为例,若要求 G 1 坐标,一般有两种比较常用的思路.一是利用菱形的对边平行且相等,即F 1G 1 可以看成是DE 平移得来的, 那么点D → F 1 的平移变化也即点E → G 1 的平移变化. 二是利用菱形的对角线相互平分,因此EF 1 的中点也即DG 1 的中点,利用中点坐标求解出 G 1 坐标.这两种处理 在平行四边形存在性问题中也是有力手段.(|y = −x 2 + 2x + 3 ( 3 15 ) 149 ( 149 )由题, y = −x 2 + 2x + 3 向右平移 1 个单位得到新抛物线y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立〈|ly = −x 2 + 4x ,解得 E |\2 , 4 )| , 新抛物线的对称轴为x = 2 ,设 F (2, m ) ,由于 D (1, 2) ,则DE 2 =,EF 2 = + m −2= m 2 − m +,DF 2 = 1+ (m − 2)2= m 2 − 4m + 5 ,①当DE 、DF 为一组邻边时,则 DE 2 = DF 2 ,即 = m 2 − 4m + 5 ,37 ( ) ( )②当ED 、EF 为一组邻边时,则 ED 2 = EF 2 ,即 = m 2 − m + ,16 8 16 11 ( 11)③当EF 为对角线时,则FD = FE ,即 m 2 − m + = m 2 − 4m + 5 , 2 16解得m = ,此时 F 的坐标为|2, | ;( ) ( ) ( 149 )( 11) 当F |2, |时, y F + y D = 2y E ,x D + x F = 2x E ,即 E 为D 、F 中点, 不合题意, 舍去; 15 229 \ 2 )综上, F 点的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| 或(2, 2) 或|\2, 56 )| . 56 \ 56 )解得m = 2 或m = ,此时F 的坐标为(2, 2) 或|2, | ,2 \ 2 )解得m = 2 土 4 ,此时 F 的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| ;53 15 2291 .已知二次函数y = ax2 + bx − 2(a 丰 0)与x 轴交于A ( −, 0) ,B (4, 0) ,与 y 轴交于点C .(1) 求抛物线的解析式;(2) 连接AC ,BC ,点 P 是直线BC 下方抛物线上一点,过 P 作PD ∥AC 交直线BC 于点D ,PE ∥x 轴交直线BC 于点, E ,求△PDE 面积的最大值及此时点, P 的坐标;(3) 在(2)的条件下, 将原抛物线沿x 轴向左平移3个单位得到新抛物线,点 M 是新抛物线对称轴上一点, 点 N 是平面直角坐标系内一点, 当以点M 、 N 、P 、B 为顶点的四边形为菱形 时,请直接写出所有符合条件的N 点的坐标;并任选其中一个N 点,写出求解过程.立〈y= − 2 x 2 + 4x − 2 ,解得D 7 , 11 .1-1如图 1,抛物线y = ax 2 + bx + 4 交x 轴于A (−2, 0) ,B (4, 0) 两点,与y 轴交于点C ,连接 AC , BC .(1) 求抛物线的解析式;(2) P 是拋物线上位于直线BC 上方的一个动点,过点P 作PQ ∥y 轴交BC 于点Q , 过点P 作PE ⊥ BC 于点E ,过点 E 作EF ⊥ y 轴于点F ,求出2PQ + EF 的最大值及此时点P 的坐标;(3)如图 2,将抛物线y = ax 2 + bx + 4 沿着射线CB 的方向平移,使得新抛物线y ,过点(3,1) , 点D 为原抛物线y 与新抛物线y ,的交点,若点 G 为原抛物线的对称轴上一动点,点H 为新抛物线y , 上一动点,直接写出所有使得以 A ,D , G ,H 为顶点的四边形为平行四边形的点H 的坐标,并 把求其中一个点H 的坐标的过程写出来.抛物线解析式为y = − x 2 + x + 4 ;点 P | , | .相当于是沿着射线BC 方向平移,故舍去, 因此可得平移后抛物线的解析式为y = − x 2 + 4x − .联2 2 ( 1 13 y = − x 2 + x +4 \2 8 )这类平行四边的探究也并不难, 同样先从确定的信息入手.平行四边形是以A ,D ,G ,H 为 顶点,其中AD 是定线段, G 是半动点,H 在新的抛物线上.和菱形的讨论一样,我们要考虑AD 是 一条边的情形, 也要考虑AD 是对角线的情形.当 AD 是一条边时, 实际上此时也右两种情形,一是是平行四边形为ADHG ,也即AH ,DG 为 对角线;另一种则是平行四边形为ADGH ,也即 AG ,DH 为对角线.当然,不管是那种情形,由 于 AD 是一条边,根据平行四边形对边平行且相等的性质, GH 这条边可以看作是将AD 平移后得到1 (8 28 )2 \3 9 )第 3 小问中, 抛物线沿着射线CB 方向平移, 由于后续的点在新抛物线上, 因此还是要求出平移 后抛物线的解析式.这类沿着射线平移的,一般采用正交分解的形式平移,由点 C (0, 4) ,B (4, 0) 可 知,沿着射线 CB 平移,即向右平移t 个单位,则向下也平移t 个单位,因此假设平移后新抛物线的 解析式为y = − (x − t )2+ (x − t ) + 4 − t ,因为平移后经过点(3,1) ,代入可解得t = − 1 或t = 3 ,当 t = − 1 , 1 13的,由于半动点 G 在原抛物线对称轴x = 1 上,那么点 G 有可能是点 A 平移后得到的, 此时点H 就 是点D 平移后得到的,如图 1 所示;同理,当点 G 是点D 平移后得到的,那么此时点H 就是点A 平 移后得到的,如图 2 所示.设点 G (1, m ),根据平移的性质,结合点坐标的变化规律,当 A → G 时, 即(−2, 0) —(1, m ) ,则有D|2 , 8 )| —H | 2 , 8 + m )| ,由于点H 在新抛物线上, 且横坐标已知了,代入新抛物线即可 11 1 (13 213 13 13 (13 13 此外, 除了用平移性质得到H 点的坐标外,此时 AH 是一条对角线,也利用对角线相互平分, 则 A 、 H 的 中 点 和 D 、 G 的 中 点 是 同 一 个 , 利 用 中 点 坐 标 则 有 x A + x H = x D + x G ,故 13 13 13 (13 13 x H = x D + x G − x A = 2 ,将x = 2 代入新抛物线解析式,可求得H 点纵坐标y = − 8 ,故H | 2 , − 8 )|.当 AG 是一条对角线时, 则有x A + x G = x D + x H ,故 x H = x A + x G − x D = − ,代入新抛物线解析 277 ( 9 277式,可求得此时H 的纵坐标为 − ,故H |− , − | .8 2 8 ) 当 AD 是一条对角线时,则有x A + x D = x H + x G ,故 x H = x A + x D − x G = ,代入新抛物线解析式, 37 ( 1 37 可求得此时H 的纵坐标为 − ,故 H | , − | .8 2 8 )同样地,在解题过程中, 把准备工作做好,即对应的点坐标,解析式等先求出来,动点坐标假设好, 将点坐标表示列出来(通常都是横坐标),选定一个定点,如这里我们选定 x A ,将其与剩下 三点横坐标x D 、x G 、x H 两两组合,建立中点坐标关系式, 即x A + x D = x H + x G ,x A + x G = x D + x H 以 及x A + x H = x D + x G ,求解出点H 横坐标,再代入解析式中求出点H 纵坐标即可.求得纵坐标 8 + m = − 2 | 2 )| + 4 2 − 2 = − 8 ,此时H | 2 , − 8 )| . ( 7 11 (13 1113 (13 13)由题, 设平移后的抛物线解析式为y = − (x − t )2+ (x − t ) + 4− t ,因为平移后经过点(3,1),代入可解得t = − 1 (舍) 或t = 3 ,2 2联立〈y = − 2 x 2 + 4x − 2 ,解得 D 7 , 11 , y = − x 2 + x + 4 \2 8 )则x A =−2 ,x D = ,x G = 1,设 H 点横坐标为x H ,①当AH 为一条对角线时,x A + x H = x D + x G ,则 x H = ,代入可求得此时H | , − | ; 9 ( 9 277 )1 (1 37 )综上, H 的坐标为| , − |或|− , − |或| , − | .( 1 13 ③当AD 为一条对角线时,x A + x D = x H + x G ,则x H = ,代入可求得此时H | , − | ;(13 13) ( 9 277 ) (1 37 )2 \2 8 )\ 2 8 ) \ 2 8 ) \2 8 )②当AG 为一条对角线时,x A + x G = x D + x H ,则x H = − ,代入可求得此时H |− , − | ;2 \ 2 8 ) 2 \ 2 8 )故平移后抛物线的解析式为y = − x 2 + 4x − ,1 131.如图,在平面直角坐标系中,抛物线y= ax2 + bx+ 3(a 0) 与y轴交于点C,与x轴交于A,B两点(点A在点B的右侧),且点A的坐标为( 3, 0) ,连接BC,过点A作AD∥BC交y轴于点D,OB= 3OA.(1) 求抛物线的解析式;(2) 如图1,点E为射线AD上一点,点P为第二象限内抛物线上一点,求四边形PBEC面积的最大值及此时点P的坐标;(3) 如图2,将原抛物线沿x轴正方向平移得到新抛物线y,y经过点C,平移后点A的对应点为点A,点N为线段AD的中点,点Q为新抛物线y的对称轴上一点,在新抛物线y上存在一点M,使以点M,Q,A,N为顶点的四边形为平行四边形,请直接写出点M的坐标,并选择一个你喜欢的点写出求解过程.2.如图,抛物线y= x2 + bx+ c与x轴相交于点A(−1, 0) 和点B,交y轴于点C,tan 三ACO= .(1) 求抛物线的解析式;(2) 如图1 ,P点为一象限内抛物线上的一个动点,点D是BC中点,连接PD,BD,PB.求△BDP面积的最大值以及此时P点坐标;,M为新抛物线对称轴上(3) 如图2,将抛物线向左平移 1 个单位长度,得到新的抛物线y1一点,N为直线AC上一动点,在(2) 的条件下,是否存在点M,使得以点P、B、M、N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.| 4 21如图,已知抛物线y = ax 2 + bx − 4 与x 轴交于A ,B 两点, 与y 轴交于点C ,且点A 的坐标 为(−2, 0) ,直线BC 的解析式为y = x − 4 .(1) 求抛物线的解析式;(2)如图 1,过点 A 作 AD ∥BC 交抛物线于点D (异于点 A ), P 是直线BC 下方抛物线上一 点,过点P 作PQ ∥y 轴, 交AD 于点Q ,过点 Q 作QR ⊥ BC 于点R ,连接PR .求△PQR 面积的最 大值及此时点P 的坐标;(3) 如图 2,点 C 关于x 轴的对称点为点C ,将抛物线沿射线 C A 的方向平移2个单位长度得到新的抛物线y ,新抛物线y 与原抛物线交于点M ,原抛物线的对称轴上有一动点 N ,平面直 角坐标系内是否存在一点K ,使得以 D ,M ,N ,K 为顶点的四边形是矩形?若存在,请直接写 出点K 的坐标;若不存在, 请说明理由.抛物线解析式为y = x 2 − x − 4 ;S △PQR 的最大值为 9,点P (4, −6) .第 3 小问中,抛物线沿着射线C A 方向平移, 由于点M 为两抛物线交点, 因此需求出平移后抛 物线的解析式.根据A (−2, 0) ,C (0, 4) ,可知Rt △AOC 中AO : OC : AC = 1: 2 : ,因此将抛物线沿着射线C A 方向平移2个单位长度,则相当于向下平移 4 个单位长度,向左平移 2 个单位长度,因此平移后的抛物线为y = 1 (x + 2)2− 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 ,联立〈y = x 2 − x −10,解4 2 4 2y = x 2 − x − 4( 1得M (6, −4) .又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) .2 2 |y = 1 x 2 − 3x − 4因为以D ,M ,N ,K 为顶点的四边形是矩形,此时定线段是DM ,半动点为N ,自由点为K .和 前面讨论菱形、平行四边形时的流程基本大同小异,定线段DM 可能是矩形的边,也可能是矩形的 对角线,因此要分两种情形讨论.矩形的存在性问题和直角三角形的存在性问题是一致的,如本题 中,探究以D ,M ,N 为顶点的三角形是直角三角形. 同样地,先以直角三角形为例,那么D ,M ,1 3 4 2在实际解题中设 K (x , y ) 即可), 利用中点关系〈 M K D N ,则〈 K,整理得N 均有可能为直角顶点.当M 为直角顶点时,过M 作DM 垂线与对称轴交点即为点N 所在位置,如图 1 所示.对于N 点 坐标的求解,一方面,由于MN ⊥ DM ,则 k MN . k DM = − 1,结合点M 坐标,由此可求得直线MN 解 析式,将其与对称轴方程联立即可求得点N 坐标.另一方面,可以构造如图所示的K 型相似,即构DH MH1 腰直角三角形, 或者四边形中的正方形, 那么可以构造此类的K 型全等求解.在此直角三角形的基础上,加上自由点K ,就变成矩形问题了.对于矩形问题,同样可以求出点N 坐标后,利用平移关系或者对角线的中点关系,求相应的点K 的坐标.当然,如果是探究矩形 的存在性问题,也可以直接利用中点关系求得点K 的坐标.由点N (3, n ),设K (x K , y K ) (熟练后,(x + x = x + x (6 + x = 10 + 3 l y M + y K = y D + y N l−4 + y K = 6 + n 〈,再由对角线相等,即MK = DN ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y =,( 36 )同样适用.当D 为直角顶点时,三角形如图2 所示.同样, 加上自由点K ,就变成矩形问题了. 这里我们5 2 2 ( 44 )l y M + y N = y D + y K |y K = − \ 5 )对于直角三角形或矩形问题, 如上图情形,我们可以称其为“两线一圆”.若只求点N 坐标,一 般利用斜率关系,求出解析式后进一步求解.如果是矩形问题要求自由点的坐标,可以用对角线平 分且相等, 建立方程求解.当然, 先求点N ,利用点N 作为台阶进一步求解也是没问题的, 大家选 用自己顺手的方法即可.造 △MN 1G ∽△DMH ,利用 = ,可求出长度,进而得到点 N 坐标.更特殊地,如果是等以垂线方式求解.由于k DM = 2 ,则 k DN = − 5 ,故此时DN : y = − 5 x + 10 ,令x = 3 ,可解得N |\3, 5 )| , 由中点可知,〈(x M + x N = x D + x K ,可解得〈(|x K = − 16 ,此时 K −1,− 6 .l 5当N 为直角顶点时,则有NM ⊥ ND ,因此点N 在以DM 为直径的圆上.此种情形若只是求点N 坐标,策略比较多, 一方面,可以利用斜率, 由k ND . k NM= − 1求出点N 坐标;另一方面,可以利用线段长度求解,设DM 中点为为R ,则此时圆心为R ,因此NR = RD = DM ,由此也可求得点N 坐 标, 此外, 还可以利用勾股定理ND 2 + NM 2 = DM 2 .当加入自由点K ,变成矩形问题后,除了先求 出点N 坐标, 利用平移或中点求解点K 坐标外,也可以利用前面的对角线平分且相等来求解. 故此时K |7, | .此法借助的是矩形的对角线平分且相等的性质,该处理对于DM 是对角线的情形 \ 5 ) GM N G式和长度关系式子,即〈 M K D N 且MK 2 = DN 2 ,〈 M N D K 且MN 2 = DK 2 以及(x M + x D = x N + x K 4 2 4 2|l 4 2(x M + x K = x D + x N (6 + x = 10 + 3 (x = 7由MK 2 = DN 2 ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y = 36,故此时K 7,36;由MN 2 = DK 2 ,代入即有9 + (y +14)2 = 121+ (y − 6)2,解得 y = − 6 ,故此时K −1,− 6 ;(x M + x D = x N + x K (6 + 10 = 3 + x (x = 13 同样地,在解题过程中, 把准备工作做好,即对应的点坐标安排到位,动点坐标假设好,选定 一个定点, 如这里我们选定M ,将其与剩下三点横坐标D 、 N 、K 两两组合, 建立中点坐标关系 (x + x = x + x (x + x = x + xl y M + y K = y D + y N l y M + y N = y D + y K〈 且MD 2 = NK 2,利用方程组求解出对应的点K 的坐标. l y M + y D = y N + y K附:坐标平面内点A (x 1 , y 1 ) ,B (x 2 , y 2 ) ,其中x 1 丰 x 2 ,则过A 、B 两点的直线的斜率k =由题, 将抛物线沿着射线 C ,A 方向平移2个单位长度, 即将其向下平移 4 个单位长度, 向左平移 2 个单位长度, 因此平移后的抛物线为y =1(x + 2)2 − 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 , 联立〈y = x 2− x −10,解得M (6, −4) ,y = x 2 − x − 4( 1又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) ,2 2 |y = 1 x 2 − 3x − 4由M (6, −4) ,D (10, 6) ,设 N (3, n ) ,K (x , y ) ,①当MK 为一条对角线时,〈,即〈 ,整理得〈 , l y M + y K = y D + y N l −4 + y = 6 + n l n = y −105 \ 5 )②当MN 为一条对角线时,〈(x M + x N = x D + x K,即〈(6 + 3 = 10 + x,整理得〈(x = − 1l y M + y N = y D + y K l −4 + n = 6 + y l n = 10 + y5 \ 5 )③当MD 为一条对角线时,〈 ,即〈 ,整理得〈l y M + y D = y N + y K l−4 + 6 = n + y l n = 2 − y由MD 2 = NK 2 ,代入即有116 = 100 + (2 − 2y )2,解得y =− 1 或y = 3 ,故此时K (13, −1) 或(13,3) ; ( 36 ) ( 6 )综上, 点K 的坐标为|7, |或|−1,− |或(13, −1) 或(13,3) .\ 5 ) \ 5 ) y 1 − y 2. x 1 − x 21.如图1,二次函数y= ax2 + bx+ c(a丰0)与x轴交于点A(−2, 0) 、点B(点A在点B左侧),与y轴交于点C(0,3) ,tan 三CBO= .(1) 求二次函数解析式;(2)如图2,点P是直线BC上方抛物线上一点,PD∥y轴交BC于D,PE∥BC交x轴于点E,求PD+ BE的最大值及此时点P的坐标;(3) 在(2) 的条件下,当PD+ BE取最大值时,连接PC,将△PCD绕原点O顺时针旋转90。

二次函数与特殊四边形存在问题(学生版)

二次函数与特殊四边形存在问题(学生版)

二次函数与几何综合专题---- 平行四边形存在性问题【模型解读】考虑到求证平行四边形存在,必先了解平行四边形性质: (1)对应边平行且相等; (2)对角线互相平分.这是图形的性质,我们现在需要的是将其性质运用在在坐标系中: (1)对边平行且相等可转化为:A B D CAB DC x x x x y y y y -=-⎧⎨-=-⎩,可以理解为点B 移动到点A ,点C 移动到点D ,移动路径完全相同.(2)对角线互相平分转化为:2222A CB DAC BD x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩,可以理解为AC 的中点也是BD 的中点.【小结】虽然由两个性质推得的式子并不一样,但其实可以化为统一:A B D C A C D BA B D C AC D B x x x x x x x x y y y y y y y y -=-+=+⎧⎧→⎨⎨-=-+=+⎩⎩, 2222A CB DAC BD x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩→A C B D A C B D x x x x y y y y +=+⎧⎨+=+⎩. 当AC 和BD 为对角线时,结果可简记为:A C B D +=+(各个点对应的横纵坐标相加)y D -y Cx D -x Cy A -y Bx A -x BABC DDCBA引例:已知A (1,1)、B (3,2),点C 在x 轴上,点D 在y 轴上,且以A 、B 、C 、D 为顶点的四边形是平行四边形,求C 、D 坐标.【分析】设C 点坐标为(m ,0),D 点坐标为(0,n ),又A (1,1)、B (3,2). (1)当AB 为对角线时,130120m n +=+⎧⎨+=+⎩,解得43m n =⎧⎨=⎩,故C (4,0)、D (0,3);(2)当AC 为对角线时,130102m n +=+⎧⎨+=+⎩,解得21m n =⎧⎨=-⎩,故C (2,0)、D (0,-1);(3)当AD 为对角线时,103120m n +=+⎧⎨+=+⎩,解得21m n =-⎧⎨=⎩,故C (-2,0)、D (0,1).【动点综述】“三定一动”的动点和“两定两动”的动点性质并不完全一样,“三定一动”中动点是在平面中,横纵坐标都不确定,需要用两个字母表示,这样的我们姑且称为“全动点”,而有一些动点在坐标轴或者直线或者抛物线上,用一个字母即可表示点坐标,称为“半动点”.从上面例子可以看出,虽然动点数量不同,但本质都是在用两个字母表示出4个点坐标.若把一个字母称为一个“未知量”也可理解为:全动点未知量=半动点未知量×2.找不同图形的存在性最多可以有几个未知量,都是根据图形决定的,像平行四边形,只能有2个未知量.究其原因,在于平行四边形两大性质: (1)对边平行且相等; (2)对角线互相平分.但此两个性质统一成一个等式: A C B DAC BD x x x x y y y y +=+⎧⎨+=+⎩,两个等式,只能允许最多存在两个未知数,即我们刚刚所讲的平行四边形存在性问题最多只能存在2个未知量.【模型实例】1.如图,已知抛物线y=ax2+bx+4经过A(﹣1,0),B(4,0)两点,交y轴于点C.(1)求抛物线的解析式;(2)连接BC,求直线BC的解析式;(3)请在抛物线的对称轴上找一点P,使AP+PC的值最小,求点P的坐标,并求出此时AP+PC的最小值;(4)点M为x轴上一动点,在抛物线上是否存在一点N,使得以A、C、M、N四点为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.2.将抛物线y=ax2(a≠0)向左平移1个单位,再向上平移4个单位后,得到抛物线H:y=a(x﹣h)2+k.抛物线H与x轴交于点A,B,与y轴交于点C.已知A(﹣3,0),点P是抛物线H上的一个动点.(1)求抛物线H的表达式;(2)如图1,点P在线段AC上方的抛物线H上运动(不与A,C重合),过点P作PD⊥AB,垂足为D,PD 交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值;(3)如图2,点Q是抛物线H的对称轴l上的一个动点,在抛物线H上,是否存在点P,使得以点A,P,C,Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.3.如图,抛物线y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,直线l与抛物线交于点B,交y轴于点D(0,3).(1)求该抛物线的函数表达式;(2)点P(m,0)为线段OB上一动点,过点P作x轴的垂线EF,分别交抛物线与直线l于点E,F,连接CE,CF,BE,求四边形CEBF面积的最大值及此时m的值;(3)点M为y轴右侧抛物线上一动点,过点M作直线MN∥AC交直线l于点N,是否存在点M,使以A,C,M,N四点为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.【课后练习】1.如图,已知二次函数y=−38x2+bx+c的图象与x轴交于点A、C,与y轴交于点B,直线y=34x+3经过A、B两点.(1)求b、c的值.(2)若点P是直线AB上方抛物线上的一动点,过点P作PF⊥x轴于点F,交直线AB于点D,求线段PD 的最大值.(3)在(2)的结论下,连接CD,点Q是抛物线对称轴上的一动点,在抛物线上是否存在点G,使得以C、D、G、Q为顶点的四边形是平行四边形,若存在,请直接写出点G的坐标;若不存在,请说明理由.2.已知,抛物线y=x2+bx+c与x轴交点为A(﹣1,0)和点B,与y轴交点为C(0,﹣3),直线L:y=kx﹣1与抛物线的交点为点A和点D.(1)求抛物线和直线L的解析式;(2)如图,点M为抛物线上一动点(不与A、D重合),当点M在直线L下方时,过点M作MN∥x轴交L 于点N,求MN的最大值;(3)点M为抛物线上一动点(不与A、D重合),M'为直线AD上一动点,是否存在点M,使得以C、D、M、M′为顶点的四边形是平行四边形?如果存在,请直接写出点M的坐标,如果不存在,请说明理由.二次函数与几何综合专题---- 菱形存在性问题【模型解读】作为一种特殊的平行四边形,我们已经知道可以从以下几种方式得到菱形: (1)有一组邻边相等的平行四边形菱形; (2)对角线互相垂直的平行四边形是菱形; (3)四边都相等的四边形是菱形.坐标系中的菱形存在性问题也是依据以上去得到方法.和平行四边形相比,菱形多一个“对角线互相垂直”或“邻边相等”,故若四边形ABCD 是菱形,则其4个点坐标需满足:A CB D AC BD x x x x y y y y ⎧+=+⎪⎪+=+⎨=即根据菱形的图形性质,我们可以列出关于点坐标的3个等式, 故菱形存在性问题点坐标最多可以有3个未知量.因此就常规题型而言,菱形存在性至少有2个动点,多则有3个动点,可细分如下两大类题型: (1)2个定点+1个半动点+1个全动点 (2)1个定点+3个半动点引例:如图,在坐标系中,A 点坐标(1,1),B 点坐标为(5,4),点C 在x 轴上,点D 在平面中,求D 点坐标,使得以A 、B 、C 、D 为顶点的四边形是菱形.【分析】设C 点坐标为(m ,0),D 点坐标为(p ,q ). (1)当AB 为对角线时,由题意得:(AB 和CD 互相平分及AC =BC ) ()()()()2222151********m p q m m ⎧+=+⎪⎪+=+⎨⎪-+-=-+-⎪⎩,解得:398985m p q ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩(2)当AC 为对角线时,由题意得:(AC 和BD 互相平分及BA =BC )()()()()2222151041514504m p qm ⎧+=+⎪⎪+=+⎨⎪-+-=-+-⎪⎩,解得:223m p q =⎧⎪=-⎨⎪=-⎩或843m p q =⎧⎪=⎨⎪=-⎩ (3)当AD 为对角线时,由题意得:()()()()2222151401514110p mq m ⎧+=+⎪⎪+=+⎨⎪-+-=-+-⎪⎩,解得:153m p q ⎧=+⎪⎪=+⎨⎪=⎪⎩153m p q ⎧=-⎪⎪=-⎨⎪=⎪⎩【模型实例】1.如图,已知直线与x 轴、y 轴分别交于B 、C 两点,抛物线y =ax 2+3x +c 经过B 、C 两点,与x 轴的另一个交点为A ,点E 的坐标为.(1)求抛物线的函数表达式;(2)点E ,F 关于抛物线的对称轴直线l 对称,Q 点是对称轴上一动点,在抛物线上是否存在点P ,使得以E 、F 、P 、Q 为顶点的四边形是菱形?若存在,求出点P 的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2交x轴于点A、B,交y轴于点C.(1)求△ABC的面积;(2)如图,过点C作射线CM,交x轴的负半轴于点M,且∠OCM=∠OAC,点P为线段AC上方抛物线上的一点,过点P作AC的垂线交CM于点G,求线段PG的最大值及点P的坐标;(3)将该抛物线沿射线AC方向平移个单位后得到的新抛物线为y′=ax2+bx+c(a≠0),新抛物线y′与原抛物线的交点为E,点F为新抛物线y′对称轴上的一点,在平面直角坐标系中是否存在点Q,使以点A、E、F、Q为顶点的四边形为菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.3.如图,抛物线y=ax2+bx+c与x轴交于A,B(﹣1,0)两点,与y轴交于点C,直线AC的解析式为y=x﹣2.(1)求抛物线的解析式;(2)已知k为正数,当0<x≤1+k时,y的最大值和最小值分别为m,n,且m+n=,求k的值;(3)点P是平面内任意一点,在抛物线对称轴上是否存在点Q,使得以点A,C,P,Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.【课后练习】1.如图1,抛物线y=ax2+bx+c与x轴相交于点B、C(点B在点C左侧),与y轴相交于点A.已知点B坐标为B(1,0),BC=3,△ABC面积为6.(1)求抛物线的解析式;(2)如图1,点P为直线AC下方抛物线上一动点,过点P作PD∥AB,交线段AC于点D.求PD长度的最大值及此时P点的坐标;(3)如图2,将抛物线向左平移个单位长度得到新的抛物线,M为新抛物线对称轴l上一点,N为平面内一点,使得以点A、B、M、N为顶点的四边形为菱形,请直接写出点N的坐标,并写出求解其中一个N点坐标的过程.2.如图,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC,交对称轴于点D.(1)求抛物线的解析式;(2)点P是直线BC上方的抛物线上一点,连接PC,PD.求△PCD的面积的最大值以及此时点P的坐标;(3)将抛物线y=ax2+bx+3向右平移1个单位得到新抛物线,新抛物线与原抛物线交于点E,点F是新抛物线的对称轴上的一点,点G是坐标平面内一点.当以D、E、F、G四点为顶点的四边形是菱形时,直接写出点F的坐标,并写出求解其中一个点F的坐标的过程.二次函数与几何综合专题---- 矩形存在性问题【模型解读】矩形的判定:(1)有一个角是直角的平行四边形;(2)对角线相等的平行四边形; (3)有三个角为直角的四边形.【题型分析】矩形除了具有平行四边形的性质之外,还有“对角线相等”或“内角为直角”,因此相比起平行四边形,坐标系中的矩形满足以下3个等式:A CB D AC BD x x x x y y y y ⎧+=+⎪⎪+=+⎨=(AC 为对角线时)因此在矩形存在性问题最多可以有3个未知量,代入可以得到三元一次方程组,可解. 确定了有3个未知量,则可判断常见矩形存在性问题至少有2个动点,多则可以有3个. 题型如下:(1)2个定点+1个半动点+1个全动点; (2)1个定点+3个半动点.引例:已知A (1,1)、B (4,2),点C 在x 轴上,点D 在坐标系中,且以A 、B 、C 、D 为顶点的四边形是矩形,求D 点坐标.【分析】设C 点坐标为(a ,0),D 点坐标为(b ,c ),又A (1,1)、B (4,2). 先考虑平行四边形存在性:(1)AB 为对角线时,14120a b c +=+⎧⎨+=+⎩,满足此条件的C 、D 使得以A 、B 、C 、D 为顶点的四边形是平行四边形,另外AB =CD=综合以上可解:323a b c =⎧⎪=⎨⎪=⎩或233a b c =⎧⎪=⎨⎪=⎩.故C (3,0)、D (2,3)或C (2,0)、D (3,3).(2)AC为对角线时,14102a bc+=+⎧⎨+=+⎩,另外AC=BD得:143531abc⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩.故C14,03⎛⎫⎪⎝⎭、D5,13⎛⎫-⎪⎝⎭.(3)AD为对角线时,14120b ac+=+⎧⎨+=+⎩,另外AD=BC综合以上可解得:431331abc⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩.故C14,03⎛⎫⎪⎝⎭、D13,13⎛⎫⎪⎝⎭.【小结】这个方法是在平行四边形基础上多加一个等式而已,剩下的都是计算.【模型实例】1.如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE 的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.2.如图,抛物线y=ax2+2x+c的对称轴是直线x=1,与x轴交于点A,B(3,0),与y轴交于点C,连接AC.(1)求此抛物线的解析式;(2)已知点D是第一象限内抛物线上的一个动点,过点D作DM⊥x轴,垂足为点M,DM交直线BC于点N,是否存在这样的点N,使得以A,C,N为顶点的三角形是等腰三角形.若存在,请求出点N的坐标,若不存在,请说明理由;(3)已知点E是抛物线对称轴上的点,在坐标平面内是否存在点F,使以点B、C、E、F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3交x轴于A、B两点(点A在点B的左侧),交y轴于点E,一次函数y=x+1与抛物线交于A、D两点,交y轴于点C,且D(4,5).(1)求抛物线的解析式;(2)若点P是第四象限内抛物线上的一点,过点作PQ⊥AD交AD于点Q,求PQ的最大值以及相应的P点坐标;(3)将抛物线向右平移1个单位长度,再向上平移1个单位长度得到新抛物线,新抛物线与原抛物线交于点R,M点在原抛物线的对称轴上,在平面内是否存在点N,使得以点A、R、M、N为顶点的四边形是矩形?若存在,请直接写出N点的坐标;若不存在,请说明理由.【课后练习】1.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m 的最大值及此时点P的坐标;(3)在(2)的条件下,m取最大值时,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.2.如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.点D(2,3)在该抛物线上,直线AD与y轴相交于点E,点F是直线AD上方的抛物线上的动点.(1)求该抛物线对应的二次函数的关系式;(2)当点F到直线AD距离最大时,求点F的坐标;(3)如图,点M是抛物线的顶点,点P的坐标为(0,n),点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是AM为边的矩形.①求n的值;②若点T和点Q关于AM所在直线对称,求点T的坐标.二次函数与几何综合专题----正方形存在性问题【模型解读】作为特殊四边形中最特殊的一位,正方形拥有更多的性质,因此坐标系中的正方形存在性问题变化更加多样,从判定的角度来说,可以有如下:(1)有一个角为直角的菱形;(2)有一组邻边相等的矩形;(3)对角线互相垂直平分且相等的四边形.依据题目给定的已知条件选择恰当的判定方法,即可确定所求的点坐标.从未知量的角度来说,正方形可以有4个“未知量”,因其点坐标满足4个等量关系,考虑对角线性质,互相平分(2个)垂直(1个)且相等(1个).从动点角度来说,关于正方形存在性问题可分为:(1)2个定点+2个全动点;(2)1个定点+2个半动点+1个全动点;甚至可以有:(3)4个半动点.不管是哪一种类型,要明确的是一点,我们肯定不会列一个四元一次方程组求点坐标!常用处理方法:思路1:从判定出发若已知菱形,则加有一个角为直角或对角线相等;若已知矩形,则加有一组邻边相等或对角线互相垂直;若已知对角线互相垂直或平分或相等,则加上其他条件.思路2:构造三垂直全等若条件并未给关于四边形及对角线的特殊性,则考虑在构成正方形的4个顶点中任取3个,必是等腰直角三角形,若已知两定点,则可通过构造三垂直全等来求得第3个点,再求第4个点.引例:在平面直角坐标系中,A(1,1),B(4,3),在平面中求C、D使得以A、B、C、D为顶点的四边形是正方形.如图,一共6个这样的点C 使得以A 、B 、C 为顶点的三角形是等腰直角三角形.至于具体求点坐标,以1C 为例,构造△AMB ≌△1C NA ,即可求得1C 坐标.至于像5C 、6C 这两个点的坐标,不难发现,5C 是3AC 或1BC 的中点,6C 是2BC 或4AC 的中点.题无定法,具体问题还需具体分析,如上仅仅是大致思路.【模型实例】1.如图,某一次函数与二次函数y =x 2+mx +n 的图象交点为A (﹣1,0),B (4,5).(1)求抛物线的解析式;(2)点C 为抛物线对称轴上一动点,当AC 与BC 的和最小时,点C 的坐标为 (1,2) ;(3)点D 为抛物线位于线段AB 下方图象上一动点,过点D 作DE ⊥x 轴,交线段AB 于点E ,求线段DE 长度的最大值;(4)在(2)条件下,点M 为y 轴上一点,点F 为直线AB 上一点,点N 为平面直角坐标系内一点,若以点C ,M ,F ,N 为顶点的四边形是正方形,请直接写出点N 的坐标.2.如图,抛物线y=x2+bx+c经过A(﹣3,0),B(1,0)两点,与y轴交于点C,P为y轴上的动点,连接AP,以AP为对角线作正方形AMPN.(1)求抛物线的解析式;(2)当正方形AMPN与△AOP面积之比为5:2时,求点P的坐标;(3)当正方形AMPN有两个顶点在抛物线上时,直接写出点P的坐标.3.如图,抛物线y=x2+2x的顶点为A,与x轴交于B、C两点(点B在点C的左侧).(1)请求出A、B、C三点的坐标;(2)平移抛物线,记平移后的抛物线的顶点为D,与y轴交于点E,F为平面内一点,若以A、D、E、F为顶点的四边形是正方形,且平移后的抛物线的对称轴在y轴右侧,请求出满足条件的平移后抛物线的表达式.【课后练习】1.已知抛物线L:y=﹣ax2+2ax+c与x轴交于A、B两点(点A在点B的左侧),且AB=4.(1)求A、B两点的坐标;(2)将抛物线L沿x轴翻折后得到的新抛物线记为L',且记L和L'的顶点分别记为M、M',要使点A、B、M、M'为顶点的四边形是正方形,请求抛物线L的解析式.。

专题七 二次函数特殊四边形的存在性问题 ppt课件

专题七 二次函数特殊四边形的存在性问题 ppt课件

②当AB为平行四边形的对角线时,则MN与AB互相平分,如解图③,AB与
MN相交于点J,易得J(2,0),易得AJ=NJ=BJ=MJ,
设M(m,-m+3),N(n,n2-4n+3), 则有 m n =2,
2 -m+3+n2-4n+3=0,
整理,得n2-3n+2=0,
解得n1=1(舍去),n2=2, ∴N点坐标为(2,-1).
2
综上所述,存在这样的点G和H,使得以G,H,O,C为顶点的四边形是
平行四边形,点H的坐标为( 3 2 1 ,9 2 1 )或( 3 2 1 ,9 2 1 ) ;
2
2Hale Waihona Puke 22(4)如果点M在直线BC上,点N在抛物线上,是否存在这样的点M和N,使得
以A,B,M,N为顶点的四边形是平行四边形?如果存在,请求出点N的坐
综上所述,点N的坐标为( 3 1 7 ,7 1 7
2
2
例题解图③
) , ( 3 1 7 ,7 1 7 ) ,(2,-1);
2
2
(5)设抛物线的对称轴与直线BC的交点为K,点P是抛物线对称轴上一点, 点Q为y轴上一点,是否存在这样的点P和Q,使得四边形CKPQ是菱形?如 果存在,请求出点P的坐标;
①当AB为平行四边形的边时,需考虑点M和N的位置关系(即点M在点N的左
边还是右边),如解图②,
(ⅰ)当点M在点N的左边时,设点N的坐标为(m,m2-4m+3),
则点M的坐标为(m-2,-m+5),∵四边形ABNM是平行四边形,
∴m2-4m+3=-m+5,解得m= 3 1 7 ,
2
当m= 3 2 1 7 时,m2-4m+3=7 2 1 7 ;
(2)过点C作CD平行于x轴,交抛物线对称轴于点D,试判断四边形ABDC的 形状,并说明理由;

二次函数与特殊平行四边形

二次函数与特殊平行四边形

二次函数与特殊平行四边形1.如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式;(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、 C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.2.如图,已知在平面直角坐标系xOy 中,O 是坐标原点,抛物线y =﹣x 2+bx +c (c >0)的顶点为D ,与y 轴的交点为C ,过点C 作CA ∥x 轴交抛物线于点A ,在AC 延长线上取点B ,使BC =AC ,连接OA ,OB ,BD 和AD .(1)若点A 的坐标是(﹣4,4)①求b ,c 的值;②试判断四边形AOBD 的形状,并说明理由;(2)是否存在这样的点A ,使得四边形AOBD 是矩形?若存在,请直接写出一个符合条件的点A 的坐标;若不存在,请说明理由.A3.如图,已知:如图①,直线y=﹣x+与x轴、y轴分别交于A、B两点,两动点D、E 分别从A、B两点同时出发向O点运动(运动到O点停止);对称轴过点A且顶点为M的抛物线y=a(x﹣k)2+h(a<0)始终经过点E,过E作EG∥OA交抛物线于点G,交AB于点F,连结DE、DF、AG、BG.设D、E的运动速度分别是1个单位长度/秒和个单位长度/秒,运动时间为t秒.(1)用含t代数式分别表示BF、EF、AF的长;(2)当t为何值时,四边形ADEF是菱形?判断此时△AFG与△AGB是否相似,并说明理由;(3)当△ADF是直角三角形,且抛物线的顶点M恰好在BG上时,求抛物线的解析式.4、如图,对称轴为直线72x 的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形.求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.5.已知抛物线y=41x 2 + 1(如图所示).(1)填空:抛物线的顶点坐标是(______,______),对称轴是_____;(2)已知y 轴上一点A(0,2),点P 在抛物线上,过点P 作PB ⊥x 轴,垂足为B .若△PAB 是等边三角形,求点P 的坐标;(3)在(2)的条件下,点M 在直线..AP 上.在平面内是否存在点N ,使四边形OAMN 为菱形?若存在,直接写出所有..满足条件的点N 的坐标;若不存在,请说明理由.6.已知,在Rt △OAB 中,∠OAB=90°,∠BOA=30°,AB=2.若以O 为坐标原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,点B 在第一象限内.将Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处.(1)求点C 的坐标;(2)若抛物线2y ax bx(a 0)=+≠经过C 、A 两点,求此抛物线的解析式;(3)若上述抛物线的对称轴与OB 交于点D ,点P 为线段DB 上一动点,过P 作y 轴的平行线,交抛物线于点M ,问:是否存在这样的点P ,使得四边形CDPM 为等腰梯形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣4,0),B(﹣1,0)两点.(1)求抛物线的解析式;(2)在第三象限的抛物线上有一动点D.①如图(1),若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由.②如图(2),直线y=x+3与抛物线交于点Q、C两点,过点D作直线DF⊥x轴于点H,交QC于点F.请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为:2?若存在,请求出点D的坐标;若不存在,请说明理由.1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图像与X轴交于AB 两点.B带你的坐标的的是(3.0)与Y轴交于C(0.-3),点P是直线BC 下方抛物线上的动点.连接PO.PC并将△POC沿y轴对折,的到四边形POP`C,那么是否存在点P,使得四边形POP`C为棱形?若存在,请求此时P 的坐标;2.如图,在平面直角坐标系中,平行四边形ABOC如图放置,将此平行四边形绕点O顺时针旋转90°得到平行四边形A′B′OC′.抛物线y=﹣x2+2x+3经过点A、C、A′三点.(1)求A、A′、C三点的坐标;(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△C′OD的面积;(3)点M是第一象限内抛物线上的一动点,问点M在何处时,△AMA′的面积最大?最大面积是多少?并写出此时M的坐标.3.如图,在矩形OABC 中,OA=5,AB=4,点D 为边AB 上一点,将△BCD 沿直线CD 折叠,使点B 恰好落在OA边上的点E 处,分别以OC,OA 所在的直线为x 轴,y 轴建立平面直角坐标系.(1)求OE 的长;(2)求经过O,D,C 三点的抛物线的解析式;(3)一动点P 从点C 出发,沿CB 以每秒2 个单位长的速度向点B 运动,同时动点Q 从E 点出发,沿EC 以每秒1 个单位长的速度向点C 运动,当点P 到达点B 时,两点同时停止运动.设运动时间为t 秒,当t为何值时,DP=DQ;(4) 若点N 在(2)中的抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E 为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.4.如图,抛物线y=-x2+2x+3,与x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线l过C交x轴于E(4,0)(1)写出D的坐标和直线l的解析式;(2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻折,M的对应点为M′,在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标,若不存在,请说明理由.5.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥l于F.(1)求抛物线解析式;(2)如图2,当点F恰好在抛物线上时,求线段OD的长;(3)在(2)的条件下:①连接DF,求tan∠FDE的值;②试探究在直线l上,是否存在点G,使∠EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由.。

2020年中考数学必考经典题讲练案-二次函数与特殊四边形存在型问题(解析版)

2020年中考数学必考经典题讲练案-二次函数与特殊四边形存在型问题(解析版)

2020年中考数学必考经典题讲练案【苏科版】 专题21二次函数与特殊四边形存在型问题【方法指导】【题型剖析】【类型1】二次函数与平行四边形存在型问题已知抛物线28(0)y ax bx a =++≠经过点(3,7)A --,(3,5)B ,顶点为点E ,抛物线的对称轴与直线AB 交于点C .(1)求直线AB 的解析式和抛物线的解析式.(2)在抛物线上A ,E 两点之间的部分(不包含A ,E 两点),是否存在点D ,使得2DAC DCE S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点A ,E ,P ,Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.【分析】(1)把点(3,7)A --,(3,5)B 的坐标分别代入一次函数表达式和二次函数表达式,即可得出直线AB 的解析式和抛物线的解析式;(2)设点2(,28)D m m m -++,分别用m 的代数式表示出DAC S ∆和DCE S ∆,再根据2DAC DCE S S ∆∆=列出方程,解方程即可得出点D 的坐标;(3)设点(,)P x y ,分三种情形讨论:①当AE 为对角线时;②当AP 为对角线时;③当PE 为对角线时,根据中点坐标公式求得点Q 的坐标,再根据点Q 在x 轴上,即可得出点P 的坐标. 【解答】解:(1)设直线AB 的解析式为y kx m =+, 把点(3,7)A --,(3,5)B 代入,得7353k m k m -=-+⎧⎨=+⎩,解得:21k m =⎧⎨=-⎩,∴直线AB 的解析式为21y x =-,把点(3,7)A --,(3,5)B 代入抛物线28(0)y ax bx a =++≠, 得79385938a b a b -=-+⎧⎨=++⎩,解得12a b =-⎧⎨=⎩, ∴抛物线的解析式为228y x x =-++.(2)2228(1)9y x x x =-++=--+,∴顶点(1,9)E ,设点2(,28)D m m m -++,(1,1)C ,过点D 作y 轴的平行线交直线AB 于点M ,则(,21)M m m -, 221(2821)42182DAC S m m m m ∆=⨯-++-+⨯=-+,18(1)442DCE S m m ∆=⨯⨯-=-,2DAC DCE S S ∆∆=22182(44)m m ∴-+=-, 解得1m =-或5m =(舍去),∴存在点(1,5)D -,使得2DAC DCE S S ∆∆=(3)(3,7)A --,(1,9)E , 设点(,)P x y ,当以点A ,E ,P ,Q 为顶点的四边形是平行四边形时,分三种情况讨论: ①当AE 为对角线时,根据中点坐标公式可得点Q 坐标为(2,2)x y ---, 点Q 在x 轴上, 2y ∴=,当2y =时,2282x x -++=,解得1x =+1x =∴点P 坐标为(1+2)或(1-,2),②当AP 为对角线时,根据中点坐标公式可得点Q 坐标为(4,16)x y --, 点Q 在x 轴上, 16y ∴=,当16y =时,22816x x -++=, 方程无解,舍去③当PE 为对角线时,根据中点坐标公式可得点Q 坐标为(4,16)x y ++, 点Q 在x 轴上, 16y ∴=-,当16y =-时,22816x x -++=-,解得6x =或4x =-∴点P 坐标为(6,16)-或(4,16)--,综上所述,点P 的坐标为(17+,2)或(17-,2)或(6,16)-或(4,16)--.【点评】此题考查了用待定系数法求二次函数和一次函数表达式,还考查了坐标系中三角形的面积计算,平行四边形性质以及分类讨论思想.合理的分类讨论来表示出点D 的坐标是解决(3)问的关键. 【变式训练】如图,抛物线25(0)y ax bx a =+-≠经过x 轴上的点(1,0)A 和点B 及y 轴上的点C ,经过B 、C 两点的直线为y x n =+. ①求抛物线的解析式.②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE ∆的面积最大并求出最大值.③过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B 、C 重合)作直线AM 的平行线交直线BC 于点Q .若点A 、M 、N 、Q 为顶点的四边形是平行四边形,求点N 的横坐标.【分析】①点B 、C 在直线为y x n =+上,则(,0)B n -、(0,)C n ,点(1,0)A 在抛物线上,所以250505a b an bn n +-=⎧⎪--=⎨⎪=-⎩,解得1a =-,6b =,因此抛物线解析式:265y x x =-+-; ②先求出点P 到BC 的高h为sin 45)BP t ︒=-,于是2112)22)2222PBE S BE h t t t ∆==⨯-⨯=-+2t =时,PBE ∆的面积最大,最大值为 ③由①知,BC 所在直线为:5y x =-,所以点A 到直线BC 的距离d =过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设2(,65)N m m m -+-,则(,0)H m 、(,5)P m m -,易证PQN ∆为等腰直角三角形,即NQ PQ ==,4PN =,Ⅰ.4NH HP +=,所以265(5)4m m m -+---=解得11m =(舍去),24m=,Ⅱ.14N H HP +=,25(65)4m m m ---+-=解得1m =2m =,Ⅲ.24N H HP -=,2(65)[(5)]4mm m --+----=,解得1m =,2m . 【解答】解:①点B 、C 在直线为y x n =+上, (,0)B n ∴-、(0,)C n ,点(1,0)A 在抛物线上, ∴250505a b an bn n +-=⎧⎪--=⎨⎪=-⎩, 1a ∴=-,6b =,∴抛物线解析式:265y x x =-+-;②由题意,得, 4PB t=-,2BE t =,由①知,45OBC ∠=︒,∴点P 到BC 的高h为sin 45)2BP t ︒=-, 2112)22)22PBE S BEh t t t ∆∴==⨯-⨯=-+, 当2t =时,PBE ∆的面积最大,最大值为 ③由①知,BC 所在直线为:5y x =-,∴点A 到直线BC 的距离d =过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H , 设2(,65)N m m m -+-,则(,0)H m 、(,5)P m m -,易证PQN ∆为等腰直角三角形,即NQ PQ == 4PN ∴=,Ⅰ.4NH HP +=,265(5)4m m m ∴-+---= 解得11m =,24m =,点A 、M 、N 、Q 为顶点的四边形是平行四边形, 4m ∴=;Ⅱ.14N H HP +=,25(65)4m m m ∴---+-=解得1m =2m =, 点A 、M 、1N 、1Q 为顶点的四边形是平行四边形, 5m >,m ∴=, Ⅲ.24N H HP -=,2(65)[(5)]4m m m ∴--+----=,解得1m =2m =, 点A 、M 、2N 、2Q 为顶点的四边形是平行四边形, 0m <,52m ∴=,综上所述,若点A 、M 、N 、Q 为顶点的四边形是平行四边形,点N 的横坐标为:4.【点评】本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键. 【类型2】二次函数与矩形存在型问题3.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B -,且OB OC =. (1)求抛物线的解析式;(2)点P 在抛物线上,且POB ACB ∠=∠,求点P 的坐标;(3)抛物线上两点M ,N ,点M 的横坐标为m ,点N 的横坐标为4m +.点D 是抛物线上M ,N 之间的动点,过点D 作y 轴的平行线交MN 于点E . ①求DE 的最大值;②点D 关于点E 的对称点为F ,当m 为何值时,四边形MDNF 为矩形.【分析】(1)已知抛物线与x 轴两交点坐标,可设交点式(1)(3)y a x x =++;由3OC OB ==得(0,3)C -,代入交点式即求得1a =-.(2)由POB ACB ∠=∠联想到构造相似三角形,因为求点P 坐标一般会作x 轴垂线PH 得Rt POH ∆,故可过点A 在BC 边上作垂线AG ,构造ACG POH ∆∆∽.利用点A 、B 、C 坐标求得AG 、CG 的长,由相似三角形对应边成比例推出12PH AG OH CG ==.设点P 横坐标为p ,则OH 与PH 都能用p 表示,但需按P 横纵坐标的正负性进行分类讨论.得到用p 表示OH 与PH 并代入2OH PH =计算即求得p 的值,进而求点P 坐标.(3)①用m 表示M 、N 横纵坐标,把m 当常数求直线MN 的解析式.设D 横坐标为d ,把x d =代入直线MN 解析式得点E 纵坐标,D 与E 纵坐标相减即得到用m 、d 表示的DE 的长,把m 当常数,对未知数d 进行配方,即得到当2d m =+时,DE 取得最大值.②由矩形MDNF 得MN DF =且MN 与DF 互相平分,所以E 为MN 中点,得到点D 、E 横坐标为2m +.由①得2d m =+时,4DE =,所以8MN =.用两点间距离公式用m 表示MN 的长,即列得方程求m 的值. 【解答】解:(1)抛物线与x 轴交于点(1,0)A -,点(3,0)B -∴设交点式(1)(3)y a x x =++3OC OB ==,点C 在y 轴负半轴(0,3)C ∴-把点C 代入抛物线解析式得:33a =- 1a ∴=-∴抛物线解析式为2(1)(3)43y x x x x =-++=---(2)如图1,过点A 作AG BC ⊥于点G ,过点P 作PH x ⊥轴于点H 90AGB AGC PHO ∴∠=∠=∠=︒ ACB POB ∠=∠ ACG POH ∴∆∆∽∴AG CGPH OH =∴AG PHCG OH=3OB OC ==,90BOC ∠=︒45ABC ∴∠=︒,BC ==ABG ∴∆是等腰直角三角形2AG BG AB ∴==CG BC BG ∴=-=∴12PH AG OH CG == 2OH PH ∴=设2(,43)P p p p ---①当3p <-或10p -<<时,点P 在点B 左侧或在AC 之间,横纵坐标均为负数 OH p ∴=-,22(43)43PH p p p p =----=++22(43)p p p ∴-=++解得:1p =2p =P ∴或 ②当31p -<<-或0p >时,点P 在AB 之间或在点C 右侧,横纵坐标异号22(43)p p p ∴=++ 解得:12p =-,232p =-(2,1)P ∴-或3(2-,3)4综上所述,点P 的坐标为、、(2,1)-或3(2-,3)4.(3)①如图2,4x m =+时,22(4)4(4)31235y m m m m =-+-+-=---2(,43)M m m m ∴---,2(4,1235)N m m m +--- 设直线MN 解析式为y kx n =+∴2243(4)1235km n m m k m n m m ⎧+=---⎨++=---⎩解得:22843k m n m m =--⎧⎨=+-⎩ ∴直线2:(28)43MN y m x m m =--++-设(D d ,243)(4)d d m d m ---<<+ //DE y 轴E D x x d ∴==,(E d ,2(28)43)m d m m --++-2222243[(28)43](24)4[(2)]4DE d d m d m m d m d m m d m ∴=------++-=-++--=--++∴当2d m =+时,DE 的最大值为4.②如图3,D 、F 关于点E 对称DE EF ∴=四边形MDNF 是矩形MN DF ∴=,且MN 与DF 互相平分12DE MN ∴=,E 为MN 中点422D E m m x x m ++∴===+ 由①得当2d m =+时,4DE = 28MN DE ∴==22222(4)[1235(43)]8m m m m m m ∴+-+-------= 解得:134m =--,234m =-+ m ∴的值为34--或34-+时,四边形MDNF 为矩形.【点评】本题考查了求二次函数解析式,求二次函数最大值,等腰三角形的性质,相似三角形的判定和性质,一元二次方程的解法,二元一次方程组的解法,矩形的性质.第(3)题没有图要先根据题意画草图帮助思考,设计较多字母运算时抓住其中的常量和变量来分析和计算.【变式训练】如图,抛物线223y x x =--+的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求点A 、B 、C 的坐标;(2)点(,0)M m 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作//PQ AB 交抛物线于点Q ,过点Q 作QN x ⊥轴于点N ,可得矩形PQNM .如图,点P 在点Q 左边,试用含m 的式子表示矩形PQNM 的周长;(3)当矩形PQNM 的周长最大时,m 的值是多少?并求出此时的AEM ∆的面积;(4)在(3)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若22FG DQ =,求点F 的坐标.【分析】(1)利用函数图象与坐标轴的交点的求法,求出点A ,B ,C 的坐标; (2)先确定出抛物线对称轴,用m 表示出PM ,MN 即可;(3)由(2)得到的结论判断出矩形周长最大时,确定出m ,进而求出直线AC 解析式,即可;(4)在(3)的基础上,判断出N 应与原点重合,Q 点与C 点重合,求出2DQ DC ==2(3)(23)4n n n +---+=即可. 【解答】解:(1)由抛物线223y x x =--+可知,(0,3)C . 令0y =,则2023x x =--+, 解得,3x =-或x l =, (3,0)A ∴-,(1,0)B .(2)由抛物线223y x x =--+可知,对称轴为1x =-.(,0)M m ,223PM m m ∴=--+,(1)222MN m m =--⨯=--,∴矩形PMNQ 的周长222()(2322)2282PM MN m m m m m =+=--+--⨯=--+.(3)222822(2)10m m m --+=-++,∴矩形的周长最大时,2m =-.(3,0)A -,(0,3)C ,设直线AC 的解析式y kx b =+, ∴303k b b -+=⎧⎨=⎩解得k l =,3b =,∴解析式3y x =+,令2x =-,则1y =, (2,1)E ∴-,1EM ∴=,1AM =,1122S AM EM ∴=⨯=. (4)(2,0)M -,抛物线的对称轴为x l =-, N ∴应与原点重合,Q 点与C 点重合,DQ DC ∴=,把1x =-代入223y x x =--+,解得4y =, (1,4)D ∴-,DQ DC ∴== 2FG =,4FG ∴=.设2(,23)F n n n --+,则(,3)G n n +, 点G 在点F 的上方且4FG =,2(3)(23)4n n n ∴+---+=.解得4n =-或1n =, (4,5)F ∴--或(1,0).【类型3】二次函数与菱形存在型问题【例3】如图,在平面直角坐标系中,Rt ABC ∆的边BC 在x 轴上,90ABC ∠=︒,以A 为顶点的抛物线2y x bx c =-++经过点(3,0)C ,交y 轴于点(0,3)E ,动点P 在对称轴上. (1)求抛物线解析式;(2)若点P 从A 点出发,沿A B →方向以1个单位/秒的速度匀速运动到点B 停止,设运动时间为t 秒,过点P 作PD AB ⊥交AC 于点D ,过点D 平行于y 轴的直线l 交抛物线于点Q ,连接AQ ,CQ ,当t 为何值时,ACQ ∆的面积最大?最大值是多少?(3)若点M 是平面内的任意一点,在x 轴上方是否存在点P ,使得以点P ,M ,E ,C 为顶点的四边形是菱形,若存在,请直接写出符合条件的M 点坐标;若不存在,请说明理由.【分析】(1)将点C 、E 的坐标代入二次函数表达式,即可求解; (2)12ACQ S DQ BC ∆=⨯⨯,即可求解;(3)分EC 是菱形一条边、EC 是菱形一对角线两种情况,分别求解即可.【解答】解:(1)将点C 、E 的坐标代入二次函数表达式得:9303b c c -++=⎧⎨=⎩,解得:23b c =⎧⎨=⎩,故抛物线的解析式为:223y x x =-++, 则点(1,4)A ;(2)将点A 、C 的坐标代入一次函数表达式并解得: 直线AC 的表达式为:26y x =-+,点(1,4)P t -,则点2(2t D +,4)t -,设点2(2t Q +,24)4t -,21124ACQ S DQ BC t t ∆=⨯⨯=-+,104-<,故ACQ S ∆有最大值,当2t =时,其最大值为1; (3)设点(1,)P m ,点(,)M x y , ①当EC 是菱形一条边时, 当点M 在点P 右方时,点E 向右平移3个单位、向下平移3个单位得到C , 则点P 向右平移3个单位、向下平移3个单位得到M , 则13x +=,3m y -=,而M P EP =得:2221(3)(1)()m x y m +-=-+-,解得:3y m =-=,故点M ; 当点M 在点P 左方时,同理可得:点(2,3M -+; ②当EC 是菱形一对角线时, 则EC 中点即为PM 中点, 则13x +=,3y m +=,而PE PC =,即221(3)4m m +-=+, 解得:1m =,故2x =,3312y m =-=-=, 故点(2,2)M ;综上,点M 或(2,3-+或(2,2)M .【点评】本题考查的是二次函数综合运用,涉及到菱形的性质、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏. 【变式训练】综合与探究如图,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于C 点,2OA =,6OC =,连接AC 和BC . (1)求抛物线的解析式;(2)点D 在抛物线的对称轴上,当ACD ∆的周长最小时,点D 的坐标为 1(2,5)- .(3)点E 是第四象限内抛物线上的动点,连接CE 和BE .求BCE ∆面积的最大值及此时点E 的坐标; (4)若点M 是y 轴上的动点,在坐标平面内是否存在点N ,使以点A 、C 、M 、N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.【分析】(1)由2OA =,6OC =得到(2,0)A -,(0,6)C -,用待定系数法即求得抛物线解析式.(2)由点D 在抛物线对称轴上运动且A 、B 关于对称轴对称可得,AD BD =,所以当点C 、D 、B 在同一直线上时,ACD ∆周长最小.求直线BC 解析式,把对称轴的横坐标代入即求得点D 纵坐标.(3)过点E 作EG x ⊥轴于点G ,交直线BC 与点F ,设点E 横坐标为t ,则能用t 表示EF 的长.BCE ∆面积拆分为BEF ∆与CEF ∆的和,以EF 为公共底计算可得12BCE S EF OB ∆=,把含t 的式子代入计算即得到BCE S ∆关于t 的二次函数,配方即求得最大值和t 的值,进而求得点E 坐标.(4)以AC 为菱形的边和菱形的对角线进行分类画图,根据菱形邻边相等、对边平行的性质确定点N 在坐标.【解答】解:(1)2OA =,6OC = (2,0)A ∴-,(0,6)C -抛物线2y x bx c =++过点A 、C ∴420006b c c -+=⎧⎨++=-⎩ 解得:16b c =-⎧⎨=-⎩∴抛物线解析式为26y x x =--(2)当0y =时,260x x --=,解得:12x =-,23x = (3,0)B ∴,抛物线对称轴为直线23122x -+==点D 在直线12x =上,点A 、B 关于直线12x =对称 12D x ∴=,AD BD = ∴当点B 、D 、C 在同一直线上时,ACD C AC AD CD AC BD CD AC BC ∆=++=++=+最小设直线BC 解析式为6y kx =- 360k ∴-=,解得:2k =∴直线:26BC y x =-12652D y ∴=⨯-=-1(2D ∴,5)-故答案为:1(2,5)-(3)过点E 作EG x ⊥轴于点G ,交直线BC 与点F 设(E t ,26)(03)t t t --<<,则(,26)F t t -2226(6)3EF t t t t t ∴=----=-+22111113327()3(3)()22222228BCE BEF CEF S S S EF BG EF OG EF BG OG EF OB t t t ∆∆∆∴=+=+=+==⨯-+=--+∴当32t =时,BCE ∆面积最大 23321()6224E y ∴=--=-∴点E 坐标为3(2,21)4-时,BCE ∆面积最大,最大值为278. (4)存在点N ,使以点A 、C 、M 、N 为顶点的四边形是菱形. (2,0)A -,(0,6)C -AC ∴=①若AC 为菱形的边长,如图3,则//MN AC 且,MN AC ==1(2N ∴-,,2(2,N --,3(2,0)N②若AC 为菱形的对角线,如图4,则44//AN CM ,44AN CN = 设4(2,)N n -n ∴-解得:103n =- 410(2,)3N ∴--综上所述,点N 坐标为(2-,210),(2,210)--,(2,0),10(2,)3--.【点评】本题考查了二次函数的图象与性质,轴对称求最短路径,一次函数的图象与性质,一次方程(组)的解法,菱形的性质,勾股定理.第(4)题对菱形顶点存在性的判断,以确定的边AC 进行分类,再画图讨论计算.【类型4】二次函数与正方形存在型问题【例4】如图,已知抛物线2y x bx c =++的图象经过点(1,0)A ,(3,0)B -,与y 轴交于点C ,抛物线的顶点为D ,对称轴与x 轴相交于点E ,连接BD . (1)求抛物线的解析式.(2)若点P 在直线BD 上,当PE PC =时,求点P 的坐标.(3)在(2)的条件下,作PF x ⊥轴于F ,点M 为x 轴上一动点,N 为直线PF 上一动点,G 为抛物线上一动点,当以点F ,N ,G ,M 四点为顶点的四边形为正方形时,求点M 的坐标.【分析】(1)利用待定系数法即可得出结论;(2)先确定出点E 的坐标,利用待定系数法得出直线BD 的解析式,利用PC PE =建立方程即可求出a 即可得出结论;(3)设出点M 的坐标,进而得出点G ,N 的坐标,利用FM MG =建立方程求解即可得出结论. 【解答】解:(1)抛物线2y x bx c =++的图象经过点(1,0)A ,(3,0)B -, ∴10930b c b c ++=⎧⎨-+=⎩,∴23b c =⎧⎨=-⎩,∴抛物线的解析式为223y x x =+-;(2)由(1)知,抛物线的解析式为223y x x =+-; (0,3)C ∴-,抛物线的顶点(1,4)D --, (1,0)E ∴-,设直线BD 的解析式为y mx n =+, ∴304m n m n -+=⎧⎨-+=-⎩,∴26m n =-⎧⎨=-⎩, ∴直线BD 的解析式为26y x =--,设点(,26)P a a --, (0,3)C -,(1,0)E -,根据勾股定理得,222(1)(26)PE a a =++--,222(263)PC a a =+--+, PC PE =,2222(1)(26)(263)a a a a ∴++--=+--+, 2a ∴=-,2(2)62y ∴=-⨯--=-, (2,2)P ∴--,(3)如图,作PF x ⊥轴于F , (2,0)F ∴-,设(,0)M d ,2(,23)G d d d ∴+-,2(2,23)N d d -+-,以点F ,N ,G ,M 四点为顶点的四边形为正方形,必有FM MG =,2|2||23|d d d ∴+=+-, 121d -±∴=或313d -±=, ∴点M 的坐标为121(2-+,0),121(2--,0),313(-+,0),313(--,0).【点评】此题是二次函数综合题,主要考查了待定系数法,抛物线的顶点坐标,勾股定理,正方形的性质,解(2)的关键是用PC PE =建立方程求解,解(3)的关键是解绝对值方程,是一道中等难度的中考常考题.【变式训练】已知抛物线2(1)3(0)y a x a =-+≠与y 轴交于点(0,2)A ,顶点为B ,且对称轴1l 与x 轴交于点M (1)求a 的值,并写出点B 的坐标;(2)有一个动点P 从原点O 出发,沿x 轴正方向以每秒2个单位的速度运动,设运动时间为t 秒,求t 为何值时PA PB +最短;(3)将此抛物线向右平移所得新的抛物线与原抛物线交于点C ,且新抛物线的对称轴2l 与x 轴交于点N ,过点C 作//DE x 轴,分别交1l ,2l 于点D 、E ,若四边形MDEN 是正方形,求平移后抛物线的解析式.【分析】(1)利用待定系数法即可解决问题;(2)如图1中,作点A 关于x 轴的对称点A ',连接BA '交x 轴于P ,点P 即为所求.(3)如图2中,设抛物线向右平移后的解析式为2()3y x m =--+.想办法用m 表示点C 的坐标,分两种情形,利用待定系数法即可解决问题;【解答】解:(1)把(0,2)A 代入抛物线的解析式可得,23a =+, 1a ∴=-,∴抛物线的解析式为2(1)3y x =--+, ∴抛物线的顶点B 坐标为(1,3).(2)如图1中,作点A 关于x 轴的对称点A ',连接BA '交x 轴于P ,点P 即为所求. (0,2)A '-,(1,3)B ,∴直线A B '的解析式为52y x =-,2(5P ∴,0),21525t ∴==时,PA PB +最短(3)如图2中,设抛物线向右平移后的解析式为2()3y x m =--+.由22(1)3()3y x y x m ⎧=--+⎨=--+⎩,解得12m x +=, ∴点C 的横坐标12m +, 1MN m =-,四边形MDEN 是正方形,1(2m C +∴,1)m -, 把点C 的坐标代入2(1)3y x =--+, 得到2(1)134m m --=-+, 解得3m =或5-(舍弃),∴移后抛物线的解析式为2(3)3y x =--+.当点C 在x 轴下方时,1(2m C +,1)m -, 把点C 的坐标代入2(1)3y x =--+, 得到2(1)134m m --=-+, 解得7m =或1-(舍弃),∴移后抛物线的解析式为2(7)3y x =--+.【达标检测】1.如图,抛物线y =a (x +1)2+4(a ≠0)与x 轴交于A ,C 两点,与直线y =x ﹣1交于A ,B 两点,直线AB 与抛物线的对称轴交于点E .(1)求抛物线的解析式;(2)若点P在直线AB上方的抛物线上运动.①点P在什么位置时,△ABP的面积最大,求出此时点P的坐标;②当点P与点C重合时,连接PE,将△PEB补成矩形,使△PEB上的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.【分析】(1)先确定出点A的坐标,进而用待定系数法求出抛物线解析式;(2)先确定出点B的坐标,①设点P(m,﹣m2﹣2m+3),得出PG=﹣m2﹣3m+4,利用三角形的面积公式建立函数关系式即可得出结论;②先确定出点E的坐标,进而判断出△BPE是直角三角形,即可作出图形,利用两直线的交点坐标的求法即可得出结论.【解答】解:(1)∵点A是直线y=x﹣1与x轴的交点,∴A(1,0),∵过点A(1,0)在y=a(x+1)2+4,∴a(1+1)2+4=0,∴a=﹣1,∴抛物线的解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3(2)由题意知,,∴(是点A的纵横坐标)或,∴B(﹣4,﹣5),①如图,设点P(m,﹣m2﹣2m+3),过点P作PG∥y轴交AB于G,∴G(m,m﹣1),∴PG=﹣m2﹣2m+3﹣(m﹣1)=﹣m2﹣3m+4,∴S△ABP=S△PBG+S△P AG PG×(x A﹣x B|(﹣m2﹣3m+4)(1+4)(m)2,当m时,S△ABP最大,为,此时点P(,);②方法1、由(1)知,抛物线的解析式为y=﹣x2﹣2x+3,∴C(﹣3,0)抛物线的对称轴为直线x=﹣1,∵点E在直线y=x﹣1上,∴E(﹣1,﹣2),∵点P与点C重合,∴P(﹣3,0),∵B(﹣4,﹣5),∴PE2=8,BE2=18,BP2=26,∴PE2+BE2=BP2,∴△BPE是直角三角形,且∠BEP=90°,∵C(﹣3,0),E(﹣1,﹣2),∴直线CE的解析式为y=﹣x﹣3,∵△PEB上的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,∴Ⅰ、作出如图1所示的矩形BECD(以BE为矩形的一边),∴AB∥CD,BD∥CE,∵B(﹣4,﹣5),∴直线BD的解析式为y=﹣x﹣9①,∵直线AB的解析式为y=x﹣1,且AB∥CD,∴直线CD的解析式为y=x+3②,联立①②解得,,∴D(﹣6,﹣3),即:矩形未知顶点的坐标(﹣6,﹣3).Ⅱ、以BP为矩形的一边,如图1所示的矩形BD'F'P,∵P(﹣3,0),B(﹣4,﹣5),∴直线BP的解析式为y=5x+15,∵D'F'∥BP,E(﹣1,﹣2),∴D'F'的解析式为y=5x+3③,∵PF'⊥D'F',且P(﹣3,0),∴PF'的解析式为y x④,联立③④解得,,∴F'(,),同理:D'(,);方法2、Ⅰ、由(1)知,抛物线的解析式为y=﹣x2﹣2x+3,∴C(﹣3,0)抛物线的对称轴为直线x=﹣1,∵点E在直线y=x﹣1上,∴E(﹣1,﹣2),∵四边形BDCE是矩形,∵C(﹣3,0),∴点C看作点E平移得到,向左平移2个单位,再向上平移2个单位,∴点D也是向左平移2个单位,再向上平移2个单位,且B(﹣4,﹣5),∴D(﹣6,﹣3),Ⅱ、以BP为矩形的一边,如图1所示的矩形BD'F'P,∵P(﹣3,0),B(﹣4,﹣5),∴直线BP的解析式为y=5x+15,∵D'F'∥BP,E(﹣1,﹣2),∴D'F'的解析式为y=5x+3③,∵PF'⊥D'F',且P(﹣3,0),∴PF'的解析式为y x④,联立③④解得,,∴F'(,),同理:D'(,);2.如图,抛物线y=﹣x2+bx+c交x轴于点A,B,交y轴于点C.点B的坐标为(3,0)点C的坐标为(0,3),点C与点D关于抛物线的对称轴对称.(1)求抛物线的解析式;(2)若点P为抛物线对称轴上一点,连接BD,以PD,PB为边作平行四边形PDNB,是否存在这样的点P,使得▱PDNB是矩形?若存在,请求出tan∠BDN的值;若不存在,请说明理由;(3)点Q在y轴右侧抛物线上运动,当△ACQ的面积与△ABQ的面积相等时,请直接写出点Q的坐标.【分析】(1)把B点坐标、点C点坐标为代入抛物线y=﹣x2+bx+c方程,即可求解;(2)存在.设点P(1,m),由k1k2=﹣1,即可求解;(3)设点Q坐标为(t,﹣t2+2t+3),则:AQ所在的直线方程为:y=(3﹣t)x+(3﹣t),△ACQ的面积与△ABQ的面积相等时,即:S四边形ACQB=2S△ABQ,即可求解.【解答】解:(1)把B点坐标、点C点坐标为代入抛物线y=﹣x2+bx+c方程,解得,抛物线方程为:y=﹣x2+2x+3;点A坐标为(﹣1,0),点D坐标为(2,3),函数的对称轴为x=1;(2)存在.设点P(1,m),设函数对称轴交x轴于点N,过点D作DM⊥PN于点M,则∠MDP=∠BPN,则tan∠MDP=tan∠BPN,即:,解得:m=1或m=2;则点P(1,1)或(1,2),则:PD或,则PB=2或,tan∠BDN1或;(3)设点Q坐标为(t,﹣t2+2t+3),则:AQ所在的直线方程为:y=(3﹣t)x+(3﹣t),如图所示,连接CA、QB,过点Q作x轴的垂线QN交x轴于N点,当△ACQ的面积与△ABQ的面积相等时,即:S四边形ACQB=2S△ABQ,S四边形ACQB=S梯形CONQ+S△AOC+S△BQN(﹣t2+2t+3+3)×t1×3(3﹣t)(﹣t2+2t+3),(﹣t2+3t+4),S△ABQ(3+1)(﹣t2+2t+3),∵S四边形ACQB=2S△ABQ,化简得:5t2﹣7t﹣12=0,解得:t=﹣1或(舍去负值),当Q在x轴下方时,由△ACQ的面积与△ABQ的面积相等,可得:点Q坐标为(4,﹣5),则点Q坐标为(,)或(4,﹣5).3.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P 是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.【分析】(1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得P 点坐标;(3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【解答】解:(1)将点B和点C的坐标代入函数解析式,得,解得,二次函数的解析式为y=﹣x2+2x+3;(2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,如图1,连接PP′,则PE⊥CO,垂足为E,∵C(0,3),∴E(0,),∴点P的纵坐标,当y时,即﹣x2+2x+3,解得x1,x2(不合题意,舍),∴点P的坐标为(,);(3)如图2,P在抛物线上,设P(m,﹣m2+2m+3),设直线BC的解析式为y=kx+b,将点B和点C的坐标代入函数解析式,得,解得.直线BC的解析为y=﹣x+3,设点Q的坐标为(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1,AB=3﹣(﹣1)=4,S四边形ABPC=S△ABC+S△PCQ+S△PBQAB•OC PQ•OF PQ•FB4×3(﹣m2+3m)×3(m)2,当m时,四边形ABPC的面积最大.当m时,﹣m2+2m+3,即P点的坐标为(,).当点P的坐标为(,)时,四边形ACPB的最大面积值为.4.如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C.(1)求抛物线的解析式;(2)点P从点A出发,以每秒个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.①当t为何值时,矩形PQNM的面积最小?并求出最小面积;②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.【分析】(1)利用待定系数法即可;(2)①分别用t表示PE、PQ、EQ,用△PQE∽△QNC表示NC及QN,列出矩形PQNM面积与t的函数关系式问题可解;②由①利用线段中点坐标分别等于两个端点横纵坐标平均分的数量关系,表示点M坐标,分别讨论M、N、Q在抛物线上时的情况,并分别求出t值.【解答】解:(1)由已知,B点横坐标为3∵A、B在y=x+1上∴A(﹣1,0),B(3,4)把A(﹣1,0),B(3,4)代入y=﹣x2+bx+c得解得∴抛物线解析式为y=﹣x2+3x+4;(2)①过点P作PE⊥x轴于点E.∵直线y=x+1与x轴夹角为45°,P点速度为每秒个单位长度∴t秒时点E坐标为(﹣1+t,0),Q点坐标为(3﹣2t,0)∴EQ=4﹣3t,PE=t∵∠PQE+∠NQC=90°∠PQE+∠EPQ=90°∴∠EPQ=∠NQC∴△PQE∽△QNC∴∴矩形PQNM的面积S=PQ•NQ=2PQ2∵PQ2=PE2+EQ2∴S=2()2=20t2﹣48t+32当t时,S最小=20×()2﹣4832②由①点Q坐标为(3﹣2t,0),P坐标为(﹣1+t,t)∴△PQE∽△QNC,可得NC=2EQ=8﹣6t∴N点坐标为(3,8﹣6t)由矩形对角线互相平分∴点M坐标为(3t﹣1,8﹣5t)当M在抛物线上时8﹣5t=﹣(3t﹣1)2+3(3t﹣1)+4解得t或当点Q到A时,Q在抛物线上,此时t=2当N在抛物线上时,8﹣6t=4∴t综上所述当t或或或2时,矩形PQNM的顶点落在抛物线上.5.如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A(0,﹣3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△P AB面积最大时,求点P的坐标,并求△P AB面积的最大值.【分析】(1)将A(0,﹣3)、B(3,0)两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C点坐标和E点坐标,则CE=2,分两种情况讨论:①若点M在x轴下方,四边形CEMN 为平行四边形,则CE=MN,②若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M (a,a﹣3),则N(a,a2﹣2a﹣3),可分别得到方程求出点M的坐标;(3)如图,作PG∥y轴交直线AB于点G,设P(m,m2﹣2m﹣3),则G(m,m﹣3),可由,得到m的表达式,利用二次函数求最值问题配方即可.【解答】解:(1)∵抛物线y=ax2﹣2x+c经过A(0,﹣3)、B(3,0)两点,∴,∴,∴抛物线的解析式为y=x2﹣2x﹣3,∵直线y=kx+b经过A(0,﹣3)、B(3,0)两点,∴,解得:,∴直线AB的解析式为y=x﹣3,(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点C的坐标为(1,﹣4),∵CE∥y轴,∴E(1,﹣2),∴CE=2,①如图,若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a﹣3﹣(a2﹣2a﹣3)=﹣a2+3a,∴﹣a2+3a=2,解得:a=2,a=1(舍去),∴M(2,﹣1),②如图,若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a2﹣2a﹣3﹣(a﹣3)=a2﹣3a,∴a2﹣3a=2,解得:a,a(舍去),∴M(,),综合可得M点的坐标为(2,﹣1)或().(3)如图,作PG∥y轴交直线AB于点G,设P(m,m2﹣2m﹣3),则G(m,m﹣3),∴PG=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S△P AB=S△PGA+S△PGB,∴当m时,△P AB面积的最大值是,此时P点坐标为().6.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A(﹣1,0),D(5,﹣6),P点为抛物线y=﹣x2+bx+c上一动点(不与A、D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)将点A、D的坐标分别代入直线表达式、抛物线的表达式,即可求解;(2)PE+PF=2PF=2(﹣x2+3x+4+x+1)=﹣2(x﹣2)2+18,即可求解;(3)分NC是平行四边形的一条边、NC是平行四边形的对角线,两种情况分别求解即可.【解答】解:(1)将点A、D的坐标代入直线表达式得:,解得:,故直线l的表达式为:y=﹣x﹣1,将点A、D的坐标代入抛物线表达式,同理可得抛物线的表达式为:y=﹣x2+3x+4;(2)直线l的表达式为:y=﹣x﹣1,则直线l与x轴的夹角为45°,即:则PE=PF,设点P坐标为(x,﹣x2+3x+4)、则点F(x,﹣x﹣1),PE+PF=2PF=2(﹣x2+3x+4+x+1)=﹣2(x﹣2)2+18,∵﹣2<0,故PE+PF有最大值,当x=2时,其最大值为18;(3)NC=5,①当NC是平行四边形的一条边时,设点P坐标为(x,﹣x2+3x+4)、则点M(x,﹣x﹣1),由题意得:|y M﹣y P|=5,即:|﹣x2+3x+4+x+1|=5,解得:x=2或0或4(舍去0),则点M坐标为(2,﹣3)或(2,﹣3)或(4,﹣5);②当NC是平行四边形的对角线时,则NC的中点坐标为(0,),设点P坐标为(m,﹣m2+3m+4)、则点M(n,﹣n﹣1),N、C,M、P为顶点的四边形为平行四边形,则NC的中点即为PM中点,即:0,,解得:n=0或﹣4(舍去0),故点M(﹣4,3);故点M的坐标为:(2,﹣3)或(2,﹣3)或(4,﹣5)或(﹣4,3).7.如图,在平面直角坐标系xOy中,抛物线L1:y=x2+bx+c过点C(0,﹣3),与抛物线L2:y x2x+2的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线L1、L2上的动点.(1)求抛物线L1对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标;(3)设点R为抛物线L1上另一个动点,且CA平分∠PCR.若OQ∥PR,求出点Q的坐标.【分析】(1)先求出A点的坐标,再用待定系数法求出函数解析式便可;(2)设点P的坐标为(x,x2﹣2x﹣3),分两种情况讨论:AC为平行四边形的一条边,AC为平行四边形的一条对角线,用x表示出Q点坐标,再把Q点坐标代入抛物线L2:y x2x+2中,列出方程求得解便可;(3)当点P在y轴左侧时,抛物线L1不存在点R使得CA平分∠PCR,当点P在y轴右侧时,不妨设点P在CA的上方,点R在CA的下方,过点P、R分别作y轴的垂线,垂足分别为S、T,过点P作PH ⊥TR于点H,设点P坐标为(x1,),点R坐标为(x2,),证明△PSC∽△RTC,由相似比得到x1+x2=4,进而得tan∠PRH的值,过点Q作QK⊥x轴于点K,设点Q坐标为(m,),由tan∠QOK=tan∠PRH,移出m的方程,求得m便可.【解答】解:(1)将x=2代入y x2x+2,得y=﹣3,故点A的坐标为(2,﹣3),将A(2,﹣3),C(0,﹣3)代入y=x2+bx+c,得,解得,∴抛物线L1:y=x2﹣2x﹣3;(2)如图,设点P的坐标为(x,x2﹣2x﹣3),第一种情况:AC为平行四边形的一条边,①当点Q在点P右侧时,则点Q的坐标为(x+2,x2﹣2x﹣3),。

中考专题复习 二次函数和特殊的四边形 (无答案)

中考专题复习 二次函数和特殊的四边形  (无答案)

专题十一二次函数与特殊的四边形知识解读特殊四边形与二次函数的结合,是中考中常见的经典题型,一方面考查特殊四边形的性质与判定,另一方面考查二次函数的相关知识。

这类题目通常和动点问题相联系,综合考查待定系数法、数形结合、分类讨论等重要的数学思想与方法。

主要有以下基本类型:(1)抛物线与一般平行四边形(2)抛物线与矩形、菱形和正方形(3)抛物线和梯形把平行四边形的性质代数化,是解这类题的关键,常常用到如下的技巧:(1)由对边相等建立方程(2)由对边平行联想到直线解析式中一次项系数相等,或用坐标表示点的平移。

(3)由对角线互相平分想到重点坐标公式。

(4)由菱形和正方形的对角线互相垂直想到利用斜率互为负倒数。

培优学案例1:如图,已知抛物线(a≠0)经过点A(3,0),B(-1,0),C(0,-3).(1)求该抛物线的解析式;(2)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.【提示】(1)利用待定系数法可求出抛物线的解析式(2)分情况讨论,利用平移得性质可求出点P的坐标,利用重点坐标公式也可以迅速求出点P的坐标。

【跟踪训练】如图,抛物线交x轴于A,B两点,交y轴于点C. 直线经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;例2:如图,已知直线y=−2x+4分别交x轴、y轴于点A. B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由;【提示】(1)把抛物线的解析式化为顶点式即可,也可直接利用顶点坐标公式计算;(2)先根据四边形MNPD为平行四边形求出P点的坐标,再通过计算比较PN 与MN的大小即可。

2023年九年级数学中考专题:二次函数综合压轴题(特殊四边形问题)(含简单答案)

2023年九年级数学中考专题:二次函数综合压轴题(特殊四边形问题)(含简单答案)
12.如图,抛物线 经过 、 两点,与y轴交于点C,D是抛物线上一动点,设点D的横坐标为 ,连结 .
(1)求抛物线的函数表达式.
(2)当 的面积等于 的面积的 时,求m的值.
(3)当 时,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B、D、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的的坐标;若不存在,请说明理由.
(3)点 的坐标为 , ,
5.(1) ,
(2)2
(3) 或 或
6.(1)
(2)
(3)矩形的周长
7.(1) , ;
(2)存在, 或 ;
(3) 或 或 或 .
8.(1) ,
(2)当 时,
(3)存在, 或 或
9.(1)
(2) 的面积最大值为4
(3)四边形 能构成菱形,点 的坐标为 或
10.(1)
(2)
(3)存在, 或 或
15.如图所示,在矩形 中,把点 沿 对折,使点 落在 上的 点.已知 .
(1)求 点的坐标;
(2)如果一条不与抛物线对称轴平行的直线与抛物线仅一个交点,我们把这条直线称为抛物线的切线,已知抛物线经过 ,且直线 是该抛物线的切线.求抛物线的解析式.并验证点 是否在该抛物线上.
(3)在(2)的条件下,若点 是位于该二次函数对称轴右侧图象上不与顶点重合的任意一点,试比较 与 的大小(不必证明),并写出此时点 的横坐标 的取值范围.
11.(1) ;
(2) ;
(3) 、 、 .
12.(1)
(2)
(3)M的坐标为 或 或 或
13.(1)
(2)13.5
(3)存在, , 或
14.(1)
(2)点 的坐标为 或 或 或
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年中招复习专题---二次函数与特殊四边形
1. (2014•年山东东营)如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y轴翻折,点A 落到点C,过点B的抛物线y=﹣x2+bx+c与直线BC交于点D(3,﹣4).
(1)求直线BD和抛物线的解析式;
(2)在第一象限内的抛物线上,是否存在疑点M,作MN垂直于x轴,垂足为点N,使得以M、O、N 为顶点的三角形与△BOC相似?若存在,求出点M的坐标;若不存在,请说明理由;
(3)在直线BD上方的抛物线上有一动点P,过点P作PH垂直于x轴,交直线BD于点H,当四边形BOHP 是平行四边形时,试求动点P的坐标.
2. (2014•福建泉州)如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.
(1)已知:DE∥AC,DF∥BC.
①判断
四边形DECF一定是什么形状?
②裁剪
当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;
(2)折叠
请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.
3.(2014•浙江湖州)如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD.
(1)若点A的坐标是(﹣4,4)
①求b,c的值;
②试判断四边形AOBD的形状,并说明理由;
(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写
出一个符合条件的点A的坐标;若不存在,请说明理由.
4.(2014•四川广安)如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣4,0),B(﹣1,0)两点.
(1)求抛物线的解析式;
(2)在第三象限的抛物线上有一动点D.
①如图(1),若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由.
②如图(2),直线y=x+3与抛物线交于点Q、C两点,过点D作直线DF⊥x轴于点H,交QC于点F.请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为:2?若存在,请求出点D的坐标;若不存在,请说明理由.
线y=ax2+bx+c经过O、C、D三点.
(1)求抛物线的表达式;
(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD 重叠部分的面积记为S,试求S的最大值.
6.(2014•济宁)如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x 轴,交直线y=2x于点C;
(1)求该抛物线的解析式;
(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;
(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形P ACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
线y=ax2+bx+c经过O、C、D三点.
(1)求抛物线的表达式;
(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD 重叠部分的面积记为S,试求S的最大值.
8.如图1,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC 于点E.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?
(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C、Q、E、H为顶点的四边形为菱形?请直接写出t的值.
分析:(1)①根据有两组对边互相平行的四边形是平行四边形即可求得,②根据△ADF∽△ABC推出对应边的相似比,然后进行转换,即可得出h与x之间的函数关系式,根据平行四边形的面积公式,很容易得出面积S关于h的二次函数表达式,求出顶点坐标,就可得出面积s最大时h的值.
(2)第一步,沿∠ABC的对角线对折,使C与C1重合,得到三角形ABB1,第二步,沿B1对折,使DA1⊥BB1.
解答:解:(1)①∵DE∥AC,DF∥BC,
∴四边形DECF是平行四边形.
②作AG⊥BC,交BC于G,交DF于H,
∵∠ACB=45°,AC=24cm
∴AG==12,
设DF=EC=x,平行四边形的高为h,
则AH=12h,
∵DF∥BC,
∴=,
∵BC=20cm,
即:=
∴x=×20,
∵S=xh=x•×20=20h﹣h2.
∴﹣=﹣=6,
∵AH=12,
∴AF=FC,
∴在AC中点处剪四边形DECF,能使它的面积最大.
(2)第一步,沿∠ABC的对角线对折,使C与C1重合,得到三角形ABB1,第二步,沿B1对折,使DA1⊥BB1.
理由:对角线互相垂直平分的四边形是菱形.。

相关文档
最新文档