二次函数应用复习教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二次函数的应用》导学案九年级数学
一、教学目标:
能根据实际问题中的条件确定二次函数的关系式,并利用二次函数的性质来解决实际问题。
二、教学重难点:
重点:由实际问题的条件确定二次函数的解析式
难点:从现实问题中建立二次函数模型
三、教学过程:
(一)、有关利润问题:
1、某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?
(二)、形积变化问题(运动观点)
如图,在矩形ABCD中,AB=6cm,BC=12cm.点P从点A开始沿AB方向向点B以1cm/s 的速度移动,同时,点Q从点B开始沿BC边向C以2cm/s的速度移动.如果P、Q两点分别到达B、C两点停止移动,设运动开始后第t秒钟时,五边形APQCD的面积为Scm2,写出S与t的函数表达式,并指出自变量t的取值范围.
(三)、巩固训练
1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,
增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.
(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
(2)每件衬衫降低多少元时,商场平均每天盈利最多?
2、一养鸡专业户计划用116 m长的竹篱笆靠墙(如下图)围成一个长方形鸡舍,怎样设计才能使围成的长方形鸡舍的面积最大?最大为多少?
3、已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8.点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF.设DE=x,DF=y.
(1)AE用含y的代数式表示为:AE= ;
(2)求y与x之间的函数表达式,并求出x的取值范围;
(3)设四边形DECF的面积为S,求S与x之间的函数表达式.并求
出x为何值时,四边形面积最大
4、如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线可以用
y=-x2+4表示.
(1)一辆货运卡车高4m,宽2m,它能通过该隧道吗?
(2)如果隧道内设双行道,那么这辆货运车是否可以通过?