21第二十一讲尺规作图及命题证明

合集下载

2023中考数学复习:尺规作图

2023中考数学复习:尺规作图
尺规作图
1
栏目导航
数据聚焦
2
3
考点梳理
数据剖析
数据链接
题型突破
真题试做
第27讲
返回栏目导航
尺规作图— 教材链接
1
数据聚焦
考点梳理
教材链接
人教:七上第四章P126.
冀教:七上第二章P69-P70,P79,八上第十三章P52-P54,第十六章P112P123.
北师:七下第二章P55-P60,第四章P105-P107.
直平分线 点N;
MN
返回栏目导航
(2)过点M,N作直线MN,直线MN即为线
段AB的垂直平分线
图形示例
第27讲
返回思维导图
尺规作图— 考点梳理
返回栏目导航
续表
1.五种尺规作图
作图内容
作图步骤

过直线 (1)以点O为圆心,任意长为半径向点O两侧

上一点 作弧,分别交直线l于A,B两点;
线l
O作直
(2)分别以点A,B为圆心,以大于AB的长为半
即为所求
图示
第27讲
尺规作图— 考点梳理
返回思维导图
返回栏目导航
3.作三角形的内切圆和外接圆
作图要求
续表
作法
作三角形 (1)分别作AB,BC的⑥___________,
垂直平分线
的外接圆 交点为O;
(2)以O为圆心,OA的长为半径画
圆,☉O即为所求
图示
第27讲
尺规作图— 考点梳理
4.作特殊四边形的方法
于点P2.故符合题意的点P有两处.
1
2
13
4
5
第27讲
尺规作图— 题型突破

中考专题复习——矩形菱形正方形

中考专题复习——矩形菱形正方形

中考专题复习第二十一讲矩形菱形正方形【基础知识回顾】一、矩形:1、定义:有一个角是角的平行四边形叫做矩形2、矩形的性质:⑴矩形的四个角都⑵矩形的对角线3、矩形的判定:⑴用定义判定⑵有三个角是直角的是矩形⑶对角线相等的是矩形【名师提醒:1、矩形是对称图形,对称中心是,矩形又是对称图形,对称轴有条2、矩形被它的对角线分成四个全等的三角形和两对全等的三角形3、矩形中常见题目是对角线相交成600或1200角时,利用直角三角形、等边三角形等图形的性质解决问题】二、菱形:1、定义:有一组邻边的平行四边形叫做菱形2、菱形的性质:⑴菱形的四条边都⑵菱形的对角线且每条对角线3、菱形的判定:⑴用定义判定⑵对角线互相垂直的是菱形⑶四条边都相等的是菱形【名师提醒:1、菱形既是对称图形,也是对称图形,它有条对称轴,分别是2、菱形被对角线分成四个全等的三角形和两对全等的三角形3、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的来计算4、菱形常见题目是内角为1200或600时,利用等边三角形或直角三角形的相关知识解决的题目】三、正方形:1、定义:有一组邻边相等的是正方形,或有一个角是直角的是正方形2、性质:⑴正方形四个角都都是角,⑵正方形四边条都⑶正方形两对角线、且每条对角线平分一组内角3、判定:⑴先证是矩形,再证⑵先证是菱形,再证【名师提醒:1、菱形、正方形具有平行四边形的所有性质,正方形具有以上特殊四边形的所有性质。

这四者之间的关系可表示为:2、正方形也既是对称图形,又是对称图形,有条对称轴3、几种特殊四边形的性质和判定都是从、、三个方面来看的,要注意它们的区别和联系】【重点考点例析】考点一:与矩形有关的折叠问题例1 (2016•泸州)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=105cm,且tan∠EFC=34,那么该矩形的周长为()A.72cm B.36cm C.20cmD.16cm对应训练1.(2016•湖州)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则ADAB的值为()A.12B.33C.23D.22考点二:和菱形有关的对角线、周长、面积的计算问题例2 (2016•泉州)如图,菱形ABCD的周长为85,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO= ,菱形ABCD的面积S= .对应训练2.(2016•凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14B.15C.1 D.17考点三:和正方形有关的证明题例3 (2016•湘潭)在数学活动课中,小辉将边长为2和3的两个正方形放置在直线l 上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.思路分析:(1)根据正方形的性质可得AO=CO ,OD=OF ,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF ,再利用“边角边”证明△AOD 和△COF 全等,根据全等三角形对应边相等即可得证;(2)与(1)同理求出CF=AD ,连接DF 交OE 于G ,根据正方形的对角线互相垂直平分可得DF ⊥OE ,DG=OG=12OE ,再求出AG ,然后利用勾股定理列式计算即可求出AD . 解:(1)AD=CF .理由如下:在正方形ABCO 和正方形ODEF 中,AO=CO ,OD=OF ,∠AOC=∠DOF=90°, ∴∠AOC+∠COD=∠DOF+∠COD ,即∠AOD=∠COF ,在△AOD 和△COF 中,AO CO AOD COF OD OF =⎧⎪∠=∠⎨⎪=⎩,∴△AOD ≌△COF (SAS ), ∴AD=CF ;(2)与(1)同理求出CF=AD ,如图,连接DF 交OE 于G ,则DF ⊥OE ,DG=OG=12OE ,∵正方形ODEF 的边长为2,∴OE=2×2=2,∴DG=OG=12OE=12×2=1, ∴AG=AO+OG=3+1=4,在Rt △ADG 中,AD=22224117AG DG +=+=,∴CF=AD=17.点评:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,(1)熟练掌握正方形的四条边都相等,四个角都是直角,对角线相等且互相垂直平分是解题的关键,(2)作辅助线构造出直角三角形是解题的关键.对应训练3.(2016•三明)如图①,在正方形ABCD 中,P 是对角线AC 上的一点,点E 在BC 的延长线上,且PE=PB .(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.3.(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,∵在△BCP和△DCP中,BC DCBCP DCPPC PC=⎧⎪∠=∠⎨⎪=⎩,∴△BCP≌△DCP(SAS);(2)证明:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP,∵PE=PB,∴∠CBP=∠E,∴∠DPE=∠DCE,∵∠1=∠2(对顶角相等),∴180°-∠1-∠CDP=180°-∠2-∠E,即∠DPE=∠DCE,∵AB∥CD,∴∠DCE=∠ABC,∴∠DPE=∠ABC;(3)解:与(2)同理可得:∠DPE=∠ABC,∵∠ABC=58°,∴∠DPE=58°.故答案为:58.考点四:四边形综合性题目例4 (2016•资阳)在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.(1)如图1,当点M与点C重合,求证:DF=MN;(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以2cm/s速度沿AC向点C运动,运动时间为t(t>0);①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.思路分析:(1)证明△ADF≌△DNC,即可得到DF=MN;易证△MND ∽△DFA,∴ND DMAF AD=,即ND a tat aa t-=-,得ND=t.∴ND=CM=t,AN=DM=a-t.若△MNF为等腰三角形,则可能有三种情形:(I)若FN=MN,则由AN=DM知△FAN≌△NDM,∴AF=DM,即ata t-=t,得t=0,不合题意.∴此种情形不存在;(II)若FN=FM,由MN⊥DF知,HN=HM,∴DN=DM=MC,∴t=12a,此时点F与点B重合;(III)若FM=MN,显然此时点F在BC边上,如下图所示:易得△MFC≌△NMD,∴FC=DM=a-t;又由△NDM∽△DCF,∴DN DCDM FC=,即t aa t FC=-,∴FC=()a a tt-.∴()a a tt-=a-t,∴t=a,此时点F与点C重合.综上所述,当t=a或t=12a时,△MNF能够成为等腰三角形.点评:本题是运动型几何综合题,考查了相似三角形、全等三角形、正方形、等腰三角形、命题证明等知识点.解题要点是:(1)明确动点的运动过程;(2)明确运动过程中,各组成线段、三角形之间的关系;(3)运用分类讨论的数学思想,避免漏解.对应训练4.(2016•营口)如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=43,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.4.解:(1)①BF=AD ,BF ⊥AD ;②BF=AD ,BF ⊥AD 仍然成立,证明:∵△ABC 是等腰直角三角形,∠ACB=90°,∴AC=BC ,∵四边形CDEF 是正方形,∴CD=CF ,∠FCD=90°,∴∠ACB+∠ACF=∠FCD+∠ACF ,即∠BCF=∠ACD ,在△BCF 和△ACD 中BC ACBCF ACD CF CD=⎧⎪∠=∠⎨⎪=⎩,∴△BCF ≌△ACD (SAS ),∴BF=AD ,∠CBF=∠CAD ,又∵∠BHC=∠AHO ,∠CBH+∠BHC=90°,∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BF ⊥AD ;(2)证明:连接DF ,∵四边形CDEF 是矩形,∴∠FCD=90°,又∵∠ACB=90°,∴∠ACB=∠FCD∴∠ACB+∠ACF=∠FCD+∠ACF ,即∠BCF=∠ACD ,∵AC=4,BC=3,CD=43,CF=1,∴34BC CF AC CD ==,∴△BCF ∽△ACD ,∴∠CBF=∠CAD ,又∵∠BHC=∠AHO ,∠CBH+∠BHC=90°∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BF⊥AD,∴∠BOD=∠AOB=90°,∴BD2=OB2+OD2,AF2=OA2+OF2,AB2=OA2+OB2,DF2=OF2+OD2,∴BD2+AF2=OB2+OD2+OA2+OF2=AB2+DF2,∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB2=AC2+BC2=32+42=25,∵在Rt△FCD中,∠FCD=90°,CD=43,CF=1,∴DF2=CD2+CF2=(43)2+12=259,∴BD2+AF2=AB2+DF2=25+259=2509.【聚焦山东中考】1.(2016•威海)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF2.(2016•枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.3-1B.3-5C.5+1D.5-13.(2016•临沂)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是.4.(2016•烟台)如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画AC,连结AF,CF,则图中阴影部分面积为.5.(2016•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+3.其中正确的序号是(把你认为正确的都填上).6.(2016•济宁)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.6.(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,ABE DAFAB ADBAE D∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△DAF(ASA),∴AF=BE;(2)解:MP与NQ相等.理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,则与(1)的情况完全相同.7.(2016•青岛)已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM ≌△DCM ;(2)判断四边形MENF 是什么特殊四边形,并证明你的结论;(3)当AD :AB= 时,四边形MENF 是正方形(只写结论,不需证明)8.(2016•淄博)矩形纸片ABCD 中,AB=5,AD=4.(1)如图1,四边形MNEF 是在矩形纸片ABCD 中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;(2)请用矩形纸片ABCD 剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD 中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).8.解:(1)正方形的最大面积是16.设AM =x (0≤x ≤4),则MD =4-x .∵四边形MNEF 是正方形,∴MN =MF ,∠AMN +∠FMD =90°.∵∠AMN +∠ANM =90°,∴∠ANM =∠FMD .∵在△ANM 和△DMF 中A D ANM FMD MN FM ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ANM ≌△DMF (AAS ).∴DM =AN .∴S 正方形MNEF =MN 2=AM 2+AN 2,=x2+(4-x)2,=2(x-2)2+8∵函数S正方形MNEF=2(x-2)2+8的开口向上,对称轴是x=2,在对称轴的左侧S随x的增大而减小,在对称轴的右侧S随x的增大而增大,∵0≤x≤4,∴当x=0或x=4时,正方形MNEF的面积最大.最大值是16.(2)先将矩形纸片ABCD分割成4个全等的直角三角形和两个矩形如图1,然后拼成如图2的正方形.9.(2016•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.9.解:(1)完成图形,如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,【备考真题过关】一、选择题1.(2016•铜仁地区)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形2.(2016•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3.(2013•随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.25B.20C.15D.104.(2016•重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D.1cm 5.(2016•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12B.24C.123D.1636.(2016•巴中)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长是()A.24B.16C.43D.237(2016•茂名)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC 的长是()A.2B.4C.2 3D.438.(2016•成都)如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A.1B.2C.3D.4 9.(2016•包头)如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S210.(2016•扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC 于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°11.(2016•绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A.2825cm B.2120cm C.2815cm D.2521cm12.(2016•雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.2B.3C.4D.5二、填空题13.(2016•宿迁)如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为------度时,两条对角线长度相等.14.(2016•淮安)若菱形的两条对角线分别为2和3,则此菱形的面积是.15.(2013•无锡)如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.16.(2016•黔西南州)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.17.(2016•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=35,BE=4,则tan ∠DBE的值是.18.(2016•南充)如图,正方形ABCD的边长为2,过点A作AE⊥AC,AE=1,连接BE,则tanE= .19.(2016•苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若1CGGB k=,则ADAB=用含k的代数式表示).20.(2016•哈尔滨)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为.21.(2016•北京)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.22.(2016•南京)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.23.(2016•舟山)如图,正方形ABCD的边长为3,点E,F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程为.24.(2016•桂林)如图,已知线段AB=10,AC=BD=2,点P是CD 上一动点,分别以AP 、PB 为边向上、向下作正方形APEF 和PHKB ,设正方形对角线的交点分别为O 1、O 2,当点P 从点C 运动到点D 时,线段O 1O 2中点G 的运动路径的长是 .25.(2016•荆州)如图,将矩形ABCD 沿对角线AC 剪开,再把△ACD 沿CA 方向平移得到△A 1C 1D 1,连结AD 1、BC 1.若∠ACB=30°,AB=1,CC 1=x ,△ACD 与△A 1C 1D 1重叠部分的面积为s ,则下列结论:①△A 1AD 1≌△CC 1B ;②当x=1时,四边形ABC 1D 1是菱形;③当x=2时,△BDD 1为等边三角形;④s=38(x -2)2 (0<x <2); 其中正确的是 (填序号).三、解答题26.(2016•南通)如图,AB=AC ,AD=AE ,DE=BC ,且∠BAD=∠CAE .求证:四边形BCDE 是矩形.26.证明:∵∠BAD=∠CAE ,∴∠BAD -∠BAC=∠CAE -∠BAC ,∴∠BAE=∠CAD ,∵在△BAE 和△CAD 中AE AD BAE CAD AB AC =⎧⎪∠=∠⎨⎪=⎩∴△BAE ≌△CAD (SAS ), ∴∠BEA=∠CDA ,BE=CD ,∵DE=BC ,∴四边形BCDE 是平行四边形,∵AE=AD ,∴∠AED=∠ADE ,∵∠BEA=∠CDA ,∴∠BED=∠CDE ,∵四边形BCDE 是平行四边形,∴BE ∥CD ,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE 是矩形.27.(2016•广州)如图,四边形ABCD 是菱形,对角线AC 与BD相交于O ,AB=5,AO=4,求BD 的长.27.解:∵四边形ABCD 是菱形,对角线AC 与BD 相交于O ,∴AC ⊥BD ,DO=BO ,∵AB=5,AO=4,∴BO=2254-=3,∴BD=2BO=2×3=6.28.(2013•厦门)如图所示,在正方形ABCD 中,点G 是边BC 上任意一点,DE ⊥AG ,垂足为E ,延长DE 交AB 于点F .在线段AG 上取点H ,使得AG=DE+HG ,连接BH .求证:∠ABH=∠CDE .28.证明:如图,在正方形ABCD 中,AB=AD ,∠ABG=∠DAF=90°,∵DE ⊥AG ,∴∠2+∠EAD=90°,又∵∠1+∠EAD=90°,∴∠1=∠2,在△ABG 和△DAF 中, 1 290AB AD ABG DAF =⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABG ≌△DAF (ASA ),∴AF=BG ,AG=DF ,∠AFD=∠BGA ,∵AG=DE+HG ,AG=DE+EF ,∴EF=HG ,在△AEF 和△BHG 中,AF BG AFD BGA EF HG =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BHG (SAS ),∴∠1=∠3,∴∠2=∠3,∵∠2+∠CDE=∠ADC=90°,∠3+∠ABH=∠ABC=90°,∴∠ABH=∠CDE .29.(2013•黔东南州)如图,在正方形ABCD 中,点M 是对角线BD 上的一点,过点M 作ME ∥CD 交BC 于点E ,作MF ∥BC 交CD 于点F .求证:AM=EF .29.证明:过M 点作MQ ⊥AD ,垂足为Q ,作MP 垂足AB ,垂足为P ,∵四边形ABCD 是正方形,∴四边形MFDQ 和四边形PBEM 是正方形,四边形APMQ 是矩形,∴AP=QM=DF=MF ,PM=PB=ME ,∵在△APM 和△FME 中,AP MF APM FME PM ME =⎧⎪∠=∠⎨⎪=⎩, ∴△APM ≌△FME (SAS ), ∴AM=EF .30.(2016•铁岭)如图,△ABC 中,AB=AC ,AD 是△ABC 的角平分线,点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD ,连接AE ,BE .(1)求证:四边形AEBD 是矩形;(2)当△ABC 满足什么条件时,矩形AEBD 是正方形,并说明理由.30.(1)证明:∵点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD ,∴四边形AEBD 是平行四边形,∵AB=AC ,AD 是△ABC 的角平分线,∴AD ⊥BC ,∴∠ADB=90°,∴平行四边形AEBD 是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC ,AD 是△ABC 的角平分线,∴AD=BD=CD ,∵由(1)得四边形AEBD 是矩形,∴矩形AEBD 是正方形.31.(2016•南宁)如图,在菱形ABCD 中,AC 为对角线,点E 、F 分别是边BC 、AD 的中点.(1)求证:△ABE ≌△CDF ;(2)若∠B=60°,AB=4,求线段AE 的长.31.解:(1)∵四边形ABCD 是菱形,∴AB=BC=AD=CD ,∠B=∠D ,∵点E 、F 分别是边BC 、AD 的中点,∴BE=DF ,在△ABE 和△CDF 中,∵AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CDF (SAS );(2)∵∠B=60°,∴△ABC 是等边三角形,∵点E 是边BC 的中点,∴AE ⊥BC ,在Rt △AEB 中,∠B=60°,AB=4,sin60°=4AE AE AB =, 解得AE=23.32.(2016•贵阳)已知:如图,在菱形ABCD 中,F 是BC 上任意一点,连接AF 交对角线BD 于点E ,连接EC .(1)求证:AE=EC ;(2)当∠ABC=60°,∠CEF=60°时,点F 在线段BC 上的什么位置?说明理由.32.(1)证明:如图,连接AC ,∵BD 也是菱形ABCD 的对角线,∴BD 垂直平分AC ,∴AE=EC ;(2)解:点F 是线段BC 的中点.理由如下:在菱形ABCD 中,AB=BC ,又∵∠ABC=60°,∴△ABC 是等边三角形,∴∠BAC=60°,∵AE=EC ,∠CEF=60°,∴∠EAC=12∠BAC=30°, ∴AF 是△ABC 的角平分线,∵AF 交BC 于F ,∴AF 是△ABC 的BC 边上的中线,∴点F 是线段BC 的中点.33.(2016•曲靖)如图,点E 在正方形ABCD 的边AB 上,连接DE ,过点C 作CF ⊥DE 于F ,过点A 作AG ∥CF 交DE 于点G .(1)求证:△DCF ≌△ADG .(2)若点E 是AB 的中点,设∠DCF=α,求sinα的值.33.(1)证明:在正方形ABCD 中,AD=DC ,∠ADC=90°,∵CF ⊥DE ,∴∠CFD=∠CFG=90°,35.(2016•绥化)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为22,对角线AE,DF相交于点O,连接OC.求OC的长度.35.证明:(1)∵∠BAC=90°,∠ABC=45°,线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF,CF.(1)如图 ,当点P在CB延长线上时,求证:四边形PCFE是平行四边形;(2)如图 ,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由;(3)在(2)的条件下,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由.36.解:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠PBA=90°∵在△PBA和△FBC中,AB BCPBA ABCBP BF=⎧⎪∠=∠⎨⎪=⎩,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,∴PE=FC.∵∠PAB+∠APB=90°,∴∠FCB+∠APB=90°.∵∠EPA=90°,∴∠APB+∠EPA+∠FPC=180°,即∠EPC+∠PCF=180°,∴EP∥FC,∴四边形EPCF是平行四边形;(2)结论:四边形EPCF是平行四边形,∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠CBF=90°∵在△PBA和△FBC中,AB BCPBA ABCBP BF=⎧⎪∠=∠⎨⎪=⎩,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,。

2021年广东省深圳市数学中考专题复习 命题、证明和尺规作图课件

2021年广东省深圳市数学中考专题复习 命题、证明和尺规作图课件

对点练习 1 1.下列命题,其中是真命题的为( D ) A.一组对边平行,另一组对边相等的四边形是平行四边形 B.对角线互相垂直的四边形是菱形 C.对角线相等的四边形是矩形 D.一组邻边相等的矩形是正方形
2.用反证法证明“a≥b”,对于第一步的假设,下列正确的
是( C )
A.a≤b
B.a≠b
C.a<b
六年深圳 2015 年 2016 年 2017 年 2018 年 2019 年 2020 年
中考
第8题 第9题
第 10 题 第 9 题
1.(2019·深圳)下面命题正确的是( D ) A.矩形的对角线互相垂直 B.方程 x2=14x 的解为 x=14 C.六边形的内角和为 540° D.一条斜边和一条直角边分别相等的两个直角三角形全等
D.a=b
知识点 2:尺规作图 基本作图
作一条线段等于已知线段
作角的平分线
图示
作线段的垂直平分线 作一个角等于已知角
过直线上一点作已知直线的垂线 过直线外一点作已知直线的垂线
对点练习 2 1.用尺规在一个平行四边形内作菱形 ABCD,下列作法中错 误的是( C )
A.
B.
C.
D.
2.已知:线段 a,∠α.求作:△ABC,使 AB=AC=a,∠B =∠α.
过点 A 作 AH⊥CD 于点 H(图略), 在 Rt△ACH 中,∠ACH=45°, ∴sin∠ACH=AAHC,∴AH=4× 22=2 2, ∴四边形 ACDB 的面积为:4×2 2=8 2.
——基于全国中考的13道过关强化题
基础训练 1.(2020 秋·福田区校级月考)下列命题正确的是( C ) A.一组对边平行,另一组对边相等的四边形是平行四边形 B.对角线相等的矩形是正方形 C.16 的平方根是±4 D.有一组邻边相等的四边形是菱形

【中考数学考点梳理】考点18_尺规作图与定义、命题、定理

【中考数学考点梳理】考点18_尺规作图与定义、命题、定理

考点18 尺规作图与定义、命题、定理一、尺规作图1.尺规作图的定义:在几何里,把限定用没有刻度的直尺和圆规来画图称为尺规作图.2.五种基本作图1)作一条线段等于已知线段;2)作一个角等于已知角;3)作一个角的平分线;4)作一条线段的垂直平分线;5)过一点作已知直线的垂线.3.根据基本作图作三角形1)已知三角形的三边,求作三角形;2)已知三角形的两边及其夹角,求作三角形;3)已知三角形的两角及其夹边,求作三角形;4)已知三角形的两角及其中一角的对边,求作三角形;5)已知直角三角形一直角边和斜边,求作直角三角形.4.与圆有关的尺规作图1)过不在同一直线上的三点作圆(即三角形的外接圆);2)作三角形的内切圆.5.有关中心对称或轴对称的作图以及设计图案是中考常见类型.6.作图题的一般步骤(1)已知;(2)求作;(3)分析;(4)作法;(5)证明;(6)讨论.其中步骤(3)(4)(5)(6)一般不作要求,但作图中一定要保留作图痕迹.二、尺规作图的方法1.尺规作图的关键1)先分析题目,读懂题意,判断题目要求作什么;2)读懂题意后,再运用几种基本作图方法解决问题. 2.根据已知条件作等腰三角形或直角三角形求作三角形的关键是确定三角形的三个顶点,作图依据是三角形全等的判定,常借助基本作图来完成,如作直角三角形就先作一个直角.三、定义与命题1.一般地,对某一名称或术语进行描述或作出规定就叫做该名称或术语的定义.2.判断一件事情的语句叫做命题.3.命题的组成:命题是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.4.命题的表达形式:命题可以写成“如果……那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.二、真命题、假命题1.正确的命题叫做真命题.2.要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明(推理、证明).3.要说明一个命题是假命题,只需举一个反例即可.三、逆命题1.把原命题的结论作为命题的条件,把原命题的条件作为命题的结论,所组成的命题叫做原命题的逆命题.2.在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题.如果把其中的一个命题叫做原命题,那么另一个命题就叫做它的逆命题.3.正确写出一个命题的逆命题的关键是能够正确区分这个命题的题设和结论.4.每个命题都有逆命题,但原命题是真命题,它的逆命题不一定是真命题.四、公理与定理1.如果一个命题的正确性是人们在长期实践中总结出来的,并把它作为判断其他命题真假的原始依据,这样的真命题叫做公理.2.如果一个命题可以从公理或其他命题出发,用逻辑推理的方法判断它是正确的,并且可以进一步作为判断其他命题真假的依据,这样的命题叫做定理.3.公理和定理都是真命题,都可作为证明其他命题是否为真命题的依据.4.由定理直接推出的结论,并且和定理一样可作为进一步推理依据的真命题叫做推论.五、互逆命题1.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理.2.任何一个命题都有逆命题,而一个定理并不一定有逆定理.3.角平分线性质定理及其逆定理、线段的垂直平分线性质定理及其逆定理、勾股定理及其逆定理等都是互逆定理.六、反证法1.定义:假设命题的结论不成立,即命题结论的反面成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立,这种证明方法叫做反证法.2.反证法的步骤:①假设命题结论的反面正确;②从假设出发,经过逻辑推理,推出与公理、定理、定义或已知条件相矛盾的结论;③说明假设不成立,从而得出原命题正确.考向一基本作图1.最基本、最常用的尺规作图,通常称为基本作图.2.基本作图有五种:1)作一条线段等于已知线段;2)作一个角等于已知角;3)作一个角的平分线;4)作一条线段的垂直平分线;5)过一点作已知直线的垂线.1.如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)【答案】详见解析【分析】根据尺规作图法,作一个角等于已知角,在AC边上求作一点P,使∠PBC=45°即可.【详解】解:如图,点P即为所求.作法:(1)以点C为圆心,以任意长为半径画弧交AC于D,交BC于E,(2)以点B为圆心,以CD长为半径画弧,交BC于F,(3)以点F为圆心,以DE长为半径画弧,交前弧于点M,(3)连接BM,并延长BM与AC交于点P,则点P即为所求.【点睛】本题考查了作图——基本作图.解决本题的关键是掌握基本作图方法.2.如图,Rt ABC 中,90ABC ∠=︒,根据尺规作图的痕迹判断以下结论错误的是( )A .DB DE =B .AB AE =C .EDC BAC ∠=∠D .DAC C ∠=∠【答案】D 【分析】由尺规作图可知AD 是∠CAB 角平分线,DE ⊥AC ,由此逐一分析即可求解.【详解】解:由尺规作图可知,AD 是∠CAB 角平分线,DE ⊥AC ,在△AED 和△ABD 中:∵=90⎧∠=∠⎪∠=∠⎨⎪=⎩AED ABD EAD BAD AD AD ,∴△AED ≌△ABD(AAS),∴DB=DE ,AB=AE ,选项A 、B 都正确,又在Rt △EDC 中,∠EDC=90°-∠C ,在Rt △ABC 中,∠BAC=90°-∠C ,∴∠EDC=∠BAC ,选项C 正确, 选项D ,题目中缺少条件证明,故选项D 错误.故选:D.【点睛】本题考查了尺规作图角平分线的作法,熟练掌握常见图形的尺规作图是解决这类题的关键.3.如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C ,D ,连接AC ,AD ,BC ,BD ,CD ,则下列说法错误的是( )A .AB 平分∠CADB .CD 平分∠ACBC .AB ⊥CD D .AB=CD【答案】D 【分析】根据作图判断出四边形ACBD 是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案【详解】解:由作图知AC=AD=BC=BD ,∴四边形ACBD 是菱形,∴AB 平分∠CAD 、CD 平分∠ACB 、AB ⊥CD ,不能判断AB=CD ,选:D .【点睛】本题主要考查线段垂直平分线的尺规作图、菱形的判定方法等,解题的关键是掌握菱形的判定与性质.1.已知AOB ∠,作AOB ∠的平分线OM ,在射线OM 上截取线段OC ,分别以O 、C 为圆心,大于12OC的长为半径画弧,两弧相交于E ,F .画直线EF ,分别交OA 于D ,交OB 于G .那么,ODG 一定是( )A .锐角三角形B .钝角三角形C .等腰三角形D .直角三角形 【答案】C【分析】根据题意知EF 垂直平分OC ,由此证明△OMD ≌△ONG ,即可得到OD=OG 得到答案.【详解】如图,连接CD 、CG ,∵分别以O 、C 为圆心,大于12OC 的长为半径画弧,两弧相交于E ,F ∴EF 垂直平分OC ,设EF 交OC 于点N ,∴∠ONE=∠ONF=90°,∵OM 平分AOB ∠,∴∠NOD=∠NOG ,又∵ON=ON ,∴△OMD ≌△ONG ,∴OD=OG ,∴△ODG 是等腰三角形,故选:C.【点睛】此题考查基本作图能力:角平分线的做法及线段垂直平分线的做法,还考查了全等三角形的判定定理及性质定理,由此解答问题,根据题意得到EF 垂直平分OC 是解题的关键.2.如图,已知AB =AC ,BC =6,尺规作图痕迹可求出BD =( )A .2B .3C .4D .5【答案】B 【分析】根据尺规作图的方法步骤判断即可.【详解】由作图痕迹可知AD 为∠BAC 的角平分线,而AB=AC ,由等腰三角形的三线合一知D 为BC 重点,BD=3,故选B【点睛】本题考查尺规作图-角平分线及三线合一的性质,关键在于牢记尺规作图的方法和三线合一的性质. 3.如图1,已知ABC ∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A .a ,b 均无限制B .0a >,12b DE >的长 C .a 有最小限制,b 无限制D .0a ≥,12b DE <的长 【答案】B 【分析】根据作角平分线的方法进行判断,即可得出结论.【详解】第一步:以B 为圆心,适当长为半径画弧,分别交射线BA ,BC 于点D ,E ;∴0a >;第二步:分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在ABC ∠内部交于点P ; ∴12b DE >的长;第三步:画射线BP .射线BP 即为所求.综上,答案为:0a >;12b DE >的长, 故选:B .【点睛】本题主要考查了基本作图,解决问题的关键是掌握作角平分线的方法.考向二 复杂作图利用五种基本作图作较复杂图形.1.如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得//CD AB ,且2CD AB =;(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为,M N ,求证:,,M P N 三点在同一条直线上.【答案】(1)详见解析;(2)详见解析【分析】(1)按要求进行尺规作图即可;(2)通过证明角度之间的大小关系,得到180∠+∠=︒CPN CPM ,即可说明,,M P N 三点在同一条直线上.【详解】解:(1)则四边形ABCD 就是所求作的四边形.(2)∵AB CD ∥,∴ABP CDP ∠=∠,BAP DCP ∠=∠,∴ABP CDP ∆∆∽,∴AB AP CD CP . ∵,M N 分别为AB ,CD 的中点,∴2AB AM =,2CD CN =,∴=AM AP CN CP. 连接MP ,NP ,又∵BAP DCP ∠=∠, ∴∽∆∆APM CPN ,∴∠=∠APM CPN ,∵点P 在AC 上∴180∠+∠=︒APM CPM ,∴180∠+∠=︒CPN CPM ,∴,,M P N 三点在同一条直线上.【点睛】本题考查尺规作图、平行线的判定与性质、相似三角形的性质与判定等基础知识,考查推理能力、空间观念与几何直观,考查化归与转化思想.2.通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.【答案】A【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.1.过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A.B.C.D.【答案】D【分析】根据平行线的判定方法一一判断即可.【详解】A、由作图可知,内错角相等两直线平行,本选项不符合题意.B、由作图可知,同位角相等两直线平行,本选项不符合题意.C、与作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意,D、无法判断两直线平行,故选:D.【点睛】本题考查作图-复杂作图,平行线的判定等知识,解题的关键是读懂图象信息,属于中考常考题型.2.如图,在Rt ABC中.()1利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;()2利用尺规作图,作出()1中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【答案】()1作图见解析;(2)作图见解析.∠平分线上,再根据角平分线的尺【分析】()1由点P到AB的距离(PD的长)等于PC的长知点P在BAC规作图即可得(以点A为圆心,以任意长为半径画弧,与AC、AB分别交于一点,然后分别以这两点为圆心,以大于这两点距离的一半长为半径画弧,两弧交于一点,过点A及这个交点作射线交BC于点P,P即为要求的点);()2根据过直线外一点作已知直线的垂线的尺规作图即可得(以点P为圆心,以大于点P到AB的距离为半径画弧,与AB交于两点,分别以这两点为圆心,以大于这两点间距离一半长为半径画弧,两弧在AB的一侧交于一点,过这点以及点P作直线与AB交于点D,PD即为所求).【详解】()1如图,点P即为所求;()2如图,线段PD即为所求.【点睛】本题考查了作图-复杂作图、角平分线的性质定理等知识,解题的关键是熟练掌握基本作图,灵活运用所学知识解决问题.考向三圆中的作图问题1.如图,已知,.(1)在图中,用尺规作出的内切圆,并标出与边,,的切点,,(保留痕迹,不必写作法);(2)连接,,求的度数.【答案】(1)作图见解析;(2)70°.【解析】(1)直接利用基本作图即可得出结论;(2)利用四边形的性质,三角形的内切圆的性质即可得出结论.解析:(1)如图1,⊙O即为所求.(2)如图2,连接OD,OE,∴OD⊥AB,OE⊥BC,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EFD=70°.考点:1.作图—复杂作图;2.三角形的内切圆与内心.2.如图,在等腰△ABC中,AB=AC=BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于1 2EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于12AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A.B.10C.4D.5【答案】D【分析】如图,设OA交BC于T.解直角三角形求出AT,再在Rt△OCT中,利用勾股定理构建方程即可解决问题.【详解】解:如图,设OA交BC于T.∵AB=AC=AO平分∠BAC,∴AO⊥BC,BT=TC=4,∴AE2=,在Rt△OCT中,则有r2=(r﹣2)2+42,解得r=5,故选:D.【点睛】本题考查作图——复杂作图,等腰三角形的性质,垂径定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.1.(1)如图,已知线段AB和点O,利用直尺和圆规作ABC,使点O是ABC的内心(不写作法,保留作图痕迹);(2)在所画的ABC 中,若90,6,8C AC BC ∠=︒==,则ABC 的内切圆半径是______.【答案】(1)作法:如图所示,见解析;(2)2.【分析】(1)内心是角平分线的交点,根据AO 和BO 分别是∠CAB 和∠CBA 的平分线,作图即可; (2)连接OC ,设内切圆的半径为r ,利用三角形的面积公式,即可求出答案.【详解】解:(1)作法:如图所示:①作射线AO 、BO ; ②以点A 为圆心,任意长为半径画弧分别交线段AB ,射线AO 于点D ,E ; ③以点E 为圆心,DE 长为半径画弧,交上一步所画的弧于点F ,同理作出点M ; ④作射线AF ,BM 相交于点C ,ABC 即所求.(2)如图,连接OC ,∵90,6,8C AC BC ∠=︒==,由勾股定理,得:10AB =,∴168242ABC S=⨯⨯=; ∵ABC AOB AOC BOC SS S S ∆∆∆=++,∴11124222AB r AC r BC r •+•+•=,∴1(1068)242r ⨯++•=, ∴2r ,∴ABC 的内切圆半径是2;故答案为:2;【点睛】本题考查了求三角形内切圆的半径,角平分线的性质,勾股定理,以及三角形的面积公式,解题的关键是作出图形,利用所学的知识正确求出三角形内切圆的半径.2.如图,点O 是正方形,ABCD 的中心.(1)用直尺和圆规在正方形内部作一点E (异于点O ),使得;EB EC =(保留作图痕迹,不写作法) (2)连接,EB EC EO 、、求证:BEO CEO ∠=∠.【答案】(1)见解析;(2)见解析【分析】(1)作BC 的垂直平分线即可求解;(2)根据题意证明EBO ECO ≅即可求解.【详解】()1如图所示,点E 即为所求.()2连接OB OC 、 由()1得:EB EC =O 是正方形ABCD 中心,,OB OC ∴=∴在EBO △和ECO 中,EB EC EO EO OB OC =⎧⎪=⎨⎪=⎩(),EBO ECO SSS ∴≅BEO CEO ∴∠=∠. 【点睛】此题主要考查正方形的性质与证明,解题的关键是熟知正方形的性质、垂直平分线的作图及全等三角形的判定与性质.考向四逻辑推理1.如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.【答案】丙,丁,甲,乙【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为2,3,4,5可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4.丁所购票数最多,因此应让丁第二购票,据此判断即可.【详解】解:丙先选择:1,2,3,4.丁选:5,7,9,11,13.甲选:6,8.乙选:10,12,14.∴顺序为丙,丁,甲,乙.(答案不唯一)【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.2.如图,是某企业甲、乙两位员工的能力测试结果的网状图,以O为圆心的五个同心圆分别代表能力水平的五个等级由低到高分别赋分1至5分,由原点出发的五条线段分别指向能力水平的五个维度,网状图能够更加直观的描述测试者的优势和不足,观察图形,有以下几个推断:①甲和乙的动手操作能力都很强;②缺少探索学习的能力是甲自身的不足;③与甲相比乙需要加强与他人的沟通合作能力;④乙的综合评分比甲要高.其中合理的是( ) A .①③B .②④C .①②③D .①②③④ 【答案】D【分析】根据甲、乙两位员工的能力测试结果的网状图一一判断即可得到答案;【详解】因为甲、乙两位员工的动手操作能力均是5分,故甲乙两人的动手操作能力都很强,故①正确; 因为甲的探索学习的能力是1分,故缺少探索学习的能力是甲自身的不足,故①正确;甲的与他人的沟通合作能力是5分,乙的与他人的沟通合作能力是3分,故与甲相比乙需要加强与他人的沟通合作能力,故①正确;乙的综合评分是:3+4+4+5+5=22分,甲的综合评分是:1+4+4+5+5=19分,故乙的综合评分比甲要高,故①正确;故选:D ;【点睛】本题主要考查图象信息题,能从图象上获取相关的信息是解题的关键;1.疫情期间,甲、乙、丙、丁4名同学约定周一至周五每天做一组俯卧撑.为了增加趣味性,他们通过游戏方式确定每个人每天的训练计划.首先,按如图方式摆放五张卡片,正面标有不同的数字代表每天做俯卧撑的个数,反面标有1x ,2x ,3x ,4x ,5x 便于记录. 具体游戏规则如下:甲同学:同时翻开1x ,2x ,将两个数字进行比较,然后由小到大记录在表格中,3x ,4x ,5x 按原顺序记录在表格中;乙同学:同时翻开1x ,2x ,3x ,将三个数字进行比较,然后由小到大记录在表格中,4x ,5x 按原顺序记录在表格中;以此类推,到丁同学时,五张卡片全部翻开,并由小到大记录在表格中.下表记录的是这四名同学五天的训练计划:根据记录结果解决问题:(1)补全上表中丙同学的训练计划;(2)已知每名同学每天至少做30个,五天最多做180个.①如果236x =,340x =,那么1x 所有可能取值为__________________________;②这四名同学星期_________做俯卧撑的总个数最多,总个数最多为_________个.【答案】(1)见解析;(2)①41,42,43;②三,162.【分析】(1)由题意同时翻开1234x x x x ,,,将四个数字进行比较,然后由小到大记录在表格中,x 5按原顺序记录在表格中即可.(2)①由题意44523123303640x x x x x x x x ===,<<<<,,,推出x 5可以取31,32,33,34,35,x 1>40,应用列举法即可解决问题.②观察表格可知星期三的做俯卧撑的总个数最多,不妨设453031x x ==,,当x 2=32时,x 3+x 1的最大值为180-30-31-32=87,若x 1=44,则x 3=43,此时星期三的做俯卧撑的总个数为162.应用列举法即可解决问题.【详解】解:(1)由题意同时翻开1234x x x x ,,,将四个数字进行比较,由乙同学可知231x x x <<,又结合丁同学可知42x x <,所以4231x x x x <<<,然后由小到大记录在表格中,x 5按原顺序记录在表格中补全表中丙同学的训练计划:42315x x x x x ,,,,.故答案为:42315x x x x x ,,,,.(2)①由题意x 4=30,∵45231233640x x x x x x x ==<<<<,,,∴x 5可以取31,32,33,34,35,x 1>40,当x 5=31时,x 1的最大值为43,当x 5=32时,x 1的最大值为42,当x 5=33时,x 1的最大值为41,当x 5=34或35时,x 1的值不符合题意,∴x 1的可能取41,42,43.故答案为:41,42,43.②观察表格可知星期三的做俯卧撑的总个数最多,不妨设x 4=30,x 5=31,当x 2=32时,x 3+x 1的最大值为180-30-31-32=87,若x 1=44,则x 3=43,此时星期三的做俯卧撑的总个数为162.当x 2=33时,x 3+x 1的最大值为180-30-31-33=86, 若x 1=44,则x 3=42,此时星期三的做俯卧撑的总个数为161,当x 2=34时,x 3+x 1的最大值为180-30-31-34=85,若x 1=43,则x 3=42,此时星期三的做俯卧撑的总个数为161,当x 2=35时,x 3+x 1的最大值为180-30-31-33=84, 若x 1=43,则x 3=41,此时星期三的做俯卧撑的总个数为160,综上所述,星期三的做俯卧撑的总个数的最大值为162.故答案为:162.【点睛】本题考查推理与论证,统计等知识,解题的关键是理解题意,学会推理论证的方法.考向五 真命题、假命题1.判断语句是否为命题要抓住两条:①命题必须是一个完整的带有判断性的句子,通常是陈述句(包括肯定句和否定句),而疑问句和命令性语句都不是命题;②命题必须对某件事作出肯定或否定的判断. 2.辨别命题的真假时,对命题的正确性理解一定要准确,进行辨别时要熟练掌握相关的定理、公理、定义.要说明一个命题是假命题,通常可以通过举反例的方法解决.命题的反例是具备命题的条件,但不具备命题的结论的实例.1.下列判断正确的是( )A .北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B .一组数据6,5,8,7,9的中位数是8C .甲、乙两组学生身高的方差分别为S 甲2=2.3,S 乙2=1.8.则甲组学生的身高较整齐D .命题“既是矩形又是菱形的四边形是正方形”是真命题【答案】D【分析】根据抽样调查、中位数定理、命题的判断进行分析即可;【详解】解:A .北斗系统第五十五颗导航卫星发射前的零件检查,应选择全面调查,所以A 选项错误; B .一组数据6,5,8,7,9的中位数是7,所以B 选项错误;C .甲、乙两组学生身高的方差分别为S 甲2=2.3,S 乙2=1.8.则乙组学生的身高较整齐,所以C 选项错误;D .命题“既是矩形又是菱形的四边形是正方形”是真命题,所以D 选项正确.故选:D .【点睛】本题主要考查了数据分析的知识点应用,准确判断是解题的关键.2.从下列命题中,随机抽取一个是真命题的概率是( )(1)无理数都是无限小数;(2)因式分解()()211ax a a x x -=+-;(3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ;(4)弧长是20cm π,面积是2240cm π的扇形的圆心角是120︒.A .14B .12C .34D .1【答案】C【分析】分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解()()211ax a a x x -=+-,是真命题, (3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ,是真命题,(4)设扇形半径为r ,圆心角为n ,∵弧长是20cm π,则180n r π=20π,则3600nr =, ∵面积是2240cm π,则2360n r π=240π,则2nr =360×240,则2360240243600nr r nr ⨯===,则n=3600÷24=150°, 故扇形的圆心角是150︒,是假命题,则随机抽取一个是真命题的概率是34,故选C. 【点睛】本题考查了命题的真假,概率,扇形的弧长和面积,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.1.下列命题中真命题是( )A 2B .数据2,0,3,2,3的方差是65C .正六边形的内角和为360°D .对角线互相垂直的四边形是菱形 【答案】B【分析】A.根据算术平方根解题;B.根据方差、平均数的定义解题;C.根据多边形的内角和为180(n 2)︒⨯-解题;D.根据菱形、梯形的性质解题.【详解】A. 2=,2A 错误;B. 数据2,0,3,2,3的平均数是20323=25++++,方差是 2222216(22)(02)(32)(22)(32)55⎡⎤-+-+-+-+-=⎣⎦,故B 正确; C. 正六边形的内角和为180(62)720︒⨯-=︒,故C 错误;D. 对角线互相垂直的四边形不一定是菱形,可能是梯形,故D 错误,故选:B .【点睛】本题考查判断真命题,其中涉及算术平方根、方差、多边形内角和、梯形性质、菱形性质等知识,是基础考点,难度较易,掌握相关知识是解题关键.2.下列命题是真命题的是( )A .一个角的补角一定大于这个角B .平行于同一条直线的两条直线平行C .等边三角形是中心对称图形D .旋转改变图形的形状和大小【答案】B 【分析】由补角的定义、平行线公理,中心对称图形的定义、旋转的性质分别进行判断,即可得到答案.【详解】解:A 、一个角的补角不一定大于这个角,故A 错误;B 、平行于同一条直线的两条直线平行,故B 正确;C 、等边三角形是轴对称图形,不是中心对称图形,故C 错误;D 、旋转不改变图形的形状和大小,故D 错误;故选:B .【点睛】本题考查了补角的定义、平行线公理,中心对称图形的定义、旋转的性质,以及判断命题的真假,解题的关键是熟练掌握所学的知识,分别进行判断.考向六 互逆命题与互逆定理1.如果两个命题的题设和结论正好相反,那么这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.一般地,如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,则称这两个定理互为逆定理,其中一个定理叫做另一个定理的逆定理.3.“题设与结论正好相反”可理解为第一个命题的题设是第二个命题的结论,第一个命题的结论是第二个命题的题设.1.下列定理中,没有逆定理的是( ).A .两直线平行,同旁内角互补B .线段垂直平分线上的任意一点到这条线段两个端点的距离相等C .等腰三角形两个底角相等D .同角的余角相等【答案】D【分析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题.【详解】解:A 、逆命题是:同旁内角互补,两直线平行,是真命题,故本选项不符合题意;B 、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故选项不符合题意;C 、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;D 、逆命题是:如果两个角相等,那么这两个角是同一个角的余角,是假命题,故选项符合题意.故选:D .【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理. 2.下列命题:(1)对于(0)k y k x=≠,当0k >时,y 随x 的增大而减小;(2)菱形的对角线互相垂直;(3)。

几何证明尺规作图的解题规范与解题技巧

几何证明尺规作图的解题规范与解题技巧

几何证明、尺规作图的解题规范与解题技巧摘要:几何证明(文字证明题)、尺规作图题近两年在福建省中考卷是必考题,基本定位为基础题(送分题),然而从考后的质量分析看,这两类题的得分并不高,丢分主要集中在书写表达不规范、几何证明逻辑错误、推理过程条理混乱等。

下面就几何证明、尺规作图的解题规范与解题技巧说说几点意见。

关键词:几何证明;尺规作图;解题规范;解题技巧一、几何证明的解题规范与技巧(一)几何证明题解题步骤与技巧一审题。

先读完题目,弄清楚题目意思,需要求证什么。

对于题目中的条件应思考条件之间的联系,联想能得到什么结论;结论可以由什么条件得到。

二要标记。

读题时每个条件都要在图形中标注出来。

如边相等,就用边相等的符号来表示。

三要构造。

有的题目隐藏某条线或几条线,所以我们要学作辅助线,那么这里的作辅助线就需要平时熟练掌握定理推论和基本图形。

然后再考虑证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中。

几何的文字证明题,关键是要分清题目的条件和结论,然后“翻译”成符号语言和图形语言;再分析思路,书写证明过程。

(二)几何证明题书写规范证明题规范书写,就是要按严密的逻辑推理,执因索果,言简意赅。

书写要有条理性,有根有据;关键得分点要写,表述要准确,还有字迹要清晰,这样才能提高得分。

下面举例说明:(问题1:没有从已知条件出发,题目的原始条件是ABCD)(问题2:作为一道大题分值高步骤少,每一步都是得分点应该书写详细,应将证明三角形全等的条件罗列清楚)(问题3:语句不完整,应改为:四边形ABCD是平行四边形或在ABCD中)又∵对顶角相等(问题4:对顶角相等直接用)(问题5:滥用又∵,又∵是需要多个条件得到结论的情况下使用表示补充,此处对顶角相等一个条件便可得到结论,不需要又∵)【例2】求证:相似三角形对应边上的中线之比等于相似比。

要求:①根据给出的△ABC及线段A′B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A′B′C′,使得△A′B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程。

1尺规作图PPT课件(华师大版)

1尺规作图PPT课件(华师大版)
图13.4-11
2.经过已知直线外一点作这条直线的垂线: 如图13.4-12所示,已知直线AB和AB外一点C,作AB的垂 线,使它经过点C.
图13.4-12
图13.4-13
作法:如图13.4-13所示.
第一步:以点C为圆心,作能与AB相交于D、E两点的弧;
第二步:作∠ DCE的平分线CF;
第三步:反向延长射线CF,则直线CF 就是所要 求 作 的
知识点 5 作已知线段的垂直平分线 思考
如图13. 4. 9,已知直线l是线段
的垂直平分线, 则直线l是线段仙的
对称轴,对l上的任意两点C、D,通
过对折可以发现,总有
CA = CB,DA = DB.
图13. 4. 9
由此,你能发现作垂直平分线的方法吗?
1.作已知线段的垂直平分线作法:如图13.4-16所 示,已知线段 AB, 求作线段 AB 的垂直平以本题为例, (3)应说明所画的弧与弧l的交点在OA的同侧还是异侧.
1 任意画出两个角∠1和∠2,其中∠1 >∠2,再作一个角, 使它等于∠1 -∠2.
2 (中考·宁德)如图,用尺规作图:“过点C作CN∥ OA”,其作图根据是( ) A.同位角相等,两直线平行 B.内错角相等,两直线平行 C.同旁内角相等,两直线平行 D.同旁内角互补,两直线平行
我们在讨论三角形全等的条件时,曾利用上述两 种基本作图,已知两边和夹角、两角和夹边、三边分 别作出 相应的三角形.
(来源于教材)
例3 如图13.4-6所示,已知∠α,∠β,求作∠AOB,使 ∠AOB=∠α+∠β .
图13.4-6
图13.4-7
解:作法:(1)分别以点E,P为圆心、以适当长为半径 画弧,交∠α的两边于点F,G,交∠β的两边于 点M,N; (2)作射线OA,以点O为圆心,以EF长为半径画 弧l,交射线OA于点C; (3)以点C为圆心,以GF的长为半径画弧,交弧l 于点H;以点H为圆心、以MN长为半径画弧,在 OA的同侧与弧l交于点Q; (4)过点Q作射线OB,则∠AOB就是所求作的角, 如图13.4-7所示.

浙教版初中数学中考复习:尺规作图及命题、证明 (共38张PPT)【优秀课件】

浙教版初中数学中考复习:尺规作图及命题、证明 (共38张PPT)【优秀课件】
19
解析:
20
考点四:尺规作图的综合应用
21
解析:
22
考点四:尺规作图的综合应用
• 【例】(2018·湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作 图考他的大臣:
• ①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点; • ②分别以点A、D为圆心,AC长为半径画弧,G是两弧的一个交点; • ③连结OG. • 问:OG的长是多少? • 大臣给出的正确答案应是( )
尺规作图及命题、证明
命题趋势:
• 主要是考查利用尺规作图解决实际问题的能力,中考试题题型主要以设计 、探究形式的解答题为主.
2
考点一:基本尺规作图 • 尺规作图:在几何作图里,我们把用没有刻度的直尺和圆规作图,简称为尺规
作图.
• 基本作图:
• (1)作一条线段等于已知线段; (2)作一个角等于已知角; (3)作一个角的平分线;
C. ③
D. ④
5
解析:
• 【解析】①是作一个角等于已知角的正确方法;

②是作一个角的平分线的正确作法;

③是作一条线段的垂直平分线,但缺少另一个交点,作法错误;

④是过直线外一点P作已知直线的垂线的正确作法.
• 【思维提升】尺规作图的关键:①先分析题目,读懂题意,判断题目要求作什么;

②读懂题意后,再运用几种基本作图方法解决问题;
23
解析:
24
考点四:尺规作图的综合应用
25
解析:
26
解析:
27
考点五:命题、定理、证明 • 定义与命题:
• (1)能清楚地规定某一名词或术语的意义的句子叫做该名称或术语的定义. • (2)判断某一件事情的句子叫做命题.正确的命题称为真命题;不正确的命题称为

2021年中考数学一轮复习基础考点及题型-专题27尺规作图与命题的证明(含解析)

2021年中考数学一轮复习基础考点及题型-专题27尺规作图与命题的证明(含解析)

2021年中考数学一轮复习基础考点及题型-专题27 尺规作图与命题的证明考点总结【思维导图】【知识要点】知识点一尺规作图尺规作图的概念:用无刻度直尺和圆规作图,叫做尺规作图。

基本作图方法:1、作一条线段等于已知线段2、作一个角等于已知角3、作已知角的角平分线4、过一点作已知线段的垂线5、作已知线段的垂直平分线【考查题型汇总】考查题型一运用基本作图确定几何图形特殊位置1.(2019·江苏中考模拟)按要求作图,并保图作图痕迹.如图,已知线段a、b、c,用圆规和直尺作线段AD,使AD=a+2b﹣c.【答案】见解析.【详解】解:如图所示:AE即为所求.2.(2019·山东中考模拟)如图,已知点C是∠AOB的边OB上的一点,求作⊙P,使它经过O、C两点,且圆心在∠AOB的平分线上.【答案】见试题解析【解析】如图所示:.3.(2019·广东中考模拟)如图,在锐角△ABC 中,AB =2cm ,AC =3cm .(1)尺规作图:作BC 边的垂直平分线分别交AC ,BC 于点D 、E (保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结BD ,求△ABD 的周长.【答案】(1)作图见解析;(2)ABD 的周长为5cm.【解析】(1)如图,DE 为所作;(2)∵DE 垂直平分BC ,∴DB=DC ,∴△ABD 的周长=AB+BD+AD=AB+CD+AD=AB+AC=2+3=5(cm ).4.(2018·山东中考模拟)如图:求作一点P ,使PM PN =,并且使点P 到AOB ∠的两边的距离相等.【答案】见解析【详解】如图所示:P点即为所求.5.(2019·江苏中考模拟)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹)(1)作△ABC的外接圆圆心O;(2)设D是AB边上一点,在图中作出一个等边△DFH,使点F,点H分别在边BC和AC上;(3)在(2)的基础上作出一个正六边形DEFGHI.【答案】(1)见解析(2)见解析(3)见解析【详解】(1)如图所示:点O即为所求.。

【人教版】2017届中考复习:第19讲《尺规作图与命题、证明》ppt课件

【人教版】2017届中考复习:第19讲《尺规作图与命题、证明》ppt课件

2.以下命题是真命题的是 ( A.等腰梯形是轴对称图形
A
)
B.对角线相等的四边形是矩形 C.四边相等的四边形是正方形 D.有两条相互垂直的对称轴的四边形是菱形
3.下列选项中,可以用来证明命题“若 a2> 1, 则 a> 1”是假命题的反例是 ( A. a=- 2 C. a= 1 A )
B. a=- 1 D. a= 2
4.与圆有关的尺规作图 (1) 过不在同一直线上的三点作圆 (即三角形的外 接圆); (2)作三角形的外接圆、内切圆; (3)作圆的内接正方形和正六边形.
5.作图题的一般步骤 (1)已知;(2)求作;(3)分析;(4)作法;(5)证明.其 中步骤 (3)(4)(5)一般不作要求,所作图中要保留作图痕 迹. 6.有关中心对称或轴对称的作图以及设计图案是 中考中常见的类型.
解: (1)如图,点 D 为所作;
(2)∵ DA = DB , ∴∠ DAB = ∠ B = 37° , ∴∠ ADC= 37° + 37° = 74° , ∴∠ CAD= 90° - 74° = 16° .
7. (2016· 盐城 )如图,已知△ ABC 中,∠ ABC= 90° .
(1) 尺规作图:按下列要求完成作图 (保留作图痕 迹,请标明字母 ), ①作线段 AC 的垂直平分线 l,交 AC 于点 O;
为半径作弧, 两弧相交于点 M 和 N, 作直线 MN 交 AB 于点 D,交 BC 于点 E,连接 CD,下列 结论错误的是 ( A. AD= BD C.∠ A=∠ BED ) B. BD= CD D.∠ ECD=∠ EDC
【解析】根据作法与作图痕迹可知 MN 为 AB 的 垂直平分线,∴ AD= BD,∠ BDE= 90° ;∵∠ ACB= 90° ,∴ CD= BD.∵∠ A+∠ B=∠ B+∠ BED= 90° , ∴∠ A = ∠ BED ; 由 已 知 条 件 无 法 证 得 ∠ECD = ∠ EDC.故选 D. 【答案】 D

尺规作图与命题、证明

尺规作图与命题、证明

1.为了证明命题“任何偶数都是 8 的整数倍”是
假命题,下列各数中可以作为反例的是( )
A.32
B.16
C.8
D.4
答案:D
2.以下命题是真命题的是( )
A.等腰梯形是轴对称图形
B.对角线相等的四边形是矩形
C.四边相等的四边形是正方形
D.有两条相互垂直的对称轴的四边形是菱形
答案:A
3.如图,是用直尺和圆规作一个角等于已知角的 示意图,则说明∠A′O′B′=∠AOB 的依据是( )
4.与圆有关的尺规作图 (1)过不在 同一 直线 上的 三点作 圆 (即 三角 形的外 接圆); (2)作三角形的外接圆、内切圆; (3)作圆的内接正方形和正六边形. 5.作图题的一般步骤 (1)已知;(2)求作;(3)分析;(4)作法;(5)证明.其 中步骤(3)(4)(5)一般不作要求,所作图中要保留作图 痕迹.
6.有关中心对称或轴对称的作图以及设计图案 是中考中常见的类型.
考点二 定义、命题、定理 1.定义是能明确指出概念、含义或特征的句子, 它必须严密. 2.命题:判断一件事情的语句. (1)命题由题设和结论两部分组成. (2)命题的真假:正确的命题称为真命题;错误的 命题称为假命题 .
(3)互逆命题:在两个命题中,如果第一个命题的 题设是第二个命题的结论,而第一个命题的结论是第 二个命题的题设,那么这两个命题称为互逆命题.每 一个命题都有互逆命题.
【点拨】A 中,根据作法无法判定 PQ⊥l;B 中, 以点 P 为圆心、以大于点 P 到直线 l 的距离为半径画 弧,交直线 l 于两点,再分别以这两点为圆心、以大于 它们长度的一半为半径画弧,得出其交点,进而作出 判断;C 中,根据直径所对圆周角等于 90°作出判断; D 中,根据三角形全等作出判断.故选 A.

浙教八年级数学上册《尺规作图》课件课件(34张ppt)

浙教八年级数学上册《尺规作图》课件课件(34张ppt)
……
探究: 画垂线
已知:直线l 及其外一点C . 求作:过C 点垂直于直线l 的直线.
C l
作 法 :(1)以C 点为圆心,以大于C 点到直线l 的距
离为半经画弧,交直线于A、B 两点; (2)分别以A、B 两点为圆心,以大于1/2AB的
长度为半径画弧,两弧相交于D 点;
(3)过C、D 两点作直线CD ,即为所求作的
尺规1.6作尺图规作图
在几何作图中,我们把用没有刻度的直尺和圆 规作图,简称尺规作图。
尺规作图源于希腊,一些古希腊人为了显示谁 的逻辑思维能力更强,而限制了作图工具。
1. 画线段
已知:线段MN=a,求作一条线段等于a.
a
M
N
作 法 :(1)先画射线AC;
(2)用圆规量出线段MN 的长; (3)在射线AC 上截取AB =a ,则线段
用一句话概括叙述就可以了.如:作线段 ××=××;作∠×××=∠×××;作线段 ××的垂直平分线××等。
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月22日星期五2022/4/222022/4/222022/4/22 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/222022/4/222022/4/224/22/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/222022/4/22April 22, 2022
(5)经过点D′画射线O′ B′,则∠A′ O′ B′ 就是所要画的角.
B′
B
D
D′
O

尺规作图之作平行线

尺规作图之作平行线

尺规作图之作平⾏线作法由《圆之吻——有趣的尺规作图》(莫海亮著)提供。

过已知直线l外⼀点A作直线的平⾏线。

⽅法⼀作法:1.在直线l上任取⼀点B,并连接AB,设AB与l的夹⾓为⾓1;2.以AB为⼀边,作直线m,使⾓CAB等于⾓1。

其中C是m上⼀点,且⾓CAB与⾓1分居AB的两侧。

直线m即为所求。

证明:因为⾓CAB=⾓1,⼆者是内错⾓。

所以m与l平⾏。

(内错⾓相等,两直线平⾏)得证。

(利⽤同位⾓亦可作平⾏线,具体过程略)推论:1.过A作直线l的垂线AB;2.过A作AB的垂线m;直线m即为所求。

⽅法⼆作法:1.以直线l上任⼀点B为圆⼼,BA长为半径作圆,交直线l于C、D点;2.以其中⼀点D为圆⼼,AC长为半径作圆,交圆B于E点;3.连接AE。

直线AE即为所求。

证明:连接AC、AB、ED、EB,过A、E作直线l的垂线AF、EG。

其中F、G是垂⾜。

因为AC=ED,AB=EB,CB=DB,所以三⾓形ACB全等于三⾓形EDB,(全等三⾓形边边边命题)即⾓ABC等于⾓EBD。

⼜因为⾓AFB和⾓EGB都是直⾓,彼此相等,AB等于EB,所以三⾓形AFB和三⾓形EGB全等,(全等三⾓形⾓⾓边命题)即AF等于EG。

⼜因为AF和EG都垂直于同⼀直线l,因此⼆者平⾏。

所以,AEGF是平⾏四边形,即AE与直线l平⾏。

得证。

⽅法三作法:1.在直线l上任取⼀点B,连接AB并延长;2.以AB的延长线上任⼀点C为圆⼼,CB为半径作圆,交直线l于D;3.连接CD并延长;4.以C为圆⼼,CA为半径作圆,交CD的延长线于E;5.连接AE。

直线AE即为所求。

证明:因为CB等于CD,所以三⾓形CBD是等腰三⾓形,顶⾓是C。

同理,三⾓形CAE是等腰三⾓形,顶⾓也是C。

所以,CBD、CAE的底⾓都相等,即⾓CBD等于⾓CAE,(具有相同顶⾓的等腰三⾓形底⾓相等)⼆者是同位⾓。

所以,AE平⾏于BD。

(同位⾓相等,两直线平⾏)得证。

⽅法四作法:1.连接点A和直线l上任意⼀点B,并延长BA;2.以A为圆⼼,AB为半径作圆,交BA延长线于C点;3.以B为圆⼼,BC为半径作圆,交直线l于D点;4.连接DC,交圆A于E点;5.连接AE。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宇轩图书
上一页
下一页
中考典例精析
首页
对称图形,但不是中心对称图形,故③错误;由题意得 a+b=7,ab=7,
AB 边上的中线长为:12AB=12 a2+b2=12 a+b2-2ab=12 72-7×2=12 35,
故④正确,所以选 C. 【解答】(1)①②④ (2)C
宇轩图书
上一页
下一页
中考典例精析
宇轩图书
上一页
下一页
中考典例精析
首页
(1) (2011·广州 )已知三条不同的直线a,b,c在同一平面 内,下列四个命题:
①如果a∥b,a⊥c,那么b⊥c;
②如果b∥a,c∥a,那么b∥c;
③如果b⊥a,c⊥a,那么b⊥c;
④如果b⊥a,c⊥a,那么b∥c.
其中真命题是________.(填写所有真命题的序号)
三条共有 4 种结果,而能作出三角形的情况只有一种,故所求概率为 P=41.
宇轩图书
上一页
下一页
中考典例精析
首页
【解答】(1)只能选 b,c,d 为边画三角形,如图所示. (2)任取三条线段共有 a,b,c;a,b,d;a,c,d 和 b,c,d 四种
结果,其中只有以 b,c,d 为三边能作三角形,故所求概率 P=41.
宇图书
上一页
下一页
考点知识精讲
首页
考点二 定义、命题、定理、公理 有关概念 (1)定义是能明确指出概念含义或特征的句子,它必须严密. (2)命题:判断一件事情的语句. ①命题由题设和 结论 两部分组成. ②命题的真假:正确的命题称为真命题 ; 错误 的命题称为假命题. ③互逆命题:在两个命题中,如果第一个命题的题设是第二个命题 的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题称为 互逆命题.每一个命题都有逆命题.
宇轩图书
上一页
下一页
考点知识精讲
首页
(3)定理:经过证明的真命题叫做定理.因为定理的逆命题不一定都 是真命题,所以不是所有的定理都有逆定理.
(4)公理:有一类命题的正确性是人们在长期的实践中总结出来的, 并把它们作为判断其他命题真伪的原始依据,这样的真命题叫公理.
温馨提示: 对命题的正确性理解一定要准确,判定命题不成立时,有时可以举 反例说明道理;命题有正、误,错误的命题也是命题.
3.利用基本作图作三角形
(1)已知三边作三角形;
(2)已知两边及其夹角作三角形;
宇轩图书
上一页
首页 下一页
考点知识精讲
首页
(3)已知两角及其夹边作三角形; (4)已知底边及底边上的高作等腰三角形; (5)已知一直角边和斜边作直角三角形. 4.与圆有关的尺规作图 (1)过不在同一直线上的三点作圆(即三角形的外接圆). (2)作三角形的内切圆. 5.有关中心对称或轴对称的作图以及设计图案是中考常见类型 6.作图题的一般步骤 (1)已知;(2)求作;(3)分析;(4)作法;(5)证明;(6)讨论.其中步骤 (5)(6)常不作要求,步骤(3)一般不要求,但作图中一定要保留作图痕迹.
上一页
下一页
举一反三
首页
1.如图,已知△ABC,分别以A、C为圆心,BC、AB长为 半径画弧,两弧在直线BC上方交于点D,连接AD,CD.则有( )
A.∠ABC与∠BAD相等 B.∠ADC与∠BAD互补 C.∠ADC与∠ABC互补 D.∠ADC与∠ABC互余 答案:B
宇轩图书
宇轩图书
上一页
下一页
中考典例精析
首页
(2)证明:∵△ABC 为等边三角形,AD=CD, ∴∠DBC=12∠ABC=12×60°=30°.
又∠ACB=60°,CE=CD,
∴∠E=∠CDE=12×60°=30°,
∴∠DBC=∠E=30°,∴△DBE 是等腰三角形.
又 DM⊥BE,∴BM=EM.
宇轩图书
宇轩图书
上一页
下一页
中考典例精析
首页
(2011·杭州)四条线段a,b,c,d如图所示,
a∶b∶c∶d=1∶2∶3∶4.
(1)选择其中的三条线段为边作一个三角形(尺规作图,要求保留作图 痕迹,不必写出作法);
(2)任取三条线段,求以它们为边能作出三角形的概率.
【点拨】(1)由题意知只能选取 b,c,d 为边画三角形.(2)4 条线段任取
(2)(2011·黄冈) 下列说法中:
①一个角的两边分别垂直于另一角的两边,则这两个角相等;
②数据5,2,7,1,2,4的中位数是3,众数是2;
宇轩图书
上一页
下一页
中考典例精析
首页
③等腰梯形既是中心对称图形,又是轴对称图形; ④Rt△ABC 中,∠C=90°,两直角边 a,b 分别是方程 x2-7x+7=0 的两个根,则 AB 边上的中线长为21 35. 正确的命题有( ) A.0 个 B.1 个 C.2 个 D.3 个 【点拨】(1)如果 b⊥a,c⊥a,则 b∥c,只有命题③是假命题. (2)“一个角的两边分别垂直于另一角的两边,则这两个角相等或互 补”,所以①错误;将数据 5,2,7,1,2,4 按由小到大的顺序排列为: 1,2,2,4,5,7,中位数是:2+2 4=3,众数是:2,故②正确;等腰梯形是轴
宇轩图书
上一页
下一页
考点知识精讲
首页
考点三 证明 1.证明:根据题设、定义、公理及定理,经过逻辑推理来判断一个 命题是否正确,这一推理过程称为证明. 2.证明的一般步骤:①审题,找出命题的 题设 和 结论 ;②由 题意画出图形,具有一般性;③用数学语言写出已知 、求证 ;④ 分析证明的思路;⑤写出证明过程 ,每一步应有根据,要推理严密.
首页
如图所示,△ABC是等边三角形,D点是AC的中点, 延长BC到E,使CE=CD.
(1)用尺规作图的方法,过D点作DM⊥BE,垂足是M(不写作法,保留作 图痕迹);
(2)求证:BM=EM. 【点拨】(1)题属于过直线外一点作已知直线的垂线的基本作图;(2) 题需证△BDE是等腰三角形,再利用等腰三角形三线合一的性质证BM=EM. 【解答】(1)如图,则直线DM即为所求.
目录
第19讲 尺规作图与命题证明
考点知识精讲 中考典例精析
举一反三
考点训练
宇轩图书
考点知识精讲
考点一 几何作图
1.尺规作图限定作图工具只有圆规和没有刻度的直尺
2.基本作图
(1)作一条线段等于已知线段,以及线段的和、差;
(2)作一个角等于已知角,以及角的和、差;
(3)作角的平分线;
(4)作线段的垂直平分线.
相关文档
最新文档