(汇总3份试卷)2020年常州市某达标实验中学七年级下学期数学期末复习检测试题

合集下载

《试卷3份集锦》常州市某达标实验中学2019-2020年七年级下学期数学期末质量跟踪监视试题

《试卷3份集锦》常州市某达标实验中学2019-2020年七年级下学期数学期末质量跟踪监视试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°【答案】B【解析】根据平行线的判定定理判定即可.【详解】解:A选项∠1=∠3,内错角相等,两直线平行,故A正确;B选项∠2=∠3,∠2和∠3不是同位角,也不是内错角,不能判断直线l1∥l2,故B错误;C选项∠4=∠5,同位角相等,两直线平行,故C正确;D选项∠2+∠4=180°,同旁内角互补,两直线平行,故D正确.故选:B.【点睛】本题考查了平行线的判定,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,灵活利用平行线的判定定理是解题的关键.2.下列调查中,①调查本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟9号”的成功发射,对其零部件进行检查;④对乘坐某班次客车的乘客进行安检.其中适合采用抽样调查的是()A.①B.②C.③D.④【答案】B【解析】试题分析:①适合普查,故①不适合抽样调查;②调查具有破坏性,故适合抽样调查,故②符合题意;③调查要求准确性,故③不适合抽样调查;④安检适合普查,故④不适合抽样调查.故选B.考点:全面调查与抽样调查.3.有四条线段,长度分别是4,6,8,10,从中任取三条能构成直角三角形的概率是()A.13B.14C.12D.34【答案】B【解析】从四条线段中任意选取三条,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.【详解】从四条线段中任意选取三条,所有的可能有:4,6,8;4,6,10;6,8,10;4,8,10共4种,其中构成直角三角形的有6,8,10共1种,则P (构成直角三角形)=14 故选B .【点睛】从四条线段中任意选取三条,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率. 4.某种服装的进价为200元,出售时标价为300元,由于换季,商店准备打折销售,但要保持利润不低于20%,那么至多打( )A .6折B .7折C .8折D .9折 【答案】C【解析】根据题意列出不等式,求解即可.【详解】设该服装打x 折销售,依题意,得:300×10x ﹣200≥200×20%, 解得:x ≥1.故选:C .【点睛】本题考查了不等式的实际应用,掌握解不等式的方法是解题的关键.5.下面两个统计图反映的是甲、乙两所学校三个年级的学生在各校学生总人数中的占比情况,下列说法错误的是( )A .甲校中七年级学生和八年级学生人数一样多B .乙校中七年级学生人数最多C .乙校中八年级学生比九年级学生人数少D .甲、乙两校的九年级学生人数一样多【答案】D【解析】扇形统计图反映的部分与整体的关系,即各个部分占的比例大小关系,在一个扇形统计图中,可以直观的得出各个部分所占的比例,得出各部分的大小关系,但在不同的几个扇形统计图中就不能直观看出各部分的大小关系,虽然比例较大,代表的数量不一定就多,还与总体有关.【详解】解:甲校中七年级学生占全校的35%,和八年级学生人数也占全校的35%,由于甲校的人数是一定的,因此甲校中七年级学生和八年级学生人数一样多是正确的;乙校中七年级占45%,而其他两个年级分别占25%,30%,因此B 是正确的;乙校中八年级学生占25%,比九年级学生人数占30%由于整体乙校的总人数是一定的,所以C是正确的;两个学校九年级所占的比都是30%,若两个学校的总人数不同.他们也不相等,故D是错误的,故选:D.【点睛】考查对扇形统计图所反映的各个部分所占整体的百分比的理解,扇形统计图只反映部分占总体的百分比,百分比相同,代表的数量不一定相等.6.下列语句,其中正确的有()①点(3,2)与(2,3)是同一个点;②点(0,-2)在x轴上;③点(0,0)是坐标原点;④点(-2,-6)在第三象限内A.0个B.1个C.2个D.3个【答案】C【解析】分析:横坐标相同,纵坐标也相同的点才表示同一个点;在x轴上的点的纵坐标为0;(0,0)表示坐标原点.第三象限的点的符号为负,负,据以上知识点进行判断即可.详解:①点(3,2)与(2,3)不是同一个点,错误;②点(0,−2)在y轴上,错误;③点(0,0)是坐标原点,正确;④点(−2,−6)在第三象限内,正确;正确的有2个,故选C.点睛:本题考查了点的坐标.7.三角形的两边长分别为3和6,则它的第三边长可以为( )A.3 B.4 C.9 D.10【答案】B【解析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围,就可以得出第三边的长度.【详解】设第三边的长为x,根据三角形的三边关系,得6-3<x<6+3,即3<x<9,∴x=1.故选B.【点睛】本题主要考查了求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式组,然后解不等式组即可,难度适中.8.如图,和是同位角的是( )A.B.C.D.【答案】A【解析】同位角的定义:在截线的同侧,并且在被截线的同一方的两个角是同位,据此解答.【详解】A、∠1和∠2是同位角,故此选项符合题意;B、∠1和∠2不是同位角,故此选项不合题意;C、∠1和∠2不是同位角,故此选项不合题意;D、∠1和∠2 不是同位角,故此选项不合题意;故选:A.【点睛】本题考查了同位角的定义,正确把握同位角定义是解题关键.9.下列调查适合用抽样调查的是()A.了解中央电视台《朗读者》节目的收视率B.了解某校七年级班主任的身体健康情况C.了解某班学生对“叙利亚”局势关注情况D.对“解放军航母001A”下海前零部件的检查【答案】A【解析】分析: 由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解: A、调查中央电视台《朗读者》节目的收视率调查范围广适合抽样调查,故A符合题意;B、了解某校七年级班主任的身体健康情况适合普查,故B不符合题意;C、了解某班学生对“叙利亚”局势关注情况适合普查,故C不符合题意;D、对“解放军航母001A”下海前零部件的检查适合普查,故D不符合题意.故选:A.点睛: 本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.下列说法中不正确的是( )A .三角形的三条高线交于一点B .角平分线上的点到这个角的两边的距离相等C .三角形的三条中线交于一点D .线段垂直平分线上的点到这条线段两个端点的距离相等【答案】A【解析】根据三角形高线、中线、角平分线、线段垂直平分线的性质判断即可.【详解】解:钝角三角形的高线不会交于一点,高线所在的直线才会交于一点,A 选项错误,由中线、角平分线、线段垂直平分线的性质可知B 、C 、D 正确.故答案为A【点睛】本题考查了高线、中线、角平分线、线段垂直平分线的性质,熟练掌握各种线的性质特点是解题的关键.二、填空题题11.分解因式:a 3﹣4a =_____.【答案】(2)(2)a a a +-【解析】先提取公因式x ,然后利用平方差公式进行因式分解.【详解】解:a 3﹣4a=a (a 2﹣4)=(2)(2)a a a +-故答案为:(2)(2)a a a +-.【点睛】本题考查综合提公因式和公式法进行因式分解,掌握平方差公式的结构是本题的解题关键.12.如图,已知ADC 的面积为4,AD 平分BAC ∠,且AD BD ⊥于点D ,那么ABC 的面积为__________.【答案】8【解析】延长BD 交AC 于点E ,则可知△ABE 为等腰三角形,则S △ABD =S △ADE ,S △BDC =S △CDE ,可得出S △ADC =12S △ABC .即可求出答案. 【详解】解:如图,延长BD 交AC 于点E ,∵AD 平分∠BAE ,AD ⊥BD ,∴∠BAD=∠EAD ,∠ADB=∠ADE ,在△ABD 和△AED 中,BAD EAD AD AD BDA EDA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABD ≌△AED (ASA ),∴BD=DE ,∴S △ABD =S △ADE ,S △BDC =S △CDE ,∴S △ABD +S △BDC =S △ADE +S △CDE =S △ADC ,∴S △ADC =12S △ABC , ∴248ABC S ∆=⨯=;故答案为:8.【点睛】本题考查了等腰三角形的性质和判定的应用,全等三角形的判定和性质,由BD=DE 得到S △ABD =S △ADE ,S △BDC =S △CDE 是解题的关键.13.已知:如图,平行四边形ABCD 中,BE 平分∠ABC 交AD 于E ,CF 平分∠BCD 交AD 于F ,若AB=4,BC=6,则EF=_____.【答案】2【解析】因为AD ∥BC ,所以∠AEB=∠CBE ,因为BE 平分∠ABC ,所以∠ABE=∠CBE ,所以∠AEB=∠CBE,所以AE=AB=4,同理DC=DF ,因为CD=AB ,所以DF=4,因为BC=6,所以AD=6,所以EF=AE+DF-AD=4+4-6=2,故答案为2.14.计算:3a (a+2)=______.【答案】3a 2+6a【解析】直接利用单项式乘以多项式运算法则计算得出答案.【详解】解:3a (a+2)=3a 2+6a .故答案为:3a 2+6a .【点睛】此题主要考查了整式的乘法运算,正确掌握相关运算法则是解题关键..15.高斯函数[x],也称为取整函数,即[x]表示不超过x 的最大整数.例如:[1.3]=1,[-1.5]=-1.若[x-1]=3,则x 的取值范围是__________ .【答案】45x ≤<【解析】由[x-1]=3得314x ,解之即可.【详解】若 [x-1]=3,则314x , 解得:45x ≤<.【点睛】本题主要考查解一元一次不等式组,根据取整函数的定义得出关于x 的不等式组是解题的关键. 16.如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为______.【答案】()3,4-【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4).考点:象限内点的坐标特征.17.定义一种新运算“a b ☆”的含义为:当a b 时,a b a b =+☆,当a b <时,a b a b =-☆.例如:3(4)3(4)1-=+-=-☆,111(6)(6)6222-=--=-☆ (1)(4)3-=☆_____;(2)(37)(32)2x x --=☆,则x =______.【答案】-7 1【解析】(1)根据新定义计算即可;(2)分3732x x -≥-和3732x x -<-两种情况,根据新定义列方程求解即可.【详解】(1)(4)3437-=--=-☆故答案为:-7;(2)当3732x x -≥-,即2x ≥时,由题意得:(37)+(32)2x x --=解得:6x =;当3732x x -<-,即2x <时,由题意得:(37)(32)2x x ---= 解得:125x =(舍). 故答案为:1.【点睛】本题考查新定义,解题关键是根据新定义列出一元一次不等式和一元一次方程并准确求解.三、解答题18.(1)请在横线上填写适当的内容,完成下面的解答过程:如图①,如果∠ABE+∠BED+∠CDE=360°,试说明AB∥CD.理由:过点E作EF∥AB所以∠ABE+∠BEF=°()又因为∠ABE+∠BED+∠CDE=360°所以∠FED+∠CDE=°所以EF∥.又因为EF∥AB,所以AB∥CD.(2)如图②,如果AB∥CD,试说明∠BED=∠B+∠D.(3)如图③,如果AB∥CD,∠BEC=α,BF平分∠ABE,CF平分∠DCE,则∠BFC的度数是(用含α的代数式表示).【答案】(1)180,两直线平行,同旁内角互补,180,CD;(2)见解析;(3)180°﹣12α.【解析】(1)先判断出∠FED+∠CDE=180°得出EF∥CD,即可得出结论;(2)先判断出∠BEH=∠B,再判断出EH∥CD,得出∠DEH=∠D,即可的得出结论;(3)先判断出∠ABE+∠DCE=360°-α,进而判断出∠ABF+∠DCF=180°-12α,借助(2)的结论即可得出结论.【详解】解:(1)过点E作EF∥AB∴∠ABE+∠BEF=180°(两直线平行,同旁内角互补)∵∠ABE+∠BED+∠CDE=360°∴∠FED+∠CDE=180°∴EF∥CD∵EF∥AB∴AB∥CD;故答案为:180,两直线平行,同旁内角互补,180,CD;(2)如图2,过点E作EH∥AB,∴∠BEH=∠B,∵EH∥AB,AB∥CD,∴EH∥CD,∴∠DEH=∠D,∴∠BED=∠BEH+∠DEH=∠B+∠D;(3)如图3,过点E作EG∥AB,∴∠ABE+∠BEG=180°,∵EG∥AB,CD∥AB,∴EG∥CD,∴∠DCE+∠CEG=180°∴∠ABE+∠BEG+∠CEG+∠DCE=360°,∴∠ABE+∠BEC+∠DCE=360°,∴∠ABE+∠DCE=360°﹣∠BEC,∵∠BEC=α,∴∠ABE+∠CCE=360°﹣α,∵BF,CF分别平分∠ABE,∠DCE,∴∠ABE=2∠ABF,∠DCF=2∠ECF,∴∠ABF+∠DCF=180°﹣12α,过点F作作FH∥AB,同(2)的方法得,∠BFC=∠ABF+∠DCF=180°﹣12α,故答案为:180°﹣12α.【点睛】此题主要考查了平行线的性质和判定,角平分线的意义,正确作出辅助线是解本题的关键.19.“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.【答案】(1) 60,90;(2)见解析;(3) 300人【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:1560×360°=90°;故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×15560=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.20.对于平面直角坐标系xOy中的点A,给出如下定义:若存在点B(不与点A重合,且直线AB不与坐标轴平行或重合),过点A作直线m∥x轴,过点B作直线n∥y轴,直线m,n相交于点C.当线段AC,BC的长度相等时,称点B为点A 的等距点,称三角形ABC的面积为点A的等距面积. 例如:如图,点A(2,1),点B(5,4),因为AC= BC=3,所以B为点A 的等距点,此时点A的等距面积为9 2 .(1)点A的坐标是(0,1),在点B1(-1,0),B2(2,3),B3(-1,-1)中,点A 的等距点为________________. (2)点A的坐标是(-3,1),点A的等距点B在第三象限,①若点B的坐标是9122⎛⎫⎪⎝⎭-,-,求此时点A的等距面积;②若点A的等距面积不小于98,求此时点B的横坐标t的取值范围.【答案】B1, B2【解析】分析:(1)根据题目示例即可判断出点A的等距点为B1, B2;(2)①分别求出AC,BC的长,利用三角形的面积计算公式即可求出点A的等距面积;②分点B在点A左右两侧时进行计算求解即可.详解:(1)B1, B2 .(2)①如图,根据题意,可知AC⊥BC.∵A(-3,1),B(92-,12-),∴AC=BC=3 2 .∴三角形ABC的面积为19 AC BC28⋅=.∴点A的等距面积为9 8 .②当点B左侧时,如图,则有AC=BC=-3-t,∵点A的等距面积不小于98,∴1AC BC2⋅≥98,即()()13t3t2--⋅--≥98,∴9t2≤-;当点B在点A的右侧时,如图,∵点B在第三象限,同理可得,3t0 2-≤<.故点B的横坐标t的取值范围是9t2≤-或3t02-≤<.点睛:本题主要考查阅读理解型问题,此类问题一般都是先提供一个解题思路,或介绍一种解题方法,或展示一个数学结论的推导过程等文字或图表材料,然后要求自主探索,理解其内容、思想方法,把握本质,解答试题中提出的问题.对于这类题求解步骤是“阅读——分析——理解——创新应用”,其中最关键的是理解材料的作用和用意,一般是启发你如何解决问题或为了解决问题为你提供工具及素材.因此这种试题是考查大家随机应变能力和知识的迁移能力.21.将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,(1)求证:CF ∥AB ,(2)求∠DFC 的度数.【答案】(1)证明见解析;(2)105°【解析】(1)首先根据角平分线的性质可得∠1=45°,再有∠1=45°,再根据内错角相等两直线平行可判定出AB ∥CF ;(2)利用三角形内角和定理进行计算即可.【详解】解:(1)证明:∵CF 平分∠DCE ,∴∠1=∠2=12∠DCE . ∵∠DCE=90°,∴∠1=45°.∵∠1=45°, ∴∠1=∠1.∴AB ∥CF .(2)∵∠D=10°,∠1=45°,∴∠DFC=180°﹣10°﹣45°=105°.【点睛】本题考查平行线的判定,角平分线的定义及三角形内角和定理,熟练掌握相关性质定理是本题的解题关键. 22.如图,某工程队从点A 出发,沿北偏西67方向铺设管道AD ,由于某些原因,BD 段不适宜铺设,需改变方向,由B 点沿北偏东23的方向继续铺设BC 段,到达C 点又改变方向,从C 点继续铺设CE 段,ECB ∠应为多少度,可使所铺管道CE AB ∥?试说明理由.此时CE 与BC 有怎样的位置关系?【答案】见解析【解析】根据题意可知,本题考查的是通过平面内方位角判断直线与直线的位置关系,通过平行和方位角的联系,找准各角度之间的关系,从而确认直线与直线的位置关系.【详解】解:∵分别过A ,B 两点的指北方向是平行的,∴167A ∠=∠=(两直线平行,同位角相等)∴236790CBD ∠=+=,当180ECB CBD ∠+∠=时,可得CE AB ∥.(同旁内角互补,两直线平行)∴90ECB ∠=,∴CE BC ⊥.(垂直定义)【点睛】本题解题关键:熟练掌握方位角位置和大小的判断以及平行线的性质.23.为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:.A 只愿意就读普通高中;.B 只愿意就读中等职业技术学校;.C 就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图如下,请根据相关信息,解答下列问题:()1本次活动一共调查的学生数为______名;()2补全图一,并求出图二中A 区域的圆心角的度数;()3若该校八、九年级学生共有2800名,请估计该校八、九年级学生只愿意就读中等职业技术学校的人数.【答案】 (1)800;(2)216°;(3) 840人.【解析】(1)根据C 的人数除以其所占的百分比,求出调查的学生总数即可;(2)用总数减去A 、C 区域的人数得到B 区域的学生数,从而补全图一;再根据百分比=频数总数计算可得A 所占百分比,再乘以,从而求出A 区域的圆心角的度数;(3)求出B 占的百分比,乘以2800即可得到结果.【详解】(1)根据题意得:80÷36360=800(名), 则调查的学生总数为800名.故答案为800;(2)B 的人数为:800-(480+80)=240(名),A 区域的圆心角的度数为480800×360°=216°, 补全统计图,如图所示:(3)根据题意得:240800240800×2800=840人.所以估计该校八、九年级学生只愿意就读中等职业技术学校的有840人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.24.计算:(1)(2)(3)先化简,再求值:,其中.【答案】(1);(2);(3).【解析】(1)先根据负整数指数幂,零指数幂,积的乘方进行计算,再求出即可;(2)先算乘方,再算乘法即可;(3)先算乘法,再合并同类,最后代入求出即可.【详解】解:(1)原式=(2)原式==(3)==当a=-1,b=2时,原式=-5×(-1)2+4×(-1)×2=-13.【点睛】本题考查了负差数指数幂,零指数,积的乘方,式的混合运算和求值,实数的运算等知识点,能灵活运用法则进行计算和化简是解此题的关键.25.我国明代数学家程大位的名著《直指算法统宗》中有一道题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分一个,正好分完,问大、小和尚各有多少人?试用列方程(组)解应用题的方法求出问题的解.【答案】大和尚25人,小和尚75人【解析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.【详解】解:设大和尚x(人),则小和尚100x-(人).由题意得:13(100)100 3x x+-=解之,得:25x=∴大和尚25人,小和尚75人.【点睛】本题考查二元一次方程组,根据题意列出方程组并熟练掌握计算法则是解题关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,把Rt△ABD沿直线AD翻折,点B落在点C的位置,若∠B=65°,则∠CAD的度数为( )A.55°B.45°C.35°D.25°【答案】D【解析】利用翻折不变性和三角形的内角和即可解决问题.【详解】解:∵△ADC是由△ADB翻折得到,∴∠C=∠B=65°,∠DAB=∠DAC,∴∠BAC=180°-65°-65°=50°,∴∠DAC=25°,故选:D.【点睛】本题考查翻折变换,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.将图1中五边形纸片ABCDE的A点以BE为折线向下翻折,点A恰好落在CD上,如图2所示;再分别以图2中的AB,AE为折线,将C,D两点向上翻折,使得A、B、C、D、E五点均在同一平面上,如图3所示.若图1中∠A=122°,则图3中∠CAD的度数为()A.58°B.61°C.62°D.64°【答案】D【解析】分析:根据三角形内角和定理和折叠的性质来解答即可.详解:由图(2)知,∠BAC+∠EAD=180°−122°=58°,所以图(3)中∠CAD=180°−58°×2=64°.故选D.点睛:此题考查了多边形的外角与内角,结合图形解答,需要学生具备一定的读图能力和空间想象能力. 3.几何体的平面展开图如图所示,则从左到右其对应几何体的名称分别为()A.圆锥,四棱柱,三棱锥,圆柱B.圆锥,四棱柱,四棱锥,圆柱C.四棱柱,圆锥,四棱锥,圆柱D.四棱柱,圆锥,圆柱,三棱柱【答案】D【解析】根据四棱柱、圆锥、圆柱、三棱柱的平面展开图的特点进一步分析,然后再加以判断即可.【详解】第一个图是四棱柱,第二个图是圆锥,第三个图是圆柱,第四个图是三棱柱,故选:D.【点睛】本题主要考查了简单几何体的展开图的认识,熟练掌握相关概念是解题关键.4.如图,AC⊥BC,AD⊥CD, AB=a,CD=b,AC的取值范围是( )A.AC>b B.AC<a C.b<AC<a D.无法确定【答案】C【解析】根据垂线段最短即可得到AC的取值范围.【详解】∵AC⊥BC,AD⊥CD,AB=a,CD=b,∴CD<AC<AB,即b<AC<a.故选C.【点睛】本题考查了垂线段最短的性质,准确识图是解题的关键.,,N的坐标为(2)0,,5.在平面直角坐标系中,A,B,C,D,M,N的位置如图所示,若点M的坐标为(20)则在第二象限内的点是( )A.A点B.B点C.C点D.D【答案】D【解析】根据点的坐标特征,可得答案.【详解】MN所在的直线是x轴,MN的垂直平分线是y轴,A在x轴的上方,y轴的左边,A点在第二象限内.故选A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.将3x(a﹣b)﹣9y(b﹣a)因式分解,应提的公因式是( )A.3x﹣9y B.3x+9y C.a﹣b D.3(a﹣b)【答案】D【解析】原式变形后,找出公因式即可.【详解】将3x(a−b)−9y(b−a)=3x(a−b)+9y(a−b)因式分解,应提的公因式是3(a−b).故答案选D.【点睛】本题考查的知识点是因式分解-提公因式法,解题的关键是熟练的掌握因式分解-提公因式法.7.下列实数中的无理数是()A B C D.22 7【答案】C【解析】分析: 分别根据无理数、有理数的定义即可判定选择项.详解:=1.1,,227是有理数,2是无理数,故选:C.点睛:此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如,0.8080080008…(每两个8之间依次多1个0)等形式.8.如果不等式组212x mx m>+⎧⎨>+⎩的解集是1x>-,那么m的值是()A.3 B.1 C.1-D.3-【答案】D【解析】根据同大取大,同小取小,由于等式组212x mx m>+⎧⎨>+⎩的解集是x>-1,则要判断2m+1与m+2的大小,则可分别令2m+1=-1或m+2=-1,然后根据题意进行取舍.【详解】解:∵不等式组212x mx m>+⎧⎨>+⎩的解集x>-1,∴2m+1=-1,或m+2=-1当2m+1=-1时,m=-1,此时m+2=1,则不等式组的解集为x>1,不满足要求;当m+2=-1时,m=-3,此时2m+1=-5,则不等式组的解集为x>-1,满足要求;故满足条件的m=-3故选:D.【点睛】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大小小大取中间,大大小小是无解”确定不等式组的解集.9.对于不等式组1561 33 3(1)51x xx x⎧-≤-⎪⎨⎪-<-⎩,下列说法正确的是()A.此不等式组的正整数解为1,2,3B.此不等式组的解集为716x-<≤C.此不等式组有5个整数解D.此不等式组无解【答案】A【解析】解:1561333(1)51x xx x⎧-≤-⎪⎨⎪-<-⎩①②,解①得x≤72,解②得x>﹣1,所以不等式组的解集为﹣1<x≤72,所以不等式组的整数解为1,2,1.故选A.点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.10.如图,点()11,1A,点1A向上平移1个单位,再向右平移2个单位,得到点2A;点2A向上平移2个单位,再向右平移4个单位,得到点3A;点3A向上平移4个单位,再向右平移8个单位,得到点4A,……,按这个规律平移得到点n A,则点n A的横坐标为()A.2n B.12n-C.21n-D.21n+【解析】根据题意可知,本题考查规律探究,根据题中所给的4个关键点的横坐标进行依次分析判断,通过观察计算找出规律,进行求解.【详解】1A 的横坐标是1;2A 的横坐标是1+2=3;3A 的横坐标是1+2+4=7;4A 的横坐标是1+2+4+8=15,通过观察可知横坐标取值依次是1,3,7,15,正好是2,4,8,16的每一项减1所得.即可用公式21n -表示.故应选C.【点睛】本题解题技巧:可以通过选项反过来判断题干给的四点的横坐标,从而排除不符合的选项.二、填空题题11.点P(2,m )在x 轴上,则B (m -1,m+1)在第________________象限.【答案】二【解析】根据x 轴上的点的坐标特征可得m=0,然后把m 代入点B 的坐标中,即可确定出点B 的具体坐标,根据点B 的坐标即判断所在的象限.【详解】∵点P (2,m )在x 轴上,∴m=0,∵点B (m-1,m+1),∴B (-1,1),∴点B 在第二象限,故答案为:二.【点睛】本题考查了点的坐标特征,熟练掌握点的坐标特征是解题的关键.坐标轴上的点的特征:x 轴上的点的纵坐标为0,y 轴上的点的横坐标为0;坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,各象限点的坐标的符号特征:一象限(+,+),二象限(-,+),三象限(-,-),四象限(+,-).12.如果21(2)0x y -+-=,则2009()x y -=___________.【答案】-1【解析】负数的奇次方还是负数。

【精选5份合集】2020-2021年常州市某达标实验中学七年级下学期期末综合测试数学试题

【精选5份合集】2020-2021年常州市某达标实验中学七年级下学期期末综合测试数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.不等式6﹣4x≥3x﹣8的非负整数解为()A.2个B.3个C.4个D.5个【答案】B【解析】移项得,﹣4x﹣3x≥﹣8﹣6,合并同类项得,﹣7x≥﹣14,系数化为1得,x≤1.故其非负整数解为:0,1,1,共3个.故选B.2.如图,在下列给出的条件中,不能判定AB∥DF的是()A.∠A+∠2=180°B.∠1=∠A C.∠1=∠4 D.∠A=∠3【答案】B【解析】利用平行线的判定定理,逐一判断,容易得出结论.【详解】A选项:∵∠2+∠A=180°,∴AB∥DF(同旁内角互补,两直线平行);B选项:∵∠1=∠A,∴AC∥DE(同位角相等,两直线平行),不能证出AB∥DF;C选项:∵∠1=∠4,∴AB∥DF(内错角相等,两直线平行).D选项:∵∠A=∠3,∴AB∥DF(同位角相等,两直线平行)故选B.【点睛】考查了平行线的判定;正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.3.空气是由多种气体混合而成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是()A.扇形图B.直方图C.条形图D.折线图【答案】A【解析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.条形统计图能清楚地表示出每个项目的具体数目;折线统计图表示的是事物的变化情况;【详解】解:根据题意得:要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:A.【点睛】此题考查扇形统计图、折线统计图、条形统计图,频数分布直方图各自的特点.掌握它们的特点是解题的关键.4.下列图形中,∠1与∠2不是互补关系的是()A.B.C.D.【答案】C【解析】根据互补的两个角的和为180︒判定即可.【详解】解:A.∠1与∠2是互补关系,故本选项不合题意;B.由平行线的性质可知∠1与∠2是互补关系,故本选项不合题意;C.由对顶角的定义可知∠1与∠2是对顶角,不一定具有互补关系,故本选项符合题意;D.∠1+∠2=180°,即∠1与∠2是互补关系,故本选项不合题意.故选:C.【点睛】本题主要考查了补角的定义、邻补角、对顶角、平行线的性质,熟记补角的定义是解答本题的关键.→→→的路径匀速前进到D为止,在这5.如图,在四边形ABCD中,动点P从点A开始沿A B C D∆的面积S随时间t的变化关系用图象表示正确的是()个过程中,APDA.B.C.D.【答案】C【解析】根据点P的运动过程可知:APD∆的底边为AD,而且AD始终不变,点P到直线AD的距离为APD∆的高,根据高的变化即可判断S与t的函数图象.【详解】解:设点P到直线AD的距离为h,APD∴∆的面积为:1·2S AD h =,当P在线段AB运动时,此时h不断增大,S也不端增大当P在线段BC上运动时,此时h不变,S也不变,当P在线段CD上运动时,此时h不断减小,S不断减少,又因为匀速行驶且CD AB>,所以在线段CD上运动的时间大于在线段AB上运动的时间故选C.【点睛】本题考查函数图象,解题的关键是根据点P到直线AD的距离来判断s与t的关系,本题属于基础题型.6.已知a<b,则下列不等式中不正确的是()A.4a<4b B.a+4<b+4 C.a﹣4<b﹣4 D.﹣4a<﹣4b【答案】D【解析】根据不等式的性质逐个判断即可.【详解】A、∵a<b,∴4a<4b,故本选项不符合题意;B、∵a<b,∴a+4<b+4,故本选项不符合题意;C、∵a<b,∴a﹣4<b﹣4,故本选项不符合题意;D、∵a<b,∴﹣4a>﹣4b,故本选项符合题意;故选:D.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.7.若不等式(a+1)x>a+1的解集是x<1,则a必满足()A.a<﹣1 B.a>﹣1 C.a<0 D.a<1【答案】A【解析】由已知不等式的解集,利用不等式的基本性质判断即可确定出a的范围.【详解】∵不等式(a+1)x>a+1的解集是x<1,∴a+1<0,解得:a<−1.故选A.【点睛】此题考查不等式的解集,解题关键在于掌握运算法则8.不等式组5243x x +>⎧⎨-≥⎩的最小整数解是( ) A .﹣3B .﹣2C .0D .1 【答案】B【解析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【详解】解:5243x x +⎧⎨-≥⎩>①②,解不等式①得:x >﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故选:B .【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.9.在0、2212 3.14160.2380.373773777373π-、、、、、(它的位数无限且相邻两个“3”之间“7”的个数依次加1个),这十个数中,无理数的个数是( )A .1B .2C .3D .4 【答案】D【解析】根据无理数的定义,即可得到答案【详解】∵0、2212 3.14160.23873-、、、、0.3737737773π、(它的位数无限且相邻两个“3”之间“7”的个数依次加1个)是无理数,∴无理数的个数有4个.故选D .【点睛】本题主要考查无理数的定义,掌握无限不循环小数是无理数,是解题的关键.10.如图,直线a ∥b ,∠1=120°,∠2=40°,则∠3等于( )A.60°B.70°C.80°D.90°【答案】C【解析】试题分析:如图,∵a∥b,∴∠1=∠4=120°,∵∠4=∠2+∠3,而∠2=40°,∴120°=40°+∠3,∴∠3=80°.故选C.考点:平行线的性质.二、填空题题11.如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数n=____.【答案】1.【解析】根据多边形的内角和公式及外角的特征计算.【详解】多边形的外角和是360°,根据题意得:110°•(n-2)=3×360°解得n=1.故答案为:1.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.12.在同一平面内,不重合的两条直线的位置关系有_____.【答案】相交或平行【解析】根据同一平面内,不重合的两条直线的位置关系可知.【详解】在同一平面内,不重合的两条直线有2种位置关系,它们是相交或平行.故答案为相交或平行【点睛】本题是基础题型,主要考查了在同一平面内,不重合的两条直线的两种位置关系.13.已知1{8xy==-是方程31mx y-=-的解,则m=____________【答案】3-.【解析】把x=1,y=﹣8代入3mx﹣y=﹣1,即可求出m的值.【详解】把x=1,y=﹣8代入3mx﹣y=﹣1得,3m+8=﹣1,∴m=-3.故答案为-3.【点睛】本题考查了二元一次方程的解,熟练掌握能使二元一次方程左右两边相等的未知数的值是方程的解是解答本题的关键.14.一个含30°角和另一个含45°角的三角板按如图所示放置,直角顶点重合,且两条斜边//AB EF,则ACE∠=__________°.【答案】15【解析】根据//AB EF求出∠BDF=60°,即可求出∠DCF=15°,根据∠DCF+∠DCE=∠ACE+∠DCE即可求出∠ACE=∠DCF=15°.【详解】∵//AB EF,∴∠BDF=∠B=60°,∵∠BDF=∠F+∠DCF,∠F=45°,∴∠DCF=15°,∵∠DCF+∠DCE=∠ACE+∠DCE=90°,∴∠ACE=∠DCF=15°故答案为:15.【点睛】此题考查平行线的性质,三角形外角的性质,正确理解图形中各角度之间的关系是解题的关键.15.如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿AD 方向平移8个单位长度到△A'B'C'的位置,则图中阴影部分面积为______.【答案】32【解析】由正方形性质可得AD=CD=12,∠DAC=45°,由平移的性质可得AA'=8,A'B'⊥AD ,即可求A'E=8,A'D=4,即可求阴影部分面积.【详解】解:∵四边形ABCD 是正方形,∴AD=CD=12,∠DAC=45°,∵把△ABC 沿AD 方向平移8个单位长度到△A'B'C'的位置,∴AA'=8,A'B'⊥AD ,且∠DAC=45°,∴A'E=AA'=8,∵A'D=AD-AA'=4,∴阴影部分面积=A'E×A'D=8×4=32,故答案为:32.【点睛】本题考查了正方形的性质,平移的性质,等腰直角三角形的判定与性质,熟记平移的性质并用平移距离表示出重叠部分的底与高是解题的关键.16.已知点P 在第四象限,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标为__________.【答案】()2,4-【解析】根据点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值,各象限点的坐标特征,可得答案.【详解】解:点P 在第四象限,距离x 轴4个单位长度,距离y 轴2个单位长度,得点P 的坐标为(2,-4).【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).17.如果2(29)60x y x y -+++-=,则x-y=_______.【答案】-2【解析】分析:由于(x-2y+9)2和|x+y-6|都是非负数,而它们的和为3,由此可以得到它们每一个都等于3,然后即可求出x 、y 的值.详解:∵()22960x y x y -+++-=,而(x-2y+9)2≥3,|x+y-6|≥3,∴(x-2y+9)2=3,|x+y-6|=3,∴29060x y x y -+⎧⎨+-⎩==, 解得x=1,y=1.∴x-y=1-1=-2.故答案为:-2.点睛:本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为3时,必须满足其中的每一项都等于3.根据这个结论可以求解这类题目.三、解答题18.对于平面直角坐标系xOy 中的点(, )P a b ,若点P '的坐标为(,)a kb ka b ++(其中k 为常数,且0k ≠),则称点P '为点P 的“k 属派生点”.例如:(1,2)P 的“4属派生点”为(142,412)P '+⨯⨯+,即(9,6)P '.(1)点(2,3)P -的“2属派生点”P '的坐标为________;(2)若点P 的“3属派生点”P '的坐标为(9,11),求点P 的坐标;(3)若点P 在y 轴的正半轴上,点P 的“k 属派生点”为P '点,且点P '到y 轴的距离不小于线段OP 长度的5倍,则k 的取值范围是________________.【答案】(1)(4,1)P '-;(2)(3,2);(3)5k 或5k -【解析】(1)根据“k 属派生点”的概念计算;(2)设点P 的坐标为(x ,y ),根据“k 属派生点”的概念列出方程组,解方程组得到答案;(3)设点P 的坐标为(0,b ),根据“k 属派生点”的概念求出P′点的坐标,根据题意列出不等式,解不等式得到答案.【详解】(1)(1)点P (-2,3)的“2属派生点”P′的坐标为(-2+2×3,3-2×2),即(4,-1),故答案为:(4,-1);(2)设P 点为(,)x y 根据题意39311x y x y +=⎧⎨+=⎩ 解得32x y =⎧⎨=⎩则点P 的坐标为(3,2)(3)设点P 的坐标为(0,b ),则点P 的“k 属派生点”P′点的坐标为(kb ,b ),由题意得,|kb|≥5b ,当k >0时,k≥5,当k <0时,k≤-5,则k 的取值范围是k≥5或k≤-5,故答案为: 5k 或5k -.【点睛】本题考查的是“k 属派生点”的概念、点的坐标特征、二元一次方程组的解法,掌握“k 属派生点”的概念是解题的关键.19.观察下面给出的等式,回答下列问题: ①112⨯=1﹣12②123⨯=12﹣13③134⨯=1341- (1)猜想:第n 个等式是(2)计算:112⨯ +123⨯+134⨯+……+1910⨯; (3)若11111(1)(2)(2)(3)(3)(4)(19)(20)20x x x x x x x x x +++⋯+=+++++++++,求x 的值. 【答案】(1)111n n -+;(2)910;(3)x =1 【解析】(1)根据已知算式得出答案即可;(2)根据已知得出的规律进行变形,再求出即可;(3)根据已知得出的规律进行变形,再求出即可.【详解】(1)第n 个等式是111(1)1n n n n =-++, 故答案为: 111(1)1n n n n =-++;(2)1111122334910+++⋯⋯+⨯⨯⨯⨯ =11111111,122334910-+--+⋯+- =1﹣110 =910; (3)11111(1)(2)(2)(3)(3)(4)(19)(20)20x x x x x x x x x +++⋯+=+++++++++, 11111111223192020x x x x x x x -+-+⋯+-=+++++++, 11112020x x x -=+++, 12120x x =++, 方程两边都乘以(x+1)(x+20)得:x+20=2(x+1),解得:x =1,经检验x =1是原方程的解,所以x =1.【点睛】本题考查了有理数的混合运算、解分式方程和数字的变化类,能根据已知算式得出规律是解此题的关键. 20.解下列方程组或不等式组(1)253218x y x y -=⎧⎨+=⎩ ; (2)324313x x x x +⎧⎪+⎨-≤-⎪⎩< 【答案】(1)43x y =⎧⎨=⎩;(2)34x ≤<. 【解析】(1)两个方程相加即可消去y 求得x 的值,然后把x 的值代入第一个方程求得y 的值; (2)分别解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:(1)253218x y x y -=⎧⎨+=⎩①②, ①×2+②得7x=28,解得:x=4,把x=4代入①得8-y=5,解得:y=1.则不等式组的解集是:43x y =⎧⎨=⎩; (2)324313x x x x +⎧⎪⎨+-≤-⎪⎩<①②, 解①得4x <,解②得3x ≥.则不等式组的解集是:34x ≤<.【点睛】本题考查了一元一次不等式组的解法,用加减消元法解二元一次方程组,掌握一元一次不等式组的解法,用加减消元法解二元一次方程组是解题的关键.21.某商场对今年端午节这天销售A 、B 、C 三种品牌粽子的情况进行统计,并绘制出了如图1和图2所示的统计图,根据图中信息解答下列问题:(1)这天共销售了多少个粽子?(2)销售B 品牌粽子多少个?并补全图1中的条形图;(3)求出A 品牌粽子在图2中所对应的圆心角的度数;(4)根据上述统计信息,明年端午节期间该商场对A 、B 、C 三种品牌的粽子如何进货?请你提一条合理化的建议.【答案】 (1) 2400 个;(2) 800 个;(3) 60°;(4)见解析.【解析】(1)用C 品牌的销售量除以它所占的百分比即可得销售这三种品牌粽子总个数;(2)B 品牌的销售量=总销售量−1200−400=800个,补全图形即可;(3)A 品牌粽子在图中所对应的圆心角的度数=360°×(400÷2400)=60°;(4)由于C 品牌的销售量最大,所以建议多进C 种.【详解】(1)销售粽子总数为12000500=2400(个); (2)销售B 品牌粽子个数为2400﹣1200﹣400=800(个),补全图1中的条形图,如下:(3)A 品牌粽子在图7中所对应的圆心角的度数为4002400×360°=60°; (4)根据上述统计信息,明年端午节期间该商场应多进C 品牌的粽子,或者少进A 品牌的粽子等.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,已知//BC GE ,//AF DE ,140︒∠=.(1)求AFG ∠的值.(2)若AQ 平分FAC ∠,交BC 于点Q ,且15Q ∠=,求ACQ ∠的度数.【答案】 (1)40AFG ︒∠=; (2)110ACQ ︒∠=【解析】根据平行线的性质得到∠E=∠1,再根据平行线的性质即可求解;(2)根据三角形外角定理得到∠AHD=55°,根据平行线的性质及角平分线的性质得到∠CAQ=55°,再由三角形的内角和即可求解.【详解】∵//BC GE ,∴∠E=140︒∠=.∵//AF DE∴AFG ∠=∠E=40︒(2)∵140︒∠=,15Q ∠=∴∠AHD=55°,∵AF ∥DE ,∴∠FAQ=∠AHD=55°,∵AQ 平分FAC ∠,∴∠CAQ=55°∴∠ACQ=180°-∠CAQ-Q ∠=110︒ 【点睛】此题主要考查平行线的性质,角平分线的定义及三角形的外角性质,解题的关键是熟知角平分线的性质. 23.计算下列各式:(1)1-212=___________________; (2)22111123⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭= ; (3)222111111234⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭= ; 你能根据所学知识找到计算上面的算式的简便方法吗?请你利用你找到的简便方法计算下式:222222*********...11...1234910n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫------ ⎪⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭【答案】 (1);(2);(3),【解析】试题分析:见试题解析试题解析:(1)211311244-=-=; (2)22113821123493⎛⎫⎛⎫--=⨯= ⎪⎪⎝⎭⎝⎭; (3)2221113815511123449168⎛⎫⎛⎫⎛⎫---=⨯⨯= ⎪⎪⎪⎝⎭⎝⎭⎝⎭; 11111111(1)(1)(1)(1)(1)(1)(1)(1)223344n n-+-+-+⋅⋅⋅⋅⋅⋅-+ 13211223n n n n-+=⨯⨯⨯⋅⋅⋅⨯⨯ =12n n+ 考点:找规律题24.如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,且DE ∥AB ,过点E 作EF ⊥DE ,交BC 的延长线于点F.(1)求∠F 的度数;(2)若CD=2,求DF 的长.【答案】(1)30°;(2)1.【解析】试题分析:(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.试题解析:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=1.25.如图,在四边形ABCD中,AB∥CD,∠1=∠2,DB=DC.(1)求证:△ABD≌△EDC;(2)若∠A=135°,∠BDC=30°,求∠BCE的度数.【答案】(1)证明见解析;(2)60°.【解析】(1)全等三角形的判定方法:ASA,即可证明:△ABD≌△EDC;(2)根据三角形内角和定理可求出∠1的度数,进而可得到∠2的度数,再根据△BDC是等腰三角形,即可求出∠BCE的度数.【详解】(1)证明:∵AB∥CD,∴∠ABD=∠EDC,在△ABD和△EDC中,,∴△ABD≌△EDC(ASA),(2)解:∵∠ABD=∠EDC=30°,∠A=135°,∴∠1=∠2=15°,∵DB=DC,∴∠DCB=(180°-∠DBC)=75°,∴∠BCE=75°﹣15°=60°.考点:全等三角形的判定与性质七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,将边长为2个单位的等边△ABC 沿边BC 向右平移1个单位得到△DEF ,则四边形ABFD 的周长为( )A .6B .8C .10D .12【答案】B 【解析】分析:根据平移的性质,经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等计算出四边形ABFD 各边的长度.详解:AC 与DF 是对应边,AC =2,则DF =2,向右平移一个单位,则AD =1,BF =3,故其周长为2+1+2+3=1.故选B .点睛:根据平移的性质,找出对应边,求出四边形各边的长度,相加即可.2.下列说法正确的是( )A .同位角相等B .两条直线被第三条直线所截,内错角相等C .对顶角相等D .两条平行直线被第三条直线所裁,同旁内角相等【答案】C【解析】分析:根据平行线的性质对A 、B 、D 进行判断;根据对顶角的性质对C 进行判断.详解:A .两直线平行,同位角相等,所以A 选项错误;B .两条平行直线被第三条直线所截,内错角相等,所以B 选项错误;C .对顶角相等,所以C 选项正确;D .两条平行直线被第三条直线所截,同旁内角互补,所以D 选项错误.故选C .点睛:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.规定以下两种变换::①f(m,n)=(m,−n),如f(2,1)=(2,−1);②(,)(,)g m n m n =-- ,如(2,1)(2,1)g =--.按照以上变换有:()()()3,43,43,4f g f =--=-⎡⎤⎣⎦,那么()2,3g f -⎡⎤⎣⎦等于( ) A .(2-,3-) B .(2,3-) C .(2-,3) D .(2,3)【答案】D【解析】根据f(m,n)=(m,-n),g(2,1)=(-2,-1),可得答案.【详解】g[f(−2,3)]=g[−2,−3]=(2,3),故D正确,故选:D.【点睛】此题考查点的坐标,解题关键在于掌握其变化规律.4.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.3,4,5B.1,2,3C.6,7,8 D.2,3,4【答案】B【解析】试题解析:A.(3)2+(4)2≠(5)2,故该选项错误;B.12+(2)2=(3)2,故该选项正确;C.62+72≠82,故该选项错误;D.22+32≠42,故该选项错误.故选B.考点:勾股定理.5.下列手机软件图标中,是轴对称图形的是()A.B.C.D.【答案】D【解析】根据轴对称图形的定义即可得出答案.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查的是轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称,这条直线叫做对称轴.6.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.10099【答案】B【解析】分析:直接利用分数的性质将原式变形进而得出答案.详解:原式=11111 1223344599100 ++++⋯+⨯⨯⨯⨯⨯=111111112233499100 -+-+-+⋯+-,=1-1 100=99 100.故选B.点睛:此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.7.某次考试中,某班级的数学成绩统计图如图.下列说法错误的是( )A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数最少D.及格(≥60分)人数是26【答案】D【解析】为了判断得分在70~80分之间的人数是不是最多,通过观察频率分布直方图中最高的小矩形即可;为了得到该班的总人数只要求出各组人数的和即可;为了看得分在90~100分之间的人数是否最少,只有观察频率分布直方图中最低的小矩形即可;为了得到及格(≥60分)人数可通过用总数减去第一小组的人数即可.【详解】A、得分在70~80分之间的人数最多,故正确;B、2+4+8+12+14=40(人),该班的总人数为40人,故正确;C、得分在90~100分之间的人数最少,有2人,故正确;D、40-4=36(人),及格(≥60分)人数是36人,故D错误,故选D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8.下列各图形分别绕某个点旋转120︒后不能与自身重合的是().A .B .C .D .【答案】D【解析】选项A ,3603120︒÷=︒,即旋转120︒能与自身重合;选项B ,3601230︒÷=︒,而304120︒⨯=︒,即旋转120︒能与自身重合;选项C ,360660︒÷=︒,而602120︒⨯=︒,即旋转120︒能与自身重合;选项D ,360572︒÷=︒,所以绕某个点旋转120︒后不能与自身重合.故选D .9.下列不等式变形中,一定正确的是( )A .若ac >bc ,则a >bB .若a >b ,则am 2>bm 2C .若ac 2>bc 2,则a >bD .若m >n ,则﹣22m n >- 【答案】C【解析】利用不等式的性质和当c <0时对A 进行判断;利用不等式的性质和m =0对B 进行判断;利用不等式的性质对C 、D 进行判断.【详解】A 、若ac >bc ,c <0,则a <b ,所以A 选项错误;B 、若a >b ,m =0,则am 2>bm 2不成立,所以B 选项错误;C 、若ac 2>bc 2,c 2>0,则a >b ,所以C 选项正确;D 、若m >n ,则﹣12m <﹣12n ,所以D 选项错误. 故选C .【点睛】本题考查了不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.10.在实数227,0.1010010001…38,-π3 ) A .1个B .2个C .3个D .4个 【答案】C【解析】利用无理数定义,无理数是无线不循环小数,直接判断即可 38, 在实数227,0.1010010001…38-π30.1010010001…,-π33个. 故选:C .【点睛】本题考查无理数定义,基础知识扎实是解题关键。

<合集试卷3套>2020年常州市某达标实验中学七年级下学期数学期末经典试题

<合集试卷3套>2020年常州市某达标实验中学七年级下学期数学期末经典试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.一款智能手机的磁卡芯片直径为0.0000000075米,这个数据用科学记数法表示为( ) A .87510⨯B .97.510-⨯C .90.7510-⨯D .87.510-⨯【答案】B【解析】绝对值小于1的正数也可以用科学记数法表示:10n a -⨯,将0.0000000075写出这个形式即可得出结果.【详解】解:90.0000000075=7.510-⨯故选:B .【点睛】本题主要考查的是科学记数法,正确的掌握科学记数法的表示形式是解题的关键.2.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是( )A .300名学生是总体B .每名学生是个体C .50名学生是所抽取的一个样本D .这个样本容量是50【答案】D【解析】A 、300名学生的视力情况是总体,故此选项错误;B 、每个学生的视力情况是个体,故此选项错误;C 、50名学生的视力情况是抽取的一个样本,故此选项错误;D 、这组数据的样本容量是50,故此选项正确.故选D .3.乐乐发现等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形底角的度数为( ) A .50°B .65°C .65°或25°D .50°或40° 【答案】C【解析】在等腰△ABC 中,AB= AC ,BD 为腰AC 上的高,∠ABD=40°,讨论:当BD 在ABC 内部时,如图1,先计算出∠BAD=50°,再根据等腰三角形的性质和三角形内角和可计算出∠ACB ;当BD 在△ABC 外部时,如图2,先计算出∠BAD=50°,再根据等腰三角形的性质和三角形外角性质可计算出∠ACB.【详解】在等腰△ABC 中,AB= AC ,BD 为腰AC 上的高,∠ABD=40°,当BD 在△ABC 内部时,如图1,∵BD 是高,∴∠ADB=90°,∴∠BAD=90°-40°=50°,∵AB=AC,∴∠ABC=∠ACB=12(180°-50°)=65°;当BD在△ABC外部时,如图2,∵BD是高,∴∠ADB=90°,∴∠BAD=90°-40°=50°,∵AB=AC,∴∠ABC=∠ACB,∵∠BAD=∠ABC+∠ACB,∴∠ACB=12∠BAD=25°,综上,这个等腰三角形底角的度数为65°或25°.故选:C.【点睛】此题考查等腰三角形的性质,三角形内角和定理,解题中注意讨论思想的运用,这是解此题的关键. 4.将一副直角三角尺按如图所示摆放,则图中∠α的度数是()A.45°B.60°C.70°D.75°【答案】D【解析】分析:如下图,根据“三角形外角的性质结合直角三角尺中各个角的度数”进行分析解答即可.详解:如下图,由题意可知:∠DCE=45°,∠B=30°,∵∠ =∠DCE+∠B,∴∠ =45°+30°=75°.故选D.点睛:熟悉“直角三角尺中各个内角的度数,且知道三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和”是解答本题的关键.5.为了考察某县初中8500名毕业生的数学成绩,从中抽取50本试卷,每本30份,在这个问题中,样本容量是()A.30B.40C.1500D.8500【答案】C【解析】根据样本容量则是指样本中个体的数目,可得答案.【详解】为了考察某市初中8500名毕业生的数学成绩,从中抽取50本试卷,每本30份,在这个问题中,样本容量是30×50=1500,故选C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是()A.40°B.50°C.60°D.140°【答案】A【解析】试题分析:根据直角三角形两锐角互余求出∠3,再根据两直线平行,同位角相等解答.解:∵DB⊥BC,∠2=50°,∴∠3=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠3=40°.故选A.7.下列分解因式正确的是()A.-a+a3=-a(1+a2) B.2a-4b+2=2(a-2b)C.a2-4=(a-2)2D.a2-2a+1=(a-1)2【答案】D【解析】根据因式分解的定义进行分析.【详解】A、-a+a3=-a(1-a2)=-a(1+a)(1-a),故本选项错误;B、2a-4b+2=2(a-2b+1),故本选项错误;C、a2-4=(a-2)(a+2),故本选项错误;D、a2-2a+1=(a-1)2,故本选项正确.故选D.【点睛】考核知识点:因式分解.8.下列调查中,适合采取抽样调查方式的是()A.了解某企业对应聘人员进行面试的情况B.了解某班级学生的身高的情况C.调查某批次汽车的抗撞击能力D.选出某校短跑最快的学生参加比赛【答案】C【解析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A.了解某企业对应聘人员进行面试的情况,范围小,应当采用全面调查的方式,故本选错误,B.了解某班级学生的身高的情况,范围小,应当采用全面调查的方式,故本选错误,C.调查某批次汽车的抗撞击能力,具有破坏性,应当采用抽样调查,故本选项正确,D.选出某校短跑最快的学生参加比赛,范围小,应当采用全面调查的方式,故本选错误,故选:C.【点睛】本题主要考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.9.如图,在ABC ∆中,90ACB ∠=,按如下步骤操作:①以点A 为圆心,任意长为半径作弧,分别交AC ,AB 于D ,E 两点;②以点C 为圆心,AD 长为半径作弧,交AC 的延长线于点F ;③以点F 为圆心,DE 长为半径作弧,两弧交于点G ;④作射线CG ,若50FCG ∠=,则B 为( )A .40B .50C .60D .70【答案】A 【解析】利用基本作图得到∠FCG=∠CAB=50°,然后利用互余计算∠B 的度数.【详解】解:由作法得∠FCG=∠CAB ,而∠FCG=50°,∴∠CAB=50°,∵∠ACB=90°,∴∠B=90°-50°=40°.故选A .【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.10.在数轴上表示不等式2(x ﹣1)≤x+3的解集,正确的是( )A .B .C .D .【答案】B【解析】先求出不等式的解集,再在数轴上表示解集即可判断.【详解】解2(x ﹣1)≤x+3得x≤5在数轴上表示为故选B.【点睛】此题主要考查不等式的解法与表示方法,解题的关键是熟知不等式的性质.二、填空题题11.已知,2262100x y x y ++++=,则2x y -的值为____.【答案】5-【解析】根据题中的式子进行变形即可求出x,y 的值,再进行求解.【详解】∵22222262106921(3)(1)0x y x y x x y y x y ++++=+++++=+++=∴x=-3,y=-1,∴2x y -=-6-(-1)=-5【点睛】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的变形及应用.12.如图是一组密码的一部分,目前,已破译出“努力发挥”的真实意思是“今天考试”.小刚运用所学的“坐标”知识找到了破译的“钥匙”.他破译的“祝你成功”的真实意思是“_____“.【答案】正做数学【解析】首先利用已知点坐标得出变化得出祝你成功对应点坐标,进而得出真实意思.【详解】由题意可得:“努”的坐标为(4,4),对应“今”的坐标为:(3,2);“力”的坐标为(6,3),对应“天”的坐标为:(5,1);故“祝你成功”对应点坐标分别为:(5,4),(6,8),(8,4),(3,6),则对应真实坐标为:(4,2),(5,6),(7,2),(2,4),故真实意思是:正做数学.故答案为:正做数学.【点睛】此题主要考查了坐标确定位置,正确得出坐标的变化规律是解题关键.13.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.【答案】两点之间线段最短【解析】田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小, 能正确解释这一现象的数学知识是:两点之间线段最短,故答案为:两点之间线段最短.14.写出不等式5x +3<3(2+x )所有的非负整数解_____.【答案】0,1【解析】533(2)x x +<+5363x x +<+23x <32x <, ∴所有的非负整数解为0,1.15.计算:1216+=_________.【答案】6【解析】根据分类指数幂的意义以及二次根式的性质逐一进行化简,然后再进行计算即可.【详解】1216+=4+2=6,故答案为:6.【点睛】本题考查了实数的运算,涉及了分数指数幂、二次根式的化简,熟练掌握相关的运算法则是解题的关键. 16.一组数据-3,-2,1, 3, 6,x 的中位数是1,那么这组数据的众数是___________.【答案】1【解析】先根据中位数是1求出x 的值,然后再根据众数的定义求出众数即可.【详解】∵-3,-2,1, 3, 6,x 的中位数是1,∴(1+x)÷2=1,解得x=1,∴这组数据为-3,-2,1, 3, 6,1,∴这组数据的众数为1.故答案为:1.【点睛】本题主要考查的是学生对中位数和众数的定义等知识的掌握情况及灵活运用能力,解题的关键在于能够熟知中位数和众数的定义,由此即可解答.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.17.如图,把图1中的圆A经过平移得到圆O(如图2),如果图1⊙A上一点P的坐标为(m,n),那么平移后在图2中的对应点P′的坐标为____【答案】(m+2,n-1)【解析】首先根据圆心的坐标确定平移的方法:向右平移了2个单位,有向下平移1个单位,然后可确定P的对应点P’的坐标.【详解】解:∵⊙A的圆心坐标为(-2,1),平移后到达O(0,0),∴图形向右平移了2个单位,有向下平移1个单位,又∵P的坐标为(m,n),∴对应点P’的坐标为(m+2,n-1),故答案为(m+2,n-1).【点睛】本题主要考查了坐标与图形的变化——平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.三、解答题18.如图,在ABC中:(1)作ABC的平分线交AC于D,作线段BD的垂直平分线EF分别交AB于E,BC于F,垂足为点O.(尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,连接DF,判断DF与边AB的位置关系为_________(直接写出结果,不用说明理由)【答案】(1)详见解析;(2)//DF AB【解析】(1)以点B为圆心任意长度为半径画弧,交AB、BC于两个点,分别以这两点为圆心,大于这两点距离的一半为半径画弧相交于∠ABC内一点,连接点B与这点的射线BD即为角平分线,再以点B、D分别为圆心,大于12BD长为半径画弧线,与AB交于点E,与BC交于点F,连接EF;(2)根据线段垂直平分线的性质及角平分线的性质证明△EBO≌△FBO,得到OE=OF,再证明△BOE ≌△DOF ,得到∠EBO=∠FDO ,即可得到DF ∥AB.【详解】解:(1)如图所示(2)∵EF 垂直平分BD ,∴∠BOE=∠BOF=90°,OB=OD ,∵BD 平分∠ABC ,∴∠EBO=∠FBO ,又OB=OB ,∴△EBO ≌△FBO ,∴OE=OF ,∵∠DOF=∠BOE=90°,∴△BOE ≌△DOF ,∴∠EBO=∠FDO ,∴//DF AB ,故答案为://DF AB .【点睛】此题考查了作图能力:作角平分线和线段的垂直平分线,还考查了角平分线的性质,线段垂直平分线的性质,全等三角形的判定及性质.19.解下列不等式:(1)()()2535x x +-≤ (2)325153x x +-<- 【答案】(1)25x ≥;(2)7x >【解析】(1)根据不等式的性质去括号、移项、合并同类项、系数化成1,求出不等式的解集即可. (2)根据不等式的性质去分母、去括号、移项、合并同类项、系数化成1,求出不等式的解集即可.【详解】解:(1)()()2535x x +-≤去括号,得210315x x +-≤移项,得231510x x ---≤合并同类项,得25x --≤系数化为1,得25x ≥(2)325153x x +-<-去分母,得()()3352515x x +<--去括号,得39102515x x +<--移项,得31025159x x -<---合并同类项,得749x -<-系数化为1,得7x >【点睛】本题考查一元一次不等式的求解方法,解题关键是熟练掌握不等式的性质.20. (1)解方程组22345x y x y ⎧+=⎪⎨⎪=+⎩(2)解不等式组3(2)421152x x x x --≥⎧⎪-+⎨<⎪⎩ 【答案】 (1) 23x y =⎧⎨=⎩;(2) 71x -<≤. 【解析】(1)先对方程组22345x y x y ⎧+=⎪⎨⎪=+⎩中的第一个式子进行通分,再用加减消元法进行求解,即可得到答案;(2) 先分别求出不等式组3(2)421152x x x x --≥⎧⎪-+⎨<⎪⎩中两个不等式的解,再求解集,即可得到答案. 【详解】(1) 由22345x y x y ⎧+=⎪⎨⎪=+⎩得到321245x y x y +=⎧⎨=+⎩①②,由2+⨯①②,得到2x =,将2x =代入②中得到3y =,则原方程组的解为23x y =⎧⎨=⎩. (2) 3(2)421152x x x x --≥⎧⎪⎨-+<⎪⎩①②,解不等式①得,1x ≤, 对②去分母,移项,解不等式得7x >-;所以不等式组的解集是71x -<≤.【点睛】本题考查加减消元法解二元一次方程组和解一元一次不等式组,解题的关键是掌握加减消元法解二元一次方程组和解一元一次不等式的求解方法.21.某镇道路改造工程,由甲、乙两工程队合作完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程,甲工程队30天完成的工程与甲、乙两工程队10天完成的工程相等.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?【答案】(1)甲、乙两工程队单独完成此项工程各需要60天和30天;(2)甲工程队至少单独施工36天.【解析】(1)设乙工程队单独完成此项工程各需要的天数为x ,则甲单独完成需要(x+30)天,根据题意即可列出分式方程进行求解;(2)设甲单独施工y 天,根据题意列出不等式进行求解.【详解】(1)设乙工程队单独完成此项工程各需要的天数为x ,则甲单独完成需要(x+30)天, 根据题意得301110()3030x x x =⋅+++, 解得x=30,经检验,x=30是原方程的解,故甲、乙两工程队单独完成此项工程各需要60天和30天;(2)设甲单独施工y 天, 根据题意得6011603011 3.564y y -⨯+⨯≤+ 解得y ≥36,故甲工程队至少单独施工36天.【点睛】此题主要考查分式方程与不等式的应用,解题的关键是根据题意找到等量关系或不等关系进行求解.22.(10分)每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的新机器可选,其中每台的价格、工作量如下表.经调查:购买一台甲型机器比购买一台乙型机器多2万元,购买2台甲型机器比购买3台乙型机器少6万元.(1)求a 、b 的值;(2)若该公司购买新机器的资金不能超过110万元,请问该公司有几种购买方案?(3)在(2)的条件下,若公司要求每月的产量不低于2040吨,请你为该公司设计一种最省钱的购买方案.【答案】(1)⎩⎨⎧==1012b a ;(2)有6种购买方案;(3)最省钱的购买方案为,应选购甲型设备4台,乙型设备6台. 【解析】试题分析:(1)根据等量关系①购买一台甲型设备的费用—购买一台乙型设备的费用=2万元,②购买3台乙型设备的费用—购买2台甲型设备的费用=6万元,所以可列出方程组,解方程组即可;(2)可设节省能源的新甲设备甲型设备x 台,乙型设备(10﹣x )台,根据不等关系购买甲型设备的费用+购买乙型设备的费用≤110万元,列出不等式,解不等式,再根据x 取非负整数,即可确定购买方案.(3)根据不等关系甲型设备的生产量+乙型设备的的生产量≥2024,解不等式,再由x 的值确定方案,然后进行比较,作出选择.试题解析:解:(1)由题意得:⎩⎨⎧=-=-6232a b b a ,∴⎩⎨⎧==1012b a ; (2)设购买节省能源的新设备甲型设备x 台,乙型设备(10﹣x )台,则:12x+10(10﹣x )≤110,∴x ≤1,∵x 取非负整数∴x=0,1,2,3,4,1,∴有6种购买方案.(3)由题意:240x+180(10﹣x )≥2040,∴x ≥4∴x 为4或1.当x=4时,购买资金为:12×4+10×6=108(万元),当x=1时,购买资金为:12×1+10×1=110(万元),∴最省钱的购买方案为,应选购甲型设备4台,乙型设备6台.考点:二元一次方程组的应用;一元一次不等式的应用.23.因式分解:3221218x x x -+.【答案】22(3)x x -【解析】首先提取公因式2x ,再次运用完全平方公式进行二次分解即可.【详解】原式=22(69)x x x -+=22(3)x x -.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.24.请你在图中以直线l为对称轴作出所给图形的另一半.【答案】见解析【解析】利用轴对称图形的性质,从图形中的各点向l引垂线并延长相同的距离,找到对应点顺次连接.【详解】如图,【点睛】本题主要是根据轴对称图形,找出图形中关键点的对称轴,然后顺次连接成图形.25.阅读材料(1),并利用(1)的结论解决问题(2)和问题(3).(1)如图1,AB∥CD,E为形内一点,连结BE、DE得到∠BED,求证:∠E=∠B+∠D悦悦是这样做的:过点E作EF∥AB.则有∠BEF=∠B.∵AB∥CD,∴EF∥CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.即∠BED=∠B+∠D.(2)如图2,画出∠BEF和∠EFD的平分线,两线交于点G,猜想∠G的度数,并证明你的猜想.(3)如图3,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2,求证:∠FG1E+∠G2=180°.【答案】(2)∠EGF=90°;(3)详见解析.【解析】(2)如图2所示,猜想:∠EGF=90°;由结论(1)得∠EGF=∠BEG+∠GFD,根据EG、FG分别平分∠BEF和∠EFD,得到∠BEF=2∠BEG,∠EFD=2∠GFD,由于BE∥CF到∠BEF+∠EFD=180°,于是得到2∠BEG+2∠GFD=180°,即可得到结论;(3)如图3,过点G1作G1H∥AB由结论(1)可得∠G2=∠1+∠3,∠EG1F=∠BEG1+∠G1FD,得到∠3=∠G2FD,由于FG2平分∠EFD求得∠4=∠G2FD,由于∠1=∠2,于是得到∠G2=∠2+∠4,由于∠EG1F=∠BEG1+∠G1FD,得到∠EG1F+∠G2=∠2+∠4+∠BEG1+∠G1FD=∠BEF+∠EFD,然后根据平行线的性质即可得到结论.【详解】证明:(2)如图2所示,猜想:∠EGF=90°;由结论(1)得∠EGF=∠BEG+∠GFD,∵EG、FG分别平分∠BEF和∠EFD,∴∠BEF=2∠BEG,∠EFD=2∠GFD,∵BE∥CF,∴∠BEF+∠EFD=180°,∴2∠BEG+2∠GFD=180°,∴∠BEG+∠GFD=90°,∵∠EGF=∠BEG+∠GFD,∴∠EGF=90°;(3)证明:如图3,过点G1作G1H∥AB,∵AB∥CD,∴G1H∥CD,由结论(1)可得∠G2=∠1+∠3,∠EG1F=∠BEG1+∠G1FD,∴∠3=∠G2FD,∵FG2平分∠EFD,∴∠4=∠G2FD,∵∠1=∠2,∴∠G2=∠2+∠4,∵∠EG1F=∠BEG1+∠G1FD,∴∠EG1F+∠G2=∠2+∠4+∠BEG1+∠G1FD=∠BEF+∠EFD,∵AB∥CD,∴∠BEF+∠EFD=180°,∴∠EG1F+∠G2=180°.【点睛】本题考查了平行线的性质,角平分线的性质,熟练掌握平行线的性质定理是解题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,已知正比例函数y 1=ax 与一次函数y 1=12x+b 的图象交于点P .下面有四个结论:①a <0; ②b <0; ③当x >0时,y 1>0;④当x <﹣1时,y 1>y 1.其中正确的是( )A .①②B .②③C .①③D .①④【答案】D 【解析】根据正比例函数和一次函数的性质判断即可.【详解】因为正比例函数y 1=ax 经过二、四象限,所以a<0,①正确;一次函数212y x b =+ \过一、二、三象限,所以b>0,②错误; 由图象可得:当x>0时,y 1<0,③错误;当x<−1时,y 1>y 1,④正确;故选D.【点睛】考查一次函数的图象与系数的关系,一次函数与不等式,熟练掌握和灵活运用相关知识是解题的关键.2.若方程组31331x y ax y a +=+⎧+=-⎨⎩的解满足0x y +>,则a 的取值范围是( ) A .1a <-B .1a <C .1a >-D .1a > 【答案】C【解析】根据原方程组的特点,由方程组中两个方程相加可得1122x y a +=+,这样结合0x y +>即可列出关于a 的不等式,解此不等式即可求得a 的取值范围.【详解】把原方程组中两个方程相加可得: 4422x y a +=+,∴1122x y a +=+, 又∵0x y +>,∴11022a +>,解得:1a >-. 故选C.【点睛】本题考查了解二元一次方程组和一元一次不等式的应用,能得出关于a的不等式1122a+>是解答本题的关键.3.要使分式1x有意义,x的取值范围满足()A.x=0 B.x≠0C.x>0 D.x<0 【答案】B【解析】根据分式分母不为1的条件,要使1x在实数范围内有意义,必须x≠1.故选B.4.如图,已知AB∥CD,∠BAD=100°,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠ABC=80°D.∠ADC=80°【答案】D【解析】由平行线的性质得出∠ADC=80°;只有AD∥BC时,才有∠1=∠2,∠3=∠4,∠ABC=80°;即可得出结果.【详解】解:∵AB∥CD,∠BAD=100°,∴∠ADC=80°;只有AD∥BC时,才有∠1=∠2,∠3=∠4,∠ABC=80°;故选:D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.5.一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向右拐50︒,第二次向左拐130︒B.第一次向右拐50︒,第二次向右拐130︒C.第一次向左拐50︒,第二次向左拐130︒D.第一次向左拐30︒,第二次向右拐30︒【答案】D【解析】根据平行线的性质分别判断得出即可.【详解】∵两次拐弯后,按原来的相反方向前进,∴两次拐弯的方向相同,形成的角是同位角,故选:D.【点睛】本题考查平行线的性质,熟练掌握平行线的性质和定义是解题关键.6.为了了解某县七年级9800名学生的视力情况,从中抽查了100名学生的视力,就这个问题来说,下列说法正确的是( )A.9800名学生是总体B.每个学生是个体C.100名学生是所抽取的一个样本D.样本容量是100【答案】D【解析】根据总体、个体、样本、样本容量的定义即可判断.【详解】A.总体是七年级学生的视力情况,故选项错误;B.个体是七年级学生中每个学生的视力情况,故选项错误;C.所抽取的100个学生的视力情况是一个样本,故选项错误;D.样本容量是100,故选项正确.故选D.【点睛】本题考查了总体、个体、样本、样本容量.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”正确理解总体、个体、样本的概念是解决本题的关键.7.如(x+m)与(x+4)的乘积中不含x的一次项,则m的值为()A.﹣1 B.4 C.0 D.-4【答案】D【解析】先算出(x+m)与(x+1)的乘积,找出所有含x的项,合并系数,令含x项的系数等于2,即可求m的值.【详解】(x+m)(x+1)=x2+(m+1)x+1m,∵乘积中不含x的一次项,∴m+1=2,∴m=-1.故选:D.【点睛】本题主要考查多项式乘以多项式的法则,注意不含某一项就是说含此项的系数等于2.8.已知等腰三角形两边a,b,满足|2a﹣3b+5|+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或10【答案】A【解析】由非负数的性质可得a=2,b=3,同时分a为腰或底两种情况讨论可得等腰三角形的周长.【详解】解:因为a、b满足|2a﹣3b+5|+(2a+3b﹣13)2=0, 所以2a-3b+5=0{2a+3b-13=0,解得:a=2{b=3, 则等腰三角形的两边长分别为2和3.当等腰三角形的腰为2时, 等腰三角形的周长为2+2+3=7; 当等腰三角形的腰为3时, 等腰三角形的周长为3+3+2=8,故本题正确答案为A.【点睛】本题主要考查二元一次方程组及其解法和等腰三角形.9.设甲数为x ,乙数为y ,则“甲数的3倍比乙数的一半多1”列成方程是( )A .1322x y += B .1312x y -= C .1312y x -= D .1232y x += 【答案】B 【解析】根据甲数的3倍比乙数的一半多1,可列成方程1312x y -=. 【详解】解:设甲数为x ,乙数为y , 则可列方程为:1312x y -=. 故选:B .【点睛】此题考查了由实际问题抽象出二元一次方程,比较容易,理解题意就可以列出方程.10.下列不是多项式32633x x x +-的因式的是( )A .1x -B .21x -C .xD .3+3x 【答案】A【解析】将多项式32633x x x +-分解因式,即可得出答案.【详解】解:∵32633x x x +-=23(21)3(21)(1)x x x x x x +-=-+又∵3+3x =3(x+1)∴21x -,x ,3+3x 都是32633x x x +-的因式,1x -不是32633x x x +-的因式.故选:A【点睛】此题主要考查了提公因式法与十字相乘法的综合运用,熟练应用十字相乘法分解因式是解题关键.二、填空题题11.若(a-2)a+1=1,则a =__________.【答案】-1或3或1【解析】分析:任何非零实数的零次幂为1,1的任何次幂为1,-1的偶数次幂为1.本题分这三种情况分别进行计算即可得出答案.详解:当a+1=0时,即a=-1时,()031-=;当a -2=1,即a=3时,411=;当a -2=-1,即a=1时,()211-=; 故a=-1或3或1.点睛:本题主要考查的是幂的计算法则,属于基础题型.明确三种计算结果为1的形式是解决这个问题的关键.12.从汽车灯的点O 处发出的一束光线经灯的反光罩反射后沿CO 方向平行射出,如入射光线OA 的反射光线为AB ,∠OAB=75°.在如图中所示的截面内,若入射光线OD 经反光罩反射后沿DE 射出,且∠ODE=22°.则∠AOD 的度数是_____.【答案】53°或97°【解析】分析题目,可知需分两种情况讨论,首先画出图形;可知如果∠AOD 是锐角,则∠AOD=∠COA-∠COD ,如果∠AOD 是钝角,则∠AOD=∠COA+∠COD ;然后由平行线的性质求出∠COA ,∠COD ,从而求出∠AOD 的度数.【详解】分析题意,画出图形.∵AB ∥CF ,∴∠COA=∠OAB .∵∠OAB=75°,∴∠COA=75°.∵DE∥CF,∴∠COD=∠ODE.∵∠ODE=22°,∴∠COD=22°.在图1的情况下,∠AOD=∠COA-∠COD=75°-22°=53°.在图2的情况下,∠AOD=∠COA+∠COD=75°+22°=97°.∴∠AOD的度数为53°或97°.【点睛】本题主要考查平行线的性质定理在实际中的应用.分析入射光线OD的不同位置是解答本题的重点.平行线的性质定理有:①两直线平行,同位角相等;②两直线平行,同旁内角互补;③两直线平行,内错角相等;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.13.如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是______.【答案】.【解析】试题分析:有6种等可能的结果,符合条件的只有2种,则完成的图案为轴对称图案的概率是..考点:轴对称图形的定义,求某个事件的概率.149 ______.【答案】3【解析】分析:根据算术平方根的概念求解即可.详解:因为32=9所以9=3. 故答案为3.点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.15.四个电子宠物捧座位,一开始,小鼠、小猴、小兔、小猫分别坐在1.2,3,4号座位上(如图所示).以后它们不停地变换位置,第一次上下两排交换,第二次是在第一次换位后,再左右两列交换位置,第三次上下两排交换,第四次再左右两列交换…这样一直下去,则第2018次交换位置后,小兔了坐在_____号位上.【答案】1【解析】根据题意,不难发现:小鼠所在的号位的规律是4个一循环,由此规律可求解.【详解】因为1018÷4=504…1,即第1018次交换位置后,小鼠所在的号位与第三次交换的位置相同,即小鼠所在的座号是1,故答案为1.【点睛】此题主要考查了学生对图形的变化类这一知识点的理解和掌握,能够发现小鼠所在的号位的规律是4个一循环,是解答此题的关键,然后即可进行计算.16.求值:33(2019)-=_________.【答案】-2019.【解析】根据立方根的定义计算得出答案。

【精选5份合集】2020-2021年常州市某达标实验中学七年级下学期期末数学学业水平测试试题

【精选5份合集】2020-2021年常州市某达标实验中学七年级下学期期末数学学业水平测试试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.根据2010~2014年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息(如图所示),下列判断正确的是( )A.2010~2014年杭州市每年GDP增长率相同B.2014年杭州市的GDP比2010年翻一番C.2010年杭州市的GDP未达到5400亿元D.2010~2014年杭州市的GDP逐年增长【答案】D【解析】A、每年的增长量逐渐减小,所以每年GDP增长率不相同,所以A选项错误;B、2014年的GDP没有2010年的2倍,所以B选项错误;C、2010年杭州市的GDP超过到5400亿元,所以C选项错误;D、2010~2014年杭州市的GDP逐年增长,所以D选项正确.故选D.2.九年级一班同学根据兴趣分成A、B、C、D、E 五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则 D 小组的人数是()A.10 人B.l1 人C.12 人D.15 人【答案】C【解析】从条形统计图可看出 A 的具体人数,从扇形图找到所占的百分比,可求出总人数,然后结合D 所占的百分比求得D小组的人数.【详解】总人数=510%=50(人),D 小组的人数=50×86.4360=12(人)),故选C.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,读懂统计图,从不同的统计图中找到必要的信息进行解题是关键.3.下列图形中,能通过其中一个三角形平移得到的是()A.B.C.D.【答案】C【解析】利用平移的性质,结合轴对称、旋转变换的定义判断得出即可.【详解】A、可以通过轴对称得到,故此选项不符合题意;B、可以通过旋转得到,故此选项不符合题意;C、可以通过平移得到,故此选项符合题意;D、可以通过旋转得到,故此选项不符合题意;故选C.【点睛】此题主要考查了平移的性质以及轴对称、旋转变换图形,正确把握定义是解题关键.平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等.4.下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,6【答案】A【解析】试题分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.解:A、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;B、∵72+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选A.5.若每个人的工作效率相同,a个人b天做c个零件,那么b个人做a个零件所需的天数为()A.2acB.2caC.2caD.2ac【答案】A【解析】工作时间=工作总量÷工作效率,需先列出1个人1天的工作效率的代数式,再列b个人作a个零件所需的天数.【详解】∵1个人1天做零件:cab,则b个人做a个零件需要的天数:2a ac cbab=•.故选:A.【点睛】解决问题的关键是读懂题意,找到所求的量的等量关系.关系为:工作时间=工作总量÷工作效率.6.如图所示,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角【答案】A【解析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义.7.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为,第2幅图形中“●”的个数为,第3幅图形中“●”的个数为,…,以此类推,则的值为()A .B .C .D .【答案】B【解析】首先根据图形中“●”的个数得出数字变化规律,进而求出即可.【详解】a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2); ∴==(1−+−+−+−+…+−)=(1+−-)=,故选:B .【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律解决问题.8.在数轴上表示实数a 和b 的点的位置如图所示,那么下列各式成立的是( )A .a b <B .a b >C .0ab >D .||||a b > 【答案】B【解析】根据数轴上的点所表示的数,右边的总比左边的大,且离原点的距离越远,则该点所对应的数的绝对值越大,进行分析.【详解】解:A 、根据a 在b 的右边,则a >b ,故本选项错误;B 、根据a 在b 的右边,则a >b ,故本选项正确;C 、根据a 在原点的右边,b 在原点的左边,得b <0<a ,则ab <0,故本选项错误;D 、根据b 离原点的距离较远,则|b|>|a|,故本选项错误.故选:B .【点睛】此题考查了数轴上的点和实数之间的对应关系,同时能够根据点在数轴上的位置判断它们所对应的数之间的大小关系以及绝对值的大小关系.9.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( )A .23x y =+B .32y x +=C .23y x =-D .32y x =-【答案】C【解析】将x 看做常数移项求出y 即可得.【详解】由2x-y=3知2x-3=y ,即y=2x-3,故选C .【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .10.在下列各式中正确的是( )A 2=-B .3=C 8=D 2=【答案】D【解析】根据算术平方根和平方根的定义逐一判断即可.【详解】A . 2==,故本选项错误;B . 3=±,故本选项错误;C .4=,故本选项错误;D . 2==,故本选项正确.故选D .【点睛】此题考查的是求一个数的算术平方根和平方根,掌握算术平方根和平方根的定义是解决此题的关键.二、填空题题11.多项式﹣2m 3+3m 2﹣12m 的各项系数之积为_____ 【答案】3【解析】根据多项式各项系数的定义求解.多项式的各项系数是单项式中各项的系数,由此即可求解.【详解】多项式﹣2m 3+3m 2﹣12m 的各项系数之积为: -2×3×(-12)=3. 故答案为:3.【点睛】本题考查了多项式的相关定义,解题的关键是熟练掌握多项式的各项系数和次数的定义.12.如图,已知白棋A 、B 的坐标分别为A (-2,1)B (-6,0),则黑棋C 的坐标为 ______【答案】(-1,1)【解析】根据已知A ,B 两点的坐标建立坐标系,然后确定其它点的坐标.【详解】解:∵A (-2,1),B (-6,0),∴建立如图所示的平面直角坐标系,∴C (-1,1).故答案为:(-1,1).【点睛】本题考查了坐标确定位置,利用A 点坐标确定平面直角坐标系是解题关键.13.观察下列各式:(1)42-12=3×5;(2)52-22=3×7;(3)62-32=3×9;………则第n (n 是正整数)个等式为_____________________________.【答案】(n+3)2-n 2=3(2n+3)【解析】试题解析:观察分析可得:1式可化为(1+3)2-12=3×(2×1+3);2式可化为(2+3)2-22=3×(2×2+3);…故则第n 个等式为(n+3)2-n 2=3(2n+3).考点:规律型:数字的变化类.-14.已知3m x =,2n x =,则m n x -=______. 【答案】32【解析】直接利用同底数幂的除法运算法则得出答案.【详解】解:∵3m x =,2n x =∴32m n m n x x x -=÷= 故答案为:32【点睛】 此题主要考查了同底数幂的乘除运算,正确将原式变形是解题关键.15.某种水果的进价为4.5元/千克,销售中估计有10%的正常损耗,商家为了避免亏本,售价至少应定为_____元/千克.【答案】1【解析】设商家把售价应该定为每千克x 元,因为销售中有1%的水果正常损耗,故每千克水果损耗后的价格为x (1﹣1%),根据题意列出不等式即可.【详解】解:设商家把售价应该定为每千克x 元,根据题意得:x (1﹣10%)≥4.1,解得,x≥1,故为避免亏本,商家把售价应该至少定为每千克1元.故答案为:1.【点睛】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据“去掉损耗后的售价≥进价”列出不等式即可求解.16.如图,ABCD 是一正方形纸片,上下对折后得到折痕.EF 再沿过点D 的折痕将A 角翻折.使得点A 落在EF 上()A ',折痕交AE 于点G ,那么ADG ∠=_____.【答案】15°【解析】过A '作A M AD '⊥交AD 于M ,根据正方形性质以及折叠性质证明1=2A M A D '',从而得出A DA '∠=30°,据此再进一步求解即可.【详解】过A '作A M AD '⊥交AD 于M ,则A M AE '=∵四边形ABCD 为正方形,∴AB=AD ,∠A=∠B=90°,利用折叠性质可知:=A D AD ',∠ADG=A DG '∠,BE=AE ,∴AE=12AB , ∵A M AE '=, ∴1122A M AB A D ''==, ∴A DA '∠=30°,∴∠ADG=A DG '∠=15°,故答案为:15°.【点睛】本题主要考查了角平分线性质与正方形性质和直角三角形性质的综合运用,熟练掌握相关概念是解题关键.17.若m 、n 互为相反数,则5m+5n=______【答案】1【解析】根据互为相反数的两个数的和等于1写出m+n=1,然后代入计算即可求解.【详解】∵m ,n 互为相反数,∴m+n=1,∴5m+5n =5(m+n )=1.故答案是:1.【点睛】本题主要考查相反数的性质,相反数的和为1.三、解答题18.如图,直线EF 分别与直线AB ,CD 相交于点P 和点Q ,PG 平分∠APQ ,QH 平分∠DQP ,并且∠1=∠2,说出图中哪些直线平行,并说明理由.【答案】见解析【解析】试题分析:首先根据角平分线的性质可得11,2GPQ APQ ∠=∠=∠ 122PQH EQD ∠=∠=∠,根据条件∠1=∠2,可得GPQ=∠PQH ,∠APQ=∠PQD ,根据内错角相等,两直线平行可证明AB ∥CD,PG ∥QH.试题解析:AB ∥CD,PG ∥QH ,理由:∵PG 平分∠APQ ,QH 平分∠DQP , 111,222GPQ APQ PQH EQD ∴∠=∠=∠∠=∠=∠, ∵∠1=∠2,∴∠GPQ=∠PQH ,∠APQ=∠PQD ,∴AB ∥CD,PG ∥QH.19.如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC(1)若∠B=70°,∠C=30°,求;①∠BAE 的度数.②∠DAE 的度数.(2)探究:如果只知道∠B=∠C+40°,那么能求岀∠DAE 的度数吗?若能,请你写出求解过程;若不能,请说明理由.【答案】(1)①∠BAE=40°;②∠DAE=20°;(2)∠DAE=20°.【解析】(1)①利用三角形的内角和定理求出∠BAC ,再利用角平分线定义求∠BAE .②先求出∠BAD ,就可知道∠DAE 的度数.(2)用∠B ,∠C 表示∠DAE ,即可求岀∠DAE 的度数.【详解】解:(1)①∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵AE 平分∠BAC ,∴∠BAE=40°;②∵AD ⊥BC ,∠B=70°,∴∠BAD=90°-∠B=90°-70°=20°,而∠BAE=40°,∴∠DAE=20°;(2)∵AE 为角平分线,∴∠BAE=12(180°-∠B-∠C ), ∵∠BAD=90°-∠B ,∴∠DAE=∠BAE-∠BAD=12(180°-∠B-∠C )-(90°-∠B )=12(∠B-∠C ), 又∵∠B=∠C+40°,∴∠B-∠C=40°,∴∠DAE=20°.【点睛】 此题考查了三角形内角和定理,熟练运用角平分线定义和三角形的内角和定理是解题的关键.20.为了解学生课余活动情况,某校对参加绘画、书法、舞蹈、乐器这四个课外兴趣小组的人员分布情况进行抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下面的问题:(1)此次共调查了多少名同学?(2)将条形图补充完整,并计算扇形统计图中书法部分的圆心角的度数;(3)如果该校共有1000名学生参加这4个课外兴趣小组,而每个教师最多只能辅导本组的20名学生,估计每个兴趣小组至少需要准备多少名教师?【答案】(1)200(2)36(3)绘画需辅导教师23(名)书法需辅导教师5(名)舞蹈需辅导教师8(名)乐器需辅导教师15(名)【解析】解:(1)200%4590=÷………2分(2)画图(如下) …………4分乐器 舞蹈 书法 绘画 组别。

【精选3份合集】2020-2021年常州市某达标实验中学七年级下学期期末综合测试数学试题

【精选3份合集】2020-2021年常州市某达标实验中学七年级下学期期末综合测试数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.不等式组5511x xx m+<+⎧⎨->⎩的解集是x>1,则m的取值范围是()A.m≥1B.m≤1C.m≥0D.m≤0【答案】D【解析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【详解】解:不等式整理得:11xx m>⎧⎨>+⎩,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0.故选D.【点睛】本题考查了不等式组的解集的确定.2.小明和哥哥从家里出发去买书,从家出发走了20分钟到一个离家1000米的书店.小明买了书后随即按原路返回;哥哥看了20分钟书后,用15分钟返家.下面的图象中哪一个表示哥哥离家时间与距离之间的关系()A.B.C.D.【答案】D【解析】解:根据题意,从20分钟到40分钟哥哥在书店里看书,离家距离没有变化,是一条平行于x轴的线段.故选D.3.如图,直线l1∥l2,∠1=20°,则∠2+∠3等于()A.150°B.165°C.180°D.200°【答案】D【解析】过∠2的顶点作l2的平行线l,则l∥l1∥l2,由平行线的性质得出∠4=∠1=20°,∠BAC+∠3=180°,即可得出∠2+∠3=200°.【详解】过∠2的顶点作l2的平行线l,如图所示:则l∥l1∥l2,∴∠4=∠1=20°,∠BAC+∠3=180°,∴∠2+∠3=180°+20°=200°;故选:D.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.4.平面上五条直线l1,l2,l3,l4和l5相交的情形如图所示,根据图中标出的角度,下列叙述正确的是()A.1l和3l不平行,2l和3l平行B.1l和3l不平行,2l和3l不平行C.1l和3l平行,2l和3l平行D.1l和3l平行,2l和3l不平行【答案】A【解析】直接利用平行线的判定方法分别判断得出答案.【详解】解:由题意可得:∠1=88°,利用同位角相等,两直线平行可得l2和l3平行,∵92°+92°≠180°,∴l1和l3不平行.故选:A.【点睛】此题主要考查了平行线的判定,正确掌握判定方法是解题关键.5.人体淋巴细胞的直径大约是0. 00006米,将0. 00006用科学记数法表示正确的是( )A .6610-⨯B .5610-⨯C .50.610-⨯D .7610-⨯【答案】B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00006=5610-⨯,故选:B.【点睛】本题考查科学记数法—表示较小的数,解题的关键是掌握科学记数法—表示较小的数.6.如图,把6张长为a 、宽为b (a >b )的小长方形纸片不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示,设这两个长方形的面积的差为S .当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a 、b 满足( )A .a =1.5bB .a =2.5bC .a =3bD .a =2b【答案】D 【解析】表示出左上角与右下角部分的面积,求出之差,根据差与BC 无关即可求出a 与b 的关系式.【详解】解:左上角阴影部分的长为AE ,宽为AF=a ,右下角阴影部分的长为PC ,宽为2b ,∵AD=BC ,即AE+ED=AE+4b ,BC=BP+PC=a+PC ,∴AE+4b=a+PC ,∴AE=a-4b+PC ,∴阴影部分面积之差S=AE •AF-PC •CG=aAE-2bPC=a (a-4b+PC )-2bPC=(a-2b )PC+a 2-4ab ,则a-2b=0,即a=2b.故选:D.【点睛】本题主要考查整式的混合运算,解题的关键是结合图形列出面积差的代数式,并熟练掌握整式的混合运算顺序和运算法则.7.如图所示,下列说法不正确的是()A.线段BD是点B到AD的垂线段B.线段AD是点D到BC的垂线段C.点C到AB的垂线段是线段AC D.点B到AC的垂线段是线段AB【答案】B【解析】根据点到直线的距离的意义对各个选项一一判断即可得出答案.【详解】解:A、线段BD是点B到AD的垂线段,故A正确;B、线段AD是点A到BC的垂线段,故B错误;C、点C到AB的垂线段是线段AC,故C正确;D、点B到AC的垂线段是线段AB,故D正确;故选B.【点睛】本题考查了点到直线的距离,利用点到直线的距离的意义是解题关键.8.若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A.11B.-1C.1D.-11 【答案】A【解析】由x与y互为相反数,得到y=-x,代入方程组计算即可求出m的值.【详解】解:由题意得:y= -x,代入方程组得:33221x x mx x m-++⎧⎨-⎩=①=②,消去x得:32123m m+-=,即3m+9=4m-2,解得:m=1.故选A.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 9.下列说法正确的是( )A .经过一点有无数条直线与已知直线平行B .在同一平面内,有且只有一条直线与已知直线平行C .经过直线外一点,有且只有一条直线与已知直线平行D .以上说法都不正确【答案】C【解析】根据经过直线外一点有且只有一条直线与已知直线平行即可解题.【详解】解:A. 经过直线外一点有且只有一条直线与已知直线平行,所以错误,B. 在同一平面内,(经过直线外一点)有且只有一条直线与已知直线平行,所以错误,C. 经过直线外一点,有且只有一条直线与已知直线平行,正确.故选C.【点睛】本题考查了平面内平行线的性质,属于简单题,熟悉概念是解题关键.10.小兰:“小红,你上周买的笔和笔记本的价格是多少啊?”小红:“哦,…,我忘了!只记得先后买了两次,第一次买了 5 支笔和 10 本笔记本共花了 42 元钱,第二次买了 10 文笔和 5 本笔记本共花了 30 元钱.”请根据小红与小兰的对话,求得小红所买的笔和笔 记本的价格分别是( )A .0.8 元/支,2.6 元/本B .0.8 元/支,3.6 元/本C .1.2 元/支,2.6 元/本D .1.2 元/支,3.6 元/本【答案】D【解析】首先设小红所买的笔的价格是x 元/支,笔记本的价格是y 元/本,根据关键语句“第一次买了5支笔和10本笔记本共花了42元钱,”可得方程5x+10y=42,“第二次买了10支笔和5本笔记本共花了30元钱”可得方程10x+5y=30,联立两个方程,再解方程组即可.【详解】解:设小红所买的笔的价格是x 元/支,笔记本的价格是y 元/本,由题意得: 5104210530x y x y +=⎧⎨+=⎩ 解得: 1.23.6x y =⎧⎨=⎩故答案为D.【点睛】本题主要考查了二元一次方程组的应用,关键是弄懂题意,找出题目中的等量关系,再列出方程组即可.二、填空题题11.颐和园坐落在北京西郊,是第一批全国重点文物保护单位之一.小万去颐和园参加实践活动时发现有的窗户造型是正八边形,如下图所示,则∠1=__°.【答案】1【解析】利用正八边形的外角和等于360度即可求出答案.【详解】解:360°÷8=1°,故答案为:1.【点睛】本题主要考查了多边形的外角和定理,明确任何一个多边形的外角和都是360°是解题的关键. 12.如图,点D ,B ,C 在同一直线上,60A ∠=︒,25D ∠=︒,145∠=︒,则C ∠=______°.【答案】50.【解析】在△BDE 中利用三角形的内角和为180°求得∠DBE 的度数,然后利用三角形的外角性质求解即可.【详解】解:∵25D ∠=︒,145∠=︒,∴∠DBE=180°-∠D ﹣∠1=110°,∴∠C=∠DBE ﹣∠A=110°﹣60°=50°.故答案为:50.【点睛】本题主要考查三角形的内角和与外角性质,解此题的关键在于熟练掌握其知识点.13.已知b =2,且ab<0,a b +______ ・【答案】0【解析】根据绝对值的意义以及二次根式的定义即可求解. b =2,∴b=4,∵ab<0,所以a ,b 为异号,∵b>0,∴a<0,∵|a| =4,∴-a=4,a=-4, a+b=-4+4=0.本题主要考查了绝对值的意义以及二次根式的定义,注意a ,b 符号是解题关键.14.如图所示,已知在ABC 中,BE 平分ABC ∠交AC 于点E ,CD AC ⊥交AB 于点D ,BCD A ∠=∠,则BEA ∠的度数为________.【答案】135︒【解析】由已知条件只能得到∠ACD=90°,由三角形外角性质可知∠BEA=∠ACD+∠BCD+∠CBE ,因此求出∠BCD+∠CBE 的度数即可得到答案;由垂直的定义及三角形内角和定理易得∠A+∠ABC+∠BCD=90°,结合角平分线的概念及∠BCD=∠A 即可得到∠BCD+∠CBE 的度数,进而可对题目进行解答.【详解】∵CD ⊥AC ,∴∠ACD=90°,∴∠A+∠ABC+∠BCD=180°-∠ACD=90°.∵BE 平分∠ABC ,∴∠ABC=2∠CBE.∵∠BCD=∠A ,∴∠A+∠ABC+∠BCD=2∠BCD+2∠CBE=90°,∴∠BCD+∠CBE=45°,∴∠BEA=∠ACD+∠BCD+∠CBE=135°.故答案为:135︒.【点睛】本题考查了角平分线的性质定理、垂线的定义、三角形内角和、三角形外角性质,通过外角性质将角与角联系起来是解题的关键.15.若不等式组25122x a x x +>⎧⎨->-⎩有解,则a 的取值范围是_____. 【答案】a >1【解析】分别解出两个不等式,根据“大小小大取中间”,得到关于a 的不等式即可求解.【详解】解:解不等式x+1a≥5得:x≥5﹣1a ,解不等式1﹣1x >x ﹣1得:x <1,∵该不等式组有解,∴5﹣1a <1,解得:a >1,故答案为:a >1.本题考查根据不等式解集的情况求参数,熟记“同大取大,同小取小,大小小大取中间,大大小小无解”是解题的关键.16.若m =________,然后依据算术平方根的性质可求得m 的值,最后代入求得代数式的值即可.,且m∴,【点睛】本题考查了算术平方根,解题的关键是熟练的掌握算术平方根的定义以及运算.17.因式分解:269x x -+= .【答案】2(3)x -.【解析】解:269x x -+=2(3)x -.故答案为2(3)x -.考点:因式分解-运用公式法.三、解答题18.企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:(1)宣传小组抽取的捐款人数为_____人,请补全条形统计图;(2)在扇形统计图中,求100元所对应扇形的圆心角的度数;(3)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?【答案】50(2) 72°(3) 84000【解析】试题分析:(1)根据题意即可得到结论;求得捐款200元的人数即可补全条形统计图;(2)用周角乘以100元所占的百分比即可求得圆心角;(3)根据题意即可得到结论.试题解析:(1)12÷24%=50(人)补图如下:(2)1050×360°=72°.(3)150(50×4+100×10+150×12+200×18+300×6)×500=84000(元).19.完成下面的证明:如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD,求证:∠EGF=90°.证明:∵AB∥GH(已知),∴∠1=∠3(),又∵CD∥GH(已知),∴(两直线平行,内错角相等)∵AB∥CD(已知),∴∠BEF+=180°(两直线平行,同旁内角互补)∵EG平分∠BEF(已知),∴∠1=12(角平分线定义),又∵FG平分∠EFD(已知),∴∠2=12∠EFD(),∴∠1+∠2=12(+∠EFD)∴∠l+∠2=90°,∴∠3+∠4=90°(等量代换),即∠EGF=90°.【答案】两直线平行,内错角相等;∠2=∠4;∠EFD;∠BEF;角平分线定义;∠BEF【解析】依据平行线的性质和判定定理以及角平分线的定义,结合解答过程进行填空即可.【详解】∵AB∥GH(已知),∴∠1=∠3(两直线平行,内错角相等),又∵CD∥GH(已知),∴∠2=∠4(两直线平行,内错角相等)∵AB∥CD(已知),∴∠BEF+∠EFD=180°(两直线平行,同旁内角互补)∵EG平分∠BEF(已知)∴∠1=12∠BEF(角平分线定义),又∵FG平分∠EFD(已知),∴∠2=12∠EFD(角平分线定义),∴∠1+∠2=12(∠BEF+∠EFD)∴∠1+∠2=90°,∴∠3+∠4=90°(等量代换),即∠EGF=90°.故答案为两直线平行,内错角相等;∠2=∠4;∠EFD;∠BEF;角平分线定义;∠BEF.【点睛】考查的是平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.20.观察下列等式:①21321⨯-=-②22431⨯-=-③23541⨯-=-(1)按以上等式的规律,写出第4个等式;(2)根据以上等式的规律,写出第n 个等式;(3)说明(2)中你所写的等式是否一定成立.【答案】(1)24651⨯-=-;(2) 2(2)(1)1n n n +-+=-;(3)等式一定成立,见解析【解析】(1)根据①②③的算式中,变与不变的部分,找出规律,出新的算式;(2)将(1)中,发现的规律,由特殊到一般,得出结论即可;(3)进一步利用整式的混合运算方法加以证明.【详解】解:(1)第4个等式:24651⨯-=-(2)第n 个等式:2(2)(1) 1n n n +-+=-(3)∵左边222(2)(1)2211n n n n n n n =+-+=+---=-=右边,∴等式一定成立【点睛】此题考查数字的变化规律,关键是由特殊到一般,得出一般规律,运用整式的运算进行检验.21.解不等式(组),并将它的解集在数轴上表示出来.(1)354173x x -+-<; (2) 3(2)4,211.52x x x x -->⎧⎪-+⎨≤⎪⎩ 【答案】(1)x <32;(2) -7≤x <1.【解析】(1)对不等式354173x x -+-<两边同乘以21,然后去括号,再移项、系数化为1,从而求出不等式的解集;(2)将不等式组中的不等式分别解出来,再根据不等式组解集的口诀:大小小大中间找,来求出不等式组的解.【详解】(1)去分母,得3(3x-5)-21<7(x+4)去括号,得9 x -15-21<7 x+28移项,得9 x -7 x <28+15+21合并同类项,得2 x <64系数化为1,得x <32这个不等式的解集在数轴上的表示如下:(2)3(2)4, 211.52x xx x-->⎧⎪⎨-+≤⎪⎩①②解不等式①,得x<1;解不等式②,得x≥-7,所以不等式组的解集为-7≤x<1.这个不等式组的解集在数轴上的表示如下:【点睛】主要考查了一元一次不等式组解集的求法,利用不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解),来求解.还考查把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.22.图书馆与学校相距600m,明明从学校出发步行去图书馆,亮亮从图书馆骑车去学校两人同时出发,匀速相向而行,他们与学校的距离S(m)与时间t(s)的图象如图所示:根据图象回答:(1)明明步行的速度为m/s;亮亮骑车的速度为m/s.(2)分別写出明明、亮亮与学校的距离S1、S2与时间t的关系式.(3)通过计算求出a的值.【答案】(1)2;3;(2)S1=2t,S2=﹣3t+600;(3)a的值为1.【解析】(1)根据图象可知亮亮用200秒骑车从图书馆到学校,而明明用300秒从学校到图书馆,于是可求出二人的速度;(2)用待定系数法分别求出函数关系式即可;(3)当S1=S2时,求出t的值就是a的值.【详解】解:(1)由图象可知:亮亮用200秒骑车从图书馆到学校,而明明用300秒从学校到图书馆, ∴亮亮的速度为:600÷200=3米/秒,明明的速度为600÷300=2米/秒,故答案为:2,3;(2)设S 1与t 的关系式为S 1=k 1t ,把(300,600)代入得:600=300k 1,解得:k 1=2,∴S 1=2t ,设S 2与t 的关系式为S 2=k 2t+b ,把(0,600)(200,0)代入得:26002000b k b =⎧⎨+=⎩, 解得:k 2=﹣3,b =600,∴S 2=﹣3t+600,答:明明、亮亮与学校的距离S 1、S 2与时间t 的关系式分别为S 1=2t ,S 2=﹣3t+600;(3)当S 1=S 2时,即2t =﹣3t+600,解得t =1,即a =1.答:a 的值为1.【点睛】本题考查待定系数法求一次函数的关系式以及一次函数图象上点的坐标特征,从图象中获取有用的数据是解决问题的关键.23.如图,在平面直角坐标系中,点A ,B 的坐标分别为A(0,a),B(b ,a),且a ,b 满足(a ﹣3)2+|b ﹣6|=0,现同时将点A ,B 分别向下平移3个单位,再向左平移2个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,AB .(1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABCD ;(2)在y 轴上是否存在一点M ,连接MC ,MD ,使S △MCD =13S 四边形ABCD ?若存在这样一点,求出点M 的坐标,若不存在,试说明理由;(3)点P 是直线BD 上的一个动点,连接PA ,PO ,当点P 在BD 上移动时(不与B ,D 重合),直接写出∠BAP ,∠DOP ,∠APO 之间满足的数量关系.【答案】(1)18;(2)M (0,2)或(0,﹣2);(3)①当点P 在线段BD 上移动时,∠APO =∠DOP+∠BAP ;②当点P 在DB 的延长线上时,∠DOP =∠BAP+∠APO ;③当点P 在BD 的延长线上时,∠BAP =∠DOP+∠APO .【解析】(1)根据非负数的性质分别求出a、b,根据平移规律得到点C,D的坐标,根据坐标与图形的性质求出S四边形ABCD;(2)设M坐标为(0,m),根据三角形的面积公式列出方程,解方程求出m,得到点M的坐标;(3)分点P在线段BD上、点P在DB的延长线上、点P在BD的延长线上三种情况,根据平行线的性质解答.【详解】解:(1)∵(a﹣3)2+|b﹣1|=0,∴a﹣3=0,b﹣1=0,,解得,a=3,b=1.∴A(0,3),B(1,3),∵将点A,B分别向下平移3个单位,再向左平移2个单位,分别得到点A,B的对应点C,D,∴C(﹣2,0),D(4,0),∴S四边形ABDC=AB×OA=1×3=18;(2)在y轴上存在一点M,使S△MCD=S四边形ABCD,设M坐标为(0,m).∵S△MCD=13S四边形ABDC,∴12×1|m|=13×18,解得m=±2,∴M(0,2)或(0,﹣2);(3)①当点P在线段BD上移动时,∠APO=∠DOP+∠BAP,理由如下:如图1,过点P作PE∥AB,∵CD由AB平移得到,则CD∥AB,∴PE∥CD,∴∠BAP=∠APE,∠DOP=∠OPE,∴∠BAP+∠DOP=∠APE+∠OPE=∠APO;②当点P在DB的延长线上时,同①的方法得,∠DOP=∠BAP+∠APO;③当点P在BD的延长线上时,同①的方法得,∠BAP=∠DOP+∠APO.【点睛】本题考查的是非负数的性质、平移的性质、平行线的性质,掌握平移的性质、灵活运用分情况讨论思想是解题的关键.24.如图,在小明的一张地图上,有A 、B 、C 三个城市,但是图上城市C 已被墨迹污染,只知道∠BAC =∠α,∠ABC =∠β,你能用尺规帮他在图中确定C 城市的具体位置吗?【答案】见解析【解析】连接AB ,以AB 为边,A 为顶点作∠BAC =α,以B 为顶点作∠ABC =∠β,两边交于点C ,如图所示.【详解】如图所示,点C 为求作的点.【点睛】此题考查作图-应用与设计作图,熟练掌握全等三角形的判定方法(ASA )是解题的关键.25.解下列方程(不等式)组(Ⅰ)34225x y x y +=⎧⎨-=⎩; (Ⅱ)513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩. 【答案】(Ⅰ)21x y =⎧⎨=-⎩;(Ⅱ)24x <≤. 【解析】(1)用加减消元法解方程组即可;(2)分别解不等式求出解集即可.【详解】解:(1)34225x y x y +=⎧⎨-=⎩①② ②×4得:8420x y -=③,①+③得:1122x =,解得:2x =,。

《试卷5份集锦》常州市某达标实验中学2020-2021年七年级下学期期末学业质量监测数学试题

《试卷5份集锦》常州市某达标实验中学2020-2021年七年级下学期期末学业质量监测数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.在3.14、··0.13).A.4个B.3个C.2个D.1个【答案】D【解析】无理数就是无限不循环小数,由此即可判定选择项.【详解】解:在3.14、0.133,,,无理数的个数是1个.故选:D.【点睛】本题考查无理数的定义.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.点M(m+3,m+1)在x轴上,则点M坐标为()A.(0,﹣4)B.(2,0)C.(﹣2,0)D.(0,﹣2)【答案】B【解析】直接利用x轴上点的坐标特点得出m的值,进而得出答案.【详解】∵点M(m+3,m+1)在x轴上,∴m+1=0,解得:m=-1,故m+3=2,则点M坐标为:(2,0).故选B.【点睛】此题主要考查了点的坐标,正确得出m的值是解题关键.3.若m>n,则下列各式中不成立的是()A.m-5>n-5 B.m+4>n+4 C.6m>6n D.-3m>-3n【答案】D【解析】根据不等式的性质逐个判断即可.【详解】A 正确;因为在不等式的两边同时加上或减去同一个数,不等式的方向不变;B 正确;因为在不等式的两边同时加上或减去同一个数,不等式的方向不变;C 正确;因为在不等式的两边同时乘以一个大于0 的数,不等式的方向不变;D 错误;因为在不等式的两边同时乘以一个小于0的数,不等式要变号;【点睛】本题主要考查不等式的性质,这是不等式的重要知识点,也是考试的必考点,应当熟练掌握.4.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x 千米/时,根据题意,下列方程正确的是( )A .2001801452x x =⋅+B .2002201452x x =⋅+ C .2001801452x x =⋅- D .2002201452x x =⋅- 【答案】B 【解析】试题分析:设该长途汽车在原来国道上行驶的速度为x 千米/时,根据题意得2002201452x x =⋅+. 故选B .考点:由实际问题抽象出分式方程.5.如图,在ABC 中,AD 是角平分线,DE AB ⊥于点E ,ABC 的面积为28,AB 8=,DE 4=,则AC 的长是( )A .8B .6C .5D .4【答案】B 【解析】过点D 作DF AC ⊥于F ,根据角平分线的性质可得DF=DE ,然后利用ABC 的面积公式列式计算即可得解.【详解】过点D 作DF AC ⊥于F ,AD 是ABC 的角平分线,DE AB ⊥,DE DF 4∴==,ABC 11S 84AC 42822∴=⨯⨯+⨯=, 解得AC 6=,故选B .本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.6.如图,下列说法中错误的是( )A .,GBD HCE ∠∠是同位角B .,ABD ACH ∠∠是同位角C .,FBC ACE ∠∠是内错角D .,GBC BCE ∠∠是同旁内角【答案】A 【解析】根据同位角、同旁内角、内错角的定义结合图形判断.【详解】解:A 、∠GBD 和∠HCE 不符合同位角的定义,故本选项合题意;B 、∠ABD 和∠ACH 是同位角,故本选项不合题意;C 、∠FBC 和∠ACE 是内错角,故本选项不合题意;D 、∠GBC 和∠BCE 是同旁内角,故本选项不合题意;故选:A .【点睛】本题考查了同位角、同旁内角、内错角的定义,属于基础题,正确且熟练掌握同位角、同旁内角、内错角的定义和形状,是解题的关键.7.下列分式中,与3y x相等的是( ) A .223y xB .226xy xC .3y x ---D .26xy x【答案】B 【解析】根据分式的基本性质逐一判断即可得.【详解】解:A 、223y x ≠3y x ,此选项不符合题意; B 、226xy x =3y x,符合题意; C 、3y x ---=﹣3y x ≠3y x,不符合题意; D 、26xy x =6x y ≠3y x ,不符合题意; 故选B .本题主要考查分式的基本性质,解题的关键是掌握分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.分子、分母、分式本身同时改变两处的符号,分式的值不变.8.11的平方根是()A.B.-C.D.121【答案】C【解析】根据平方根的定义即可解答.【详解】11的平方根是,故选C.【点睛】本题考查了平方根的定义,熟练运用平方根的定义是解决问题的关键.9.已知(x-m)(x+n)=x2-3x-4,则mn的值为( )A.4 B.-4 C.-3 D.3【答案】A【解析】根据多项式乘多项式法则把等式的左边展开,根据题意求出m、n的值,计算即可.【详解】(x-m)(x+n)=x2+nx-mx-mn= x2+(n-m)x-mn,则mn=4故选A【点睛】此题考查多项式乘多项式,解题关键在于掌握运算法则10.下列实数中,是无理数的是()A.-3.5 B.0 C2D9【答案】C【解析】由于无理数就是无限不循环小数.有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、-3.5是有理数,故A选项错误;B.0是有理数,故B选项错误;2是无理数,故C选项正确;9,是有理数,故D选项错误.故选:C.【点睛】此题主要考查了无理数的定义,初中常见的无理数有三类:①π2;③有规律但无限不循环的数,如0.8080080008…(每两个8之间依次多1个0).二、填空题题11.分解因式4()81()m x y y x -+-=__.【答案】2()(9)(3)(3)x y m m m -++-【解析】先将原式变形,再提取公因式(x-y ),然后利用平方差公式继续分解因式.【详解】解:原式442()81()()(81)()(9)(3)(3)m x y x y x y m x y m m m =---=--=-++-,故答案为:2()(9)(3)(3)x y m m m -++-【点睛】本题考查提公因式法,熟练掌握运算法则是解题关键.12.计算下列各题:(1)27-=_____; (2)()()32-⨯-=_____;(3=_____; (4=_____;(5)=_____; (6)|1=_____;【答案】5- 6 5 2 1【解析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法法则,计算即可得到结果;(3)原式利用算术平方根计算即可得到结果;(4)原式利用立方根计算即可得到结果.(5)原式利用实数的减法,计算即可得到结果;(6)原式利用绝对值的代数意义化简,计算即可得到结果;【详解】解:(1)27-=()725--=-;(2)()()32-⨯-=32=6⨯;(3=5;(4=2;(5)=;(6)|1=(11--; 【点睛】本题主要考查的是实数的运算,整式的化简求值,熟练掌握相关法则是解题的关键.13.用边长为4cm 的正方形做了一套七巧板,拼成如图所示的一座桥,则桥中阴影部分的面积为是_____.【答案】8cm1.【解析】阴影部分是由除两个大等腰三角形之外其他图形组成,阴影部分面积为大正方形的一半,然后算出面积即可【详解】阴影部分是由除两个大等腰三角形之外其他图形组成,所以阴影部分面积为大正方形的一半,大正方形的的面积是4×4=16cm1,所以阴影部分的面积为8cm1,故填8cm1【点睛】本题主要考查正方形对角线性质,本题关键在于掌握好正方形对角线性质,同时看懂图示14.比较大小:1.414_____2(用“>,=或<”填写)【答案】<【解析】首先比较出1.414、2的平方的大小关系,然后判断出两个数的大小关系即可.【详解】:(1.414)2=1.999396,(2)2=2,∵1.999396<2,∴1.414<2.故答案为:<.【点睛】此题主要考查了利用平方法比较两个正实数的大小,其中含有无理数,主要是利用平方把两个数都变成有理数再进行比较。

∥3套精选试卷∥2020年常州市某达标实验中学七年级下学期数学期末复习能力测试试题

∥3套精选试卷∥2020年常州市某达标实验中学七年级下学期数学期末复习能力测试试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,直线AB 与直线CD 相交于点O ,OE ⊥AB ,垂足为O ,∠EOD=30°,则∠BOC=( )A .150°B .140°C .130°D .120°【答案】D 【解析】运用垂线,邻补角的定义计算。

【详解】∵OE ⊥AB ,∴∠EOB=90°,∵∠EOD=30°,∴∠DOB=90°-30°=60°,∴∠BOC=180°-∠DOB=180°-60°=120°,故选:D【点睛】本题主要考查了垂线,邻补角,灵活运用垂线,邻补角的定义计算是解题的关键。

2.平方根和立方根都是本身的数是( )A .0B .1C .±1D .0和±1 【答案】A【解析】根据平方根和立方根的定义,求出平方根和立方根都是本身数是1.【详解】解:平方根是本身的数有1,立方根是本身的数有1,-1,1;所以平方根和立方根都是本身的数是1.故选:A .【点睛】本题考查平方根和立方根的计算,关键是考虑特殊值.3.如(y+a )与(y-7)的乘积中不含y 的一次项,则a 的值为( )A .7B .-7C .0D .14【答案】A【解析】试题分析:根据多项式的乘法计算法则可得:原式=()2a 7y 7a y +--,根据不含y 的一次项可知:a -7=0,则a=7,故选A .42合并的是( )AB C D 【答案】B是同类二次根式才能合并.【详解】因为A.B. ;C. =3;D..所以,只有选项B 合并.故选B【点睛】本题考核知识点:同类二次根式.解题关键点:理解同类二次根式的定义.5.若点(,)P x y 在第四象限,且2x =,29y =,则点P 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)-【答案】C【解析】根据第四象限的点的横坐标是正数,纵坐标是负数,利用有理数的乘方和绝对值的性质解答即可.【详解】∵点P (x ,y )在第四象限,且|x|=2,y 2=9,∴x=2,y=-3,∴P (2,-3).故选C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6.38181-不能被( )整除.A .80B .81C .82D .83 【答案】D【解析】先提出公因式81,然后利用平方差公式进行因式分解即可得出答案.【详解】解:813-81=81×(812-1)=81×(81-1)×(81+1)=81×80×82,所以813-81不能被83整除.故选D .本题考查了因式分解的应用,将原式正确的进行因式分解是解决此题的关键.7.如果a=355,b=444,c=533,那么a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a【答案】C【解析】根据幂的乘方得出指数都是11的幂,再根据底数的大小比较即可.【详解】a=355=(35)11=24311,b=444=(44)11=25611,c=533=(53)11=12511,∵256>243>125,∴b>a>c.故选C.【点睛】本题考查了幂的乘方,关键是掌握a mn=(a n)m.8.如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.B.C.D.【答案】C【解析】根据对顶角相等可知∠2=∠1=70°,再根据两直线平行,同旁内角互补求解即可. 【详解】解:如图,∵∠1=70°,∴∠2=∠1=70°,∵CD∥BE,∴∠B=180°-∠1=180°-70°=110°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键. 平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.9.如图,AB ∥CD,BF 平分∠ABE,且BF ∥DE,则∠ABE 与∠D 的关系是( )A .∠ABE=3∠DB .∠ABE+∠D=90°C .∠ABE+3∠D=180°D .∠ABE=2∠D【答案】D 【解析】延长CD 和BF 交于点G ,由AB ∥CD 可得∠CGB=∠ABG ,再根据BF ∥DE 可得∠CGB=∠CDE ,则∠CDE=∠ABG ,再根据BF 平分ABE ∠,得ABE ∠=2∠ABG ,故可得到ABE ∠与∠CDE 的关系.【详解】延长CD 和BF 交于点G ,∵AB ∥CD∴∠CGB=∠ABG ,∵BF ∥DE∴∠CGB=∠CDE ,∴∠CDE=∠ABG ,又∵BF 平分ABE ∠,∴ABE ∠=2∠ABG ,∴ABE ∠=2∠CDE ,故选D.【点睛】此题主要考查平行线的性质,解题的关键是根据题意作出辅助线进行解答.10.下列说法中正确的是( )A .无限小数都是无理数B .无理数都是无限小数C .无理数可以分为正无理数、负无理数和零D .两个无理数的和、差、积、商一定是无理数【答案】B【解析】根据无理数的定义:无理数是无限不循环小数,即可判断.【详解】解:A 、无限不循环小数是无理数,故A 错误;B 、无理数是无限不循环小数,是无限小数,故B 正确;C 、零是有理数,不是无理数,故C 错误;D 、两个无理数的和、差、积、商不一定是无理数,故D 错误;故选择:B.【点睛】本题主要考查了无理数的定义,无理数就是无限不循环小数,注意两个无理数的和,差,积,商不一定还是无理数.二、填空题题11.三个连续的正整数的和大于333,则满足条件的最小的三个正整数是_______.【答案】111,112,113【解析】设出三个连续的正整数中间一个为x ,表示另外两个,列出不等式求解即可.【详解】解:设这个三连整数是1x -,x ,1x +,则11333x x x -+++>,解得111x >.112x ∴=,故最小的三个正整数是111,112,113.故答案为:111,112,113【点睛】本题考查的是不等式的简单应用,根据题意列出正确的不等式是解题关键.12.三角形A B C '''是由三角形ABC 平移得到的,点()1,4A -的对应点为()1,1A '-,若点C '的坐标为()0,0,则点C '的对应点C 的坐标为__________.【答案】()2,5-【解析】直接利用平移中点的变化规律求解即可.【详解】解:∵点A (-1,-4)的对应点为A′(1,-1),∴三角形A B C '''是由三角形ABC 向右偏移2个单位,向下平移5个单位得到的,即对应点(x,y )变化规律是为(x+2,y-5),设C 点坐标为(x ,y ),∵点C '的坐标为()0,0,∴2050 xy+=⎧⎨-=⎩,解得25xy=-⎧⎨=⎩,∴C点坐标为(-2,5).故答案填:(-2,5).【点睛】本题考查图形的平移变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.“x的3倍与2的差不大于7”列出不等式是是__________.【答案】327x-≤【解析】不大于7就是小于等于7,根据x的3倍减去2的差不大于7可列出不等式.【详解】X的三倍与2的差为3x-2,不大于7,即≤7即327x-≤【点睛】本题考查由实际问题抽象出一元一次不等式,解题关键在于熟练掌握不等式的基本性质.14.若方程组23345x yx y-=⎧⎨+=⎩的解是2.20.4xy=⎧⎨=-⎩,则方程组(2018)2(2019)33(2018)4(2019)5x yx y+--=⎧⎨++-=⎩的解为___.【答案】2015.82018.6 xy=-⎧⎨=⎩.【解析】用换元法求解即可.【详解】∵方程组23345x yx y-=⎧⎨+=⎩的解是2.20.4xy=⎧⎨=-⎩,∴方程组(2018)2(2019)33(2018)4(2019)5x yx y+--=⎧⎨++-=⎩的解为2018 2.220190.4xy+=⎧⎨-=-⎩,即2015.82018.6xy=-⎧⎨=⎩,故答案为:2015.82018.6 xy=-⎧⎨=⎩【点睛】此题考查利用换元法解二元一次方程组,注意要根据方程的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.15.已知,x+y=﹣5,xy=6,则(x﹣y)2=_____;x﹣y=_____.【答案】1;±1.【解析】先根据完全平方公式进行变形,再代入求出即可,最后开平方计算即可.【详解】∵x+y=5,xy=6,∴(x﹣y)2=(x+y)2﹣4xy=52﹣4×6=1,∴x﹣y=±1,故答案为:1,±1.【点睛】本题考查了完全平方公式和平方根的定义的运用,能灵活运用公式进行变形是解此题的关键.16.计算=_________.2=-,再判断2的大小去绝对值即可.2【详解】因为2<=-=222【点睛】此题考查的是二次根式的性质和去绝对值.17.甲、乙、丙三位同学中有一位做了一件好事,老师回他们是谁做的,他们这样回答:甲说:“我没有做这件事,乙也没有做这件事.”乙说:“我没有做这件事,丙也没有做这件事.”丙说:“我没有做这件事,也不知道谁做了这件事.”他们三人的回答中都有一句真话,一句假话根据这些条件判断,做好事的是________.【答案】乙【解析】根据题意,利用“他们三人的回答中都有一句真话,一句假话”分别分析每句话是否正确或错误,从而得出答案.【详解】当甲说的没有做这件事错误,则乙也没有做这件事正确,即甲做了这件事,则乙说的没有做这件事正确,故丙也没有做这件事错误,即丙做了这件事,与之前甲做了这件事互相矛盾;当甲说的没有做这件事正确,则乙也没有做这件事错误,即乙做了这件事,则乙说的没有做这件事错误,故丙也没有做这件事正确,则丙说的没有做这件事正确,也不知道谁做了这件事错误,综上所述,做这件事的是乙,故答案为:乙.【点睛】本题主要考查了简单逻辑推理能力,根据题意利用假设法逐一分析判断是解题关键.三、解答题18.如图,以AB 为对称轴,画出下面图形的对称图形,观察这个图形和它的轴对称图形构成什么三角形,根据你所学习的轴对称图形的基本特征,结合你所画的图形写出两个正确结论.【答案】'ACC ∆是等腰三角形 结论:不唯一,【解析】根据轴对称性质和等腰三角形定义可得,画出来的图形构成等腰三角形.【详解】'ACC ∆是等腰三角形结论:不唯一,【点睛】考核知识点:画轴对称图形.理解轴对称图形的性质.19.设x 满足不等式组5236784x x x x +≥⎧⎨+≥-⎩,并使代数式23-x 的值是整数,求x 的值. 【答案】-1,2,5.【解析】首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.然后再根据条件使代数式23-x 的值是整数确定x 的值. 【详解】解:5236784x x x x +≥⎧⎨+≥-⎩①②, 由①得:1x ≥-由②得: 5.5x ≤解不等式组得-1≤x ≤5.5,因为x 且整数,∴x=-1,0,1,2,3,4,5,∵代数式23-x 的值是整数,即x-2是3的倍数, ∴x=-1,2,5.【点睛】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.已知:如图,AE BC ⊥,FG BC ⊥,12∠∠=,D 360∠∠=+,CBD 70∠=.()1求证:AB//CD ;()2求C ∠的度数.【答案】 (1)见解析;(2)25°【解析】(1)根据“平行线的判定和性质”结合已知条件分析解答即可;(2)根据“平行线的性质”结合(1)中所得结论和已知条件分析解答即可.【详解】(1)∵AE BC ⊥,FG BC ⊥,∴//AE GF ,∴2A ∠=∠,∵12∠=∠,∴1A ∠=∠,∴//AB CD ;(2)∵//AB CD ,∴3180D CBD ∠+∠+∠=,∵360D ∠=∠+,70CBD ∠=,∴325∠=,∵//AB CD ,∴325C ∠=∠=.【点睛】本题是一道考查“应用平行线的判定和性质”进行推理论证和计算的题目,熟记“平行线的相关判定方法和性质”是解答本题的关键.21.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?【答案】(1)该种干果的第一次进价是每千克5元.(2)超市销售这种干果共盈利5820元.【解析】试题分析:(1)、设第一次进价x元,第二次进价为1.2x,根据题意列出分式方程进行求解;(2)、根据利润=销售额-进价.试题解析:(1)、设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得9000(120%)x+=2×3000x+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)、[30009000-55(120%)⨯+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.考点:分式方程的应用.22.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂0.2克,B饮料每瓶需加该添加剂0.3克,已知54克该添加剂恰好生产了A、B两种饮料共200瓶,问A、B两种饮料各生产了多少瓶?【答案】A种饮料生产了60瓶,B种饮料生产了140瓶.【解析】设A种饮料生产了x瓶,B种饮料生产了y瓶,等量关系为:A、B两种饮料共200瓶,添加剂共需要54克,据此列方程组求解.【详解】解:设A种饮料生产了x瓶,B种饮料生产了y瓶,由题意得,2000.20.354 x yx y+⎧⎨+⎩==,解得:60140 xy⎧⎨⎩==,答:A种饮料生产了60瓶,B种饮料生产了140瓶.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.23.解不等式组() 224113x xxx⎧-≤+⎪⎨-<+⎪⎩.【答案】21x【解析】求出两不等式的解集,根据:“大小小大中间找”确定不等式组解集.【详解】()224x113x xx⎧-≤+⎪⎨-<+⎪⎩①②,解不等式①,得x2≥-,解不等式②,得x1<,原不等式组的解集是2x1-≤<.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解答此题的关键.24.先化简,再求值:x(x-3y)+(2y+y)(2x-y)-(2x-y)(x-y),其中x=﹣2,y=﹣1 2【答案】111 2【解析】原式利用单项式乘以多项式,平方差公式计算得到结果,将x与y的值代入计算即可求出值.【详解】)原式=x2−3xy+4x2−y2−2x2+2xy+xy−y2=3x2−2y2,当x=−2,y=−12时,原式=12−12=1112.故答案为:111 2【点睛】此题考查整式的混合运算—化简求值,掌握运算法则是解题关键25.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体的质量x的一组对应值:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)写出y与x之间的关系式,并求出当所挂重物为6kg时,弹簧的长度为多少?【答案】(1)上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量(2)当所挂重物为6kg时,弹簧的长度为:y=12+18=30(cm)【解析】分析:(1)根据题意结合“自变量”和“因变量”的定义进行分析解答即可;(2)根据表格中所给数据进行分析解答即可.详解:(1)由题意和表中数据可知:上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;(2)由表中的数据可知:当所挂物体重量每增加1千克时,弹簧长度增加2厘米;当不挂重物时,弹簧长18厘米,∴y=2x+18,∵在y=2x+18中,当x=6时,y=2×6+18=30,∴当所挂重物为6kg时,弹簧的长度为:30cm.点睛:读懂题意,弄清表格中所给数据表达的数量关系:“当不挂重物时,弹簧长为18厘米,当所挂重物每增加1千克时,弹簧长度增加2厘米”是解答本题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.A 、B 两地相距900km ,一列快车以200/km h 的速度从A 地匀速驶往B 地,到达B 地后立刻原路返回A 地,一列慢车以75/km h 的速度从B 地匀速驶往A 地.两车同时出发,截止到它们都到达终点的过程中,两车第四次相距200km 时,行驶的时间是( )A .283hB .445hC .285hD .4h【答案】B【解析】设两车第四次相距200km 时,行驶的时间为xh ,由两车速度之间的关系可得出当两车第四次相距200km 时快车比慢车多行驶了(900+200)km ,由两车的里程之差=快车行驶的路程﹣慢车行驶的路程,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】设两车第四次相距200km 时,行驶的时间为xh ,依题意,得:200x ﹣75x=900+200,解得:x 445=. 故选B .【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.2.已知实数x 、y 、z 同时满足x+y =5及z 2=xy+y ﹣9,则x+3y+5z 的值为( )A .22B .15C .12D .11 【答案】D【解析】由已知得出5x y =-,代入第二个式子后整理得出()223=0z y -+,推出030z y =-=,,求出x ,y ,z 的值,最后将x ,y ,z 的值代入计算,即可求出35x y z ++的值.【详解】解:∵x+y =5,∴5x y =-,把5x y =-代入29z xy y =+-得: ()259z y y y -+-=,∴()223=0z y -+, ∴030z y =-=,,∴3532y x ==-=,,352335011x y z ++=+⨯+⨯=,故选:D .【点睛】本题主要考查了因式分解的方法及代数式求值的方法,综合性较强,有一定难度.3.如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,若∠B =56°,∠C =42°,则∠DAE 的度数为( )A .3°B .7°C .11°D .15°【答案】B 【解析】由三角形的内角和定理,可求∠BAC=82°,又由AE 是∠BAC 的平分线,可求∠BAE=41°,再由AD 是BC 边上的高,可知∠ADB=90°,可求∠BAD=34°,所以∠DAE=∠BAE-∠BAD=7°【详解】在△ABC 中,∵∠BAC=180°-∠B-∠C=82°AE 是∠BAC 的平分线,∠BAE=∠CAE=41°又∵AD 是BC 边上的高,∴.∠ADB=90°在△ABD 中∠BAD=90°-∠B=34°∴.∠DAE=∠BAE-∠BAD=7°故选B【点睛】此题考查三角形内角和定理,掌握运算法则是解题关键4.如图所示,在ABC ∆中,AC BC >,B 、C 、D 三点共线。

∥3套精选试卷∥2020年常州市某名校中学七年级下学期期末复习能力测试数学试题

∥3套精选试卷∥2020年常州市某名校中学七年级下学期期末复习能力测试数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,其中能判定//AB CD 的是( )A .12∠=∠B .35∠=∠C .180B BCD ︒∠+∠=D .4B ∠=∠.【答案】C【解析】根据平行线的判定定理即可解答 【详解】解:A. ∵∠1=∠2,∴AD ∥BC (内错角相等两直线平行),所以A 不正确;B. ∵∠3和∠5既不是同位角,也不是内错角,也不是同旁内角,所以两角相等不能判定平行,所以B 不正确;C. ∵180B BCD ︒∠+∠=,∴//AB CD (同旁内角互补,两直线平行),所以C 正确;D. ∵∠B 和∠4既不是同位角,也不是内错角,也不是同旁内角,所以两角相等不能判定平行,所以D 不正确;故选C【点睛】此题考查平行线的判定定理,熟练掌握同位角、内错角和同旁内角的辨别方法为解题关键2.如图,在平面直角坐标系中,有若干个横纵坐标分别为y 整数的点,其顺序按图中“→”方向排列,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→(2,2),…,根据这个规律,第2015个点的坐标为( )A .(0,672)B .(672,672)C .(672,0)D .(0,0)【答案】C 【解析】从第二个点开始,每3个点为一组,第奇数组第一个点在y 轴,第三个点在x 轴,第偶数组,第一个点在x 轴,第三个点在y 轴,用(2015﹣1)除以3,根据商的情况确定点的位置和坐标即可.【详解】解:∵(2015﹣1)÷3=671×3+1,∴第2015个点是第672组的第一个点,在x 轴上,坐标为(672,0).故选:C.【点睛】本题是对点的坐标变化规律的考查,根据规律得出从第二个点开始,每3个点为一组求解是解题的关键,也是本题的难点.3.如果a>b,那么下列结论一定正确的是( )A.a―3<b—3 B.3―a<3—b C.ac2>bc2D.a2>b2【答案】B【解析】利用不等式的基本性质判断即可.【详解】如果a>b,那么a-3>b-3,选项A不正确;如果a>b,那么3-a<3-b,选项B正确;如果a>b,c>0,那么ac>bc,选项C错误;如果a>b>0,那么a2>b2,选项D错误,故选B.【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.4.若不等式组22x mx m+<⎧⎨-<⎩的解集为x<2m﹣2,则m的取值范围是()A.m≤2B.m≥2C.m>2 D.m<2【答案】A【解析】根据不等式的性质求出不等式的解集,根据不等式和不等式组解集得出m≥2m-2,求出即可.【详解】解:22x mx m+<⎧⎨-<⎩①②,由①得:x<2m-2,由②得:x<m,∵不等式组的解集为x<2m-2,∴m≥2m-2,∴m≤2.故选A.【点睛】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据题意得出m≥2m-2是解此题的关键.5.关于x的不等式组657323++<<b a b ax的解集为4<x<9,则a、b的值是()A .23a b =⎧⎨=⎩B .23a b =-⎧⎨=⎩ C .23a b =⎧⎨=-⎩D .23a b =-⎧⎨=-⎩【答案】A 【解析】首先解不等式组利用a 和b 表示出不等式组的解集,然后根据不等式组的解集得到一个关于a 和b 的方程,解方程求解. 【详解】解:解不等式组得652b a +<x <733b a +, ∵不等式组的解集为4<x <9, ∴65427393b a b a +⎧=⎪⎪⎨+⎪=⎪⎩, 解得23a b =⎧⎨=⎩, 故选:A .【点睛】本题主要考查了一元一次不等式组,解此类题是要先用字母a ,b 表示出不等式组的解集,然后再根据已知解集,对应得到相等关系.6.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃【答案】B【解析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.【详解】解:设温度为x ℃, 根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.7.下列调查:①了解某批种子的发芽率②了解某班学生对“社会主义核心价值观”的知晓率③了解某地区地下水水质④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查的是()A.①③B.②④C.①②D.③④【答案】B【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】①了解某批种子的发芽率适合采取抽样调查;②了解某班学生对“社会主义核心价值观”的知晓率适合采取全面调查;③了解某地区地下水水质适合采取抽样调查;④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查;故选:B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A→B→C→D的路径以1cm/s的速度运动(点P不与A,D重合).在这个运动过程中,△APD的面积S(cm2)随时间t(s)的变化关系用图象表示,正确的为()A.B.C.D.【答案】B【解析】点P在AB上运动时,△APD的面积S将随着时间的增多而不断增大,排除C.点P在BC上运动时,△APD的面积S将随着时间的增多而不再变化,应排除A,D.故选B.9.已知线段AB的A点坐标是(3,2),B点坐标是(-2,-5),将线段AB平移后得到点A的对应点A′的坐标是(5,-1),则点B的对应点B′的坐标为().A .(0,-6)B .(3,-8)C .(1,-4)D .(0,-8)【答案】D 【解析】根据点A 的对应点A′的坐标是(5,-1)可知平移规律,即可解答.【详解】∵点A (3,2)的对应点A′的坐标是(5,-1)∴平移规律是横坐标加2,纵坐标减3,∴点B (-2,-5)的对应点B′的坐标(0,-8)故选D【点睛】本题考查了平面直角坐标系内点的平移问题,难度较低,找出平移规律是解题关键.10.在3π-、38-、2、0.21、0(2)中无理数的个数是( ) A .1个B .2个C .3个D .4个【答案】B【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】38-=-2,0.21,0(2)=1是有理数, π3-、2是无理数, 故选B .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数.二、填空题题11.如图,ABC ∆中,090,6,8ACB AC BC ∠===.点P 从点A 出发沿A C B →→路径向终点B 运动;点Q 从B 点出发沿B C A →→路径向终点A 运动.点P 和Q 分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P 和Q 作PE l ⊥于E ,QF l ⊥于F .则点P 运动时间等于____________时,PEC 与QFC 全等。

<合集试卷3套>2020年常州市某达标实验中学七年级下学期数学期末达标检测试题

<合集试卷3套>2020年常州市某达标实验中学七年级下学期数学期末达标检测试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.4的算术平方根为()A.2 B.±2 C.﹣2 D.16【答案】A【解析】根据算术平方根的定义直接选出答案.【详解】4的算术平方根为:1.故选:A.【点睛】本题考查了学生对算术平方根定义的掌握,掌握区分算术平方根和平方根的区别是解决此题的关键. 2.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC 的度数为()A.125°B.75°C.65°D.55°【答案】D【解析】延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.【详解】延长CB,延长CB,∵AD∥CB,∴∠1=∠ADE=145,∴∠DBC=180−∠1=180−125=55.故答案选:D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.3.下列因式分解结果正确的是()A.B.C.D.【答案】B【解析】首先提取公因式进而利用公式法分解因式得出即可.【详解】A. ,故此选项错误;B.,此选项正确; C.,故此选项错误; D.无法分解因式,故此选项错误;故选:B.【点睛】 此题考查因式分解-提公因式法,因式分解-运用公式法,解题关键在于掌握因式分解的运算法则.4.不等式组12x x >-⎧⎨<⎩的解集为( ) A .1x >-B .2x <C .12x -<<D .无解【答案】C【解析】根据不等式组的解集:同大取较大,同小取较小,小大大小中间找,大大小小解不了,可得答案. 【详解】不等式组12x x >-⎧⎨<⎩的解集是12x -<<, 故选C .【点睛】考查了不等式的解集,解答此题要根据不等式组解集的求法解答.求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .0 【答案】D【解析】试题解析:∵a 、b 、c 为△ABC 的三条边长,∴a+b-c >1,c-a-b <1,∴原式=a+b-c+(c-a-b )=1.故选D .考点:三角形三边关系.6.若3a ﹣22和2a ﹣3是实数m 的平方根,且t m ,则不等式23x t -﹣32x t -≥512的解集为( ) A .x≥910 B .x≤910 C .x≥811 D .x≤811【答案】B【解析】先根据平方根求出a 的值,再求出m ,求出t ,再把t 的值代入不等式,求出不等式的解集即可.【详解】解:∵3a ﹣22和2a ﹣3是实数m 的平方根,∴3a ﹣22+2a ﹣3=0,解得:a=5,3a﹣22=﹣7,所以m=49,t=m=7,∵2x t3-﹣3x t2-≥512,∴2x73-﹣3x72-≥512,解得:x≤9 10.故选B.【点睛】本题考查算术平方根、解一元一次不等式和平方根,能求出t的值是解题关键.7.如图,已知AB∥CD∥EF,∠ABC=50°,∠CEF=150°,则∠BCE的值为().A.50°B.30°C.20°D.60°【答案】C【解析】解:∵AB∥CD∥EF,∴∠ABC=∠BCD=50°,∠CEF+∠ECD=180°;∴∠ECD=180°-∠CEF=30°,∴∠BCE=∠BCD-∠ECD=20°.故选:C.8.下列说法正确的是()A.无限循环小数是无理数B.任何一个数的平方根有两个,它们互为相反数C.任何一个有理数都可以表示为分数的形式D.数轴上每一个点都可以表示唯一的一个有理数【答案】C【解析】根据实数的概念、无理数的概念、平方根的概念以及实数与数轴的关系一一判断即可.【详解】无限循环小数是有理数,故选项A错误;任何一个正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根,故选项B错误;任何一个有理数都可以表示为分数的形式,故选项C正确;数轴上每一个点与实数一一对应,故选项D错误;故选:C.【点睛】此题考查实数的概念、无理数的概念、平方根的概念以及实数与数轴的关系,解题关键在于掌握各性质定义.9.下列现象是数学中的平移的是( )A.小朋友荡秋千B.碟片在光驱中运行C.“神舟”十号宇宙飞船绕地球运动D.瓶装饮料在传送带上移动【答案】D【解析】根据平移的定义,结合选项一一分析,排除错误答案.【详解】A. 小朋友荡秋千是旋转,故选项A错误;B. 碟片在光驱中运行是旋转,故选项B错误;C. “神舟”十号宇宙飞船绕地球运动不是沿直线运动,故选项C错误.D. 瓶装饮料在传送带上移动沿直线运动,符合平移定义,故选项D正确;故选D.【点睛】本题考查平移的概念,与实际生活相联系,注意分清与旋转、翻转的区别.10.《孙子算经》中有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”若设人数为x,车数为y,所列方程组正确的是()A.2,329.xyx y⎧-=⎪⎨⎪-=⎩B.2,329.xyy x⎧-=⎪⎨⎪-=⎩C.2,329.xyx y⎧-=⎪⎨⎪-=⎩D.2,329.xyy x⎧-=⎪⎨⎪-=⎩【答案】C【解析】设人数为x,车数为y,根据三人共车,二车空;二人共车,九人步即可列出方程组. 【详解】设人数为x,车数为y,根据题意得2,329.xyx y⎧-=⎪⎨⎪-=⎩故选C.【点睛】此题主要考查二元一次方程的应用,解题的关键是根据题意找到等量关系求解.二、填空题题11.如图,点D 在ABC ∆边AB 的延长线上,//DE BC ,20A ∠=︒,30C ∠=︒,则D ∠的度数为_____.【答案】50︒【解析】根据三角形的外角定理及平行线的性质即可求解.【详解】∵20A ∠=︒,30C ∠=︒,∴∠DBC=∠A+∠C=50°,∵//DE BC∴∠D=∠DBC=50°【点睛】此题主要考查三角形外角定理,解题的关键是熟知平行线的性质定理.12.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E= 度.【答案】:【解析】根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E 的度数.【详解】解:∵△ABC 是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD ,∴∠CDG=30°,∠FDE=10°,∵DF=DE ,∴∠E=1°.故答案为1.【点睛】本题考查等腰三角形的性质,熟练运用等边对等角是关键.13.如图,在△ABC 中,∠A =120°,∠B =40°,如果过点A 的一条直线l 把△ABC 分割成两个等腰三角形,直线l 与BC 交于点D ,那么∠ADC 的度数是_____.【答案】140°或80°【解析】首先需要根据题意画出相应的图形,再根据三角形的内角和定理求出∠C的度数;根据等腰三角形的性质可得∠DAC=∠C或∠DAC=∠ADC,进而结合三角形的内角和定理求出∠ADC的度数即可.【详解】解:分两种情况:①如图1,把120°的角分为100°和20°,则△ABD与△ACD都是等腰三角形,其顶角的度数分别是100°,140°;∴∠ADC=140°②把120°的角分为40°和80°,则△ABD与△ACD都是等腰三角形,其顶角的度数分别是100°,20°,∴∠ADC=80°,故答案为140°或80°.【点睛】本题考查等腰三角形的知识,熟练掌握等腰三角形的性质和三角形内角和定理是解题的关键.14.已知关于x的不等式组的整数解共有5个,则a的取值范围是_________【答案】-3<a≤-1【解析】先表示出不等式组的解集,再由整数解的个数,可得b的取值范围.【详解】由,解得:a≤x<3,∵不等式组的整数解共有5个,则其整数解为:-1,-1,0,1,1,∴-3<a≤-1.故答案为-3<a≤-1.【点睛】本题考查解一元一次不等式组和一元一次不等式组的整数解等知识点,关键是能根据不等式组的解集和已知得出a的取值范围.15.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.【答案】1【解析】试题分析:先打捞200条鱼,发现其中带标记的鱼有5条,求出有标记的鱼占的百分比,再根据共有30条鱼做上标记,即可得出答案.解:∵打捞200条鱼,发现其中带标记的鱼有5条,∴有标记的鱼占5200×100%=2.5%, ∵共有30条鱼做上标记,∴鱼塘中估计有30÷2.5%=1(条).故答案为1.考点:用样本估计总体.16.如图,在已知的ABC ∆中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点,M N ;②作直线MN 交AB 于点D ,连接CD .若CD AC =,则BD ________AC (填“>”、“<”或“=”).【答案】=【解析】根据作图步骤可判定MN 为线段BC 的垂直平分线,然后利用垂直平分线的性质和题中CD AC =的条件,即可确定线段BD 与AC 的大小.【详解】由作图步骤①可得:直线MN 是线段BC 的垂直平分线,点D 在MN 上∴BD=CD又∵CD=AC∴BD=AC故答案为:=【点睛】本题考查的是线段的垂直平分线的性质定理,根据作图的过程判定直线MN 是线段BC 的中点是本题解题的关键.17.已知某组数据的频数为56,频率为0.7,则样本容量为_____.【答案】1【解析】根据频数÷频率=总数解答即可.【详解】解:样本容量为:56÷0.7=1.故答案为1.【点睛】本题考查了频数与频率的关系,解答时抓住:频数÷频率=总数,以此来解答即可.三、解答题18.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年级(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了如图所示的两幅不完整的统计图(每组包括最小值不包括最大值).九年级(1)班每天阅读时间在0.5 h以内的学生占全班人数的8%,根据统计图解答下列问题:(1)九年级(1)班有________名学生.(2)补全频数分布直方图.(3)除九年级(1)班外,九年级其他班级每天阅读时间为1~1.5 h的学生有165人,请你补全扇形统计图.(4)求该年级每天阅读时间不少于1 h的学生有多少人.【答案】 (1)50;(2)见解析;(3)见解析;(3)246人.【解析】试题分析:(1)根据统计图可知0~0.5小时的人数和百分比,用除法可求解;(2)根据总人数和已知各时间段的人数,求出九年级(1)班学生每天阅读时间在0.5~1 h的人数,画图即可;(3)根据除九年级(1)班外,九年级其他班级每天阅读时间为1~1.5 h的学生有165人,除以总人数得到百分比,即可画扇形图;(4)根据扇形统计图求出其它班符合条件的人数,再加上九年级(1)班符合条件的人数即可.试题解析:(1)4÷8%=50(2)九年级(1)班学生每天阅读时间在0.5~1 h的有50-4-18-8=20(人),补全频数分布直方图如图所示.(3)因为除九年级(1)班外,九年级其他班级每天阅读时间在1~1.5 h的学生有165人,所以1~1.5 h在扇形统计图中所占的百分比为165÷(600-50)×100%=30%,故0.5~1 h在扇形统计图中所占的百分比为1-30%-10%-12%=48%,补全扇形统计图如图所示.(4)该年级每天阅读时间不少于1 h的学生有(600-50)×(30%+10%)+18+8=246(人).19.已知:如图,BE∥CF,且BE=CF,若BE、CF分别平分∠ABC和∠BCD.(1)请判断AB与CD是否平行?并说明你的理由.(2)CE、BF相等吗?为什么?【答案】(1)AB∥CD.理由见解析;(2)CE、BF相等.理由见解析.【解析】根据角平分线的定义,得出∠ABC=2∠1,∠BCD=2∠2,而由BE∥CF得出∠1=∠2,再根据等量代换得出∠ABC=∠BCD,即可证明AB∥CD;求出∠1=∠2,根据平行线的判定推出即可.【详解】(1)AB∥CD.理由:∵BE、CF分别平分∠ABC和∠BCD,∴∠ABC=2∠1,∠BCD=2∠2,∵BE∥CF,∴∠1=∠2,∴∠ABC=∠BCD,∴AB∥CD;(2)CE 、BF 相等.理由:∵BE =CF ,∠1=∠2,BC =CB ,∴△BCE ≌△CBF (SAS ),∴CE =BF .【点睛】本题考查角平分线的定义,根据平分线的性质证明出∠1=∠2是解题关键.20.如图,在'''ABC A B C ∆∆和中,已知'A A ∠=∠,'B B ∠=∠,''AB A B =,试把下面运用“叠合法”说明ABC ∆和'''A B C ∆全等的过程补充完整:说理过程:把ABC ∆放到'''A B C ∆上,使点A 与点'A 重合,因为 ,所以可以使 ,并使点C 和'C 在AB (''A B )同一侧,这时点A 与'A 重合,点B 与'B 重合,由于 ,因此, ;由于 ,因此, ;于是点C (射线AC 与BC 的交点)与点'C (射线''A C 与''BC 的交点)重合,这样 .【答案】见解析.【解析】根据“叠合法”说明两三角形全等即可.【详解】说理过程:把ABC ∆放到'''A B C ∆上,使点A 与点'A 重合,因为''AB A B =,所以可以使AB 与''A B 重合,并使点C 和'C 在AB (''A B )同一侧,这时点A 与'A 重合,点B 与'B 重合,由于'A A ∠=∠,因此, 射线AC 与射线''A C 叠合 ;由于 B B'∠=∠,因此,射线BC 与射线''B C 叠合;于是点C (射线AC 与BC 的交点)与点'C (射线''A C 与''B C 的交点)重合,这样'''ABC A B C ∆∆与重合,即'''ABC A B C ∆∆与全等.【点睛】本题主要考查三角形全等的定义,掌握“叠合法”说明三角形全等,是解题的关键.21.在“五·一车展”期间,某汽车经销商推出,,,A B C D 四种型号的轿车共1000辆进行展销,C 型号轿车销售的成交率(售出数量÷展销数量)为50%,图1是各型号参展轿车的百分比,图2是已售出的各型号轿车的数量,(两幅统计图尚不完整)(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整.【答案】(1)参加展销的D型号轿车有250辆;(2)C型车售出100辆,图见解析.【解析】(1)先利用扇形统计图计算出参加展销的D型号轿车所占的百分比,然后用这个百分比乘以1000即可得到参加展销的D型号轿车的数量;(2)先利用扇形统计图得到参加展销的C型号轿车所占的百分比,则可计算出参加展销的C型号轿车的数量,然后把参加展销的C型号轿车的数量乘以50%得到售出的C型号轿车的数量,再补全条形统计图;【详解】(1)1000×(1−35%−20%−20%)=1000×25%=250(辆),所以参加展销的D型号轿车有250辆;(2)1000×20%×50%=100(辆),如图2,.【点睛】本题考查条形统计图, 扇形统计图,(1)主要用到公式:展销D型车数量=展销总数量×展销D型车所占百分比;(2)一定要注意,展销C型号车的数量=展销总数量×展销C型车所占百分比,要计算C型号车的销售数量时还需乘以50%.22.某电器超市销售每台进价分别为190元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号(进价、售价均保持不变,利润=销售收入一进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5300元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标,若能,请给出相应的采购方案;若不能,请说明理由.【答案】(1)A、B两种型号电风扇的销售单价分别为240元、21元;(2)超市最多采购A种型号电风扇1台时,采购金额不多于5300元;(3)在(2)的条件下超市不能实现利润1400元的目标,理由见详解.【解析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1770元,4台A型号1台B型号的电扇收入3060元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台,根据金额不多余5300元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.【详解】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:351770 4103060 x yx y+=⎧⎨+=⎩,解得:240210 xy=⎧⎨=⎩.答:A、B两种型号电风扇的销售单价分别为240元、21元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:190a+170(30﹣a)≤5300,解得:a≤1.答:超市最多采购A种型号电风扇1台时,采购金额不多于5300元;(3)依题意有:(240﹣190)a+(21﹣170)(30﹣a)=1400,解得:a=20,∵a≤1,∴在(2)的条件下超市不能实现利润1400元的目标.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.23.解不等式组:361126x x x x -⎧⎪-+⎨≤⎪⎩,并把它的解集在数轴(如图)上表示出来.【答案】-32x <≤【解析】分析:分别解不等式,在数轴上表示出解集,找出解集的公共部分即可.详解:3611.26x x x x >-⎧⎪⎨-+≤⎪⎩①② 由①得:26x >-.解得3x >-.由②得:3-11x x ≤+().331x x -≤+.24x ≤.解得2x ≤.∴原不等式组的解集为-32x <≤.点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.24.计算:(1)|﹣2|+(﹣3)24;(223252(3)220183|3|27(4)(1)-+---.【答案】 2;(1)-1.【解析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+1﹣522,(1)原式=1﹣1﹣4+1=﹣1.【点睛】本题考查了实数的运算,熟练掌握相关运算法则是解题关键.25.点C 是直线l 1上一点,在同一平面内,把一个等腰直角三角板ABC 任意摆放,其中直角顶点C 与点C 重合,过点A 作直线l 2⊥l 1,垂足为点M ,过点B 作l 3⊥l 1,垂足为点N(1)当直线l2,l3位于点C的异侧时,如图1,线段BN,AM与MN之间的数量关系 (不必说明理由);(2)当直线l2,l3位于点C的右侧时,如图2,判断线段BN,AM与MN之间的数量关系,并说明理由;(3)当直线l2,l3位于点C的左侧时,如图3,请你补全图形,并直接写出线段BN,AM与MN之间的数量关系. 【答案】(1)MN=AM+BN;(2)MN=BN-AM,见解析;(3)见解析,MN=AM﹣BN.【解析】(1)利用AAS定理证明△NBC≌△MCA,根据全等三角形的性质、结合图形解答;(2)根据直角三角形的性质得到∠CAM=∠BCN,证明△NBC≌△MCA,根据全等三角形的性质、结合图形解答;(3)根据题意画出图形,仿照(2)的作法证明.【详解】(1)MN=AM+BN(2)MN=BN-AM理由如下:如图2.因为l2⊥l1,l3⊥l1所以∠BNC=∠CMA=90°所以∠ACM+∠CAM=90°因为∠ACB=90°所以∠ACM+∠BCN=90°所以∠CAM=∠BCN又因为CA=CB所以△CBN≌△ACM(AAS)所以BN=CM,NC=AM所以MN=CM﹣CN=BN﹣AM(3)补全图形,如图3结论:MN=AM﹣BN由(2)得,△CBN≌△ACM(AAS).∴BN=CM,NC=AM结论:MN=CN-CM=AM-BN.【点睛】本题考查的是全等三角形的判定和性质、等腰直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列调查中,适合用抽样调查的是()A.了解报考飞行员考生的视力B.旅客上飞机前的安检C.了解某班学生跳绳成绩D.了解全市中小学生每天的零花钱【答案】D【解析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【详解】解:A、了解报考飞行员考生的视力是非常重要的事件,必须准确,故必须普查;B、旅客上飞机前的安检是非常重要的事件,必须准确,故必须普查;C、了解某班学生跳绳成绩,人数不多,很容易调查,因而采用普查合适;D、了解全市中小学生每天的零花钱,数量较大,适合抽样调查.故选:D.【点睛】本题主要考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.2.如图,A、B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.3B.4C.5D.6【答案】B【解析】根据平移的性质,由对应点横坐标或纵坐标的变化情况推出a和b,再求a+b的值.【详解】由平移的性质可得,a=0+2=2,b=0+2=2,所以.a+b=2+2=4.故选B【点睛】本题考核知识点:用坐标表示平移.解题关键点:熟记平移中点的坐标变化规律.x 时,y的值是()3.在二元一次方程2x+y=6中,当2A.1 B.2 C.-2 D.-1【答案】B【解析】把x=2代入2x+y=6,即可求出y的值.【详解】把x=2代入2x+y=6,得4+y=6,∴y=2.故选B.【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 4.现有足够多的红球、白球、黑球,它们除颜色外无其它差别,从中选12个球(三种颜色的球都要选),设计摸球游戏,要求摸到红球和白球的概率相等,则选红球的个数的情况有()A.3种B.4种C.5种D.6种【答案】C【解析】根据概率公式进行求解,即可得到答案.【详解】当红球和白球都有1个的时候,摸到红球和白球的概率相等,当红球和白球都有2个、3个、4个、5个的时候都可以,所以选红球的个数的情况有5种,故选:C.【点睛】本题考查概率,解题的关键是熟练掌握概率公式.5.下列图形中,不一定...是轴对称图形的是()A.等腰三角形B.直角三角形C.钝角D.线段【答案】B【解析】分析:根据轴对称图形的概念求解即可.详解:A、是轴对称图形,此选项错误;B、不是轴对称图形,此选项正确;C、是轴对称图形,此选项错误;D、既是轴对称图形,也是中心对称图形;故选项错误.故选B.点睛:本题主要考查了轴对称图形的知识,掌握轴对称图形的概念是解决此类问题的关键.6.如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A.4 B.5 C.6 D.7【答案】C【解析】据平移的性质确定平移过程中扫过的图形的形状,从而确定面积.【详解】根据题意得:平移折线AEB,得到折线CFD,则平移过程中扫过的图形为矩形ABCD,所以其面积为2×3=6,故选C .【点睛】本题考查了平移的性质,能够确定平移形成的图形是确定面积的基础,难度不大.7.下列是二元一次方程的是( )A .3x ﹣6=xB .3x =2yC .x ﹣1y =0D .2x ﹣3y =xy【答案】B【解析】A 、3x-6=x 是一元一次方程;B 、32x y =是二元一次方程;C 、2x+是分式方程;D 、23x y xy -=是二元二次方程.故选B .8.张老师买了一辆启辰R50X 汽车,为了掌握车的油耗情况,在连续两次加油时做了如下工作: (1)把油箱加满油;(2)记录了两次加油时的累计里程(注:“累计里程”指汽车从出厂开始累计行驶的路程),以下是张老师连续两次加油时的记录: 加油时间加油量(升) 加油时的累计里程(千米) 2016年4月28日18 6200 2016年5月16日30 6600则在这段时间内,该车每100千米平均耗油量为( )A .3升B .5升C .7.5升D .9升【答案】C【解析】解:根据图表得出行驶的总路程为400千米,总的耗油量为12升,所以平均油耗.为400÷30=7.5升.故答案选C .考点:图表信息题;平均数.9.如图,∠AOC 和∠BOC 互补,∠AOB =α,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线,∠MON 的度数是( )A.1802α-B.12a C.1902a+D.1902a-【答案】B【解析】先根据已知得∠AOC+∠BOC=180°,∠AOC﹣∠BOC=∠AOB=α,相加可求出∠AOC,根据角平分线定义求出∠AOM和∠NOC的和,相减即可求出答案.【详解】解:∵∠AOC和∠BOC互补,∴∠AOC+∠BOC=180°①,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠AOM=12∠AOC,∠CON=12∠BOC,∴∠AOM+∠CON=90°,∵∠AOB=α,∴∠AOC﹣∠BOC=∠AOB=α②,①+②得:2∠AOC=180°+α,∴∠AOC=90°+12α,∴∠MON=∠AOC﹣∠AOM﹣∠CON=90°+12﹣90°=12α.故选B.【点睛】本题考查角平分线的定义,角的有关计算的应用,解题的关键是求出∠AOC的大小.10.下列既是轴对称图形又是中心对称图形的是()A.B.C. D.【答案】A【解析】试题分析:结合选项根据轴对称图形与中心对称图形的概念求解即可.A、是轴对称图形,也是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形考点:(1)中心对称图形;(2)轴对称图形二、填空题题11.观等察式:223941401⨯=-,224852502⨯=-,225664604⨯=-,226575705⨯=-,228397907⨯=-…请你把发现的规律用字母表示出来ab=_______________________. 【答案】22()()22a b a b ab +-=- . 【解析】试题分析:因为223941401⨯=-,22394140()2+=,2239411()2-= 224852502⨯=-,22485250()2+=,2248522()2-= 225664604⨯=-,22566460()2+=,2256644()2-= 226575705⨯=-,22657570()2+=,2265755()2-= 所以22()()22a b a b ab +-=-. 考点:找规律-式子的变化.12.比较大小:3___>”,“ =”或“<” )【答案】<【解析】先把根号外的因式移入根号内,再比较即可.【详解】解:∵=,∴3<故答案为<.【点睛】本题考查了实数的大小比较的应用,能选择适当的方法比较两个实数的大小是解此题的关键. 13.《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两问牛,羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x 两、y 两,根据题意,则可列方程组为__________【答案】5210258x y x y +=⎧⎨+=⎩【解析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【详解】根据题意得:5210258x y x y +=⎧⎨+=⎩, 故答案为5210258x y x y +=⎧⎨+=⎩.【点睛】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系. 14.颐和园坐落在北京西郊,是第一批全国重点文物保护单位之一.小万去颐和园参加实践活动时发现有的窗户造型是正八边形,如下图所示,则∠1=__°.【答案】1【解析】利用正八边形的外角和等于360度即可求出答案.【详解】解:360°÷8=1°,故答案为:1.【点睛】本题主要考查了多边形的外角和定理,明确任何一个多边形的外角和都是360°是解题的关键. 15.已知(x ﹣1)3=64,则x 的值为__.【答案】5【解析】由(x ﹣1)3=64,得:x ﹣1=4,解得:x=5.故答案为5.16.如图,在四边形ABCD 中,0210C D ∠+∠=, E 、F 分别是AD ,BC 上的点,将四边形CDEF 沿直线EF 翻折,得到四边形''C D EF ,'C F 交AD 于点G ,若EFG ∆有两个角相等,则EFG ∠=___0.【答案】40或50【解析】根据题意分类讨论计算即可.【详解】解:①当∠GFE=∠FGE=∠EFC=α时,∠FED=2α,∠EFC=α,故3α=360°-210°,可得∠EFG=50°.②当∠FEG=∠FGE=α时,180°-2α+180°-α=360°-210°,故α=70°,故∠EFG=40°.故答案为40°或50°.【点睛】本题考查多边形内角和,解题关键是能够正确列出角度之间的转换关系.17.如果关于x y ,的方程132x by +=的一个解为21x y =⎧⎨=⎩,,则b =______. 【答案】1【解析】把21x y =⎧⎨=⎩代入方程即可求解. 【详解】把21x y =⎧⎨=⎩代入方程132x by +=, 即1+b=3,解得b=1,故答案为:1.【点睛】此题主要考查二元一次方程的解,解题的关键是熟知方程的解得定义.三、解答题18.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有 人,a+b = ,m = ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【答案】50;28;8【解析】1)用B组的人数除以B组人数所占的百分比,即可得这次被调查的同学的人数,利用A组的人数除以这次被调查的同学的人数即可求得m的值,用总人数减去A、B、E的人数即可求得a+b的值;(2)先求得C组人数所占的百分比,乘以360°即可得扇形统计图中扇形的圆心角度数;(3)用总人数1000乘以每月零花钱的数额在范围的人数的百分比即可求得答案.【详解】解:(1)50,28,8;(2)(1-8%-32%-16%-4%)× 360°=40%× 360°=144°.即扇形统计图中扇形C的圆心角度数为144°;(3)1000×2850=560(人).即每月零花钱的数额x元在60≤x<120范围的人数为560人.【点睛】本题考核知识点:统计图表. 解题关键点:从统计图表获取信息,用样本估计总体.19.在某地,人们发现在一定温度下某种蟋蟀叫的次数与温度之间有如下的竟是关系:(1)在这个变化过程中,自变量是,因变量是;(2)在当地温度x每增加1C︒,这种蟋蟀1min叫的次数y是怎样变化的?(3)这种蟋蟀1min叫的次数y(次)与当地温度()x C︒之间的关系为;(4)当这种蟋蟀1min叫的次数105y=时,求当时该地的温度.【答案】(1)当地温度;蟋蟀1分钟的叫次数;(2)当地温度x每增加1℃,这种蟋蟀1分钟叫的次数y增加7次;(3)y=7x-21;(4)18℃.【解析】根据表格找出规律即可求解.【详解】(1)自变量是当地温度,因变量是蟋蟀1分钟叫的次数.(2)当地温度x每增加1℃,这种蟋蟀1分钟叫的次数y增加7次.(3)这种蟋蟀1分钟叫的次数y(次)与当地温度x(℃)之间的关系式为:y=7x-21(4)当y=105时,解得x=18,则当时该地的温度为18℃.。

[试卷合集3套]常州市某达标实验中学2020年七年级下学期数学期末综合测试试题

[试卷合集3套]常州市某达标实验中学2020年七年级下学期数学期末综合测试试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.若点P (a ,b )在第四象限,则点Q (﹣a ,b ﹣1)在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】因为点P (a ,b )在第四象限,可确定a 、b 的取值范围,从而可得-a ,b-1的符号,即可得出Q 所在的象限.【详解】解:∵点P (a ,b )在第四象限,∴a>0,b<0,∴-a<0,b-1<0,∴点Q (-a ,b-1)在第三象限.故选:C.【点睛】本题主要考查平面直角坐标系中象限内的点的坐标的符号特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.如图,是一个“七”字形,与∠1 是内错角的是( )A .∠2B .∠3C .∠4D .∠5【答案】A 【解析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.【详解】∠1的内错角是∠2.故选:A【点睛】此题考查同位角、内错角、同旁内角,解题关键在于掌握其定义3.若m >n ,下列不等式一定成立的是( )A .m ﹣2<n -2B .2m >2nC .22m n ->D .m 2>n 2【答案】B【解析】根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A. 左边减2,右边减2,不等号方向不变,故A 错误;B. 两边都乘以2,不等号的方向不变,故B 正确;C. 左边除以−2,右边除以2,故C 错误;D. 两边乘以不同的数,故D 错误;故选B.【点睛】此题考查不等式的性质,解题关键在于掌握其性质定理.4.分式31x -有意义,则x 的取值范围是( ) A .1x ≠B .-1x ≠C .1x =D .1x =- 【答案】A【解析】分式的分母不为零,即x-1≠1.【详解】当分母x-1≠1,即x≠1时,分式31x -有意义; 故选A .【点睛】从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 5.在方程组371x y x y -=⎧⎨=-⎩中,代入消元可得( ) A .3y –1–y =7B .y –1–y =7C .3y –3=7D .3y –3–y =7【答案】D【解析】将第2个方程代入第1个方程,再去括号即可得.【详解】将x=y –1代入3x –y=7,得:3(y –1)–y=7,去括号,得:3y –3–y=7,故选D .【点睛】本题考查了用代入法解二元一次方程组.用含一个未知数的代数式表示出另一个未知数是解答这种题型的关键.此题属于基础题.6.若m <n ,则下列不等式中一定成立的是( )A .m ﹣2<n ﹣2B .﹣m <﹣nC .11m n <D .m 2<n 2【答案】A 【解析】利用不等式的性质对A 、B 、C 进行判断,然后利用特例对D 进行判断.【详解】∵m <n ,∴m ﹣1<n ﹣1,﹣m >﹣n ,m 和n 都不能为0,当m>0,n>0,且m <n 时,11m n>; m 和n 都不能为0,当m<0,n>0,且m <n 时,11m n< 当m =﹣1,n =1,则m 1=n 1.故选A .【点睛】 本题考查了不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.7.若点P(,4a -)是第二象限的点,则a 必满足( )A .<0B .a <4C .0<<4D .>4【答案】A【解析】根据第二象限内点的横坐标为负、正坐标为正列出关于a 的不等式组,解之可得. 【详解】根据题意得040a a <⎧⎨->⎩,解得:a <0,故选A . 【点睛】本题主要考查坐标系内点的坐标特点和解不等式组的能力,根据第二象限内点的横坐标为负、正坐标为正列出关于a 的不等式组是解题的关键.833-3π-,22749,0.303003…,无理数有( ) A .2个B .3个C .4个D .5个 【答案】B【解析】根据无理数是无限不循环小数,可得答案.49=7,33-3π-,22749,0.303003…,无理数有3个; 故选择:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数. 9.把所有正偶数从小到大排列,并按如下规律分组:()2,(4,6,8),(10,12,14,16,18),(20,22,24,26,28,30,32),⋯,现用等式 (),M A i j =表示正偶数 M 是第i 组第 j 个数(从左往右数),如 ()82,3A =,则 2018(A = )A .()32,25B .()32,48C .()45,39D .()45,77 【答案】B【解析】分析:先计算出2018是第1009个数,然后判断第1009个数在第几组,进一步判断是这一组的第几个数即可.详解:2018是第1009个数,设2018在第n 组,则1+3+5+7+(2n-1)=12×2n×n=n 2, 当n=31时,n 2=961,当n=32时,n 2=1024,故第1009个数在第32组,第32组第一个数是961×2+2=1924,则2018是第201819242-+1=48个数, 故A 2018=(32,48).故选:B .点睛:此题考查数字的变化规律,找出数字之间排列的规律,得出数字的运算规律,利用规律解决问题是关键.10.如图,△ABC 中,AB =AC ,D 是BC 边的中点,点E 与点D 关于AB 对称,连接AE 、BE ,分别延长AE 、CB 交于点F ,若∠F =48°,则∠C 的度数是( )A .21°B .52°C .69°D .74°【答案】C 【解析】由等腰三角形三线合一可知AD ⊥BC,又易知△ABD≌△ABE,所以∠AEB=∠ADB=90°,所以∠EBF=90°-48°=42°,得到∠EBC=180°-42°=138°,得到∠ABC=69°,可得∠C=69°【详解】∵AB=AC ,D 是AC 中点∴AD ⊥BC ,∠ABC=∠C∵B点和E点关于AB对称∴△ABD≌△ABE∴∠AEB=∠ADB=90°,∠ABE=∠ABD ∵∠F=48°∴∠EBF=∠AEB -∠F =90°-48°=42°∴∠ABC=12(180°-∠FBE)=69°∴∠C=∠ABC=69°故选C【点睛】本题考查三线合一、全等三角形证明与性质、角度代换等知识点,知识点比较多,属于中等难度题型二、填空题题11.如图,在△ABC中,AD⊥BC垂足为D,AD=4,将ΔABC沿射线BC的方向向右平移后,得到△A′B′C′,连接A′C,若BC′=10,B′C=3,则△A′CC′的面积为__________.【答案】1.【解析】根据平移的性质可得BC=B′C′,则BB′=CC′,依此根据线段的和差关系可得CC'的长,再根据三角形面积公式即可求解.【详解】解:由平移的性质可得BC=B′C′,则BB′=CC′,∵BC'=10,B'C=3,∴CC'=(10-3)÷2=3.5,∴△A'CC'的面积为3.5×4÷2=1.故答案为:1.【点睛】本题考查三角形的面积、平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.12.如图,图中有_____个三角形,以AD为边的三角形有_____.【答案】3 △ABD,△ADC【解析】根据三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.【详解】图中共有3个三角形;它们是△ABD ;△ADC ;△ABC ;以AD 为边的三角形有△ABD ,△ADC ;故答案为:3;△ABD ,△ADC【点睛】此题主要考查了三角形中的重要元素,关键是正确理解三角形的定义.13.若3m a =,5n a =,则2m n a +=________.【答案】45【解析】根据3m a =,5n a =,利用同底数幂的乘法可得2m n a +的值即可.【详解】35m n a a ==,,222()3545m n m n a a a +=⨯=⨯=∴,故答案为:45.【点睛】此题考查同底数幂的乘法,解题关键在于掌握运算法则.14.已知△ABC 三个顶点的坐标分别是A(-7,0),B(1,0),C(-5,4),那么△ABC 的面积等于________.【答案】1【解析】根据题目中所给的点的坐标得到AB=8,AB 上的高为4,然后根据三角形面积公式计算即可.【详解】∵△ABC 的三个顶点坐标分别为A (-7,0),B (1,0),C (-5,4),∴AB=8,AB 上的高为4,∴△ABC 的面积=12 ×8×4=1. 故答案为:1.【点睛】本题主要考查了点的坐标的意义以及三角形面积的求法,根据题目中所给的点的坐标得到三角形的一边即这边上的高的长是解题的关键.15.如果x 2=是方程1x a 12+=-的解,那么a 的值是_____. 【答案】-1【解析】此题可将x=1代入方程,然后得出关于a 的一元一次方程,解方程即可得出a 的值.【详解】将x=1代入方程12x+a=-1得1+a=-1, 解得:a=-1.故答案为:-1.【点睛】此题考查的是一元一次方程的解法,方程两边可同时减去1,即可解出a的值.16.“若两条直线不相交,则这两条直线平行”是_____命题.(填“真”或“假”)【答案】假【解析】若空间中两条直线不相交,则这两条直线平行,也有可能异面.【详解】解:若空间中两条直线不相交,则这两条直线平行,也有可能异面,故是假命题.故答案为:假.【点睛】本题考查命题真假的判断,考查学生的推理能力,属于基础题.17.若点M(a+3,a-2)在y轴上,则点M的坐标是________.【答案】(1,-5)【解析】试题分析:让点M的横坐标为1求得a的值,代入即可.解:∵点M(a+3,a﹣2)在y轴上,∴a+3=1,即a=﹣3,∴点M的坐标是(1,﹣5).故答案填:(1,﹣5).点评:解决本题的关键是掌握好坐标轴上的点的坐标的特征,用到的知识点为:y轴上的点的横坐标为1.三、解答题18.在我国民间流传着许多诗歌形式的数学算题,这些题目叙述生动、活泼,它们大都是关于方程和方程组的应用题.由于诗歌的语言通俗易懂、雅俗共赏,因而一扫纯数学的枯燥无味之感,令人耳目一新,回味无穷.请根据下列诗意列方程组解应用题.周瑜寿属:而立之年督东吴,早逝英年两位数;十比个位正小三,个位六倍与寿符;哪位同学算得快,多少年寿属周瑜?诗的意思是:周瑜病逝时的年龄是一个大于30的两位数,其十位上的数字比个位数字小3,个位上的数字的6倍正好等于这个两位数,求这个两位数.【答案】这个两位数是1.【解析】题意中涉及两个未知数:十位上的数字和个位上的数字;两组条件:十比个位正小三,个位六倍与寿符.可设两个未知数,列二元一次方程组解题.【详解】设这个两位数十位上的数字是x,个位上的数字是y,根据题意,得3610x yy x y+=⎧⎨=+⎩解得36 xy=⎧⎨=⎩答:这个两位数是1.故答案是:这个两位数是36.【点睛】本题考查了二元一次方程组在实际问题中运用,需要设两个未知数,再寻找建立方程组的两个等量关系.19.蕲春新长途客运站准备在七一前建成营运,后期工程若请甲乙两个工程队同时施工,8 天可以完工, 需付两工程队施工费用 7040 元;若先请甲工程队单独施工 6 天,再请乙工程队单独施工 12 天可以完 工,需付两工程队施工费用 6960 元。

★试卷3套精选★常州市某达标实验中学2020届七年级下学期数学期末监测试题

★试卷3套精选★常州市某达标实验中学2020届七年级下学期数学期末监测试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各式能用平方差公式计算的是( )A .()()22x y y x ++B .()()11x x +--C .()()x y x y ---+D .()()33x y x y --+ 【答案】C【解析】能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反,对各选项分析判断后利用排除法.【详解】A 、()()2x y 2y x ++不符合平方差公式的特点,不能用平方差公式计算,故本选项错误; B 、()()()()x 1x 1y x y x +--=-+--,不符合平方差公式的特点,不能用平方差公式计算,故本选项错误;C 、()()x y x y ---+符合平方差公式的特点,能用平方差公式计算,故本选项正确;D 、()()3x y 3x y --+不符合平方差公式的特点,不能用平方差公式进行计算,故本选项错误. 故选C .【点睛】本题考查的是应用平方差公式进行计算的能力,掌握平方差公式的结构特征是正确解题的关键. 2.小丽只带2元和5元的两种面额的钞票(数量足够多),她要买27元的商品,而商店不找零钱,要她刚好付27元,她的付款方式有( )种.A .1B .2C .3D .4 【答案】C【解析】分析:先根据题意列出二元一次方程,再根据x ,y 都是非负整数可求得x ,y 的值. 详解:解:设2元的共有x 张,5元的共有y 张,由题意,2x+5y=27∴x=12(27-5y ) ∵x ,y 是非负整数,∴15x y ⎧⎨⎩==或111x y ⎧⎨⎩==或63x y ⎧⎨⎩==, ∴付款的方式共有3种.故选C.点睛:本题考查二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再根据实际意义求解.3.用代入法解方程组23328y xx y①②=-⎧⎨+=⎩时,将方程①代入②中,所得的方程正确的是().A.3x+4y-3=8 B.3x+4x-6=8 C.3x-2x-3=8 D.3x+2x-6=8【答案】B【解析】把①代入②得,3x+2(2x-3)=8,整理后即可得答案.【详解】把①代入②得,3x+2(2x-3)=8,整理得,3x+4x-6=8,故选B.【点睛】本题考查了代入法解二元一次方程组,熟练掌握代入法是解题的关键.4.方程2x+y=8的正整数解的个数是()A.4 B.3 C.2 D.1【答案】B【解析】先用含x的代数式表示y为:y=8-2x;当x=1时,y=6;当x=2时,y=4;当x=3时,y=2.一共3组.故选B.点睛:取定x的值代入求y的值时,要注意y也为正整数.5.若不等式组29611x xx k+<+⎧⎨-<⎩无解,则k的取值范圈为()A.k≥1 B.k≤1 C.k<1 D.k>1 【答案】B【解析】根据已知不等式组无解即可得出选项.【详解】解:解不等式2x+9<6x+1,得:x>2,解不等式x﹣k<1,得:x<k+1,∵不等式组无解,∴k+1≤2,解得:k≤1,故选:B.【点睛】本题考查了解一元一次不等式组,能根据已知得出k的范围是解此题的关键.6.若m﹣x=2,n+y=3,则(m+n)﹣(x﹣y)=()A.﹣1 B.1 C.5 D.﹣5【答案】C【解析】直接利用整式的加减运算法则化简得出答案.【详解】解:∵m ﹣x =2,n +y =3,∴m ﹣x +n +y =1,∴(m +n )﹣(x ﹣y )=1.故选:C .【点睛】此题主要考查了整式的加减运算,正确掌握运算法则是解题关键.7.如图,PO OR ⊥,OQ PR ⊥,则点O 到PR 所在直线的距离是线段( )的长.A .OQB .ORC .OPD .PQ【答案】A 【解析】根据点到直线的距离的定义:从直线外一点到这条直线的垂线段长度,叫点到直线的距离,结合图形判断即可.【详解】解:∵OQ ⊥PR ,∴点O 到PR 所在直线的距离是线段OQ 的长.故选A .【点睛】本题考查了点到直线的距离,熟记概念并准确识图是解题的关键.8.下列标志中,是中心对称图形的是( )A .B .C .D .【答案】B【解析】根据中心对称图形的定义即可解答.【详解】解:A 、不是中心对称图形,故此选项错误;B 、是中心对称图形,故此选项正确;C 、不是中心对称图形,故此选项错误;D 、不是中心对称图形,故此选项错误;故选:B .【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.9.已知m ,n 满足方程组51032m n m n +=⎧⎨-=⎩ ,则m+n 的值为( ) A .3B .﹣3C .﹣2D .2 【答案】A【解析】51032m n m n +=⎧⎨-=⎩①②,①+②得4m+4n=12,所以m+n=3;故选A. 10.若a b <,则下列不等式中不正确...的是( ) A .55a b +<+B .55-<-a bC .55a b -<-D .55a b 【答案】C【解析】根据不等式的性质求解即可.【详解】解:A 、两边都加5,不等号的方向不变,故A 选项正确,不符合题意;B 、两边都减5,不等号的方向不变,故B 选项正确,不符合题意;C 、两边都乘以﹣5,不等号的方向改变,故C 选项错误,符合题意;D 、两边都除以5,不等号的方向不变,故D 选项正确,不符合题意;故选:C .【点睛】本题考查了不等式的性质,利用不等式的性质是解题关键.二、填空题题11.已知在平面直角坐标系中,线段AB=4,AB ∥x 轴,若点A 坐标为(-3,2),则点B 坐标为 .【答案】(1,2)或(-7,2)【解析】试题分析:线段AB ∥x 轴,A 、B 两点纵坐标相等,又AB=4,B 点可能在A 点左边或者右边,根据距离确定B 点坐标.解:∵AB ∥x 轴,∴A 、B 两点纵坐标都为2,又∵AB=4,∴当B 点在A 点左边时,B (1,2),当B 点在A 点右边时,B (﹣7,2).故答案为(1,2)或(﹣7,2).考点:坐标与图形性质.12.阅读下面材料:数学课上,老师提出如下问题:小明解答如右图所示,其中他所画的弧MN 是以E 为圆心,以CD 长为半径的弧老师说:“小明作法正确.”请回答小明的作图依据是:_______________________________________。

〖汇总3套试卷〗常州市某达标实验中学2020年七年级下学期数学期末预测试题

〖汇总3套试卷〗常州市某达标实验中学2020年七年级下学期数学期末预测试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图所示,直线AB∥CD,∠1=64°,FG平分∠EFD,则∠2的度数是A.32°B.30°C.31°D.35°【答案】A【解析】根据两直线平行,同位角相等可得∠EFD=∠1,再根据角平分线的定义求出∠DFG,然后根据两直线平行,内错角相等可得∠2=∠DFG.【详解】解:∵AB∥CD,∴∠EFD=∠1=64°,∵FG平分∠EFD,∴∠DFG=∠EFD=×64°=32°,∵AB∥CD,∴∠2=∠DFG=32°.故选:A.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.2.某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃C.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是偶数【答案】D【解析】根据图可知该事件的概率在0.5左右,在一一筛选选项即可解答. 【详解】根据图可知该事件的概率在0.5左右,(1)A事件概率为13,错误.(2)B事件的概率为14,错误.(3)C事件概率为23,错误.(4)D事件的概率为12,正确.故选D.【点睛】本题考查概率,能够根据事件的条件得出该事件的概率是解答本题的关键.3.正六边形的对称轴有()A.1条B.3条C.6条D.12条【答案】C【解析】轴对称就是一个图形的一部分,沿着一条直线对折,能够和另一部分重合,这样的图形就是轴对称图形,这条直线就是对称轴,依据定义即可求解.【详解】如图所示:正六边形的对称轴有6条.故选:C.【点睛】此题考查正多边形对称性,关键是正确找到对称轴的位置.4.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格【答案】C【解析】分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C .5.甲在集市上先买了3只羊,平均每只a 元,稍后又买了2只,平均每只羊b 元,后来他以每只2a b +元的价格把羊全卖给了乙,结果发现赔了钱,赔钱的原因是( ) A .a b < B .a b =C .a b >D .与a 、b 大小无关【答案】C【解析】已知甲共花了3a+2b 元买了5只羊.但他以每只2a b+的价格把羊卖给乙发现赔钱了.由此可列出不等式求解,就知道赔钱的原因. 【详解】根据题意得到5×2a b+<3a+2b ,解得a>b,故选C. 【点睛】本题考查一元一次不等式的应用,解题的关键是掌握一元一次不等式的应用及求解方法.6.某校为了了解七年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15-20次之间的频率是( ).A .0.4B .0.33C .0.17D .0.1【答案】D【解析】根据图像观察出仰卧起座次数在15-20次之间的人数即可求解. 【详解】由图可知,仰卧起座次数在15-20次之间的人数为30-12-10-5=3 ∴频率为3=0.130故选D. 【点睛】本题考查的是频率,熟练掌握图像是解题的关键.7.质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机抽取100件进行检测,检测出次品5件,由此估计这一批次产品中的次品件数是( ) A .5 B .100C .500D .10000【答案】C【解析】试题分析:∵随机抽取100件进行检测,检测出次品5件, ∴次品所占的百分比是:,∴这一批次产品中的次品件数是:10000×=500(件),故选C .考点:用样本估计总体.8.若点P(2m+4,m-3)在第四象限内,则m 的取值范围是( ) A .m>3 B .m<-2C .-2<m<3D .无解【答案】C【解析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可. 【详解】解:∵点P(2m+4,m-1)在第四象限, ∴2+40-30m m ⎧⎨⎩>①,<②解不等式①得,m >-2, 解不等式②得,m <1所以,不等式组的解集是-2<m<1, 即m 的取值范围是-2<m<1. 故选:C . 【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 9.如果多项式2+16x mx +是一个完全平方式,则m 的值是 ( ) A .±4 B .4C .8D .± 8【答案】D【解析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值. 【详解】∵222164x mx x mx ++=++, ∴mx=±2×4x , 解得m=±8. 故选:D. 【点睛】考查完全平方公式,熟练掌握完全平方公式是解题的关键. 10.27的算术平方根是( ) A .3 B .﹣3C .27D 27【答案】D【解析】根据算术平方根的定义解答;【详解】∵()227=27,∴27的算术平方根是27;故选D【点睛】此题考查算术平方根,掌握运算法则是解题关键.二、填空题题11.如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x的值为______.【答案】1.【解析】试题分析:观察可得左下角数字为偶数,右上角数字为奇数,所以2n=20,m=2n﹣1,解得n=10,m=19,又因右下角数字:第一个:1=1×2﹣1,第二个:10=3×4﹣2,第三个:27=5×6﹣3,由此可得第n 个:2n(2n﹣1)﹣n,即可得x=19×20﹣10=1.考点:数字规律探究题.12.一次中考考试中考生人数为15万名,从中抽取600名考生的中考成绩进行分析,在这个问题中样本指的是的_____________________________.【答案】抽取600名考生的中考成绩【解析】本题的考查的对象是一次中考考试中的成绩,样本是总体中所抽取的一部分个体,即抽取600名考生的中考成绩.【详解】解:样本是总体中所抽取的一部分个体,即样本是抽取600名考生的中考成绩.故答案是:抽取600名考生的中考成绩.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.13.请你写出一个比4大且比6小的无理数,这个无理数是_______.π+17,1【解析】分析:根据无理数的三种形式写出即可,无理数通常有以下三种形式,①开方开不尽的数,3,35等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅(0的个数一次多一个).详解:设这个无理数是x,则4<x<6,∴16<x2<36,∴这个无理数可以是:17,18 ,19 …, ∵π是无理数,且π≈3.14, ∴这个无理数还可以是:π+1,π+2等. 故答案为:17,1π+.点睛:本题考查了实数的大小比较,熟练掌握无理数的定义及无理数的三种形式是解答本题的关键. 14.如图,在△ABC 中,∠B = 60°,∠C = 40°,AE 平分∠BAC ,AD ⊥BC ,垂足为点D ,那么∠DAE =______度.【答案】10【解析】本题考查的是三角形内角和定理和角平分的定义,根据三角形内角和是180°,角平分线平分角的度数解答即可【详解】因为,在△ABC 中,∠B = 60°,∠C = 40°,所以∠BAC=180°-60°-40°=80°,因为AE 平分∠BAC,所以∠BAE=∠CAE=40°,又因为在△ACD 中,AD⊥BC,∠C=40°,所以∠CAD=50°,所以∠DAE=∠CAD -∠CAE=50°-40°=10° 【点睛】本题的关键是掌握三角形内角和是180度15.在平面直角坐标系中,点A 1(-1,1),A 2(2,4),A 3(-3,9),A 4(4,16),…,用你发现的规律确定点A 9的坐标为____. 【答案】 (-9,81)【解析】首先观察各点坐标,找出一般规律,然后根据规律确定点A 9的坐标.【详解】解:观察所给点的坐标可知:横坐标的绝对值和序号相同,且奇数时为负,偶数时为正;纵坐标是序号的平方,∴点A 9的坐标为(-9,81), 故答案为:(-9,81). 【点睛】本题考查了点坐标规律探索,解决本题的关键在于总结规律.对于寻找规律的题,应通过观察,发现哪些部分没有变化,哪些部分发生了变化,变化的规律是什么.16.如图所示,把ABC △的三边BA 、CB 和AC 分别向外延长一倍,将得到的点A '、B '、C '顺次连接成A B C ''',若ABC △的面积是5,则A B C '''的面积是________.【答案】1【解析】连接AB '、BC '、CA ',由题意得:AB AA =',BC BB =',AC CC =',由三角形的中线性质得出△AA B ''的面积ABB =∆'的面积ABC =∆的面积BCC =∆'的面积AAC =∆的面积=△BB C '的面积=△A C C ''的面积5=,即可得出△A B C '''的面积. 【详解】解:连接AB '、BC '、CA ',如图所示:由题意得:AB AA =',BC BB =',AC CC =',∴△AA B ''的面积ABB =∆'的面积ABC =∆的面积BCC =∆'的面积=△AA C '的面积=△BB C ''的面积=△A C C ''的面积5=,∴△A B C '''的面积5735=⨯=;故答案为:1. 【点睛】本题考查了三角形的中线性质、三角形的面积;熟记三角形的中线把三角形的面积分成相等的两部分是解题的关键.17.已知关于x 的不等式(2)50m n x m n -+->的解集1x <,则关于x 的不等式mx n >的解集是__________. 【答案】12x <【解析】根据不等式和解集间的关系可知1x =时,(2)50m n x m n -+-=,化简可得m,n 的关系,由此可解不等式mx n >.【详解】解:由题意得1x =时,(2)50m n x m n -+-=,即250m n m n -+-=,化简得2m n =, 且不等式的解集变号了,说明20m n -<,等量代换可得 40,30,0n n n n -<<<,不等式mx n >即为2nx n >,由不等式基本性质可得12x <. 故答案为:12x < 【点睛】本题考查了不等式,熟练掌握不等式的性质及不等式与解集间的关系是解题的关键.三、解答题18.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目月功能费基本话费长途话费短信费金额/元 5 50(1)请将表格补充完整;(2)请将条形统计图补充完整;(3)扇形统计图中,表示短信费的扇形的圆心角是多少度?【答案】(1)45,25;(2)详见解析;(3)72°.【解析】试题分析:(1)用基本话费除以基本话费所占的百分比即可得小王某月手机话费总额;短信费占的百分比为100%减去月功能费、基本话费、短信费所占的百分比即可;短信费为小王某月手机话费总额乘以短信费占的百分比;长途话费为小王某月手机话费总额乘以长途话费占的百分比;计算出填表即可;(2)根据(1)的计算结果补全条形统计图即可;(3)扇形统计图中,表示短信费的扇形的圆心角用360°乘以短信费占的百分比即可.试题解析:解:表格如下:项目月功能费基本话费长途话费短信费金额/元 5 50 45 25(2)条形统计图:(3)(100%﹣4%﹣40%﹣36%)×360°=72°,所以表示短信费的扇形的圆心角72°.考点:扇形统计图;条形统计图.19.小张同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形统计图和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)小张同学共调查了名居民的年龄,扇形统计图中a=;(2)补全条形统计图,并注明人数;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计该辖区居民人数是多少人.【答案】(1)500,20%;(2)补全条形统计图见解析;(3)估计该辖区居民人数是17500人.【解析】(1)用15~40岁的人数除以该组所占百分比即可得到总人数;用0~14岁人数除以总人数即可得到该组所占百分比;(2)小长方形的高等于该组的人数;(3)先按年龄进行排列,然后得出中位数;(4)根据某年龄段等于该组占全部的百分数求解20.(每个学生必选且只能选一门课程)班主任想要了解全班同学对哪门课程感兴趣,就在全班进行调查,将获得的数据整理绘制成如图下所示两幅不完整的统计图.学习感兴趣的课程情况条形统计图:学习感兴趣的课程情况扇形统计图:根据统计图信息,解答下列问题.(1)全班共有________名学生,m的值是________(2)据以上信息,补全条形统计图.(3)扇形统计图中,“数学”所在扇形的圆心角是________度.【答案】(1)50,18;(2)见解析;(3)108.【解析】(1)根据统计图化学对应的数据和百分比可以求得这次调查的学生数,进而求得m的值;(2)根据(1)中的结果和条形统计图中的数据可以求得选择数学的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得“数学”所对应的圆心角度数.【详解】解:(1)在这次调查中一共抽取了:10÷20%=50(名)学生,m%=9÷50×100%=18%,故答案为:50,18;(2)选择数学的有;50-9-5-8-10-3=15(名),补全的条形统计图如右图所示:(3)扇形统计图中,“数学”所对应的圆心角度数是:15 36010850︒︒⨯=,故答案为:108. 【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.用适当的方法解二元一次方程组(1)4,316;x y x y =+⎧⎨+=⎩ (2)()26,21 4.x y x y +=⎧⎨+-=⎩【答案】(1)7,3.x y =⎧⎨=⎩(2)22x y =⎧⎨=⎩. 【解析】(1)根据本题特点,用“代入消元法”进行解答即可;(2)先将原方程组中的第2个方程化简,然后再用“加减消元法”进行解答即可.【详解】(1)4,316x y x y =+⎧⎨+=⎩①②把①代入②得:4316y y ++=,解得:3y =,把3y =代入①中,解得:7x =,∴原方程组的解是73x y =⎧⎨=⎩; (2) ()26,21 4.x y x y +=⎧⎪⎨+-=⎪⎩①②将方程②整理得:22x y -=③,① ⨯ 2得:2412?x y +=④, 由 ④-③得:510y =-,解得:2y =-,把2y =代入①中,解得:2x =,∴原方程组的解是22x y =⎧⎨=⎩. 【点睛】掌握“用加减消元法和代入消元法解二元一次方程组的步骤方法”是解答本题的关键.22.已知:如图,在ABC ∆中,点E 和点D 在BC 上,点F 在CA 的延长线上,EF 和AB 交于点G ,//EF AD ,且AFG AGF ∠=∠.求证:AD 是ABC ∆的角平分线.【答案】见解析【解析】依据平行线的性质,即可得到∠F=∠CAD ,∠AGF=∠BAD ,再根据∠AFG=∠AGF ,即可得出∠CAD=∠BAD ,进而得到AD 是△ABC 的角平分线.【详解】证明:∵EF ∥AD ,∴∠F=∠CAD ,∠AGF=∠BAD ,又∵∠AFG=∠AGF ,∴∠CAD=∠BAD ,∴AD 是△ABC 的角平分线.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等. 23.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.【答案】见详解【解析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨=== ∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.24.王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板()AC BC,ACB 90∠==,点C 在DE 上,点A 和B 分别与木墙的顶端重合,求两堵木墙之间的距离.【答案】两堵木墙之间的距离为20cm .【解析】根据题意可得AC=BC ,∠ACB=90°,AD ⊥DE ,BE ⊥DE ,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC ,再证明△ADC ≌△CEB 即可,利用全等三角形的性质进行解答.【详解】由题意得:AC BC =,ACB 90∠=,AD DE ⊥,BE DE ⊥,ADC CEB 90∠∠∴==,ACD BCE 90∠∠∴+=,ACD DAC 90∠∠+=,BCE DAC ∠∠∴=,在ADC 和CEB 中,ADC CEB DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,ADC ∴≌()CEB AAS ;由题意得:AD EC 6cm ==,DC BE 14cm ==,()DE DC CE 20cm ∴=+=,答:两堵木墙之间的距离为20cm .【点睛】本题考查的知识点是全等三角形的应用,解题关键是得到∠BCE=∠DAC.25.阅读理解,解决问题.二阶行列式指4个数组成的符号,其概念起源于方程组,是一个重要的数学工具,不仅在数学中有广泛的应用,在其他学科中也经常用到.我们把a b c d 称作二阶行列式,规定它的运算法则为a b ad bc c d =-.如232534245=⨯-⨯=-.请根据上文,解决问题:如果有2304xx ->,求x 的取值范围.【答案】2x >【解析】根据二阶行列式的运算法则列出不等式求解即可。

┃精选3套试卷┃2020届常州市某达标实验中学七年级下学期数学期末学业质量监测试题

┃精选3套试卷┃2020届常州市某达标实验中学七年级下学期数学期末学业质量监测试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别在AB 、AC 上,且90EDF ∠=︒,下列结论:①DEF ∆是等腰直角三角形;②AE CF =;③BDE ADF ∆∆≌;④BE CF EF +=.其中正确的是()A .①②④B .②③④C .①②③D .①②③④【答案】C 【解析】根据等腰直角三角形的性质以及斜边上的中线的性质,易证得△CDF ≌△ADE ,即可判断①②;利用SSS 即可证明△BDE ≅△ADF ,故可判断③;利用等量代换证得BE CF AB +=,从而可以判断④.【详解】∵△ABC 为等腰直角三角形,且点在D 为BC 的中点,∴CD=AD=DB ,AD ⊥BC ,∠DCF=∠B=∠DAE=45°,∵∠EDF=90︒,又∵∠CDF+∠FDA=∠CDA=90︒,∠EDA+∠EDA=∠EDF=90︒,∴∠CDF=∠EDA ,在△CDF 和△ADE 中,DF DCF C EDA CD AD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDF ≌△ADE ,∴DF=DE ,且∠EDF=90︒,故①DEF 是等腰直角三角形,正确;CF=AE ,故②正确;∵AB=AC ,又CF=AE ,∴BE=AB-AE=AC-CF=AF ,在△BDE 和△ADF 中, BE AF DE DF BD DC =⎧⎪=⎨⎪=⎩,∴△BDE ≅△ADF ,故③正确;∵CF=AE ,∴BE CF BE AE AB EF +=+=≠,故④错误;综上:①②③正确故选:C .【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.2.在平面直角坐标系中,若点P (m ﹣2,m+1)在第二象限,则m 的取值范围是( )A .m <﹣1B .m >2C .﹣1<m <2D .m >﹣1 【答案】C【解析】分析:根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.详解:∵点P (m-1,m+1)在第二象限,∴2010m m -⎧⎨+⎩<>, 解得-1<m <1.故选C .点睛:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.下列说法错误的是( )A .1的平方根是±1B .–1的立方根是–1 C是2的算术平方根D .-3【答案】D【解析】解:A .1的平方根是±1,正确,不合题意;B .﹣1的立方根是﹣1,正确,不合题意;C是2的算术平方根,正确,不合题意;D,它的平方根是:,错误,符合题意.故选D .4.已知三角形的两边长分别为3cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .12cmB .10cmC .6cmD .3cm 【答案】B【解析】此题首先根据三角形的三边关系,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即936-=,9312+=.∴第三边取值范围应该为:6<第三边长度<12,故只有B选项符合条件.故选B.【点睛】本题考查了三角形三边关系,一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.5.开封是著名的文化旅游城市,要调查开封的家庭经济收入情况,从市区某社区抽出了500户家庭进行调查,发现:高收入、中等收入、低收入家庭分别为125户、280户、和95户,如开封约有100万户家庭,下列说法中正确的是()A.开封高收入家庭约有25万户B.开封中等收入家庭约有56万户C.开封低收入家庭约有19万户D.因样本不具备代表性,故不能由此估计全市的家庭经济收入情况【答案】D【解析】因为“市区某社区的500户家庭”不具有代表性,故不能由此估计全市的家庭经济收入情况.【详解】解:由抽取的样本为“市区某社区的500户家庭”,不能准确反应出开封市的家庭情况,故不具有代表性,不能由此估计全市的家庭经济收入情况.故选D.【点睛】本题考查了用样本选择问题,应注意①样本要具有代表性,②样本要保证一定的数量.6.如图,以两条直线l1,l2的交点坐标为解的方程组是( )A.121x yx y-=⎧⎨-=⎩B.121x yx y-=-⎧⎨-=-⎩C.121x yx y-=-⎧⎨-=⎩D.121x yx y-=⎧⎨-=-⎩【答案】C【解析】两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【详解】直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l 1,l 2的交点坐标为解的方程组是:121x y x y -=-⎧⎨-=⎩. 故选C .【点睛】 本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.7.某班级的一次数学考试成绩统计图如图,则下列说法错误的是( )A .得分在7080~分的人数最多B .该班的总人数为40C .得分及格(60≥分)的有12人D .人数最少的得分段的频数为2【答案】C 【解析】根据统计图提供的信息逐个分析即可.【详解】根据统计图可得:A. 得分在7080~分的人数最多,本选项正确;B. 该班的总人数为4+12+14+8+2=40,本选项正确;C. 得分及格(60≥分)的有12+14+8+2=36人,本选项错误;D. 人数最少的得分段的频数为2,本选项正确..故选C【点睛】本题考核知识点:频数分布直方图.解题关键点:从统计图获取信息.8.如图,顺次连结同一平面内A ,B ,C ,D 四点,已知A 40∠=,C 20∠=,ADC 120∠=,若ABC ∠的平分线BE 经过点D ,则ABE ∠的度数( )A .20B .30C .40D .60【答案】B【解析】首先证明ADC A C ABC ∠∠∠∠=++,求出ABC ∠即可解决问题.【详解】解:ADE ABD A ∠∠∠=+,EDC DBC C ∠∠∠=+,ADC ADE EDC A C ABC ∠∠∠∠∠∠∴=+=++,1204020ABC ∠∴=++,ABC 60∠∴=, BE 平分ABC ∠, 1ABE ABC 302∠∠∴==, 故选:B .【点睛】本题考查三角形的外角的性质,三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.如图,为了估计池塘岸边两点A B 、的距离,小明在池塘的一侧选取一点O ,测得64OA m OB m ==,,则点A B 、间的距离不可能是( )A .3cmB .4cmC .6cmD .10cm【答案】D 【解析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和,求得相应范围,看哪个数值不在范围即可.【详解】∵6−4<AB <6+4,∴2<AB <1.∴所以不可能是1cm .故选:D .【点睛】此题考查三角形三边关系,已知三角形的两边,则第三边的范围是:>已知的两边的差,而<两边的和. 10.用加减法解方程组解题步骤如下:(1)①-②,得,(2),得,,下列说法正确的是()A.步骤(1),(2)都不对B.步骤(1),(2)都对C.此题不适宜用加减法D.此题不适宜用加减法【答案】B【解析】根据加减法进行分析即可.【详解】根据加减法解二元一次方程组的一般方法可得,方法一先消去未知数x;方法二先消去未知数y.两种方法都正确.故选:B【点睛】考核知识点:用加减法解二元一次方程组.掌握加减法的原理是关键.二、填空题题11.等腰三角形的一内角为40,则它的底角为__________.【答案】40或70.【解析】解:若该内角40为底角,符合题意;-÷=,也符合题意,若该内角40为顶角,则底角为(18040)270故答案为:40或70.【点睛】本题考查等腰三角形的性质;分类讨论.12.当a=2时,代数式3a﹣1的值是____.【答案】1【解析】将a=2直接代入代数式得,3a﹣1=3×2﹣1=1.13.如图所示,点O为∠ABC内部一点,OD∥BC交射线BA于点D,射线OE与射线BC相交所成的锐角为60°,则∠DOE=____.【答案】60°或120°【解析】分两种情况讨论:∠BFE=60°或∠CFE=60°,依据平行线的性质,即可得到∠DOE的度数.【详解】解:分两种情况讨论:当∠BFE=60°时,∵DO ∥BC ,∴∠DOE=∠BFE=60°;当∠CFE=60°时,∠CFO=120°,∵DO ∥BC ,∴∠DOE=∠CFO=120°;故答案为:60°或120°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互;两直线平行,内错角相等.14.在平面直角坐标系内,点(1020)P --,在第_______象限. 【答案】三【解析】根据点的坐标的规定可得点P 的横坐标是括号内的第一个数字,纵坐标是括号内的第二个数字,根据横纵坐标的符号可得所在象限.【详解】解:点(1020)P --,的横坐标是-10,纵坐标是-20,它在第三象限, 故答案为:三.【点睛】本题考查了点的坐标的相关知识,用到的知识点为:第三象限点的符号为(-,-).15.若|2x -3|+(3y -2)2=0,则(xy -2)2013的值等于 .【答案】-1【解析】试题分析:先根据非负数的性质求得x 、y 的值,再代入即可求得结果.由题意得,解得 则考点:本题考查的是非负数的性质 点评:解答本题的关键是熟练掌握非负数的性质:若两个非负数的和为0,这两个数均为0.16.分解因式:2a 3—2a=____________.【答案】2a(a-1)(a+1).【解析】322a a -=22(1)a a -=2(1)(1)a a a +-.17.已知线段MN 平行于x 轴,且MN 的长度为5,若()2,2M -,则点N 的坐标______.【答案】()7,2-或()3,2--.【解析】根据“平行于x 轴的直线上的点的坐标的特征”结合已知条件分析解答即可.【详解】∵MN ∥x 轴,且M 的坐标为(2,-2),∴可设点N 的坐标为(a ,-2),又∵MN=5, ∴25a -=,∴25a -=或25a -=-,解得:7a =或3a =-,∴点N 的坐标为(7,-2)或(-3,-2).故答案为:(7,-2)或(-3,-2).【点睛】本题解题有以下两个要点:(1)平行于x 轴的直线上的点的纵坐标相等;(2)平行于x 轴的直线上两点间的距离等于这两个点的横坐标差的绝对值.三、解答题18.(用圆规、直尺作图,不写作法,但要保留作图痕迹)如图,车站O 位于两条公路OA ,OB 的交汇处,在公路OB 上还有一个车站C ,现要在两条公路之间修一个中转站P ,使它到两条公路的距离相等,且到两个车站的距离也相等.请你在图中作出点P 的位置.【答案】见解析【解析】作∠AOB的角平分线和线段OC的垂直平分线,它们的交点即为所求的P点.【详解】解:如图所示:点P即为所求.【点睛】此题主要考查了角平分线和线段垂直平分线的性质,正确掌握尺规作图的步骤是解题关键.19.(1)计算:32564|12|-+-.(2)解不等式2223x xx+--<,并把解集在数轴上表示出来.(3)解方程组:521123x yyx+⎧⎪-⎨-⎪⎩==.【答案】(12;(2)x<2,(3)12 xy==⎧⎨-⎩【解析】(1)根据实数的运算法则计算即可;(2)去分母、去括号、移项、合并同类项、系数化为1即可得答案;再按照不等式解集的表示方法在数轴上表示即可;(3)先把②两边同时乘以6可得6x-2y=10③,再利用加减消元法解方程即可求出x的值,代入①求出y值即可得答案.【详解】(1)原式22;(2)去分母,得6x-3(x+2)<2(2-x),去括号,得6x-3x-6<4-2x,移项,合并得5x<10,系数化为1,得x<2,不等式的解集在数轴上表示如下:(3)521123x yyx+⎧⎪⎨--⎪⎩=①=②②×6得:6x-2y=10③,①+③得:11x=11,即x=1,将x=1代入①,得y=-2,则方程组的解为12 xy==⎧⎨-⎩.【点睛】本题考查了实数的运算、解一元一次不等式及解二元一次方程组,熟练掌握实数的运算法则及一元一次不等式、二元一次方程组的解法是解题关键.20.解方程组和不等式组(1)解方程组{34165-633x yx y+==;(2)解不等式组{5323-142x xx+≥<,并把解集表示在数轴上.【答案】(1)612xy=⎧⎪⎨=-⎪⎩;(2)-1≤x<3,数轴见解析.【解析】(1)利用加减消元法解方程组得出答案.(2)分别求得每个不等式的解集,再根据口诀即可得不等式组的解集,将其表示在数轴上即可.【详解】解:3416 5633 x yx y+=⎧⎨-=⎩①②①×3,得:9x+12y=48 ③②×2,得:10x-12y=66 ④③+④得19x=114,解得:x=6将x=6代入①,解得y=-1 2∴方程组的解为:612 xy=⎧⎪⎨=-⎪⎩(2)532 3142x xx+≥⎧⎪⎨-⎪⎩①<②解:解不等式①,得x≥-1.解不等式②,得x<3.把不等式①和②的解集在数轴上表示出来,∴不等式组的解集为-1≤x<3【点睛】本题考查的是解一元一次不等式组及二元一次方程组,在解一元一次不等式组时要根据不等式的基本性质;解二元一次方程组时要注意代入消元法和加减消元法的应用.21.如图,AB∥CD,∠A=∠D,判断AF与ED的位置关系,并说明理由.【答案】见解析【解析】试题分析:AB∥CD,根据两直线平行,内错角相等,可以得出,A AFC∠=∠又因为,A D∠=∠根据等量代换得出,AFC D∠=∠根据同位角相等,两直线平行可以证明.试题解析:AF∥ED,∵AB∥CD,,A AFC∴∠=∠,A D∠=∠,D AFC∴∠=∠AF∴∥.ED22.在AOB中,90AOB∠=︒,点C为直线AO上的一个动点(与点,O A不重合),分别作OBC∠和ACB∠的角平分线,两角平分线所在直线交于点E.(1)若点C在线段AO上,如图1.①依题意补全图1;②求BEC∠的度数;(2)当点C在直线AO上运动时,BEC∠的度数是否变化?若不变,请说明理由;若变化,画出相应的图形,并直接写出BEC ∠的度数.【答案】(1)①补图见解析;②45°;(2)图见解析,∠BEC 的度数为45°或135°.【解析】(1)①根据题意作图即可;②设∠EBO=∠EBC=x ,∠BCK=∠ACK=y ,由三角形外角定理列方程组求BEC ∠的度数;(2)分情况讨论点C 在OA 和AO 延长线上时BEC ∠的度数,结合(1),即点C 在线段OA 上时BEC ∠的度数,可得结论.【详解】(1)①依题意补图如下:②设∠EBO=∠EBC=x ,∠BCK=∠ACK=y ,∵∠ACB=∠OBC+∠BOC ,∠BCK=∠EBC+∠BEC∴2290y x y x BEC=+︒⎧⎨=+∠⎩ ∴∠BEC=45°(2)如图,当点C 在OA 延长线上时,∵∠AOB=90°,∴∠OBC+∠OCB=90°,∵BE 、CE 分别是OBC ∠和ACB ∠的角平分线,∴∠EBC+∠ECB=90°×12=45°, ∴∠BEC=180°-45°=135°;如图,当点C 在AO 延长线上时,同理,可得∠BEC=135°;由(1)知,当点C在线段OA上时,∠BEC=135°.综上可知,当点C在直线AO上运动时,BEC∠的度数为45°或135°.【点睛】本题主要考查角平分线的定义、三角形外角定理,解题关键是熟练掌握基础知识,并根据题意准确画图.23.小芳和小刚都想参加学校组织的暑期实践活动,但只有一个名额,小芳提议:将一个转盘9等分,分别将9个区间标上1至个9号码,随意转动一次转盘,根据指针指向区间决定谁去参加活动,具体规则:若指针指向偶数区间,小刚去参加活动;若指针指向奇数区间,小芳去参加活动.(1)求小刚去参加活动的概率是多少?(2)你认为这个游戏公平吗?请说明理由.【答案】(1)小刚去参加活动的概率是49;(2)这个游戏不公平,见解析.【解析】(1)根据概率的定义求解即可;(2)计算出小芳参加活动的概率进行比较.【详解】解:(1) 因为转盘被均匀地分成9个区间,其中是偶数的区间有4个,因此P (小刚去参加活动)49 =,所以小刚去参加活动的概率是49.(2) 这个游戏不公平.理由:因为转盘被均匀地分成9个区间,其中是奇数的区间有5个,因此,P (小芳去参加活动)59=.因为45 99≠,所以P (小刚去参加活动) P≠(小芳去参加活动)所以这个游戏不公平.【点睛】本题考查了随机事件的概率,熟练掌握概率的计算方法是解题的关键.24.(1)对数轴上的点P进行如下操作:先把点P表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴t,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是,若点B′表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E'点E重合,则点E表示的数是.(2)在平面直角坐标系xOy中,已知△ABC的顶点A(﹣2,0),B(2,0),C(2,4),对△ABC及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同个实数a,将得到的点先向右平移m单位,冉向上平移n个单位(m>0,n>0),得到△ABC及其内部的点,其中点A,B的对应点分别为A′(1,2),B′(3,2).△ABC内部是否存在点F,使得点F经过上述操作后得到的对应点F′与点F重合,若存在,求出点F的坐标;若不存在请说明理由.【答案】(1)0,3,32;(2)(4,4)【解析】(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B表示的数为a,根据题意列出方程求解即可得到点B表示的数,设点E表示的数为b,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F的坐标为(x,y),根据平移规律列出方程组求解即可.【详解】解:(1)点A′:﹣3×13+1=﹣1+1=0,设点B表示的数为a,则13a+1=2,解得a=3,设点E表示的数为b,则13b+1=b,解得b=32;故答案为:0,3,32; (2)根据题意,得:212302a m a m a n -+=⎧⎪+=⎨⎪⋅+=⎩, 解得:1222a m n ⎧=⎪⎪=⎨⎪=⎪⎩, 设点F 的坐标为(x ,y ),∵对应点F′与点F 重合, ∴12x+2=x ,12y+2=y , 解得x =y =4,所以,点F 的坐标为(4,4).【点睛】本题考查了坐标与图形的变化,数轴上点右边的总比左边的大的性质,读懂题目信息是解题的关键. 25.已知平面直角坐标系中有一点M (23m -,1m +)(1)若点M 到x 轴的距离为2,求点M 的坐标;(2)点N (5,-1)且MN ∥x 轴时,求点M 的坐标.【答案】(1)点M (-1,2)或(-9,-2);(2)M 的坐标为(-7,-1).【解析】(1)根据“点M 到y 轴的距离为2”得|2m-3|=2,求出m 的值,进而可求点M 的坐标; (2)由MN ∥x 轴得m+1=-1,求得m 的值即可.【详解】(1)∵点M(2m-3,m+1)到x 轴的距离为2,∴m+1=2或m+1=-2,∴ m=1或m= -3,∴点M 的坐标为(-1,2)或(-9,-2);(2)∵点N(5,-1)且MN//x 轴,∴ m+1=-1,∴ m=-2,∴点M 的坐标为(-7,-1).【点睛】本题考查了平面直角坐标系内点的坐标的特征:横坐标相同的两点确定的直线平行于y 轴,纵坐标相同的两点确定的直线平行于x 轴.点到x 轴的距离是其纵坐标的绝对值,到y 轴的距离是其横坐标的绝对值.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列调査中,适合采用全面调査(普査)方式的是()A.对綦江河水质情况的调査B.对端午节期间市场上粽子质量情况的调査C.对某班50名同学体重情况的调査D.对某类烟花爆竹燃放安全情况的调査【答案】C【解析】对釜溪河水质情况的待查,只能是调查;对端午节期间市场上粽子质量情况的调查,和“对某类烟花爆竹燃放安全情况的调查”,根据调查的破坏性,只能是抽样调查;全面调查是所考察的全体对象进行调查. “对某班50名同学体重情况的调查”的容量较小适合采用全面调查方式;故选C2.学习整式的乘法时,小明从图1 边长为a 的大正方形中剪掉一个边长为b 的小正方形,将图1 中阴影部分拼成图2 的长方形,比较两个图中阴影部分的面积能够验证的一个等式为()A.a(a+b)=a2+ab B.(a+b)(a-b)=a2-b2C.(a-b)2=a2-2ab+b2D.a(a-b)=a2 -ab【答案】B【解析】根据阴影部分面积关系可得结论.【详解】图1 中阴影部分面积=a2-b2;图2阴影部分面积=(a+b)(a-b)所以(a+b)(a-b)=a2-b2故选B.【点睛】考核知识点:整式运算与图形面积.3.下图是某公司2018年度每月收入与支出情况折线统计图,下列说法中正确的是( )A .该公司12月盈利最多B .该公司从10月起每月盈利越来越多C .该公司有4个月盈利超过200万元D .该公司4月亏损了【答案】D 【解析】实线表示收入,虚线表示支出,当两条线之间的距离最大的时候就是节约最多的时候,据此解答即可.【详解】解:A .该公司1月盈利最多,故A 错误;B .该公司从十月起盈利越来越少,故B 错误;C .盈利超过200万的有1月份、10月份、11月份共3个月,故C 错误;D .四月份支出高于收入,所以亏损了,故D 正确.故选D .【点睛】本题是复式折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题. 4.9的平方根是( )A .3B .81C .3±D .81±【答案】C【解析】根据平方根的定义进行求解即可.【详解】解:9的平方根是3±.故选:C.【点睛】本题考查平方根,一个正数有两个实平方根,它们互为相反数.5.如图,直线a //b ,直角三角板ABC 的直角顶点C 在直线b 上,若132∠=,则2∠的度数是( )A .32B .58C .64D .68【答案】B【解析】根据平角等于180列式计算得到3∠,根据两直线平行,同位角相等可得32∠∠=.【详解】解:如图,132∠=,390158∠∠∴=-=,直线a //b ,2358∠∠∴==,故选:B .【点睛】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.6.若|x+y ﹣5|+(x ﹣y ﹣9)2=0,则x 、y 的值是( )A .72x y =⎧⎨=-⎩B .27x y =-⎧⎨=⎩C .72x y =-⎧⎨=⎩D .27x y =⎧⎨=-⎩【答案】A 【解析】利用非负性的性质列出方程组,求出方程组的解即可得到x 与y 的值。

[试卷合集3套]常州市某名校中学2020年七年级下学期数学期末考前验收试题

[试卷合集3套]常州市某名校中学2020年七年级下学期数学期末考前验收试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.在5张完全相同的卡片上,分别写有下列5个命题:①同位角相等;②三角形中至少有两个锐角;③三角形的一个外角大于任何一个内角;④三角形中至少有一个角大于60°;⑤同角的余角相等。

从中任意抽取张卡片,抽取到的卡片写有真命题的概率是()A.45B.35C.25D.15【答案】C【解析】首先逐一判断5个命题中哪些是真命题,②和⑤为真命题,再利用概率的概念求解. 【详解】解:①错误,同位角只有在两直线平行时才相等,故错误;②正确,这是三角形的性质;③错误,三角形的一个外角大于与它不相邻的任一内角;④错误,在三角形中至少有一个角大于等于60°;⑤正确,同角的余角相等;5个命题中,有两个真命题,故概率为25,故选C.【点睛】此题主要考查概率和三角形的性质问题,熟练掌握,即可得解.2.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cm C.5cm,5cm,11cm D.13cm,12cm,20cm【答案】D【解析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【详解】解:A、3+4<8,故以这三根木棒不可以构成三角形,不符合题意;B、8+7=15,故以这三根木棒不能构成三角形,不符合题意;C、5+5<11,故以这三根木棒不能构成三角形,不符合题意;D、12+13>20,故以这三根木棒能构成三角形,符合题意.故选:D.【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.3.下列说法错误的是()A±2 B是无理数C D.2是分数【答案】D【解析】A、根据算术平方根、平方根的定义即可判定;B 、根据无理数的定义即可判定;C 、根据无理数和立方根的定义即可判定;D 、根据开平方和有理数、无理数和分数的定义即可判定.【详解】解:A 、16的平方根是±2,故选项说法正确;B 、2是无理数,故选项说法正确;C 、327-=-3是有理数,故选项说法正确;D 、22不是分数,它是无理数,故选项说法错误. 故选D .4.将点向右平移3个单位长度得到点,则点所在的象限是( ) A .第四象限B .第三象限C .第二象限D .第一象限【答案】B【解析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得B 点坐标,进而可得所在象限.【详解】解:点A (-5,-2)向右平移3个单位长度得到点B (-5+3,-2),即(-2,-2), 在第三象限,故选:B .【点睛】 此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律. 5.在方程组2122x y m x y +=-⎧⎨+=⎩中,若未知数x ,y 满足x+y >0,则m 的取值范围在数轴上的表示应是如图所示的( )A .B .C .D . 【答案】B 【解析】解:2122x y m x y +-⎧⎨+⎩=①=②, ①+②得,3(x+y )=3-m ,解得x+y=1-3m , ∵x+y >0,∴1-3m >0,解得m<3,在数轴上表示为:.故选B.6.若关于x、y的二元一次方程组的解x、y互为相反数,则m的值为()A.4 B.5 C.6 D.8【答案】C【解析】由x与y互为相反数,得到x+y=0,即y=-x,代入方程组求出m的值即可.【详解】根据题意得:x+y=0,即y=-x,代入方程组得:,解得:m=6,故选C.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.在平面直角坐标系中,点P(4,﹣2)关于y轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】根据关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数;则直接可选出答案. 【详解】点P(4,﹣2)关于y轴的对称点的坐标是(﹣4,﹣2),在第三象限.故选:C.【点睛】本题考查了关于y轴对称的点坐标的特点,掌握轴对称点坐标的特点是解决此题的关键.8.下列式子中:(1)b a a bc a a c--=--;(2)221m nm n m n-=--;(3)1x yy x-=--;(4)a b a ba b a b-+-=--+.正确的个数为()A.1个B.2个C.3个D.4个【答案】B【解析】根据分式的基本性质依次计算后即可解答.【详解】(1)()()b a a b a bc a a c a c----==----,(1)正确;(2)221()()m n m n m n m n m n m n--==-+-+,(2)错误. (3)当x-y>0时,1x y x y y x y x --==---;当x-y<0时,1x y y x y x y x--==-- ,(3)错误; (4) ()()a b a b a b a b a b a b-+---==---++,(4)正确. 综上,正确的个数为2个.故选B.【点睛】本题考查了分式的基本性质,熟练运用分式的基本性质是解决问题的关键.9.如图,△ABC 中,AB=AC ,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DEFG 是正方形.若DE=2cm ,则AC 的长为 ( )A .33B .4cmC .23D .5【答案】D【解析】∵点D 、E 分别是边AB 、AC 的中点,∴DE=12BC ,∵DE=2cm ,∴BC=4cm , ∵AB=AC ,四边形DEFG 是正方形.∴△BDG ≌△CEF ,∴BG=CF=1,∴5∴5. 故选D .10.一个数的算术平方根为a ,则比这个数大5的数是 ( )A .5a +B .5a -C .25a +D .²5a - 【答案】C【解析】首先根据算术平方根的定义求出这个数,然后利用已知条件即可求解.【详解】解:设这个数为x ,那么x a =,2x a =,比x 大5的数是25a +.选C .【点睛】本题考查了算术平方根的定义,掌握算术平方根是解题的关键.二、填空题题11.已知关于x 的不等式组43244x m x m+<⎧⎨+>⎩无解,若m 为正整数,则m 的值是__________.【答案】1,2【解析】先分别求出两个不等式的解集,再根据不等式组无解即可求出m的取值范围,再根据m为正整数求解即可.【详解】43244x mx m+<⎧⎨+>⎩①②,解①得x<3m-4,解②得x>2m-2,∵不等式组无解,∴2m-2≥3m-4,∴m≤2,m为正整数,∴m=1,2.故答案为:1,2.【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.12.一个n边形的内角和是360°,那么n=_______.【答案】4【解析】根据多边形的内角和公式即可求解.【详解】依题意得(n-2)×180°=360°,解得n=4【点睛】此题主要考查多边形的内角和公式,解题的关键是熟记公式及运用.13.小明的生日是6月19日,他用6、1、9这三个数字设置了自己旅行箱三位数字的密码,但是他忘记了数字的顺序,那么他能一次打开旅行箱的概率是__________.【答案】1 6【解析】首先利用列举法可得:等可能的结果有:619,691,169,196,961,916;然后直接利用概率公式求解即可求得答案.【详解】解:∵等可能的结果有:619,691,169,196,961,916;∴他能一次打开旅行箱的概率是:16,故答案为:16. 【点睛】 此题考查了列举法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.14.x 的一半与3的和是非负数,用不等式表示为______.【答案】12x+3≥1. 【解析】直接利用x 的一半为:12x ,非负数即大于等于1,进而得出不等式. 【详解】解:由题意可得:12x+3≥1. 故答案为:12x+3≥1. 【点睛】 此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.15.如图,∠BAC=110°,若MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是______.【答案】40°【解析】∵MP 与NQ 分别垂直平分AB 和AC∴∠B =∠BAP ,∠QAC =∠C∵∠BAC =110°,∴∠B +∠C =70°又∵∠APQ =∠B +∠BAP∠AQP =∠C +∠QAC∴∠APQ +∠AQP =2∠B +2∠C =140°在△APQ 中∠PAQ =180°-∠APQ -∠AQP=180°-140°=40°16.若a+b =4,a ﹣b =1,则(a+2)2﹣(b ﹣2)2的值为_____.【答案】1【解析】先利用平方差公式:22()()a b a b a b -=+-化简所求式子,再将已知式子的值代入求解即可.【详解】22(2)(2)(22)(22)a b a b a b +--=++-+-+ ()(4)a b a b =+-+将4,1a b a b +=-=代入得:原式4(14)20=⨯+=故答案为:1.【点睛】本题考查了利用平方差公式进行化简求值,熟记公式是解题关键.另一个重要公式是完全平方公式:222()2a b a ab b ±=±+,这是常考知识点,需重点掌握.17.如果关于x 的不等式()424a x -≤可化为442x a ≥-,那么a 的取值范围是__________. 【答案】2a >【解析】不等式两边都除以x 的系数()42a -时,改变了不等号的方向,所以x 的系数是小于0的;据此可以解不等式求得a 的取值范围.【详解】解:关于x 的不等式()424a x -≤可化为442x a≥-, ∴4−1a <0,解得a >1.故答案为a >1.【点睛】此题主要考查了解一元一次不等式,当未知数的系数是负数时,两边同除以未知数的系数需改变不等号的方向.同理,当不等号的方向改变后,也可以知道不等式两边除以的是一个负数.三、解答题18.情系灾区.5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套,一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?【答案】(1)可安排甲种货车2辆,乙种货车6辆或甲种货车3辆,乙种货车5辆或甲种货车4辆,乙种货车4辆共3种方案;(2)甲种货车2辆,乙种货车6辆运费最少,最少运费是8400元.【解析】试题分析:(1)关系式为:甲种货车可装的床架数+乙种货车可装的床架数≥60;甲种货车可装的课桌凳数+乙种货车可装的课桌凳数≥100,把相关数值代入求得整数解的个数即可;(2)算出每种方案的总运费,比较即可.解:(1)设安排甲种货车x 辆,则安排乙种货车(8﹣x )辆.,解得2≤x≤4,∴x可取2,3,4,∴可安排甲种货车2辆,乙种货车6辆或甲种货车3辆,乙种货车5辆或甲种货车4辆,乙种货车4辆共3种方案;(2)甲种货车2辆,乙种货车6辆运费为:2×1200+6×1000=8400元;甲种货车3辆,乙种货车5辆运费为3×1200+5×1000=8600元;甲种货车4辆,乙种货车4辆运费为4×1200+4×1000=8800元;∴甲种货车2辆,乙种货车6辆运费最少,最少运费是8400元.19.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠1.求证:AD平分∠BAC.【答案】见解析。

(汇总3份试卷)2020年常州市某达标实验中学七年级下学期数学期末统考试题

(汇总3份试卷)2020年常州市某达标实验中学七年级下学期数学期末统考试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.若大军买了数支 10 元及 15 元的两种圆珠笔,共花费 90 元,则这两种圆珠笔的数量可能相差 A .5 支B .4 支C .3 支D .2 支【答案】B【解析】设10元的原子笔有x 支,15元的原子笔有y 支.则10x+15y=90,求整数解可得.【详解】设10元的原子笔有x 支,15元的原子笔有y 支.则10x+15y=90,因为x ,y 均为整数,可解得x=3,y=4或x=6,y=1.所以这两种圆珠笔的数量可能相差1或4故选:B .【点睛】考核知识点:二元一次方程的应用.求出整数解是关键.2.下列各选项的结果表示的数中,不是无理数的是( )A .如图,直径为单位1的圆从数轴上的原点沿着数轴无滑动地顺时针滚动一周到达点A ,点A 表示的数B .5的算术平方根C .9的立方根D 144【答案】D【解析】将四个选项都计算出来,再由无理数是无限不循环小数进行判断. 144,12是有理数,不是无理数.故选D【点睛】本题考察什么是无理数,同时也考查了数的开方运算,能正确进行数的开方是解题的关键.3.已知x ,y 满足231325x y x y -=⎧⎨-=⎩①②,如果①×a+②×b 可整体得到x+11y 的值,那么a ,b 的值可以是( ) A .a 2=,b 1=-B .a 4=-,b 3=C .a 1=,b 7=-D .a 7=-,b 5=【答案】D【解析】把a 和b 的值逐项代入①×a+②×b 验证,即可求出答案.【详解】A. 把①×2+②×(-1)得,x-4y=-3,故不符合题意;B. 把①×(-4)+②×3得,x+6y=11,故不符合题意;C.把①×1+②×(-7)得,-19x+11y=-34,故不符合题意;D.把①×(-7)+②×5得,x+11y=18,故符合题意;故选D.【点睛】本题考查了加减法解二元一次方程组,解答本题的关键是熟练掌握整式的运算法则.4.计算(a 2b)3的结果是( )A .a 3bB .a 6b 3C .a 5b 3D .a 2b 3【答案】B【解析】根据积的乘方运算法则进行计算即可得解.【详解】(a 2b)3=(a 2)3b 3=a 6b 3.故选B.【点睛】本题主要考查了积的乘方的幂的乘方运算,熟练掌握它们的运算法则是解决此题的关键. 5.若方程组31433x y k x y +=-⎧⎨+=⎩的解满足2x y -=,则k 的值为( ) A .32- B .﹣1 C .12- D .1【答案】A【解析】根据等式的性质,可得关于k 的方程,根据解方程,可得答案.【详解】314(1)33(2)x y k x y +=-⎧⎨+=⎩, (1)﹣(2)得:2242x y k -=--可得:21x y k -=--,因为2x y -=,所以212k --=, 解得:32k =-, 故选A .【点睛】本题考查了二元一次方程组的解,整体代入的出关于k 的方程是解题关键.6.某班共有学生49人,一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半,若该班男生人数为x ,女生人数为y ,则所列方程组正确的是( )A .()4921x y y x -=⎧⎨=+⎩B .()4921x y y x +=⎧⎨=+⎩C .()4921x y y x -=⎧⎨=-⎩D .()4921x y y x +=⎧⎨=-⎩【答案】D 【解析】根据等量关系:男生数-1=女生数的一半,男生+女生=49,据此即可列出方程组.【详解】由该班一男生请假后,男生人数恰为女生人数的一半,得x-1= 12y ,即y=2(x-1);由该班共有学生49人,得x+y=49,列方程组为 ()4921x y y x +=⎧⎨=-⎩, 故选D .【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系列出相应的方程是解题的关键. 7.下列说法正确的是( )A .无限小数是无理数B .16的平方根是4±C .6是2(6)-的算术平方根D .5的立方根是35-【答案】C【解析】根据各选项所涉及的数学知识进行分析判断即可.【详解】A 选项中,因为“无限循环小数是有理数”,所以A 中说法错误;B 选项中,因为“16=4,而4的平方根是±2”,所以B 中说法错误;C 选项中,因为“2(6)36-=,而36的算术平方根是6”,所以C 中说法正确;D 选项中,因为“5的立方根是35”,所以D 中说法错误.故选C.【点睛】熟知“各选项中所涉及的相关数学知识”是解答本题的关键.8.如图,AF ∥CD ,CB 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD ,下列结论:① BC 平分∠ABE ;② AC ∥BE ;③ ∠CBE+∠D =90°;④ ∠DEB =2∠ABC .其中正确结论的个数有( )A .1个B .2个C .3个D .4个【答案】D【解析】根据平行线的性质和判定,垂直定义,角平分线定义,三角形的内角和定理进行判断即可.【详解】∵AF∥CD,∴∠ABC=∠ECB,∠EDB=∠DBF,∠DEB=∠EBA,∵CB平分∠ACD,BD平分∠EBF,∴∠ECB=∠BCA,∠EBD=∠DBF,∵BC⊥BD,∴∠EDB+∠ECB=90°,∠DBE+∠EBC=90°,∴∠EDB=∠DBE,∴∠ECB=∠EBC=∠ABC=∠BCA,∴①BC平分∠ABE,正确;∴∠EBC=∠BCA,∴②AC∥BE,正确;∴③∠CBE+∠D=90°,正确;∵∠DEB=∠EBA=2∠ABC,故④正确;故选D.【点睛】本题考查了平行线的性质和判定,垂直定义,角平分线定义,三角形的内角和定理的应用,能综合运用性质进行推理是解此题的关键,9.能使得不等式3(x﹣1)<5x+2与732-x12≥x﹣1都成立的正整数x的个数有()A.3个B.4个C.5个D.6个【答案】B【解析】先解由两不等式所组成的不等式组得到52-<x≤4,然后找出此范围内的整数即可.【详解】()3152317122x xx x⎧-+⎪⎨-≥-⎪⎩<①②,解①得x52->,解②得x≤4,所以不等式组的解集为52-<x≤4,所以不等式组的整数解为﹣2,﹣1,0,1,2,3,4,即x取的正整数有1,2,3,4,一共4个.故选:B.【点睛】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.10.若点(3+m,n﹣2)关于y轴对称点的坐标是(3,2),则m,n的值为()A.m=﹣6,n=﹣4 B.m=0,n=4 C.m=﹣6,n=4 D.m=﹣6,n=0【答案】C【解析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得3+m+3=0,n﹣2=2,再解即可.【详解】解:∵点(3+m,n﹣2)关于y轴对称点的坐标是(3,2),∴3+m+3=0,n﹣2=2,解得:m=﹣6,n=4,故选:C.【点睛】此题主要考查了关于y轴的对称点的坐标特点,关键是掌握点的坐标的变化规律.二、填空题题11.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有______种.【答案】1【解析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【详解】解:选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置有以下几种:1处,2处,1处,选择的位置共有1处.故答案为1.考点:概率公式;轴对称图形.∠的内部有一点P,点M、N分别是点P关于OA,OB的对称点,MN分别交OA,12.如图,在AOB∆的周长为30cm,则线段MN的长为______cm.OB于C,D点,若PCD【答案】30【解析】利用对称性得到CM=PC,DN=PD,把求MN的长转化成△PCD的周长,问题得解.【详解】∵点P关于OA、OB的对称点分别为C. D,∴MC=PC,ND=PD,∴MN=CM+CD+ND=PC+CD+PD=30cm.故答案为:30.【点睛】此题考查轴对称的性质,解题关键在于把求MN的长转化成△PCD的周长.13.如图,条件__(填写所有正确的序号)一定能判定AB∥CD.①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠1.【答案】①③④【解析】根据平行线的判定方法逐个条件分析即可.【详解】①∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故①正确;②∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行),故②错误;③∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故③正确;④∵∠B=∠1,∴AB∥CD(同位角相等,两直线平行),故④正确;故答案为①③④.【点睛】本题考查了平行线的判定方法:①两同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.14.将一个等腰直角三角形的直角顶点和一个锐角顶点按如图方式分别放在直线a,b上,若a∥b,∠1=16°,则∠2的度数为_____.【答案】29°.【解析】由两直线平行,同旁内角互补,可得180ABC BCD ∠+∠=°,进而求出∠2的度数.【详解】解:由题意可知,∠EBC=90°,∠BCE=45°,又∠1=16°,∴∠ABC=∠EBC+∠1=106°,∵a ∥b ,∴180ABC BCD ∠+∠=°,∴∠BCD=180°-∠ABC=180°-106°=74°,∴∠2=∠BCD-∠BCE=74°-45°=29°.故答案为29°.【点睛】本题考查了平行线的性质,熟练掌握相关性质是解题关键.15.在有理数范围内分解因式:(x+1)(x+2)(2x+3)(x+6)﹣20x 4= .【答案】(3x+2)(3﹣x )(6x 2+7x+6)【解析】试题分析:根据整式的乘法法则展开,设t=x 2+7x+6,代入后即可分解因式,分解后把t 的值代入,再进一步分解因式即可.解:(x+1)(x+2)(2x+3)(x+6)﹣20x 4=(x+1)(x+6)(x+2)(2x+3)﹣20x 4=(x 2+7x+6)(2x 2+7x+6)﹣20x 4令t=x 2+7x+6t (x 2+t )﹣20x 4=t 2+tx 2﹣20x 4=(t ﹣4x 2)(t+5x 2)=(x 2+7x+6﹣4x 2)(x 2+7x+6+5x 2)=(6+7x﹣3x2)(6x2+7x+6)=(3x+2)(3﹣x)(6x2+7x+6).故答案为(3x+2)(3﹣x)(6x2+7x+6).考点:因式分解-十字相乘法等;多项式乘多项式.点评:本题考查了多项式乘多项式、分解因式等知识点的理解,能选择适当地方法分解因式和把多项式展开是解此题的关键.16.如果关于x的不等式1532223xxxx a+⎧-⎪⎪⎨+⎪+⎪⎩><只有4个整数解,那么a的取值范围是________________________。

{3套试卷汇总}2020年常州市某名校中学七年级下学期期末学业质量检查模拟数学试题

{3套试卷汇总}2020年常州市某名校中学七年级下学期期末学业质量检查模拟数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在ABC ∆中,90150C EF AB ∠=︒∠=︒∥,,,则B 的度数为( )A .50︒B .60︒C .30D .40︒【答案】D 【解析】根据三角形内角和定理和平行线的性质计算.解:∵∠C=90°,∴∠CFE=90°-∠CEF=40°,又∵EF ∥AB ,∴∠B=∠CFE=40°.故选D .本题主要考查了三角形内角和定理和平行线的性质.解题的关键是对这些基本性质的掌握. 2.在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港,设行驶x (h)后,船与乙港的距离为y (km),y 与x 的关系如图所示,则下列说法正确的是( )A .甲港与丙港的距离是90kmB .船在中途休息了0.5小时C .船的行驶速度是45km/hD .从乙港到达丙港共花了1.5小时【答案】D 【解析】由船行驶的函数图象可以看出,船从甲港出发,0.5h 后到达乙港,ah 后到达丙港,进而解答即可.【详解】解:A 、甲港与丙港的距离是30+90=120km ,错误;B 、船在中途没有休息,错误;C 、船的行驶速度是3060km /h 0.5=,错误; D 、从乙港到达丙港共花了90 1.560=小时,正确; 故选D .【点睛】此题主要考查了函数图象与实际结合的问题,利用数形结合得出关键点坐标是解题关键,同学们应加强这方面的训练.3.对不等式13128x x -+->,给出了以下解答: ①去分母,得4(1)(3)8x x --+>;②去括号,得4438x x --+>;③移项、合并同类项,得39x >;④两边都除以3,得3x >其中错误开始的一步是( )A .①B .②C .③D .④【答案】B【解析】去分母注意不要漏乘不含分母的项1,去括号注意括号前面的符号,移项也注意变号,不等式两边同时乘以或除以一个负数注意不等号的改变,利用这些即可求解.【详解】由题意可知,②中去括号错了,应该是4438x x --->,∴错误的是②.故选:B.【点睛】熟练掌握解一元一次不等式的步骤,去括号注意括号前面的符号是解题的关键. 4.若=4=-2x y ⎧⎨⎩与25x y =-⎧⎨=-⎩都是方程y =kx +b 的解,则k 与b 的值分别为( ) A .k =12,b =-4 B .k =-12,b =4 C .k =12,b =4 D .k =-12,b =-4 【答案】A【解析】试题分析:把42x y =⎧⎨=-⎩,25x y =-⎧⎨=-⎩代入方程y =kx +b , 得到关于k 和b 的二元一次方程组2452k b k b -=+⎧⎨-=-+⎩, 解这个方程组,得124k b ⎧=⎪⎨⎪=-⎩.故选A .5.下列计算正确的是( )A .a 5+a 5=a 10B .a 7÷a =a 6C .a 3·a 2=a 6D .(2x)3=2x 3【答案】B【解析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【详解】:A .a 5+a 5=2a 5,所以此选项错误;B .a 7÷a=a 6,所以此选项正确;C .a 3•a 2=a 5,所以此选项错误;D .(2x )3=8x 3,所以此选项错误;故选B .【点睛】本题主要考查了同底数幂的乘法、除法、幂的乘方及合并同类项等,关键是熟记,同底数幂的除法法则:底数不变,指数相减;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.6.有甲、乙、丙三人,它们所在的位置不同,他们三人都以相同的单位长度建立不同的坐标系,甲说:“如果以我为坐标原点,乙的位置是43(,) ”;丙说:“以我为坐标原点,乙的位置是34--(,)”;如果以乙为坐标原点,甲和丙的位置分别是A .(3,4),(3,4)--B .(4,3),(3,4)--C .(3,4),(4,3)--D .(4,3),(3,4)--【答案】D【解析】由于已知三人建立坐标时,x 轴和y 轴正方向相同,对坐标进行逆推即可.【详解】以甲为坐标原点,乙的位置是(4,3),则以乙的坐标为原点时,甲的坐标是(-4,-3); 以丙坐标原点,乙的位置是34--(,),则以乙的坐标为原点时,丙的坐标是(3,4) 故选D.【点睛】本题考查坐标位置,熟练掌握坐标的性质是解题关键.7.下列叙述正确的是( )A .的平方根是B .的算术平方根是C .的立方根是D .是的算术平方根 【答案】C【解析】根据立方根、平方根以及算术平方根的定义分别得出答案即可.【详解】解:A 、0.09的平方根是,此选项错误; B 、的算术平方根是 ,此选项错误; C 、的立方根是,正确,故此选项符合题意; D 、是的平方根,此选项错误;故选:C .【点睛】本题考查立方根、平方根以及算术平方根的定义,熟练掌握其性质是解题关键.8.古希腊著名的毕达哥拉斯学派把1,3,6,10,…这样的数称为“三角形数”,而把1,4,9,16,…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .9=4+5B .25916=+C .361521=+D .491831=+【答案】C 【解析】本题先根据已知条件,得出三角数前面是1,3,6,10,15,21,1,依次差增加1,再从中找出规律,即可找出结果.【详解】解:根据题目中的已知条件结合图象可以得到三角形数是这样的,三角形数1,3,6,10,15,21,1,后面的数与前面的数的差依次增加1,正方形数 1 ,4 ,9 ,16 ,25 ,36 ,49,则25=10+15,36=15+21,49=21+1.故选:C .【点睛】本题考查图形的变化类问题,在解题时找出规律是解题的关键.9.方程组33814x y x y -=⎧⎨-=⎩的解为 A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩ 【答案】D【解析】根据方程组解的概念,将4组解分别代入原方程组,一一进行判断即可.【详解】解:将4组解分别代入原方程组,只有D 选项同时满足两个方程,故选D .10.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )A .8或10B .8C .10D .6或12【答案】C【解析】试题分析:①4是腰长时,三角形的三边分别为4、4、4,∵4+4=4,∴不能组成三角形, ②4是底边时,三角形的三边分别为4、4、4,能组成三角形,周长=4+4+4=4,综上所述,它的周长是4.故选C .考点:4.等腰三角形的性质;4.三角形三边关系;4.分类讨论.二、填空题题11.如图,在ABC ∆中,90BAC ︒∠=,AB AC =,点D 为AC 中点,连接BD ,CE BD ⊥交BD 延长线于点E ,CE 与BA 延长线交于点M .若6AB =,则BCM ∆的面积为__________.【答案】27【解析】可证ABD ACM ∆≅∆,求出AM 长,根据面积公式可得BCM ∆的面积.【详解】解:90,C AC E BD B ︒=⊥∠90MAC BAC BEC ︒∴∠=∠=∠=90,90ABD ADB ACM EDC ︒︒∴∠+∠=∠+∠=又ADB EDC ∠=∠ABD ACM ∴∠=∠6AB AC ==()ABD ACM ASA ∴∆≅∆AM AD ∴= 又点D 为AC 中点 116322AM AD AC ∴===⨯= 11(63)62722BCM S BM CB ∆∴==⨯+⨯= 故答案为:27.【点睛】本题考查全等三角形,通过证明三角形全等求线段的长度,灵活运用全等三角形的性质是解题的关键. 12.如图,已知直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOC=70°,则∠BOD 的度数是_______°【答案】1°【解析】利用角平分线的定义和对顶角的性质计算.解:∵OA 平分∠EOC ,∠EOC=70°,∴∠AOC=1°,(角平分线定义)∴∠BOD=1°,(对顶角相等)故填1.13.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为_______°.【答案】1【解析】解:如图:∵∠3=180°-∠1=180°-55°=125°,∵直尺两边互相平行,∴∠2+90°=∠3,∴∠2=125°-90°=1°.故答案为1.14.若三角形三条边长分别是1.2厘米,6.9厘米,n厘米(其中n为整数),则所有n可能的取值为______厘米.【答案】6、7、1【解析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行解答即可.【详解】解:6.9-1.2<第三边<6.9+1.2,所以:5.7<第三边<1.1,即第三边的长在5.7~1.1厘米之间,即可能是:6、7、1.【点睛】此题关键是根据三角形的特性,根据三角形的三边关系:两边之和大于第三边,三角形的两边的差一定小于第三边,进行分析、解答.15.分解因式:a3b2-2a2b2+ab2=________________.【答案】ab2(a-1)2【解析】首先提取公因式ab2,然后利用完全平方公式继续分解.【详解】解:a3b2-2a2b2+ab2= ab2(a2-2a+1)= ab2(a-1)2,故答案为:ab2(a-1)2.【点睛】本题考查了因式分解,熟练掌握提取公因式法和公式法是解题关键.16.如图,直线AB ,CD 相交于点O ,若∠EOC :∠EOD=4 :5 ,OA平分∠EOC ,则∠BOE=___________.【答案】140°【解析】直接利用平角的定义得出:∠COE=80°,∠EOD=100°,进而结合角平分线的定义得出∠AOC=∠BOD,进而得出答案.【详解】∵∠EOC:∠EOD=4:5,∴设∠EOC=4x,∠EOD=5x,故4x+5x=180°,解得:x=20°,可得:∠COE=80°,∠EOD=100°,∵OA平分∠EOC,∴∠COA=∠AOE=40°,∴∠BOE=180°-∠AOE=140°.故答案为140°.【点睛】此题主要考查了角平分线的定义以及邻补角,正确把握相关定义是解题关键.17.某公司的电话号码是八位数,这个号码的前四位数字相同,后五位数字是连续减少1的自然数,全部数字之和恰好等于号码的最后两位数,那么,该公司的电话号码是_____.【答案】1.【解析】根据题意列出方程即可求出结果.【详解】后五位数是依次减小的数.设前四位数字均为x,则后四位数字依次为x﹣1,x﹣2,x﹣3,x﹣4,根据题意得:4x+(x﹣1)+(x﹣2)+(x﹣3)+(x﹣4)=10(x﹣3)+(x﹣4),解得:x=2.所以后四位数为7654,因此该公司的电话号码为1.故答案是:1.【点睛】本题考查了一元一次方程的应用,解答本题的关键是根据题意列出方程.三、解答题18.完成下面的证明.已知:如图,AB∥DE,求证:∠D+∠BCD﹣∠B=180°.证明:过点C作CF∥AB.∵CF∥AB(已作),∴∠1=.∵∠2=∠BCD﹣∠1,∴∠2=∠BCD﹣∠B.∵AB∥DE,CF∥AB(已知),∴CF∥DE∴∠D+∠2=180°∴∠D+∠BCD﹣∠B=180°.【答案】∠B,(等量代换),(平行于同一条直线的两直线平行),(两直线平行,同旁内角互补),(等量代换)【解析】过点C作CF∥AB,求出CF∥DE,根据平行线的性质得出∠1=∠B,∠D+∠2=180°,即可得出答案.【详解】证明:过点C作CF∥AB.∵CF∥AB(已作),∴∠1=∠B.∵∠2=∠BCD﹣∠1,∴∠2=∠BCD﹣∠B(等量代换).∵AB∥DE,CF∥AB(已知),∴CF∥DE(平行于同一条直线的两直线平行)∴∠D+∠2=180°(两直线平行,同旁内角互补)∴∠D+∠BCD﹣∠B=180°(等量代换).【点睛】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.19.如图,在正方形网格中有一个格点△ABC ,(即△ABC 的各顶点都在格点上),按要求进行下列作图:(1)画出△ABC 中AB 边上的高CD ;(提醒:别忘了标注字母!)(2)画出将△ABC 向上平移3格后的△A′B′C′;(3)连接AA’、CC’,四边形AA ′C ′C 的面积是.【答案】(1)答案见解析;(2)答案见解析;(3)15.【解析】(1)直接利用钝角三角形高线的作法得出答案;(2)利用平移的性质得出各对应点位置进而得出答案;(3)利用割补法求四边形的面积得出答案.【详解】(1)如图所示:CD 即为所求;(2)如图所示:△A′B′C′,即为所求;(3)四边形AA′C′C 的面积=5×5-12522⨯⨯⨯=25-10=15. 【点睛】本题主要考查作图-平移变换,用到的知识点为:一边上的高为这边所对的顶点向这边所引的垂线段;图形的平移要归结为各顶点的平移.20.已知,关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩的解满足0x ≥,0y <. (1)求a 的取值范围;(2)化简21a a --+;(3)若393x y m ⋅=,求m 的取值范围.【答案】(1)a 的取值范围是−12<a <2; (2)|a−2|−|a +1|=−2a +1;(3)m的取值范围是−1<m<1.【解析】(1)把a看做已知数表示出方程组的解,根据x≥0,y<0,求出a的范围即可;(2)根据(1)中的取值可解答;(3)先根据幂的性质将已知变形得:x+2y=m,再将方程组化为x+2y的形式可得结论.【详解】(1)解方程组325x y ax y a-=+⎧⎨+=⎩,得:212x ay a=+⎧⎨=-⎩,∵x≥0,y<0,∴212x ay a=+⎧⎨=-⎩①②,解不等式①,得:a>−12,解不等式②,得:a<2,∴a的取值范围是−12<a<2;(2)∵−12<a<2,∴|a−2|−|a+1|=2−a−(a+1)=−2a+1;(3)3x•9y=3m,3x•(32)y=3m,3x+2y=3m,x+2y=m,∵325x y ax y a-=+⎧⎨+=⎩①②,②−①得:x+2y=4a−3,即m=4a−3,∵a的取值范围是−12<a<2,−2<4a<8,−1<4a−3<1,∴m的取值范围是−1<m<1.【点睛】此题考查了二元一次方程组的解,绝对值,幂的有关性质以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.21.如图,在所给网格图(每个小正方形的边长都是1)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)求出△A1B1C1的面积;(3)在DE上画出点Q,使QA+QC最小.【答案】(1)见解析;(2)3;(3)见解析.【解析】(1)直接利用轴对称变换的性质得出对应点位置进而得出答案;(2)直接利用三角形面积求法得出答案;(3)直接利用最短路线求法得出Q点位置.【详解】(1)如图所示:△A1B1C1,即为所求;(2)△A1B1C1的面积为:12×2×3=3;(3)如图所示:点Q的位置,使QA+QC最小.【点睛】此题主要考查了轴对称变换以及三角形面积求法和最短路线问题,正确得出对应点位置是解题关键.22.如图,某工程队从点A出发,沿北偏西67方向铺设管道AD,由于某些原因,BD段不适宜铺设,需改变方向,由B点沿北偏东23的方向继续铺设BC段,到达C点又改变方向,从C点继续铺设CE段,ECB应为多少度,可使所铺管道CE AB∥?试说明理由.此时CE与BC有怎样的位置关系?【答案】见解析【解析】根据题意可知,本题考查的是通过平面内方位角判断直线与直线的位置关系,通过平行和方位角的联系,找准各角度之间的关系,从而确认直线与直线的位置关系.【详解】解:∵分别过A ,B 两点的指北方向是平行的,∴167A ∠=∠=(两直线平行,同位角相等)∴236790CBD ∠=+=,当180ECB CBD ∠+∠=时,可得CE AB ∥.(同旁内角互补,两直线平行)∴90ECB ∠=,∴CE BC ⊥.(垂直定义)【点睛】本题解题关键:熟练掌握方位角位置和大小的判断以及平行线的性质.23.如图,点E 在直线DF 上,点B 在直线AC 上,若∠1=∠2、∠C =∠D ,试判断∠A 与∠F 的关系,并说明理由.【答案】∠A =∠F, 理由详见解析【解析】利用已知条件及对顶角相等,等量代换出∠DGH =∠2,根据平行线的判定得出BD ∥CE ,再根据平行线的性质及判定即可解答.【详解】∠A =∠F. 理由如下:∵∠1=∠DGH ,∠1=∠2.∴∠DGH =∠2.∴BD ∥CE.∴∠D =∠FEC.∵∠C =∠D.∴∠FEC =∠C.∴DF ∥AC.∴∠A =∠F .【点睛】本题考查的是平行线的性质及判定,熟练的掌握平行线的性质及判定定理是关键.24.某校为美化校园,计划对面积为1800m 2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m 2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m 2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【答案】(1)111,51;(2)11.【解析】(1)设乙工程队每天能完成绿化的面积是x (m 2),根据在独立完成面积为411m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y 天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.【详解】解:(1)设乙工程队每天能完成绿化的面积是x (m 2),根据题意得: 40040042x x -= 解得:x=51,经检验x=51是原方程的解,则甲工程队每天能完成绿化的面积是51×2=111(m 2),答:甲、乙两工程队每天能完成绿化的面积分别是111m 2、51m 2;(2)设应安排甲队工作y 天,根据题意得:1.4y+180010050y -×1.25≤8, 解得:y≥11,答:至少应安排甲队工作11天.25.在AOB 中,90AOB ∠=︒,点C 为直线AO 上的一个动点(与点,O A 不重合),分别作OBC ∠和ACB ∠的角平分线,两角平分线所在直线交于点E .(1)若点C 在线段AO 上,如图1.①依题意补全图1;②求BEC ∠的度数;(2)当点C 在直线AO 上运动时,BEC ∠的度数是否变化?若不变,请说明理由;若变化,画出相应的图形,并直接写出BEC ∠的度数.【答案】(1)①补图见解析;②45°;(2)图见解析,∠BEC 的度数为45°或135°.【解析】(1)①根据题意作图即可;②设∠EBO=∠EBC=x ,∠BCK=∠ACK=y ,由三角形外角定理列方程组求BEC ∠的度数;(2)分情况讨论点C 在OA 和AO 延长线上时BEC ∠的度数,结合(1),即点C 在线段OA 上时BEC ∠的度数,可得结论.【详解】(1)①依题意补图如下:②设∠EBO=∠EBC=x ,∠BCK=∠ACK=y ,∵∠ACB=∠OBC+∠BOC ,∠BCK=∠EBC+∠BEC∴2290y x y x BEC =+︒⎧⎨=+∠⎩∴∠BEC=45°(2)如图,当点C 在OA 延长线上时,∵∠AOB=90°,∴∠OBC+∠OCB=90°,∵BE 、CE 分别是OBC ∠和ACB ∠的角平分线,∴∠EBC+∠ECB=90°×12=45°, ∴∠BEC=180°-45°=135°;如图,当点C 在AO 延长线上时,同理,可得∠BEC=135°;由(1)知,当点C 在线段OA 上时,∠BEC=135°.综上可知,当点C 在直线AO 上运动时,BEC ∠的度数为45°或135°.【点睛】本题主要考查角平分线的定义、三角形外角定理,解题关键是熟练掌握基础知识,并根据题意准确画图.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156米,则这个数用科学记数法表示为A.B.C.D.【答案】C【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以为0•00000156=1.5610-6,故选C.2.将一副直角三角板,按如图所示叠放在一起,则图中∠的度数是()A.45o B.60o C.75o D.90o【答案】C【解析】如图,∵∠1=90°-60°=30°,∴∠α=45°+30°=75°.故选C.3.下列现象是数学中的平移的是( )A.小朋友荡秋千B.碟片在光驱中运行C.“神舟”十号宇宙飞船绕地球运动D.瓶装饮料在传送带上移动【答案】D【解析】根据平移的定义,结合选项一一分析,排除错误答案.【详解】A. 小朋友荡秋千是旋转,故选项A错误;B. 碟片在光驱中运行是旋转,故选项B错误;C. “神舟”十号宇宙飞船绕地球运动不是沿直线运动,故选项C错误.D. 瓶装饮料在传送带上移动沿直线运动,符合平移定义,故选项D正确;故选D.【点睛】本题考查平移的概念,与实际生活相联系,注意分清与旋转、翻转的区别.4.将一直角三角尺与两边平行的纸条按如图所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°.正确的个数是( )A .1B .2C .3D .4 【答案】D【解析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.【详解】解:∵纸条的两边平行,∴①∠1=∠2(两直线平行,同位角相等);②∠3=∠4(两直线平行,内错角相等);④∠4+∠5=180°(两直线平行,同旁内角互补);又∵直角三角板的直角为90°,∴③∠2+∠4=90°,故选:D .【点睛】本题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.5.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得【 】A .()x+y=5010x+y =320⎧⎪⎨⎪⎩B .x+y=506x+10y=320⎧⎨⎩C .x+y=506x+y=320⎧⎨⎩D .x+y=5010x+6y=320⎧⎨⎩ 【答案】B 。

江苏省常州市2020年初一下期末统考数学试题含解析

江苏省常州市2020年初一下期末统考数学试题含解析
3.点D、E分别在级段AB、AC上,CD与BE相交于点O,已知AB=AC,添加以下哪一个条件不能判定△ABE≌△ACD( )
A.∠B=∠CB.∠BEA=∠CDAC.BE=CDD.CE=BD
【答案】C
【解析】
【分析】
把选项代入,可知A、B、D都符合全等三角形的判定,只有C项不符合.
【详解】
添加A选项中条件可用ASA判定两个三角形全等;
【点睛】
本题考查平面直角坐标系,熟练掌握坐标系各象限点的性质是解题关键.
7.第24届冬季奥运会,将于2022年由北京市和张家口市联合举办,下列四个图案是历届会徽图案的一部分图形,其中不是轴对称图形的是()
A. B. C. D.
【答案】D
【解析】
【分析】
结合轴对称图形的概念求解即可.
【详解】
A、是轴对称图形,本选项错误;
A.m+2>n+2B.2m>2nC. > D.m2>n2
【答案】D
【解析】
试题分析:A、不等式的两边都加2,不等号的方向不变,故A正确;
B、不等式的两边都乘以2,不等号的方向不变,故B正确;
C、不等式的两条边都除以2,不等号的方向不变,故C正确;
D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;
江苏省常州市2020年初一下期末统考数学试题
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.

∥3套精选试卷∥2020年常州市某达标实验中学七年级下学期数学期末达标检测试题

∥3套精选试卷∥2020年常州市某达标实验中学七年级下学期数学期末达标检测试题
6.下列运算正确的是()
A. B. C. D.
【答案】B
【解析】直接根据整数指数幂的运算性质和合并同类项法则计算即可.
【详解】解:A、 ,故本选项错误;
B. ,故本选项正确;
C. ,故本选项错误;
D. ,故本选项错误;
故选B
【点睛】
本题考查同底数幂乘法,幂的乘方,积的乘方等指数幂的运算性质,属于基础题.
A. B.
C. D.
【答案】B
【解析】设用x张制作盒身,y张制作盒底,根据题意得: .故选B.
10.如图1,将一个边长为 的正方形纸片剪掉两个小长方形,得到一个如图2所示的图形,再将剪下的两个小长方形排成如图3所示的一个新的长方形,则图3中的长方形的周长为()
A. B. C. D.
【答案】B
【解析】通过观察图形,表示出新长方形的长与宽,再根据长方形周长公式即可确定其周长.
3.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( )
A.3<x<5B.-5<x<3C.-3<x<5D.-5<x<-3
【答案】A
【解析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.
【详解】解:∵点P(2x-6,x-1)在第四象限,
∴ ,
解得:3<x<1.
故选:A.
【点睛】
【详解】如图,由翻折的性质得

在△ADE中,


整理得


故答案为:D.
【点睛】
本题考查了三角形的翻折问题,掌握翻折的性质、三角形的内角和定理和三角形的外角性质是解题的关键.
8.已知图中的两个三角形全等,则∠1等于()
A.72°B.60°C.50°D.58°

(汇总3份试卷)2020年常州市某名校中学七年级下学期数学期末学业质量检查模拟试题

(汇总3份试卷)2020年常州市某名校中学七年级下学期数学期末学业质量检查模拟试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1a 和b 之间,a b <,那么+a b 的值是( ) A .11 B .13C .14D .15【答案】B【解析】首先用“夹逼法”确定a b 、的值,进而可得+a b 的值.【详解】解:67<<,∴6,7a b ==, ∴6713a b +=+=. 故选:B. 【点睛】此题主要考查了估算无理数的大小,关键是正确确定a b 、的值. 2.下列语句,其中正确的有( )①点(3,2)与(2,3)是同一个点;②点(0,-2)在x 轴上; ③点(0,0)是坐标原点;④点(-2,-6)在第三象限内 A .0个 B .1个 C .2个 D .3个 【答案】C【解析】分析:横坐标相同,纵坐标也相同的点才表示同一个点;在x 轴上的点的纵坐标为0;(0,0)表示坐标原点.第三象限的点的符号为负,负,据以上知识点进行判断即可. 详解:①点(3,2)与(2,3)不是同一个点,错误; ②点(0,−2)在y 轴上,错误; ③点(0,0)是坐标原点,正确; ④点(−2,−6)在第三象限内,正确; 正确的有2个,故选C. 点睛:本题考查了点的坐标. 3.下列说法错误的是( ) A .三角形三条高交于三角形内一点B .三角形三条中线交于三角形内一点C .三角形三条角平分线交于三角形内一点D .三角形的中线、角平分线、高都是线段 【答案】A【解析】根据三角形的高线、外角的性质、角平分线、中线的定义对各选项分析判断后利用排除法求解. 【详解】A. 三角形的三条高所在的直线交于一点,三条高不一定相交,故本选项符合题意; B. 三角形的三条中线交于三角形内一点,故本选项不符合;C. 三角形的三条角平分线交于一点,是三角形的内心,故本选项不符合;D. 三角形的中线,角平分线,高都是线段,因为它们都有两个端点,故本选项不符合; 故选:A. 【点睛】此题考查三角形的角平分线、中线和高,解题关键在于掌握各性质定义. 4.如图,下列条件中能判定直线l 1∥l 2的是( )A .∠1=∠2B .∠1=∠5C .∠1+∠3=180°D .∠3=∠5【答案】C【解析】∵∠1+∠3=180° ∴l 1∥l 2, 故选C .考点:平行线的判定.5.人体中红细胞的直径约为0.000007m ,将0.000007m 用科学记数法表示数的结果是( ) A .50.710m -⨯ B .60.710m -⨯C .5710m -⨯D .6710m -⨯【答案】D【解析】根据科学记数法的定义进行分析解答即可. 【详解】60.000007710m m -=⨯. 故选D. 【点睛】在把一个绝对值小于1的数用科学记数法表示为10n a ⨯的形式时,我们要注意两点:①a 必须满足:110a ≤<;②n 等于原来的数中从左至右第1个非0数字前面0的个数(包括小数点前面的0)的相反数.6.如图所示,“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2”,这种说明问题的方式体现的数学思想方法叫做( )A .代入法B .换元法C .数形结合D .分类讨论【答案】C【解析】本题利用实数与数轴上的点对应关系结合数学思想即可求解答.【详解】解:如图在数轴上2表示点P ,这是利用直观的图形--数轴表示抽象的无理数, ∴说明问题的方式体现的数学思想方法叫做数形结合, ∴A ,B ,D 的说法显然不正确. 故选:C . 【点睛】本题考查的是数学思想方法,做这类题可用逐个排除法,显然A ,B ,D 所说方法不对.7.如图,过边长为1的等边ABC 的边AB 上一点,作PE AC ⊥于,E Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交AC 于D ,则DE 的长为( )A .13B .12C .23D .34【答案】B【解析】过P 作BC 的平行线交AC 于F ,结合已知条件易证APF 是等边三角形,由等边三角形的性质及PA CQ =可得PF CQ =.利用AAS 证明PFD ≌QCD ∆,根据全等三角形的性质可得FD CD =.利用等腰三角形三线合一的性质可得AE EF =,由此可得12ED AC =,从而求得DE 的长. 【详解】过P 作BC 的平行线交AC 于F ,∴Q FPD ∠=∠. ∵ABC 是等边三角形,∴60APF B ︒∠=∠=, 60AFP ACB ︒∠=∠=, ∴APF 是等边三角形, ∴AP PF =.∵AP CQ =,∴PF CQ =. 在PFD 和QCD ∆中,∵FPD Q PDF QDC PF CQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴PFD ≌QCD ∆, ∴FD CD =.∵PE AC ⊥于E , APF 是等边三角形, ∴AE EF =,∴AE DC EF FD +=+, ∴12ED AC =. ∵1AC =,∴12DE =. 故DE 的长为12. 故选B. 【点睛】本题考查了全等三角形的判定与性质及全等三角形的判定与性质,通过作辅助线,构造全等三角形,利用等边三角形的性质建立等边三角形边长与ED 之间的关系是解决问题的关键. 8.下列叙述正确的是( ) A .的平方根是B .的算术平方根是C .的立方根是D .是的算术平方根【答案】C【解析】根据立方根、平方根以及算术平方根的定义分别得出答案即可. 【详解】解:A 、0.09的平方根是,此选项错误;B 、的算术平方根是 ,此选项错误;C 、的立方根是,正确,故此选项符合题意;D 、是的平方根,此选项错误;故选:C . 【点睛】本题考查立方根、平方根以及算术平方根的定义,熟练掌握其性质是解题关键.9.下列四个命题:①若a b >,则11a b +>+;②若a b >,则a c b c ->-;③若a b >,则22a b -<-;④若a b >,则ac bc >,其中正确的个数是 A .1 B .2C .3D .4【答案】C【解析】利用不等式的性质分别判断后即可确定正确的选项. 【详解】解:①若a >b ,则a+1>b+1,正确; ②若a >b ,则a-c >b-c ,正确; ③若a >b ,则-2a <-2b ,正确; ④若a >b ,则ac >bc 当c≤0时错误. 其中正确的个数是3个, 故选:C . 【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大. 10.东东是一位密码编译爱好者,在他的密码手册中,有这样一条信息:,,,,,分别对应下列六个字:源,丽,美,我,游,渭.现将因式分解,结果呈现的密码信息可能是( ) A .我爱美 B .我游渭源C .美丽渭源D .美我渭源【答案】C【解析】根据因式分解的方法进行因式分解,即可破解密码. 【详解】∵==故为美丽渭源 选C 【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法. 二、填空题题 11.若方程组2x y b x by a +=⎧⎨-=⎩的解是10x y =⎧⎨=⎩,那么|a-b|= ______________.【答案】1 【解析】将1,{0x y ==代入2,{x y b x by a +=-=中,得20,{10,b a +=-=解得2,{1,b a ==所以|a -b|=|1-2|=1. 12.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.【答案】两点之间线段最短【解析】田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是:两点之间线段最短,故答案为:两点之间线段最短.13.在直角坐标系中,下面各点按顺序依次排列:(0,1),(1,0),(0,﹣1),(0,2),(2,0),(0,﹣2),(0,3),(3,0),(0,﹣3),…,这列点中的第1000个点的坐标是_____.【答案】(0,334)【解析】观察各点规律发现:第1、4、7、10个点在y轴正半轴上,坐标分别(0,1),(0,2),(0,3),(0,4),…,第2、5、8个点在x轴正半轴上,坐标分别(1,0),(2,0),(3,0),…,第3、6、9个点在y轴负半轴上,坐标分别(0,-1),(0,-2),(0,-3),…,依此规律可求出第1000个点的坐标;【详解】解:观察图象可知,第1,4,7,10,13,…1+3(n﹣1)个数在y轴上,∵1000=3×333+1,∴1000是y轴上第334个数,∴第1000个点的坐标是(0,334).【点睛】属于规律型:点的坐标,找出点的变化规律是解题的关键.14.颐和园坐落在北京西郊,是第一批全国重点文物保护单位之一.小万去颐和园参加实践活动时发现有的窗户造型是正八边形,如下图所示,则∠1=__°.【答案】1【解析】利用正八边形的外角和等于360度即可求出答案.【详解】解:360°÷8=1°,故答案为:1. 【点睛】本题主要考查了多边形的外角和定理,明确任何一个多边形的外角和都是360°是解题的关键. 15.世界上最小的开花结果植物是澳大利亚的出水浮萍,其果实质量只有0.000000076克,数据“0.000000076”用科学记数法课表示为______________. 【答案】7.6×10-1.【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】将0.000000076用科学记数法表示为7.6×10-1. 故答案为:7.6×10-1. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 16.点()5,1P -到x 轴距离为______. 【答案】1【解析】根据到x 轴的距离为纵坐标的绝对值,可由P 点的坐标求得到x 轴的距离为1. 【详解】根据到x 轴的距离为纵坐标的绝对值,可由()5,1P -的纵坐标1,得到x 轴的距离为1. 故答案为:1 【点睛】本题考核知识点:点到坐标轴的距离.解题关键点:由坐标得到点和坐标轴的距离.17.如图,在△ABC 中,AB=AC=8,AB 的垂直平分线DE 分别交AB 、AC 于点E 、 D ,BD=BC ,△BCD 的周长为13,则BC 和ED 的长分别为____________.【答案】5,3【解析】首先根据线段垂直平分线的性质可得AD=BD ,由AC=8可得BD+CD=8,再根据△BCD 的周长为13可得BC=13-8=5,进而可得BD=5,再根据勾股定理可得ED 的长. 【详解】∵DE 是AB 的垂直平分线, ∴AD=BD , ∵AC=8, ∴BD+CD=8,∵△BCD 的周长为13, ∴BC=13−8=5, ∵BD=BC , ∴BD=5,∵DE 是AB 的垂直平分线, ∴BE=4,∠DEB=90°, ∴DE=2254-=3. 【点睛】本题考查线段垂直平分线的性质和等腰三角形的性质,解题的关键是熟练掌握线段垂直平分线的性质和等腰三角形的性质. 三、解答题18.已知:在ABC △和DEF 中,40A ∠=,100E F +=∠∠,将DEF 如图摆放,使得D ∠的两条边分别经过点B 和点C .(1)当将DEF 如图1摆放时,则ABD ACD +=∠∠_________度.(2)当将DEF 如图2摆放时,请求出ABD ACD ∠+∠的度数,并说明理由.(3)能否将DEF 摆放到某个位置时,使得BD 、CD 同时平分ABC ∠和ACB ∠?直接写出结论_______(填“能”或“不能”)【答案】(1)240;(2)40ABD ACD ∠+∠=理由见解析;(3)不能【解析】(1)要求∠ABD+∠ACD 的度数,只要求出∠ABC+∠CBD+∠ACB+∠BCD ,利用三角形内角和定理得出∠ABC+∠ACB=180°-∠A=180°-40°=140°;根据三角形内角和定理,∠CBD+∠BCD=∠E+∠F=100°,得出∠ABD+∠ACD=∠ABC+∠CBD+∠ACB+∠BCD=140°+100°=240°;(2)要求∠ABD+∠ACD 的度数,只要求出∠ABC+∠ACB-(∠BCD+∠CBD )的度数.根据三角形内角和定理,∠CBD+∠BCD=∠E+∠F=100°;根据三角形内角和定理得,∠ABC+∠ACB=180°-∠A=140°,得出∠ABD+∠ACD=∠ABC+∠ACB-(∠BCD+∠CBD )=140°-100°=40°;(3)不能.假设能将△DEF 摆放到某个位置时,使得BD 、CD 同时平分∠ABC 和∠ACB .则∠CBD+∠BCD=∠ABD+∠ACD=100°,那么∠ABC+∠ACB=200°,与三角形内角和定理矛盾,所以不能. 【详解】(1)在△ABC 中,∠A+∠ABC+∠ACB=180°,∠A=40°∴∠ABC+∠ACB=180°−∠A=180°−40°=140°在△BCD中,∠D+∠BCD+∠CBD=180°∴∠BCD+∠CBD=180°−∠D在△DEF中,∠D+∠E+∠F=180°∴∠E+∠F=180°−∠D∴∠CBD+∠BCD=∠E+∠F=100°∴∠ABD+∠ACD=∠ABC+∠CBD+∠ACB+∠BCD=140°+100°=240°.(2)∠ABD+∠ACD=40°;理由如下:∵∠E+∠F=100°∴∠D=180°−(∠E+∠F)=80°∴∠ABD+∠ACD=180°−∠A−∠DBC−∠DCB=180°−40°−(180°−80°)=40°;(3)不能.假设能将△DEF摆放到某个位置时,使得BD、CD同时平分∠ABC和∠ACB.则∠CBD+∠BCD=∠ABD+∠ACD=100°,那么∠ABC+∠ACB=200°,与三角形内角和定理矛盾,所以不能.【点睛】此题考查三角形的外角性质,三角形内角和定理,解题关键在于掌握掌握其定义性质.19.某经销商销售香蕉,据以往经验,单价与每天销量之间关系如下表所示:(1)在这个变化过程中,自变量是,因变量是;(2)若设单价为x元/千克,每天销量为y千克,写出y与x之间的关系式(不必写出自变量取值范围);(3)某天香蕉进价为每千克3元,售价为每千克6元,该经销商这天一共赚了多少元?【答案】(1)单价,每天销量;(2)y=540﹣20x;(3)该经销商这天一共赚了1260元.【解析】(1)根据自变量和因变量的定义,结合题意即可得到答案;(2)根据题意得到y=300+20(12﹣x),进行计算即可得到答案;(3)根据(2)得到的等式,将香蕉进价为每千克3元,售价为每千克6元代入即可得到答案.【详解】(1)由题意知:在这个变化过程中,自变量单价,因变量是每天销量,故答案为:单价,每天销量;(2)设单价为x元/千克,每天销量为y千克,根据表中信息可得:单价降1元,销量涨20千克,则可列出:y=300+20(12﹣x)化简得:y=540﹣20x;(3)当x=6时,y=420元,∴该经销商这天一共赚了:420×(6﹣3)=1260元,答:该经销商这天一共赚了1260元.【点睛】本题考查一次函数的实际应用,解题的关键在于弄清题意,正确列出关系式.20.某商场柜台销售每台进价分别为160元、120元的A、B两种型号的电器,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入—进货成本)(1)求A、B两种型号的电器的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电器共50台,求A种型号的电器最多能采购多少台?(3)在(2)中商场用不多于7500元采购这两种型号的电器共50台的条件下,商场销售完这50台电器能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【答案】(1)A型电器销售单价为200元,B型电器销售单价150元;(2)最多能采购37台;(3)方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.【解析】(1)设A、B两种型号电器的销售单价分别为x元、y元,根据3台A型号4台B型号的电器收入1200元,5台A型号6台B型号的电器收入1900元,列方程组求解;(2)设采购A种型号电器a台,则采购B种型号电器(50−a)台,根据金额不多余7500元,列不等式求解;(3)根据A型号的电器的进价和售价,B型号的电器的进价和售价,再根据一件的利润乘以总的件数等于总利润列出不等式,再进行求解即可得出答案.【详解】解:(1)设A型电器销售单价为x元,B型电器销售单价y元,则341200 561900x yx y+=⎧⎨+=⎩,解得:200150 xy=⎧⎨=⎩,答:A型电器销售单价为200元,B型电器销售单价150元;(2)设A型电器采购a台,则160a+120(50−a)≤7500,解得:a≤752,则最多能采购37台;(3)设A 型电器采购a 台,依题意,得:(200−160)a +(150−120)(50−a )>1850,解得:a >35,则35<a≤752, ∵a 是正整数,∴a =36或37,方案一:采购A 型36台B 型14台;方案二:采购A 型37台B 型13台.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.21.如图1,已知线段AB 两个端点坐标分别为A (a ,0),B(0,b),且a ,b 满足:()2640a b ++-=(1)填空:a= ,b= .(2)在坐标轴上是否存在点C ,使S △ABC=6,若存在,求出点C 的坐标,符不存在,说明理由;(3)如图2,若将线段Ba 平移得到线段OD ,其中B 点对应O 点,A 点对应D 点,点P(m,n)是线段OD 上任意一点,请直接写出m 与n 的关系式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)∠的1.如图,小轩从A处出发沿北偏东60︒方向行走至B处,又沿北偏西20︒方向行走至C处,则ABC度数是()A.80︒B.90︒C.95︒D.100︒【答案】D【解析】向北的方向是互相平行的,根据两直线平行,同旁内角互补求解.【详解】解:因为向北的方向互相平行,所以∠ABC=180°-60°-20°=100°.故选D.【点睛】本题考查了平行线的性质,平行线的性质有:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直角平行,同旁内角互补.2.如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在点G、H处,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.125°【答案】B【解析】解:∵四边形ABCD为长方形,∴AE∥BF,∠AEF+∠BFE=180°;由折叠变换的性质得:∠BFE=∠HFE,而∠1=50°,∴∠BFE=(180°﹣50°)÷2=65°,∴∠AEF=180°﹣65°=115°.故选B.点睛:该题主要考查了翻折变换的性质、矩形的性质、平行线的性质及其应用问题;应牢固掌握矩形的性质、平行线的性质等几何知识点.3.下图能说明∠1>∠2的是()A.B.C.D.【答案】C【解析】A、根据对顶角的性质,∠1=∠2;B、若两直线平行,则∠1=∠2,若两直线平行,则∠1和∠2的大小不确定;C、根据三角形的外角大于与它不相邻内角的性质,∠1>∠2;D、根据直角三角形两锐角互余的关系,∠1=∠2.故选C.4.如图,将一张宽为3cm的长方形纸片沿AB折叠成如图所示的形状,那么折痕AB的长为()A.23B.3C.6 D.63【答案】A【解析】由图中条件可知纸片重叠部分的三角形是等边三角形,此三角形的高是2,求边长.利用锐角三角函数可求.【详解】解:如图,作AM⊥CB,BN⊥AC,垂足为M、N,∵长方形纸条的宽为3cm,∴AM=BN=3cm,又∵AB=AB∴Rt△ABN≌Rt△BAM∴∠CAB=∠CBA∴CB=AC,∵∠ACB=60°,∴△ACB是等边三角形,在Rt△ABN中,AB=23sin6032BN==cm.故选:A.【点睛】此题考查翻折问题,规律总结:解决本题的关键是判断出重叠部分的三角形是等边三角形,而要得到重叠部分的三角形是等边三角形则必须利用折叠(即轴对称)对应角相等来说明,对于图形折叠的问题在不少地区的中考题中都有出现,也是各地考查轴对称的一种主要题型.5.下列计算正确的是( )A 5=±B 9=-C 2=-D =【答案】C【解析】根据平方根和立方根概念和性质,二次根式的加法,可以得到答案.5,所以A 9=,所以B 2=-,所以C 项正=,所以D 项错误. 【点睛】本题考查平方根和立方根,解题的关键是熟练掌握平方根和立方根的概念和性质.6.规用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,而一个盒身与两个盒底配成一个盒子,设用x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为( )A .1902822x y x y +=⎧⎨⨯=⎩B .1902228x y y x+=⎧⎨⨯=⎩ C .2190822x y x y +=⎧⎨=⎩D .21902822x y x y +=⎧⎨⨯=⎩【答案】A 【解析】根据等量关系:①共有190张铁皮;②做的盒底数等于盒身数的2倍时才能正好配套,设未知数,列出方程组.【详解】根据共有190张铁皮,得方程x+y=190;根据做的盒底数等于盒身数的2倍时才能正好配套,得方程2×8x=22y,列方程组为: 1902822x y x y+=⎧⎨⨯=⎩. 故选:A.【点睛】考查了列二元一次方程组,找准等量关系是解应用题的关键,寻找第二个相等关系是难点.7.已知x ,y 同时满足以下三个条件:①3x-2y=4-p ;②4x-3y=2+p ;③x>y 那么P 的取值范围是( ) A .p>-l B .p<l C .p<-l D .p>l【答案】D【解析】把p 看成已知数,求得x ,y 的解,根据所给的不等式即可求得实数p 的取值范围.【详解】①×3-②×2得:x=8-5p ,把x=8-5p 代入①得:y=10-7p ,∵x>y,∴8-5p>10-7p,∴p>1.故选:D.【点睛】主要考查了方程与不等式的综合运用.此类题目一般是给出两个含有字母的二元一次方程和一个关于方程中未知数的不等关系,求方程中所含字母的取值范围.方法是:先根据所给方程联立成方程组,用含字母的代数式表示方程的解,并把解代入不等关系中列成一个关于字目系数的不等式,解不等式可得所求字母的取值范围.8.方程x﹣y=﹣2与下面方程中的一个组成的二元一次方程组的解为24xy=⎧⎨=⎩,那么这个方程可以是()A.3x﹣4y=16 B.2(x+y)=6x C.14x+y=0 D.4x﹣y=0【答案】B【解析】把已知方程与各项方程联立组成方程组,使其解为x=2,y=4即可.【详解】解:A、联立得:34162x yx y-=⎧⎨-=-⎩,解得:2422xy=-⎧⎨=-⎩,不合题意;B、联立得:2()62x y x x y+=⎧⎨-=-⎩,解得:24xy=⎧⎨=⎩,符合题意;C、联立得:10 42x yx y⎧+=⎪⎨⎪-=-⎩,解得:8525xy⎧=-⎪⎪⎨⎪=⎪⎩,不合题意;D、联立得:42yxx y⎧-=⎪⎨⎪-=-⎩,不合题意;故选:B.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N【答案】C【解析】先针对15进行估算,再确定15是在哪两个相邻的整数之间,然后进一步得出答案即可.【详解】∵91516<<,∴91516<<,即:3154<<,∴15在3与4之间,故数轴上的点为点M ,故选:C.【点睛】本题主要考查了二次根式的估算,熟练掌握相关方法是解题关键.10.下列图形中,不是轴对称图形的为( ) A . B . C . D .【答案】A【解析】根据轴对称的定义,结合选项图形即可得出答案.【详解】解:A 、不是轴对称图形,故本选项正确;B 、是轴对称图形,故本选项错误;C 、是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项错误.故选A .【点睛】此题考查了轴对称的图形,属于基础题,解答本题的关键是掌握轴对称的定义.二、填空题题11.若=2m x ,=3n x ,则2m n x +的值为_____.【答案】1【解析】先把x m+2n 变形为x m (x n )2,再把x m =2,x n =3代入计算即可.【详解】∵x m =2,x n =3,∴x m+2n =x m x 2n =x m (x n )2=2×32=2×9=1;故答案为1.【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.12.分解因式:m 2n ﹣2mn+n= .【答案】n (m ﹣1)1.【解析】先提取公因式n 后,再利用完全平方公式分解即可【详解】m 1n ﹣1mn+n=n (m 1﹣1m+1)=n (m ﹣1)1.故答案为n (m ﹣1)1.13.如图,已知三角形ABC 的面积为16,8BC =,现将三角形ABC 沿直线BC 向右平移a 个单位到三角形DEF 的位置,当边AB 所扫过的面积为32时,那么a 的值为__________.【答案】8【解析】边AB 扫过的图形即为平行四边形ABED,可由三角形ABC 的面积求出底边BC 上的高,再结合平行四边形的面积即知底边BE 的长,即a 的值.【详解】解:如图,连接AD ,过点A 作AG BC ⊥交BC 于G .1181622ABC S BC AH AH ∆==⨯⨯= 4AH =∴由题意可得324ABED S AH BE BE ===平行四边形8BE ∴=8a ∴=故答案为:8【点睛】本题考查了图形的平移,灵活运用图形面积间的关系是解题的关键.14.如图,从ABC ∆纸片中剪去CDE ∆,得到四边形ABDE .如果12230∠+∠=︒,那么C ∠=_______.【答案】50°【解析】根据∠1+∠2的度数,再利用四边形内角和定理得出∠A+∠B的度数,即可得出∠C的度数.【详解】解:如图因为四边形ABCD的内角和为360°,且∠1+∠2=230°.所以∠A+∠B=360°-230°=130°.因为△ABD的内角和为180°,所以∠C=180°-(∠A+∠B)=180°-130°=50°.故答案为:50°【点睛】此题主要考查了多边形的内角与外角,利用四边形的内角和是360度的实际运用与三角形内角和180度之间的关系是解题关键.15.要使分式+23xx+有意义,则字母x的取值范围是______.【答案】3x≠-【解析】根据分母不能为零,可得答案.【详解】解:由题意,得x+1≠0,解得x≠=-1,故答案为:x≠-1.【点睛】本题考查了分式有意义的条件,利用分母不能为零得出不等式是解题关键.16.已知(x﹣1)3=64,则x的值为__.【答案】5【解析】由(x﹣1)3=64,得:x﹣1=4,解得:x=5.故答案为5.17.如图,已知∠1=(3x+24)°,∠2=(5x+20)°,要使m∥n,那么∠1=_____(度).【答案】1【解析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=1°.故答案为1.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.三、解答题18.①12111x x=-++的解x=.②24111x x=-++的解x=.③36111x x=-++的解x=.④48111x x=-++的解x=.…(1)根据你发现的规律直接写出第⑤,⑥个方程及它们的解.⑤⑥(2)请根据你发现的规律直接写出第n 个方程及它的解,并通过计算判断这个结论是否正确.【答案】(1)510111x x =-++,4x =;612111x x =-++,5x =;(2)2111n n x x =-++,1x n =-,计算见解析【解析】求出四个方程的解即可;(1)分别写出第⑤,⑥个方程及它们的解即可;(2)归纳总结得出一般性规律,写出验证即可.【详解】①1121x x ++= -1的解x=0; ②1241x x ++= -1的解x=1; ③1361x x ++= -1的解x=2; ④4811x x ++= -1的解x=3; (1)⑤51011x x =++ -1的解x=4;⑥61211x x =++ -1的解x=5; (2)211n n x x =++ -1的解x=n-1, 方程两边同时乘以(x+1),得n=2n-(x+1),解得x=n-1,经检验,x=n-1是原方程的解.【点睛】此题考查了解分式方程,解题关键在于利用了转化的思想,解分式方程注意要检验.19.如图,AD 为△ABC 的高,BE 为△ABC 的角平分线,若∠EBA=30°,∠AEB=80°.求∠CAD 的度数.【答案】40°【解析】根据角平分线定义求出∠CBE=∠EBA=30°,根据三角形外角性质求出∠C ,即可求出答案.【详解】∵BE 为△ABC 的角平分线,∴∠CBE=∠EBA=30°,∵∠AEB=∠CBE+∠C ,∴∠C=80°-30°=50°,∵AD 为△ABC 的高,∴∠ADC=90°,∴∠CAD=90°-∠C=40°.【点睛】本题考查了三角形内角和定理和三角形外角性质,能灵活运用三角形内角和定理求出角的度数是解此题的关键.20.计算:(1) (248-327)÷3;(2) (2-3)2+23×2;(3) 8+322-;(4) (6-215)×3-412;(5)(5-1)(5+1)-(-13)-2+|1-2|-(π-2)0+8;(6)41(12)2(18)382----.【答案】(1)﹣1;(2)5;(3)52;(4)2-65;(5)32-7;(6)43+1322.【解析】(1)去括号即可求出答案;(2)开平方之后计算即可得到答案;(3)将原式化简之后计算即可求出答案;(4)去括号之后再计算从而求出答案;(5)根据平方差公式以及绝对值的性质化简原式,再计算从而求出答案;(6)化简原式再计算从而求出答案.【详解】(1)原式=248÷3-327÷3=8-9=-1;(2)原式=2-26+3+26=5;(3)原式=22+42-2=52;(4)原式=6×3-215×3-4×2=32-65-22=2-65;(5)原式=(5)2-12-211()3-+2-1-1+22=5-1-9+32-2=32-7;(6)原式=(23-3)-2(22-2-32)=(23-233)-2(1324-)=433+1322.【点睛】本题主要考查了根式的运算法则,解本题的要点在于先化简再进行计算.21.阅读下面材料:小亮遇到这样问题:如图1,已知AB∥CD,EOF是直线AB、CD间的一条折线.判断∠O、∠BEO、∠DFO 三个角之间的数量关系.小亮通过思考发现:过点O作OP∥AB,通过构造内错角,可使问题得到解决.请回答:∠O、∠BEO、∠DFO三个角之间的数量关系是.参考小亮思考问题的方法,解决问题:(2)如图2,将△ABC沿BA方向平移到△DEF(B、D、E共线),∠B=50°,AC与DF相交于点G,GP、EP 分别平分∠CGF、∠DEF相交于点P,求∠P的度数;(3)如图3,直线m∥n,点B、F在直线m上,点E、C在直线n上,连接FE并延长至点A,连接BA、BC和CA,做∠CBF和∠CEF的平分线交于点M,若∠ADC=α,则∠M= (直接用含α的式子表示).【答案】(1)∠EOF=∠BEO+∠DFO;(2)65°;(3)90°-12α.【解析】(1)根据平行线的性质求出∠EOM=∠BEO,∠FOM=∠DFO,即可得出答案;(2)由DF∥BC,AC∥EF,推出∠EDF=∠B=50°,∠F=∠CGF,推出∠DEF+∠F=180°-50°=130°,再由三角形内角和定理可得∠P+∠FGP=∠F+∠FEP,由此即可解决问题;(3)由∠M=∠FBM+∠CEM=12∠FBC+12∠CEM=12(180°-α)=90°-12α即可解决问题.【详解】(1)如图1中,∵OP∥AB∴∠EOP=∠BEO,∵AB∥CD,∴OP∥CD,∴∠FOP=∠DFO,∴∠EOP+∠FOP=∠BEO+∠DFO,即:∠EOF=∠BEO+∠DFO;故答案为:∠EOF=∠BEO+∠DFO.(2)如图2中,∵DF ∥BC ,AC ∥EF ,∴∠EDF=∠B=50°,∠F=∠CGF ,∴∠DEF+∠F=180°-50°=130°,∵∠P+∠FGP=∠F+∠FEP ,∴∠P=∠F+∠FEP-∠FGP=12∠DEF+12∠F=65°. (3)如图3中,易知∠M=∠FBM+∠CEM ,∵BF ∥EC , ∴∠DCE=∠DBF ,∵∠DEC+∠DCE=180°-α,∠FBM+∠CEM=12∠FBC+12∠CED=12(180°-α)=90°-12α. 故答案为90°-12α. 【点睛】本题考查平行线的性质、三角形内角和定理、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.22.已知1∠的度数是它补角的3倍,2∠等于45︒,那么//AB CD 吗?为什么?【答案】//AB CD【解析】首先根据两角互补的定义和已知列出方程,求出∠MNC 的度数,从而发现∠MNC=∠2,根据平行线的判定得出AB ∥CD【详解】//AB CD .理由如下.解:设MNC x ∠=.则13x ∠=.∴3180x x +=︒,∴45x =︒,∴45MNC ∠=︒,而245∠=︒,∴2MNC ∠=∠,∴//AB CD .【点睛】本题主要考查了两角互补的定义,对顶角的性质及平行线的判定.23.(1)请把下面的小船图案先向上平移3格,再向右平移4格,画出平移后的小船的图形; (2)若方格是由边长为1的小正方形构成的,试求小船所占的面积.【答案】(1)答案见解析;(2)3.1.【解析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用三角形以及梯形面积求法得出答案.【详解】(1)如图所示:(2)小船所占的面积为:12×(1+4)×1+12×1×2=3.1.【点睛】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.24.将长为20cm,宽为8cm的长方形白纸,按如图所示的方式粘合起来,粘合部分的宽为3cm.(1)根据题意,将下面的表格补充完整.白纸张数x(张) 1 2 3 4 5 …纸条总长度y(cm) 20 54 71 …(2)直接写出y与x的关系式.(3)要使粘合后的长方形总面积为1656cm2,则需用多少张这样的白纸?【答案】(1)图形见解析(2)y=17x+1(1)12【解析】(1)根据纸条的长度变化,可得到答案;(2)根据纸条的长度变化,可得到答案;(1)根据面积和宽得到纸条的长,再由自变量与函数值的对应关系,可得答案.【详解】(1) 当x=2时,y=20+17=2×17+1=17,当x=5时,y=5×17+1=88,故答案为:17,88;根据题意,完成表格如下:白纸张数x(张) 1 2 1 4 5 …纸条总长度y(cm) 20 17 54 71 88 …(2)由题意知y与x的关系式为y=17x+1,故答案为:y=17x+1.(1)1656÷8=207(cm)当y=207时,17x+1=207,解得:x=12,所以,需要12张这样的白纸.【点睛】此题考查函数关系式,解题关键在于看懂图中数据25.因式分解:32-+.21218x x x【答案】22(3)x x -【解析】首先提取公因式2x ,再次运用完全平方公式进行二次分解即可.【详解】原式=22(69)x x x -+=22(3)x x -.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.若5a b +=,2ab =,则22a b +的值为( )A .3B .21C .23D .25 【答案】B【解析】将a+b=5两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出a 2+b 2的值.【详解】解:把5a b +=两边平方得:222()225a b a b ab +=++=,把2ab =代入得:22425a b ++=,则2221a b +=,故选:B .【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.2.已知方程组3132x y m x y m +=+⎧⎨-=⎩的解 x ,y 满足 x+2y≥0,则 m 的取值范围是 ( ) . A .m≥13 B .13≤m≤1 C .m≤1 D .m≥-1【答案】C【解析】分析: 3132x y m x y m +=+⎧⎨-=⎩①②,①-②,得241,x y m +=- 化简得到关于m 的不等式,解不等式即可. 详解:3132x y m x y m +=+⎧⎨-=⎩①②,①-②,得241,x y m +=- 12,2m x y -+= 20,x y +≥10,2m -∴≥ 解得: 1.m ≤故选C.点睛:考查解一元一次不等式,解二元一次方程组,得到关于m 的不等式是解题的关键.3.已知:如图,AB ∥CD ,∠DCP=80°,则∠BPQ 的度数为( )A .80°B .100°C .110°D .120°【答案】B 【解析】两直线平行,同旁内角互补,依据平行线的性质,即可得到∠BPQ 的度数.【详解】∵AB ∥CD ,∠DCP=80°,∴∠BPQ=180°﹣∠DCP=180°﹣80°=100°.故选:B .【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.4.下列方程中,属于二元一次方程的是( )A .8x xy +=B .1y x =-C .12x x +=D .2210x x -+= 【答案】B【解析】根据二元一次方程的定义判断即可.【详解】A. xy 项的次数是2次,所以不是二元一次方程,故本选项错误;B. 两个未知数,未知数的次数都是1,所以是二元一次方程,故本选项正确;C. 1x属于分式,所以不是二元一次方程,故本选项错误; D. 只有一个未知数,且x 2项的次数为2,所以不是二元一次方程,故本选项错误;故选B.【点睛】本题考查二元一次方程的定义. 含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.5.将直尺和直角三角板按如图方式摆放(∠ACB 为直角),已知∠1=30°,则∠2的大小是( )A .30°B .45°C .60°D .65°【答案】C 【解析】试题分析:先根据两角互余的性质求出∠3的度数,再由平行线的性质即可得出结论.∵∠1+∠3=90°,∠1=30°,∴∠3=60°. ∵直尺的两边互相平行, ∴∠2=∠3=60°.考点:平行线的性质6.全等形是指两个图形( )A .大小相等B .形状相同C .完全重合D .以上都不对 【答案】C【解析】根据全等图形的概念判断即可.【详解】解:能够完全重合的两个图形叫做全等形,故选C .【点睛】本题考查的是全等图形的概念,掌握能够完全重合的两个图形叫做全等形是解题的关键.7.计算:22(3)(2)(2)2x x x x +-+--的结果是A .65x +B .5C .2265x x -++D .225x -+ 【答案】A【解析】利用完全平方和平方差公式去括号再合并同类项即可【详解】原式=2226+9-4+2x x x x +-=65x +故选A【点睛】此题考查完全平方和平方差公,掌握运算法则是解题关键8.下列各数中无理数有( ).3.141, 227-, 327- , π ,0,2.3 ,0.101001000…… A .2个B .3 个C .4个D .5个【答案】A【解析】根据无理数的定义求解即可.【详解】解:π,0.1010010001…是无理数,故选:A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008…(每两个8之间依次多1个0)等形式.9.如图所示,在平面直角坐标系中,平行四边形ABCD的顶点A、D的坐标分别是(0,0),(2,3),AB=5,则顶点C的坐标是()A.(3,7)B.(5,3)C.(7,3)D.(8,2)【答案】C【解析】分别过点D,点C作垂线垂直于x轴于E,F,如解析中的图所示,证明三角形ADE与三角形BCF全等,得到BF的值,则点C的横坐标的值即为AB+BF=AF的长度.又因为DC∥AB,所以点C的纵坐标与D的纵坐标相等.【详解】如图所示:过点D,C分别作x轴的垂线于点E,F∵四边形ABCD是平行四边形∴AD=BC,DAE CBF∠=∠∵DE x CF x⊥⊥轴轴∴DEA CFB∠=∠90=在DEA△与CFB中DAE CBFDEA CFBAD BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴DEA CFB≅∴AE=BF∵AE是点D横坐标的值,AE=2∴AF=AB+BF=7∴点C的横坐标的值为7又∵ DC∥AB∴点C 的纵坐标的值等于点D 纵坐标的值,即为3∴点C 的坐标为(7,3)故答案为C【点睛】本题解题主要注意的是点D 点C 的纵坐标是相等的,而横坐标可以通过找线段的关系进行分析解答.所以涉及到做垂线构造三角形全等,来找到点D 点C 横坐标的数量关系.10.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <.则k 的取值范围为( ) A .1k <B .1kC .1k >D .1k <【答案】B【解析】求出不等式组的解集,根据已知得出关于k 的不等式,求出不等式的解集即可. 【详解】解:解不等式组29611x x x k +>+⎧⎨-<⎩,得21x x k <⎧⎨<+⎩. ∵不等式组29611x x x k +>+⎧⎨-<⎩的解集为x <2, ∴k +1≥2,解得k≥1.故选:B .【点睛】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k 的不等式,难度适中.二、填空题题11.某公司的电话号码是八位数,这个号码的前四位数字相同,后五位数字是连续减少1的自然数,全部数字之和恰好等于号码的最后两位数,那么,该公司的电话号码是_____.【答案】1.【解析】根据题意列出方程即可求出结果.【详解】后五位数是依次减小的数.设前四位数字均为x ,则后四位数字依次为x ﹣1,x ﹣2,x ﹣3,x ﹣4,根据题意得:4x+(x ﹣1)+(x ﹣2)+(x ﹣3)+(x ﹣4)=10(x ﹣3)+(x ﹣4),解得:x =2.所以后四位数为7654,因此该公司的电话号码为 1.故答案是:1.【点睛】本题考查了一元一次方程的应用,解答本题的关键是根据题意列出方程.12.已知DEC ∆是由CAB ∆平移得到,若2AE cm =,20ECA ∠=︒,AC 平分ECB ∠,则BD =_________,B ∠=_________.【答案】4cm 140︒【解析】根据平移的性质可得BC =CD =AE ,再根据线段的和差关系即可求解;先根据角平分线的定义可求∠ECB ,根据平角的定义可求∠ECD ,再根据平移的性质可得∠B .【详解】解:20ECA ∠=︒且AC 平分ECB ∠,40ECB ∴∠=︒.ABC ∆平移得到ECD ∆,//AB CE ∴,180B ECB ∴∠+∠=︒,140B ∴∠=︒2AE cm =,2BC CD cm ∴==,4BD cm ∴=故答案为:4cm ,140︒【点睛】考查了平移的性质,平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.13.已知18x y =⎧⎨=⎩是方程31mx y -=的解,则m 的值为________________. 【答案】3【解析】把x 与y 的值代入方程计算即可求出m 的值.【详解】解:把18x y =⎧⎨=⎩代入方程31mx y -=得:3m-8=1, 解得:m=3,故答案为:3.【点睛】本题考查二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.如图,折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处,已知1CD =,30B ∠=,则BD =______.【答案】2【解析】由折叠的性质可得CD=DE=1,∠C=∠AED=90°,由直角三角形的性质可求BD的长.【详解】解:∵将△ABC折叠使点C落在斜边AB上的点E处∴CD=DE=1,∠C=∠AED=90°∴∠BED=90°∵∠B=30°∴BD=2DE=2故答案为:2【点睛】本题考查了翻折变换,直角三角形的性质,熟练掌握折叠的性质是本题关键.15.如图,已知AB∥CD∥EF,∠1=80°,∠2=130°,则∠3=______.【答案】30°【解析】由平行线的性质可得∠1=∠GFE=80°,∠2+∠DFE=180°,即可得到∠DFE=50°,根据∠3=∠GFE ﹣∠DFE即可求得∠3的度数.【详解】∵AB∥EF,∴∠1=∠GFE,∵∠1=80°,∴∠GFE=80°,∵CD∥EF,∴∠2+∠DFE=180°,∵∠2=130°,∴∠DFE=50°,∵∠3=∠GFE﹣∠DFE=80°﹣50°=30°;故答案为:30°.【点睛】本题考查了平行线的性质,根据平行线的性质定理得到∠1=∠GFE=80°,∠2+∠DFE=180°是解决问题的关键.16.幼儿园把新购进的一批玩具分给小朋友.如果每人5 件,那么还剩余12 件;如果每人8 件,那么最后一个小朋友分到玩具,但不足 4 件,这批玩具共有___________件.【答案】1【解析】分析:设这个幼儿园有x个小朋友,则有(5x+12)件玩具.根据关键语句“如果每人分8件,那么最后一个小朋友得到玩具但不足4件”得:0<5x+12-8(x-1)<4求解可得答案.详解:设这个幼儿园有x个小朋友,则有(5x+12)件玩具,由题意得:0<5x+12-8(x-1)<4,解得:1620 33x<<,∵x为整数,∴x=6,∴5×6+12=1.故答案为:1.点睛: 此题主要考查了一元一次不等式组的应用,关键是弄懂题意,根据关键语句列出不等式组. 17.一副直角三角尺叠放如图1 所示,现将45°的三角尺ADE 固定不动,将含30°的三角尺ABC 绕顶点 A 顺时针转动(旋转角不超过180 度),使两块三角尺至少有一组边互相平行.如图2:当∠BAD=15°时,BC∥DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为________.【答案】45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAE=∠B=60°;当BC ∥AE 时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB ∥DE 时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故答案为:45°,60°,105°,135°.点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).三、解答题18.甲、乙二人驾车分别从A ,B 两地同时出发,相向而行.下图是二人离A 地的距离y (千米)与所用时间x (小时)的关系.(1)请说明交点P 所表示的实际意义: ;(2)试求出A ,B 两地之间的距离;(3)甲从A 地到达B 地所需的时间为多少?【答案】(1)出发2小时二人相遇,此时距离A 地240千米;(2)400千米;(3)103【解析】(1)根据图象结合横纵坐标的意义即可得出P 点的实际意义; (2)先用待定系数法求出线段AB 的解析式,然后令0x =时,即可求出A ,B 两地之间的距离; (3)根据A ,B 两地之间的距离和甲的速度即可求出时间.【详解】解:(1)结合图象,可知P 点的实际意义为出发2小时后甲、乙二人相遇,此时距离A 地240千米(2)如图,设线段AB 的解析式为y kx b =+ ,将(2,240),(5,0)P B 代入解析式中得224050k b k b +=⎧⎨+=⎩ 解得80400k b =-⎧⎨=⎩∴线段AB 解析式为80400(05)y x x =-+≤≤ ,当0x =时,400y =,∴A ,B 两地之间的距离为400千米.(3)根据点P 的坐标为(2,240)得,甲的速度为2402120/km h ÷= ,∴甲从A 地到达B 地所需的时间为104001203h ÷=【点睛】本题主要考查一次函数的应用,掌握待定系数法及数形结合是解题的关键.19.公园里有一条“Z ”字形道路ABCD ,如图所示,其中AB CD ∥,在AB ,CD ,BC 三段路旁各有一只小石凳E ,F ,M ,且BE CF =,M 是BC 的中点,试说明三只石凳E ,F ,M 恰好在一条直线上.(提示:可通过证明180EMF =∠)【答案】详见解析【解析】先根据SAS 判定△BEM ≌△CFM ,从而得出∠BME=∠CMF.通过角之间的转换可得到E ,M ,F 在一条直线上.【详解】证明:∵AB CD ∥(已知)∴B C ∠=∠(两直线平行,内错角相等)在EBM △与FCM △中,BE CF B CBM CM =⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(中点的意义) ∴(...)EBM FCM S A S △≌△∴BME CMF ∠=∠(全等三角形的对应角相等)∵180BMF CMF +=∠∠(平角的意义)∴180BMF BME ∠+∠=(等量代换)∴E ,M ,F 三点共线(平角的意义)【点睛】本题主要考查了学生对全等三角形的判定的掌握情况,关键是共线的证明方法.20.阅读下面材料:小明遇到这样一个问题;△ABC 中,有两个内角相等.①若∠A =110°,求∠B 的度数;②若∠A =40°,求∠B 的度数.小明通过探究发现,∠A 的度数不同,∠B 的度数的个数也可能不同,因此为同学们提供了如下解题的想法:对于问题①,根据三角形内角和定理,∵∠A =110°>90°,∠B =∠C =35°;对于问题②,根据三角形内角和定理,∵∠A =40°<90°,∴∠A =∠B 或∠A =∠C 或∠B =∠C ,∴∠B 的度数可求.请回答:(1)问题②中∠B 的度数为 ;(2)参考小明解决问题的思路,解决下面问题:△ABC 中,有两个内角相等.设∠A =x °,当∠B 有三个不同的度数时,求∠B 的度数(用含x 的代式表示)以及x 的取值范围.【答案】(1)40°或70°或100°;(2)∠B =x °或180°﹣2x °或90°﹣12x °,x 的取值范围是0<x <90且x ≠60.【解析】(1)根据三角形内角和定理即可求出答案.(2)由(1)问的解答过程可类比求出x 的取值范围.【详解】解:(1)当∠A =∠B 时,∴∠B =40°,当∠A =∠C =40°时,∴∠B =180﹣∠A ﹣∠C =100°,当∠B =∠C 时, ∴18070.2A -∠= 故∠B 的度数为40°或70°或100°(2)当0<x <90时,∠B 的度数有三个,当∠A =∠B 时,∠B =x°,当∠A =∠C 时,∵∠A+∠B+∠C =180°,∴∠B =180﹣2x°,当∠B =∠C 时,∵∠A+∠B+∠C =180°, ∴1902B x ∠=︒-︒, ∵1802,x x ≠-∴x≠60∴∠B =x°或180°﹣2x°或190.2x ︒-︒ x 的取值范围是0<x <90且x≠60【点睛】本题考查三角形的内角和定理,解题的关键是熟练运用三角形内角和定理,本题属于中等题型.21.解不等式组23425233x x x x +≥+⎧⎪+⎨-<-⎪⎩,并在数轴上表示其解集. 【答案】不等式组的解集为 1≤x<2,在数轴上表示为见解析.【解析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】∵解不等式①得:x≥1,解不等式②得:x<2,∴不等式组的解集为 1≤x <2,在数轴上表示为:.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.在直角坐标平面内,已知点(1,3),(3,1)A B ---,将点B 向右平移5个单位得到点C(1)描出点,,A B C 的位置,并求ABC ∆的面积.(2)若在x 轴下方有一点D ,使5BCD S ∆=,写出一个满足条件的点D 的坐标.并指出满足条件的点D 有什么特征.【答案】(1)10;(2)(0,3)D -,这些点在x 轴下方,与x 轴平行且与x 轴距离为3的一条直线上【解析】(1)根据已知点的坐标得出A ,B 的位置,再利用点B 向右平移5个单位得到点C ,即可得出C 点坐标;再根据B 、C 两点的坐标得出BC 的长,从而求出ABC ∆的面积(2)根据5BCD S ∆=和BC 的长得出高的长,从而求出D 点坐标,再根据同底等高的三角形的面积相等得出点D 的特征【详解】解:(1)∵点(3,1)B --向右平移5个单位得到点C ,∴点C 的坐标为()2,1-,,,A B C 的位置如图所示∵(3,1)B --,C ()2,1-,∴|32|5BC =--=,∵(1,3)A -, ∴154102ABC S ∆=⨯⨯= (2)设三角形BCD 的高为h ,∵5BC =,5BCD S ∆=∴1552ABC S h ∆=⨯= ∴h=2∵点D 在x 轴下方,∴(0,3)D -;∵同底等高的三角形的面积相等;∴这些点D 在x 轴下方,与x 轴平行且与x 轴距离为3的一条直线上【点睛】此题主要考查了坐标与图形变化-平移,关于x 轴对称的点的坐标,平面直角坐标系,以及三角形的面积,关键是掌握点的坐标的变化规律.23.在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和妈妈的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.【答案】小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.【解析】设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y人,根据“男生人数+女生人数=55、男生人数=1.5×女生人数+5”列出方程组并解答.【详解】设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y人,依题意得:551.55 x yx y+=⎧⎨=+⎩,解得3520 xy=⎧⎨=⎩,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.【点睛】本题考查了二元一次方程组的应用.弄清题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24.问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;(应用):(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为.(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.(拓展):我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=1.解决下列问题:(1)已知E(2,0),若F(﹣1,﹣2),求d(E,F);(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,求t的值;(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,求d(P,Q).。

相关文档
最新文档