阿波罗尼斯圆中的数学压轴题
初三压轴大题系列—阿波罗尼斯圆(解析版)

初三压轴大题系列—阿波罗尼斯圆(解析版)在平面上,到线段两端距离相等的点,在线段的垂直平分线上,即对于平面内的定点A、B,若平面内有一动点P 满足PA:PB=1,则P点轨迹为一条直线(即线段AB的垂直平分线),如果这个比例不为1,P点的轨迹又会是什么呢?两千多年前的阿波罗尼斯在其著作《平面轨迹》一书中,便已经回答了这个问题。
接下来,让我们站在巨人的肩膀上,一起探究PA:PB=k(k≠1)时P点的轨迹。
对于平面内的定点A、B,若在平面内有一动点P且P满足PA:PB=k(k≠1),则动点P的轨迹就是一个圆,这个圆被称为阿波罗尼斯圆,简称“阿氏圆”,如图所示:借助画板工具我们发现,动点P在运动过程中,PA、PB的长度都在变化,但是PA:PB的比值始终保持不变,接,设,如图所示:由图可以发现在AB上存在点C,在AB延长线上存在点D使得,也就是说,当点P与点C、D重合时,符合条件;当点P不与点C、D重合时,对于任意一点P,连接PA、PB、PC,可得,所以PC为△PAB一条内角平分线,再连接PD,可得,所以PD为△PAB一条外角平分线,所以PC⊥PD,即∠CPD=90º,所以点P的轨迹是以CD为直径的一个圆.当我们遇到平面内一动点到两定点之比为定值且不为1的情况时,可以在过两定点的直线上按定比确定内分点和外分点,并以之为直径做圆从而确定动点的轨迹.如何具体证明P点的轨迹就是一个完整的圆呢?分别取线段AB的内外分点C、D,再取CD中点O,可得,则,由线段位置关系可得AC+BC+BD=AD,则,解得,.又,即,整理得,即,当点P在一个以O为圆心,r为半径的圆上运动时,如图所示:易证:△BOP∽△POA,P.对于任意一个圆,任意一个k的值,我们可以在任意一条直径所在直线上,在同侧适当的位置选取A、B点,则需,就可以构造出上述的A字型相似(详见本专辑的相似模型).例1、如图,正方形ABCD的边长为4,圆B的半径为2,点P是圆B上一动点,则为,的最大值为.【解答】最小值为5,最大值为5【解析】在BC上取一点G,使得BG=1,连接PG、DG,如图所示:PBG=∠PBC,∴△PBG∽△CBP,,△PDG中,DP+PG≥DG,∴当D、G、P共线时,;当点P在DG的延长线时,此时最大值也是DG,最大值为5.例2、如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,点P为弧AB上一动点,求的最小值.当A、P、D的值最小.连接PB、CO,AD与CO相交于点M,如图所示:∵AB=BD=2,BD是⊙O的切线,∴∠ABD=90º,∠BAD=∠D=45º,∵AB是⊙O直径,∴∠APB=90º,∴∠PAB=∠PBA=45º,∴PA=PB,PO⊥AB,∵AC是⊙O的切线,∴AC⊥AB,∴AC∥PO,∠CAO=90º∵AC=PO=1,∴四边形AOPC是平行四边形,而OA=OP,∠CAO=90º,∴四边形AOPC是正方形,PC+PD=PM+PD=DM,∵DM⊥OC,∴由"垂线段最短"可知此时PC+PD的值最小,最小值为.1.如图,在Rt△ABC中,∠ACB=90º,CB=4,CA=6,圆C的半径为2,P为圆C上一动点,连接AP、BP,则的最小值是.【解答】【解析】连接CP,在CB上取一点D,使得CD=1,连接AD,如图所示:易得PCD=∠BCP,∴△PCD ∽△BCP,,当点A、P、D在同一条直线上时,在Rt△ACD中,∵CD=1,CA=6,,.2.,,MO=2,∠POM=90º,Q小值为.OM的中点G,连接PG与圆O的交点就是点Q,连接OQ、QM,如图所示:∵MO=2,,∵圆O的半径,,∵∠MOQ=∠QOG,∴△MOQ ∽△QOG,最小,.3.如图,在平面直角坐标系中,点A(4,0),B(4,4),点P在半径为2的圆O的最小值是.【解答】5【解析】取点K(1,0),连接OP、PK、BK,如图所示:∵OP=2,OA=4,OK=1,,∵∠POK=∠AOP,∴△POK ∽△AOP,。
中考最值难点突破阿氏圆问题(解析版 )

中考最值难点突破阿氏圆问题模块一典例剖析+针对训练【模型简介】在圆上找一点P使得PA+k·PB的值最小.类型一:求和最小求PA+k·PB的最小值,PA+k·PB=PA+PC≥AC,当A,P,C三点共线时,最小值为AC1.(2019秋•山西期末)阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合PAPB=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设OPOD=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.下面是该题的解答过程(部分):解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD =2,利用(1)中的结论,请直接写出AD+23BD的最小值.思路引领:(1)在OD上取点M,使得OM:OP=OP:OD=k,利用相似三角形的性质以及两点之间线段最短解决问题即可.(2)利用(1)中结论计算即可.解(1)在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.∴MP:PD=k,∴MP=kPD,∴PC+kPD=PC+MP,当PC+kPD取最小值时,PC+MP有最小值,即C,P,M三点共线时有最小值,利用勾股定理得CM=OC2+OM2=m2+(kr)2=m2+k2r2.(2)∵AC=m=4,CDBC =23,在CB上取一点M,使得CM=23CD=43,∴AD+23BD的最小值为42+43 2=4103.总结提升:本题属于相似形综合题,考查了相似三角形的判定和性质,勾股定理,两点之间线段最短等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.针对训练1.如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,求AP+12BP的最小值.思路引领:连接CP,在CB上取点D,使CD=1,连接DP、AD,则有CDCP=CPCB=12,以此可证明△PCD ∽△BCP ,即可得到PD BP=12,AP +12BP =AP +PD ,以此可推出当点A 、P 、D 在同一条直线上时,AP +12BP 的最小值为AD 的长,再根据勾股定理即可求解.解:连接CP ,在CB 上取点D ,使CD =1,连接DP 、AD ,则有CD CP =CP CB=12,∵∠PCD =∠BCP ,∴△PCD ∽△BCP ,∴PD BP =12,∴PD =12BP ,∴AP +12BP =AP +PD ,要使AP +12BP 最小,只要AP +PD 最小,当点A 、P 、D 在同一条直线上时,AP +PD 最小,即AP +12BP 的最小值为AD 的长,在Rt △ACD 中,CD =1,AC =6,∴AD =AC 2+CD 2=37.∴AP +12BP 的最小值为37.总结提升:本题主要考查相似三角形的判定与性质、勾股定理,根据题意分析出点A 、P 、D 在同一条直线上时,AP +12BP 的最小值为AD 的长是解题关键.2.如图,在平面直角坐标系xOy 中,A (6,-1),M (4,4),以M 为圆心,22为半径画圆,O 为原点,P 是⊙M 上一动点,则PO +2PA 的最小值为10.思路引领:连接OM ,在OM 上截取MN ,使得MN =2,连接PN ,AN .证明△PMN ∽△OMP ,推出PN OP=MN MP =12,推出PN =12OP ,推出OP +2OA =212OP +PA =2(PN +PA ),再根据PN +PA ≥AN ,求出AN ,可得结论.解:连接OM ,在OM 上截取MN ,使得MN =2,连接PN ,AN .∵M(4,4),∴OM=42+42=42,∵PM=22,MN=2,∴PM2=MN•MO,∴PM MN =MO PM,∵∠PMN=∠OMP,∴△PMN∽△OMP,∴PN OP =MNMP=12,∴PN=12OP,∵N(3,3),A(6,-1),∴AN=32+42=5,∴OP+2OA=212OP+PA=2(PN+PA),∵PN+PA≥AN,∴PN+PA≥5,∴OP+2OA≥10,∴OP+2OA的最小值为10,故答案为:10.总结提升:本题考查相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.3.(2018•碑林区校级三模)问题提出:(1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:问题探究:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,PA=3,求PC+ 12PD的最小值;问题解决:(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+35MD最小时,画出点M的位置,并求出MC+35MD的最小值.思路引领:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求,再根据SAS证明△BAD≌△CAE即可解决问题;(2)如图2中,在AD上截取AE,使得AE=32.首先证明△PAE∽△DAP,推出PE DP=PA AD =12,可得PE=12PD,推出PC+12PD=PC+PE,利用三角形的三边关系即可解决问题;(3)如图3中,如图2中,在AD上截取AE,使得AE=9.由△MAE∽△DAM,推出EMMD =MA AD =1525=35,可得ME=35MD,推出MC+35MD=MC+ME,利用三角形的三边关系即可解决问题;解:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求;∵AB=AC,AE=EC,AD=CD,∴AE=AD,∵AB=AC,∠A=∠A,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE.(2)如图2中,在AD上截取AE,使得AE=32.∵PA2=9,AE•AD=32×6=9,∴PA2=AE•AD,∴PA AD =AEPA,∵∠PAE=∠DAP,∴△PAE∽△DAP,∴PE DP =PAAD=12,∴PE=12PD,∴PC+12PD=PC+PE,∵PC+PE≥EC,∴PC+12PD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=6,DE=9 2,∴EC=62+92 2=152,∴PC+12PD的最小值为152.(3)如图3中,在AD上截取AE,使得AE=9.∵MA2=225,AE•AD=9×25=225,∴MA2=AE•AE,∴MA AD =AE MA,∵∠MAE=∠DAM,∴△MAE∽△DAM,∴EM MD =MAAD=1525=35,∴ME=35MD,∴MC+35MD=MC+ME,∵MC+ME≥EC,∴MC+35MD的最小值为EC的长,此时点M在线段EC上(如图M′).在Rt△CDE中,∠CDE=90°,CD=18,DE=16,∴EC=162+182=2145,∴MC+35MD的最小值为2145.总结提升:本题属于四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,三角形的三边关系,最短问题等知识,解题的关键是运用数形结合的思想解决问题,添加常用辅助线,构造相似三角形解决问题,用转化的思想思考问题,属于中考压轴题.类型二: 求差最大2.(2020秋•天宁区校级月考)如图,已知菱形ABCD的边长为8,∠B=60°,圆B的半径为4,点P是圆B上的一个动点,则PD-12PC的最大值为 237 .思路引领:连接PB,在BC上取一点G,使得BG=2,连接PG,DG,过点D作DH⊥BC交BC的延长线于H.利用相似三角形的性质证明PG=12PC,再根据PD-12PC=PD-PG≤DG,求出DG,可得结论.解:连接PB,在BC上取一点G,使得BG=2,连接PG,DG,过点D作DH⊥BC交BC的延长线于H.∵PB=4,BG=2,BC=8,∴PB2=BG•BC,∴PB BG =BC PB,∵∠PBG=∠CBP,∴△PBG∽△CBP,∴PG PC =PBBC=12,∴PG=12PC,∵四边形ABCD是菱形,∴AB∥CD,AB=CD=BC=8,∴∠DCH=∠ABC=60°,在Rt△CDH中,CH=CD•cos60°=4,DH=CD•sin60°=43,∴GH=CG+CH=6+4=10,∴DG=GH2+DH2=102+(43)2=237,∵PD-12PC=PD-PG≤DG,∴PD-12PC≤237,∴PD-12PC的最大值为237.总结提升:本题考查阿氏圆问题,菱形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.针对训练1.(2022•常熟市二模)如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD-12PC的最大值为5.思路引领:由PD-12PC=PD-PG≤DG,当点P在DG的延长线上时,PD-12PC的值最大,最大值为DG=5.解:在BC上取一点G,使得BG=1,如图,∵PB BG =21=2,BCPB=42=2,∴PB BG =BC PB,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴PG PC =BGPB=12,∴PG=12PC,当点P在DG的延长线上时,PD-12PC的值最大,最大值为DG=42+32=5.故答案为:5总结提升:本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.2.(2021•商河县校级模拟)(1)初步思考:如图1,在△PCB中,已知PB=2,BC=4,N为BC上一点且BN=1,试证明:PN=12 PC(2)问题提出:如图2,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+ 12PC的最小值.(3)推广运用:如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,求PD-12PC的最大值.思路引领:(1)通过相似三角形△BPN∽△BCP的性质证得结论;(2)如图2中,在BC上取一点G,使得BG=1.由△PBG∽△CBP,推出PGPC =BGPB=12,推出PG=12PC,推出PD+12PC=DP+PG,由DP+PG≥DG,当D、G、P共线时,PD+12PC的值最小,最小值为DG=42+32=5.由PD-12PC=PD-PG≤DG;(3)如图3中,在BC上取一点G,使得BG=1,作DF⊥BC于F.解法类似(2);解:(1)证明:如图1,∵PB=2,BC=4,BN=1,∴PB2=4,BN•BC=4.∴PB2=BN•BC.∴BN BP =BP BC.又∵∠B=∠B,∴△BPN∽△BCP.∴PN PC =BNBP=12.∴PN=12PC;(2)如图2,在BC上取一点G,使得BG=1,∵PB BG =21=2,BCPB=42=2∴PB BG =BCPB,∠PBG=∠PBC∴△PBG∽△CBP∴PG PC =BGPB=12∴PG=12PC∴PD+12PC=DP+PG∵DP+PG≥DG∴当D、P、G共线时,PD+12PC的值最小,最小值为DG=42+32=5 (3)同(2)中证法,如图3,当点P在DG的延长线上时,PD-12PC的最大值,最大值为DG=37.总结提升:本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.类型三:综合应用3.((2020•成华区校级模拟)如图1,抛物线y=mx2-3mx+n(m≠0)与x轴交于点C( -1,0)与y轴交于点B(0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出抛物线和直线AB的函数表达式;(2)设△PMN的面积为S1,△AEN的面积为S2,当S1S2=3625时,求点P的坐标;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α< 90°),连接E′A、E′B,求E'A+23E'B的最小值.思路引领:(1)令y =0,求出抛物线与x 轴交点,列出方程即可求出a ,根据待定系数法可以确定直线AB 解析式.(2)由△PNM ∽△ANE ,推出PN AN =65,列出方程即可解决问题.(3)在y 轴上取一点M 使得OM ′=43,构造相似三角形,可以证明AM ′就是E ′A +23E ′B 的最小值.解:(1)∵抛物线y =mx 2-3mx +n (m ≠0)与x 轴交于点C (-1,0)与y 轴交于点B (0,3),则有n =3m +3m +n =0 ,解得m =-34n =3,∴抛物线y =-34x 2+94x +3,令y =0,得到-34x 2+94x +3=0,解得:x =4或-1,∴A (4,0),B (0,3),设直线AB 解析式为y =kx +b ,则b =34k +b =0,解得k =-34b =3 ,∴直线AB 解析式为y =-34x +3.(2)如图1中,设P m ,-34m 2+94m +3 ,则E (m ,0),∵PM ⊥AB ,PE ⊥OA ,∴∠PMN =∠AEN ,∵∠PNM =∠ANE ,∴△PNM ∽△ANE ,∵△PMN 的面积为S 1,△AEN 的面积为S 2,S 1S 2=3625,∴PN AN=65,∵NE∥OB,∴AN AB =AE OA,∴AN=54(4-m),∵抛物线解析式为y=-34x2+94x+3,∴PN=-34m2+94m+3--34m+3=-34m2+3m,∴-34m2+3m54(4-m)=65,解得m=2或4(舍弃),∴m=2,∴P2,92.(3)如图2中,在y轴上取一点M′使得OM′=43,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=43×3=4,∴OE′2=OM′•OB,∴OE' OM'=OB OE',∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴M'E'BE'=OE'OB=23,∴M′E′=23BE′,∴AE′+23BE′=AE′+E′M′=AM′,此时AE′+23BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′=42+432=4103.总结提升:本题属于二次函数综合题,考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM′就是E′A+23E′B的最小值,属于中考压轴题针对训练4.(2021•九龙坡区校级模拟)在△ABC中,∠CAB=90°,AC=AB.若点D为AC上一点,连接BD,将BD绕点B顺时针旋转90°得到BE,连接CE,交AB于点F.(1)如图1,若∠ABE=75°,BD=4,求AC的长;(2)如图2,点G为BC的中点,连接FG交BD于点H.若∠ABD=30°,猜想线段DC与线段HG的数量关系,并写出证明过程;(3)如图3,若AB=4,D为AC的中点,将△ABD绕点B旋转得△A′BD′,连接A′C、A′D,当A′D+2A′C最小时,求S△A′BC.2思路引领:(1)通过作辅助线,构造直角三角形,借助解直角三角形求得线段的长度;(2)通过作辅助线,构造全等三角形,设AC=a,利用中位线定理,解直角三角形,用a的代数式表示CD和HG,即可得CD与HG的数量关系;(3)构造阿氏圆模型,利用两点之间线段最短,确定A'(4)的位置,继而求得相关三角形的面积.解:(1)过D作DG⊥BC,垂足是G,如图1:∵将BD绕点B顺时针旋转90°得到BE,∴∠EBD=90°,∵∠ABE=75°,∴∠ABD=15°,∵∠ABC=45°,∴∠DBC=30°,BD=2,BG=3DG=23,∴在直角△BDG中有DG=12∵∠ACB=45°,∴在直角△DCG中,CG=DG=2,∴BC=BG+CG=2+23,BC=2+6;∴AC=22(2)线段DC与线段HG的数量关系为:HG=3CD,4证明:延长CA,过E作EN垂直于CA的延长线,垂足是N,连接BN,ED,过G作GM⊥AB于M,如图:∴∠END=90°,由旋转可知∠EBD=90°,∴∠EDB=45°∴∠END =∠EBD =90°,∴E ,B ,D ,N 四点共圆,∴∠BNE =∠EDB =45°,∠NEB +∠BDN =180°∵∠BDC +∠BDN =180°,∠BCD =45°,∴∠BEN =∠BDC ,∴∠BNE =45°=∠BCD ,在△BEN 和△BDC 中,∠BNE =∠BCD∠BEN =∠BDC BE =BA,∴△BEN ≌△BDC (AAS ),∴BN =BC ,∵∠BAC =90°,在等腰△BNC 中,由三线合一可知BA 是CN 的中线,∵∠BAC =∠END =90°,∴EN ∥AB ,∵A 是CN 的中点,∴F 是EC 的中点,∵G 是BC 的中点,∴FG 是△BEC 的中位线,∴FG ∥BE ,FG =12BE ,∵BE ⊥BD ,∴FG ⊥BD ,∵∠ABD =30°,∴∠BFG =60°,∵∠ABC =45°,∴∠BGF =75°,设AC =a ,则AB =a ,在Rt △ABD 中,AD =33a ,BD =BE =233a ,∴FG =12BE ,∴FG =33a ,∵GM ⊥AB ,∴△BGM 是等腰三角形,∴MG =MB =22BG =22×12BC =22×12×2AC =12a ,在Rt △MFG 中,∠MFG =60°,∴3MF =MG ,∴MF =36a ,∴BF=BM+MF=3+36a,在Rt△BFH中,∠BFG=60°,∴FH=12BF=3+312a,∴HG=FG-FH=33a-3+312a=14(3-1)a,又∵CD=a-33a=33(3-1)a,∴CD HG =43,∴HG=34CD;(3)设AB=a,则BC=2a,取BC的中点N,连接A′D,A′C,A′N,连接DN,如图3,由旋转可知A′B=AB=a,∵A'BBN =a22a=2,BCA'B=2aa=2,∴A'BBN =BCA'B=2,又∠A'BN=∠CBA',∴△A′BN∽△CBA′,∴A'N A'C =A'BBC=22,∴A'N=22A'C,根据旋转和两点之间线段最短可知,A'D+22A'C最小,即是A'D+A'N最小,此时D、A'、N共线,即A'在线段DN上,设此时A'落在A''处,过A''作A''F⊥AB于F,连接AA'',如图4,∵D,N分别是AC,BC的中点,∴DN是△ABC的中位线,∴DN∥AB,∵AB⊥AC,∴DN⊥AC,∵∠A=∠A''FA=∠A''DA=90°,∴四边形A''FAD是矩形,∴AF=A''D,A''F=AD=2,∵又A''B=AB=4,设AF=x,在直角三角形A''FB中,A''B2=A''F2+BF2,∴42=22+(4-x)2,解得x=4-23.∴此时S△A''BC=S△ABC-S△AA''B-S△A''AC=12AB•AC-12AB•A''F-12AC•A''D=12×4×4-1 2×4×2-12×4×(4-23)=43-4.总结提升:此题主要考查全等三角形判定,等腰三角形的三线合一,解直角三角形,四点共圆,几何最值的阿氏圆模型等知识,综合性强,难度较大,属于压轴题,解得关键是作辅助线,构造全等三角形和相似三角形解决问题.5.(2022•高唐县二模)如图,抛物线y=-x2+bx+c经过点A(-4,-4),B(0,4),直线AC的解析式为y=-12x-6,且与y轴相交于点C,若点E是直线AB上的一个动点,过点E作EF⊥x轴交AC于点F.(1)求抛物线y=-x2+bx+c的解析式;(2)点H是y轴上一动点,连接EH,HF,当点E运动到什么位置时,四边形EAFH是矩形?求出此时点E,H的坐标;(3)在(2)的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上以动点,求12AM+ CM的最小值.思路引领:(1)直接利用待定系数法求解即可;(2)先利用待定系数法求出直线AB的解析式,可判断出AB⊥AC,当四边形EAFH是平行四边形时,四边形EAFH是矩形,分别点E、H、F的坐标,再利用中点坐标公式求解即可;(3)先取EG的中点P,进而判断出△PEM∽△MEA,即可得出PM=12AM,连接CP交⊙E于点M,再求出点P坐标,即可得出结论.解:(1)将点A(-4,-4),B(0,4)代入y=-x2+bx+c得:-16-4b+c=-4c=4,解得:b=-2 c=4,∴抛物线解析式为:y =-x 2-2x +4;(2)如图,当点E 运动到(-2,0)时,四边形EAFH 是矩形,设直线AB 的解析式为y =kx +b ,将点A (-4,-4),B (0,4)代入得:-4k +b =-4b =4 ,解得:k =2b =4 ,∴线AB 的解析式为y =2x +4,∵直线AC 的解析式为y =-12x -6,∴AB ⊥AC ,∴当四边形EAFH 是平行四边形时,四边形EAFH 是矩形,此时,EF 与AH 互相平分,设E (m ,2m +4),H (0,t )则F m ,-12m -6 ,∵A (-4,-4),∴12(m +m )=12(-4+0)122m +4-12m -6 =12(-4+t ),解得:m =-2t =-1∴E (-2,0),H (0,-1);(3)如图,由(2)可知E (-2,0),H (0,-1),A (-4,-4),∴EH =5,AE =25,设AE 交⊙E 于点G ,取GE 的中点P ,则PE =52,设P (k ,2k +4),∵E (-2,0),∴PE 2=(k +2)2+(2k +4)2=522,∴k =-52或k =-32(舍去),∴P -52,-1 ,∵C (0,-6),∴PC =-52 2+(-1+6)2=552,连接PC 交⊙E 于点M ,连接EM ,则EM =EH =5,∴PE ME =525=12,∵ME AE =525=12,∴PE ME =MEAE,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴PM AM =MEAE=12,∴PM=12AM,∴12AM+CM=PM+CM,∴当P、M、C三点共线时,12AM+CM取得最小值即PC的长,∴1 2AM+CM最小值为552.总结提升:本题是二次函数的综合题,考查了待定系数法求函数关系式,平行四边形的性质,矩形的性质,相似三角形的判定与性质,中点坐标公式,极值的确定,熟练掌握待定系数法求函数解析式,利用中点坐标公式构建方程,以及构造相似三角形是解决问题的关键.模块二2023中考押题预测1.(2021秋•西峡县期末)如图,在△ABC中,∠A=90°,AB=AC=4,点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,则12PB+PC的最小值等于()A.4B.32C.17D.15思路引领:在AB上截取AQ=1,连接AP,PQ,CQ,证明△APQ∽△ABP,可得PQ=1 2PB,则12PB+PC=PC+PQ,当C、Q、P三点共线时,PC+PQ的值最小,求出CQ即为所求.解:在AB上截取AQ=1,连接AP,PQ,CQ,∵点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,∴AP AB =12,∵AP=2,AQ=1,∴AQAP=12,∵∠PAQ=∠BAP,∴△APQ∽△ABP,∴PQ=12PB,∴12PB+PC=PC+PQ≥CQ,在Rt△ACQ中,AC=4,AQ=1,∴QB=AC2+AQ2=17,∴12PB+PC的最小值17,故选:C.总结提升:本题考查了阿氏圆问题,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造相似三角形是解题的关键.2.(2022秋•永嘉县校级期末)如图所示,∠ACB=60°,半径为2的圆O内切于∠ACB.P 为圆O上一动点,过点P作PM、PN分别垂直于∠ACB的两边,垂足为M、N,则PM+ 2PN的取值范围为6-23≤PM+2PN≤6+23 .思路引领:PM+2PN=212PM+PN,作MH⊥PN,HP=12PM,确定HN的最大值和最小值.解:作MH⊥NP于H,作MF⊥BC于F,∵PM⊥AC,PN⊥CB,∴∠PMC=∠PNC=90°,∴∠MPN=360°-∠PMC-∠PNC-∠C=120°,∴∠MPH=180°-∠MPN=60°,∴HP=PM•cos∠MPH=PM•cos60°=12PM,∴PN+12PM=PN+HP=NH,∵MF=NH,∴当MP与⊙O相切时,MF取得最大和最小,如图1,连接OP,OG,OC,可得:四边形OPMG是正方形,∴MG=OP=2,在Rt△COG中,CG=OG•tan60°=23,∴CM=CG+GM=2+23,在Rt△CMF中,MF=CM•sin C=(2+23)×32=3+3,∴HN=MF=3+3,PM+2PN=212PM+PN=2HN=6+23,如图2,由上知:CG=23,MG=2,∴CM=23-2,∴HM=(23-2)×32=3-3,∴PM+2PN=212PM+PN=2HN=6-23,∴6-23≤PM+2PN≤6+23.总结提升:本题考查的是解直角三角形等知识,解决问题的关键是构造12 PM.3.(2021秋•龙凤区期末)如图,在Rt△ABC中,∠C=90°,AC=9,BC=4,以点C为圆心,3为半径做⊙C,分别交AC,BC于D,E两点,点P是⊙C上一个动点,则13PA+PB的最小值为 17 .思路引领:在AC上截取CQ=1,连接CP,PQ,BQ,证明△ACP∽△PCQ,可得PQ=13AP,当B、Q、P三点共线时,13PA+PB的值最小,求出BQ即为所求.解:在AC上截取CQ=1,连接CP,PQ,BQ,∵AC=9,CP=3,∴CP AC =13,∵CP=3,CQ=1,∴CQCP=13,∴△ACP∽△PCQ,∴PQ=13AP,∴13PA+PB=PQ+PB≥BQ,∴当B、Q、P三点共线时,13PA+PB的值最小,在Rt△BCQ中,BC=4,CQ=1,∴QB=17,∴13PA+PB的最小值17,故答案为:17.总结提升:本题考查阿氏圆求最短距离,熟练掌握胡不归求最短距离的方法,利用三角形相似将13PA转化为PQ是解题的关键.4.(2022春•长顺县月考)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接PA,PB,则PA+14PB的最小值为 1452 .思路引领:如图,在CB上取一点F,使得CF=12,连接PF,AF.利用相似三角形的性质证明PF=14PB,根据PF+PA≥AF,利用勾股定理求出AF即可解决问题.解:如图,在CB上取一点F,使得CF=12,连接PF,AF.∵∠DCE=90°,DE=4,DP=PE,∴PC=12DE=2,∵CF CP =14,CPCB=14,∴CF CP =CP CB,∵∠PCF=∠BCP,∴△PCF∽△BCP,∴PF PB =CFCP=14,∴PF=14PB,∴PA+14PB=PA+PF,∵PA+PF≥AF,AF=CF2+AC2=12 2+62=1452,∴PA+14PB≥1452,∴PA+14PB的最小值为1452,故答案为145 2.总结提升:本题考查阿氏圆问题,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题.5.(2021秋•梁溪区校级期中)如图,⊙O与y轴、x轴的正半轴分别相交于点M、点N,⊙O 半径为3,点A(0,1),点B(2,0),点P在弧MN上移动,连接PA,PB,则3PA+PB的最小值为 85 .思路引领:在y轴上取点H(0,9),连接BH,通过证明△AOP∽△POH,可证HP=3AP,则3PA+PB=PH+PB,当点P在BH上时,3PA+PB有最小值为HB的长,即可求解.解:如图,在y轴上取点H(0,9),连接BH,∵点A(0,1),点B(2,0),点H(0,9),∴AO=1,OB=2,OH=9,∵OA OP =13=39=OPOH,∠AOP=∠POH,∴△AOP∽△POH,∴AP HP =OPOH=13,∴HP=3AP,∴3PA+PB=PH+PB,∴当点P在BH上时,3PA+PB有最小值为HB的长,∴BH=OB2+OH2=4+81=85,故答案为:85.总结提升:本题考查了阿氏圆问题,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造相似三角形是解题的关键.6.(2020•武汉模拟)【新知探究】新定义:平面内两定点A ,B ,所有满足PA PB=k (k 为定值)的P 点形成的图形是圆,我们把这种圆称之为“阿氏圆”【问题解决】如图,在△ABC 中,CB =4,AB =2AC ,则△ABC 面积的最大值为 163 .思路引领:以A 为顶点,AC 为边,在△ABC 外部作∠CAP =∠ABC ,AP 与BC 的延长线交于点P ,证明△APC ∽△BPA ,由相似三角形的性质可得BP =2AP ,CP =12AP ,从而求出AP 、BP 和CP ,即可求出点A 的运动轨迹,再找出距离BC 最远的A 点的位置即可求解.解:以A 为顶点,AC 为边,在△ABC 外部作∠CAP =∠ABC ,AP 与BC 的延长线交于点P ,∵∠CAP =∠ABC ,∠BPA =∠APC ,AB =2AC ,∴△APC ∽△BPA ,AP BP =CP AP =AC AB =12,∴BP =2AP ,CP =12AP ,∵BP -CP =BC =4,∴2AP -12AP =4,解得:AP =83,∴BP =163,CP =43,即点P 为定点,∴点A 的轨迹为以点P 为圆心,83为半径的圆上,如图,过点P 作BC 的垂线,交圆P 与点A 1,此时点A 1到BC 的距离最大,即△ABC 的面积最大,S △ABC =12BC •A 1P =12×4×83=163.故答案为:163.总结提升:本题考查相似三角形的判定和性质,三角形的面积,确定点的运动轨迹,熟练掌握三角形的判定和性质以及三角形的面积公式是解题的关键.7.(2020•溧阳市一模)如图,在⊙O 中,点A 、点B 在⊙O 上,∠AOB =90°,OA =6,点C 在OA 上,且OC =2AC ,点D 是OB 的中点,点M 是劣弧AB 上的动点,则CM +2DM 的最小值为 410 .思路引领:延长OB到T,使得BT=OB,连接MT,CT.利用相似三角形的性质证明MT= 2DM,求CM+2DM的最小值问题转化为求CM+MT的最小值.求出CT即可判断.解:延长OB到T,使得BT=OB,连接MT,CT.∵OM=6,OD=DB=3,OT=12,∴OM2=OD•OT,∴OMOD =OT OM,∵∠MOD=∠TOM,∴△MOD∽△TOM,∴DM MT =OMOT=12,∴MT=2DM,∵CM+2DM=CM+MT≥CT,又∵在Rt△OCT中,∠COT=90°,OC=4,OT=12,∴CT=OC2+OT2=42+122=410,∴CM+2DM≥410,∴CM+2DM的最小值为410,∴答案为410.总结提升:本题考查相似三角形的判定和性质,阿氏圆问题,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.8.如图,正方形ABCD的边长为4,E为BC的中点,以B为圆心,BE为半径作⊙B,点P是⊙B上一动点,连接PD、PC,则PD+12PC的最小值为5.思路引领:如图,在BC上取一点T,使得BT=1,连接PB,PT,DT.证明△PBT∽△CBP,推出PTPC=PBCB=12,推出PT=12PC,由PD+12PC=PD+PT≥DT=5,由此可得结论.解:如图,在BC上取一点T,使得BT=1,连接PB,PT,DT.∵四边形ABCD是正方形,∴∠DCT=90°,∵CD=4,CT=3,∴DT=CD2+CT2=42+32=5,∵PB=2,BT=1,BC=4,∴PB2=BT•BC,∴PB BT =BC PB,∵∠PBT=∠PBC,∴△PBT∽△CBP,∴PT PC =PBCB=12,∴PT=12PC,∵PD+12PC=PD+PT≥DT=5,∴PD+12PC的最小值为5,故答案为:5.总结提升:本题考查阿氏圆问题,正方形的性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.9.如图,扇形AOB中,∠AOB=90°,OA=6,C是OA的中点,D是OB上一点,OD=5,P是AB上一动点,则PC+12PD的最小值为 132 .思路引领:如图,延长OA使AE=OB,连接EC,EP,OP,证明△OPE∽△OCP推出PCPE =OPOE=12,推出EP=2PC,推出PC+12PD=12(2PC+PD)=12(PD+PE),推出当点E,点P,点D三点共线时,PC+12PD的值最小.解:如图,延长OA使AE=OB,连接EC,EP,OP,∵AO=OB=6,C分别是OA的中点,∴OE=12,OP=6,OC=AC=3,∴OP OE =OCOP=12,且∠COP=∠EOP∴△OPE ∽△OCP ∴PC PE =OP OE=12,∴EP =2PC ,∴PC +12PD =12(2PC +PD )=12(PD +PE ),∴当点E ,点P ,点D 三点共线时,PC +12PD 的值最小,∵DE =OD 2+OE 2=52+122=13,∴PD +PE ≥DE =13,∴PD +PE 的最小值为13,∴PC +12PD 的值最小值为132.故答案为:132.总结提升:本题考查阿氏圆问题,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题.10.如图所示的平面直角坐标系中,A (0,4),B (4,0),P 是第一象限内一动点,OP =2,连接AP 、BP ,则BP +12AP 的最小值是 17 .思路引领:如图,取点T (0,1),连接PT ,BT .利用相似三角形的性质证明PT =12PB ,推出PB +12PA =PB +PT ≥BT ,求出BT ,可得结论.解:如图,取点T (0,1),连接PT ,BT .∵T (0,1),A (0,4),B (4,0),∴OT =1,OA =4,OB =4,∵OP =2,∴OP 2=OT •OA ,∴OP OT =OA OP,∵∠POT =∠AOP ,∴△POT ∽△AOP ,∴PT PA =OPOA=12,∴PT=12PA,∴PB+12PA=PB+PT,∵BT=12+42=17,∴PB+PT≥17,∴BP+12AP≥17∴BP+12PB的最小值为17.故答案为:17.总结提升:本题考查阿氏圆问题,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.11.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则2PA+PB的最小值为25 .思路引领:2PA+PB=2PA+22PB,利用相似三角形构造22PB.解:设⊙O半径为r,OP=r=12BC=2,OB=2r=22,取OB的中点I,连接PI,∴OI=IB=2,∵OPOI =22=2,OB OP =222=2,∴OPOI =OB OP,∠O是公共角,∴△BOP∽△POI,∴PI PB =OIOP=22,∴PI=22PB,∴AP +22PB =AP +PI ,∴当A 、P 、I 在一条直线上时,AP +22PB 最小,作IE ⊥AB 于E ,∵∠ABO =45°,∴IE =BE =22BI =1,∴AE =AB -BE =3,∴AI =32+12=10,∴AP +22PB 最小值=AI =10,∵2PA +PB =2PA +22PB ,∴2PA +PB 的最小值是2AI =2×10=25.故答案是25.总结提升:本题是“阿氏圆”问题,解决问题的关键是构造相似三角形.12.如图,在每个小正方形的边长为1的网格中,△OAB 的顶点O ,A ,B 均在格点上,点E 在OA 上,且点E 也在格点上.(I )OE OB的值为 23 ;(Ⅱ)DE 是以点O 为圆心,2为半径的一段圆弧.在如图所示的网格中,将线段OE 绕点O 逆时针旋转得到OE ′,旋转角为α(0°<α<90°)连接E 'A ,E 'B ,当E 'A +23E 'B 的值最小时,请用无刻度的直尺画出点E ′,并简要说明点E '的位置是如何找到的(不要求证明) 通过取格点K 、T ,使得OH :OD =2:3,构造相似三角形将23E ′B 转化为E ′H .思路引领:(1)求出OE ,OB 即可解决问题.(2)构造相似三角形把23E ′B 转化为E ′H ,利用两点之间线段最短即可解决问题.解:(1)由题意OE =2,OB =3,∴OE OB =23,故答案为:23.(2)如图,取格点K,T,连接KT交OB于H,连接AH交DE于E′,连接BE′,点E′即为所求.故答案为:通过取格点K、T,使得OH:OD=2:3,构造相似三角形将23E′B转化为E′H,利用两点之间线段最短即可解决问题.总结提升:本题是作图-旋转变换,主要考查了相似三角形的判定与性质,两点之间,线段最短等知识,找到点H是解题的关键.13.(2021秋•定海区期末)如图1,正方形OABC边长是2,以OA为半径作圆,P为弧AC上的一点,过点P作PM⊥AB交AB于点M,连结PO、PA,设PM=m,PA=n.(1)求证:∠POA=2∠PAM;(2)探求m、n的数量关系,并求n-m最大值;(3)如图2:连结PB,设PB=h,求2h+2m的最小值.思路引领:(1)根据正方形性质和三角形内角和定理即可证得结论;(2)如图1,过点O作OE⊥PA于E,先证明△APM∽△OAE,利用相似三角形性质可得出m=14n2,进而可得:n-m=n-14n2=-14(n-2)2+1,再运用二次函数性质即可得出答案;(3)如图2,连接AC、BD交于点D,连接PD,当D、P、M三点共线且DM⊥AB时,PD+ PM=DM最小,即2h+2m=2DM最小,根据正方形和等腰直角三角形的性质即可求得答案.解:(1)证明:∵四边形OABC是正方形,∴∠OAB=90°,∴∠OAP+∠PAM=90°,即2∠OAP+2∠PAM)=180°,∵OA=OP,∴∠OPA=∠OAP,∵∠OPA+∠OAP+∠POA=180°,∴2∠OAP+∠POA=180°,∴∠POA=2∠PAM;(2)解:如图1,过点O作OE⊥PA于E,∵OA=OP,OE⊥PA,∴AE=12PA,∠AOE=∠POE=12∠POA,∵∠POA=2∠PAM,∴∠PAM=12∠POA,∴∠PAM=∠AOE,∵PM⊥AB,∴∠AMP=90°=∠OEA,∴△APM∽△OAE,∴PMPA =AEOA,即mn=12n2,∴m=14n2,∴n-m=n-14n2=-14(n-2)2+1,∴当n=2时,n-m取得最大值,n-m最大值为1;(3)解:如图2,连接AC、OB交于点D,连接PD,∵四边形ABCO是正方形,∴AC⊥BD,OD=AD=BD,∴OD OA =OAOB=22,∵OP=OA,∴OD OP =OPOB=22,∵∠POD=∠BOP,∴△POD∽△BOP,∴PD PB =OPOB=22,∴PD=22PB,∵PB=h,PM=m,∴2h +2m =222h +m=222PB +PM =2(PD +PM ),∵当D 、P 、M 三点共线且DM ⊥AB 于M 时,PD +PM =DM 最小,∴当D 、P 、M 三点共线且DM ⊥AB 时,2h +2m =2(PD +PM )=2DM 最小,如图3,∵△ABD 是等腰直角三角形,DM ⊥AB ,∴DM =12AB =1,∴2DM =2,即2h +2m 的最小值为2.总结提升:本题是圆的综合题,考查了等腰直角三角形的性质,正方形的性质,三角形内角和定理,圆的性质,相似三角形的判定和性质,两点之间线段最短,点到直线的距离垂线段最短,二次函数最值的应用,利用相似三角形性质列出关于m 、n 的关系式恰当运用配方法是解题关键.14.(2022•从化区一模)已知,AB 是⊙O 的直径,AB =42,AC =BC .(1)求弦BC 的长;(2)若点D 是AB 下方⊙O 上的动点(不与点A ,B 重合),以CD 为边,作正方形CDEF ,如图1所示,若M 是DF 的中点,N 是BC 的中点,求证:线段MN 的长为定值;(3)如图2,点P 是动点,且AP =2,连接CP ,PB ,一动点Q 从点C 出发,以每秒2个单位的速度沿线段CP 匀速运动到点P ,再以每秒1个单位的速度沿线段PB 匀速运动到点B ,到达点B 后停止运动,求点Q 的运动时间t 的最小值.思路引领:(1)AB 是⊙O 的直径,AC =BC 可得到△ABC 是等腰直角三角形,从而得道答案;(2)连接AD 、CM 、DB 、FB ,首先利用△ACD ≌△BCF ,∠CBF =∠CAD ,证明D 、B 、F 共线,再证明△CMB 是直角三角形,根据直角三角形斜边上的中线等于斜边的一半,即可得证;(3)“阿氏圆”的应用问题,以A 为圆心,AP 为半径作圆,在AC 上取点M ,使AM =1,连接PM ,过M 作MH ⊥AB 于H ,连接BM 交⊙A 于P ',先证明PM =PC 2,PC 2+BP 最小,即是PM +BP 最小,此时P 、B 、M 共线,再计算BM 的长度即可.解:(1)∵AB 是⊙O 的直径,∴∠ABC =90°,∵AC=BC,∴△ABC是等腰直角三角形,∠CAB=45°,∵AB=42,∴BC=AB•sin45°=4;(2)连接AD、CM、DB、FB,如图:∵△ABC是等腰直角三角形,四边形CDEF是正方形,∴CD=CF,∠DCF=∠ACB=90°,∴∠ACD=90-∠DCB=∠BCF,又AC=BC,∴△ACD≌△BCF(SAS),∴∠CBF=∠CAD,∴∠CBF+∠ABC+∠ABD=∠CAD+∠ABC+∠ABD=∠DAB+∠CAB++∠ABC+∠ABD=∠DAB+45°+45°+∠ABD,而AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∴∠CBF+∠ABC+∠ABD=180°,∴D、B、F共线,∵四边形CDEF是正方形,∴△DCF是等腰直角三角形,∵M是DF的中点,∴CM⊥DF,即△CMB是直角三角形,∵N是BC的中点,∴MN=12BC=2,即MN为定值;(3)以A为圆心,AP为半径作圆,在AC上取点M,使AM=1,连接PM,过M作MH⊥AB 于H,连接BM交⊙A于P',如图:一动点Q从点C出发,以每秒2个单位的速度沿线段CP匀速运动到点P,再以每秒1个单位的速度沿线段PB匀速运动到点B,∴Q运动时间t=PC2+BP,∵AM=1,AP=2,AC=BC=4,∴AMAP =APAC=12,又∠MAP=∠PAC,∴△MAP∽△PAC,∴PMPC =AMAP=12,∴PM=PC2,。
阿氏圆(2018中考数学压轴热点)

--阿氏圆模型专题训练阿氏圆( 阿波罗尼斯圆) :已知平面上两定点A、B,则所有满足PA/PB=k(k 不等于1) 的点P 的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿氏圆。
在初中的题目中往往利用逆向思维构造斜屁型相似( 也叫母子型相似或美人鱼相似)+ 两点间线段最短解决带系数两线段之和的最值问题。
观察下面的图形,当P 在在圆上运动时,PA、PB的长在不断的发生变化,但它们的比值却始终保持不变。
解决阿氏圆问题,首先要熟练掌握母子型相似三角形的性质和构造方法。
ABD D,使得AD/AB=AB/AC,则此时△∽△ACB如图,在△ABC的边AC上找一点母子型相似(共角共边)BA CD: 我们来看一道基本题目的性质解答带系数的两条线段和的最小值呢?那么如何应用阿氏圆为圆上一动点 . CB=4,CA=6已知∠ACB=90°,,⊙C半径为2,PA1(1) AP 求BP 的最小值为 21AP 求(2) 的最小值为BP3PBC 实战练习:D 1 AB上一动点,,,为切线,AC、BD AC=1BD=2P 为弧,半径为、已知⊙O 1 2的最小值试求PC PDC 2PB AO1 AP),,(、已知点2 A4 0B 上运动,试求的⊙2 在半径为),点,(44 P O BP 的最小值 2yBPxO A-- --1 -- --轴相切,与y 为⊙C 上一动点,且⊙C P,B(0,3 ),C(1,0 ),若点3、已知点A(-3,0)1AP(1)y ; BP 的最小值 4B(2)S 的最小值 .PAB PO CxA4、如图1,在平面直角坐标系xoy 中,半⊙O交x 轴与点A、B(2,0) 两点,AD、BC均为半⊙O 的切线,AD=2,BC=7.(1)求OD的长;(2)如图2,若点P 是半⊙O上的动点,Q为OD的中点 . 连接PO、PQ.①求证:△OPQ∽△ODP;②是否存在点P,使PD 2PC 有最小值,若存在,试求出点P 的坐标;若不存在,请说明理由 .5、(1)如图1,已知正方形ABC的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,1 1求PD PC 的最小值和PD PC 的最大值 .2 2(2)如图2,已知正方形ABCD的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那么2 2;PD PDPC 的最小值为PC 的最大值为3 3B 上的一个2. 点P 是圆4,已知菱形ABCD的边长为,∠B=60°,圆B 的半径为3(3)如图11PC 的最大值为PC 的最小值为PD PD动点. 那么;22巩固练习:----2----11、如图,在Rt△ABC中,∠ACB﹦90°,CB﹦4,CA﹦6,圆C 半径为2,P 为圆上一动点,连接AP,BP,AP BP2 最小值为()A、37B、6C、2 17D、4APC B2、如图,在△ABC中,∠B﹦90°,AB﹦CB﹦2,以点 B 为圆心作圆B 与AC 相切,点P 为圆B 上任一动点,2.PC 则PA 的最小值是2CPAB3E,在⊙相切于点60,锐角大小为的边长为 2 °,⊙A 与BC3、如图,菱形ABCDPD,则PB A 上任取一点P2的最小值为.PADB E C4、在平面直角坐标系中,A(2,0),B(0,2),C (4,0),D(3 ,2),P 是△AOB 外部的第一象限内一.动点,且∠BPA﹦135°,则2PD﹢PC的最小值是yx----3----12,点4,圆B 的半径为5、(1)如图1,已知正方形ABCD的边长为PC求PDP 是圆B 上的一个动点,21的最小值和PC 的最大值.PD 2上的一个动点,求,点P 是圆B 9,圆B 的半径为6,已知正方2(2)如图2PCPD 的边长为ABCD形3 2的最大值.PC PD 的最小值和3上的一个动是圆B ,2,点P,∠B﹦90°,圆B 的半径为(3)如图3,已知菱形ABCD的边长为41 PC PD点,求21PD 的最小值和PC 的最大值. 2DA D AADPPPBBC C3图1 图2 图套路总结阿氏圆基本解法:构造相似kPD PC 阿氏圆一般解题步骤:OD 、的线段的两个端点分别与圆心相连接)O (将系数不为1 ,则连接OP;第一步:连接动点至圆心OD 长度;、第二步:计算出所连接的这两条线段OP OPm ;第三步:计算这两条线段长度的OD比OM m ;,使OD 第四步:在上取点M OP 得交点即为点,与圆第五步:连接CM O P.----4----1.如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C 半径为2,P 为圆上一动点,连结AP,BP,AP+BP的最小值为()2.如图,半圆的半径为1,AB 为直径,AC、BD 为切线,P BD=2 AC=1 上一动点,求为,,的最小值.PC+PD5--。
中学考试压轴题突破几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形最值问题在几何图形中分两大类:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r ≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。
(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
阿波罗尼斯圆中的数学压轴题

阿波罗尼斯圆中的数学压轴题
到两点点的距离之和为定值(大于两定点距离)的点的轨迹是椭圆.到两点点的距离之差为定值(小于两定点距离)的点的轨迹是双曲线.那么到两定点的距离之比为定值的点的轨迹是什么呢?没错就是阿氏圆.阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P到两定点A、B的距离之比等于定比m:n,则P点的轨迹,是以定比m:n内分和外分定线段AB的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.【分析】令B为坐标原点,A的坐标为(a,0).则动点P(x,y).满足PA/PB=k (为实数,且不为±1)得(k2-1)(x2+y2)+2ax-a2=0,当k不为±1时,它的图形是圆.当k为±1时,轨迹是两点连线的中垂线.【典型例题】问题提出:如图1,在Rt△ABC 中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+1/2BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有CD/CP =CP/CB=1/2,又∵∠PCD=∠BCP,
∴△PCD∽△BCP.∴PD/BP=1/2,∴PD=1/2BP,∴AP+1/2BP=AP+PD.请你完成余下的思考,并直接写出答
案:AP+1/2BP的最小值为.(2)自主探索:在“问题提出”的条件不变的情况下,1/3AP+BP的最小值为.(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是弧CD上一点,求2PA+PB的最小值.【解题过程】我爱压轴题中考数学压轴题全解析¥37.4 京东购买。
高考数学专题《阿波罗尼斯圆》填选压轴题及答案

专题42 阿波罗尼斯圆【方法点拨】一般地,平面内到两个定点距离之比为常数的点的轨迹是圆,此圆被叫做“啊波罗尼斯圆” (又称之为圆的第二定义).说明:(1) 不妨设(),0A a - ,(),0B a ,()0,0,1AP BP a λλλ=>>≠,再设 (),P x y ,则有()()2222y a x y a x +-=++λ,化简得:2222221211⎪⎭⎫ ⎝⎛-=+⎪⎪⎭⎫ ⎝⎛-+-a y a x λλλλ,轨迹为圆心a a 12011222-⎪⎪⎭⎫ ⎝⎛-+λλλλ,半径为,的圆.(2) 满足上面条件的啊波罗尼斯圆的直径的两端是按照定比λ内分AB 和外分AB 所得的两个分点(如图,有=AM ANBM BNλ=). (3)设P 是圆上的一点(不与M N 、重合),则PM PN 、是三角形PAB 的内、外角平分线,PM PN ⊥.(4)逆向运用:给定圆O 和定点A (A 不在圆O 上且不与O 重合),则一定存在唯一一个定值λ和一个定点B ,使得对于圆O 上的任意一点P 都有PA PBλ=.【典型题示例】例1 满足条件AB =2,AC =2BC 的△ABC 的面积的最大值为 . 【答案】22【分析】已知三角形的一边长及另两边的关系欲求面积的最大值,一种思路是利用面积公式、余弦定理建立关于某一边的目标函数,最后利用基本不等式求解;二是紧紧抓住条件“AC =2BC ”,符合 “啊园”,建系求出第三个顶点C 的轨迹,挖出“隐圆”,当点C 到直线AB 距离最大,即为半径时,△ABC 的面积最大为2 2.(1)λλ≠【解析一】设BC =x ,则AC 2x , 根据面积公式得ABC S ∆=21sin 1cos 2AB BC B x B ⨯=-, 根据余弦定理得2222242cos 24AB BC AC x x B AB BC x +-+-==⨯244x x-=,代入上式得ABC S ∆=()22221281241416x x x x --⎛⎫--=⎪⎝⎭由三角形三边关系有2222x x x x+>+>⎪⎩解得222222x <<,故当212,23x x ==时ABC S ∆128216=【解析二】以AB 所在的直线为x 轴,它的中垂线为y 轴建立直角坐标系, 则A (-1,0),B (1,0),设C (x ,y ) 由AC =2BC ,即AC 2=2BC 2所以(x +1)2+y 2=2[(x -1)2+y 2],化简得(x -3)2+y 2=8 故点C 的轨迹方程为(x -3)2+y 2=8(y ≠0),当点C 到直线AB 距离最大,即为半径时,△ABC 的面积最大为2 2.例2 已知等腰三角形腰上的中线为3,则该三角形面积的最大值为________. 【答案】2【分析】本题解法较多,但各种解法中,以利用“啊圆”为最简,注意到中线上三角形两边之比为2∶1,符合啊波罗尼斯圆定理,挖出“隐圆”,易求得最大值为2. 【解析一】如图1,ABC ∆中,AB AC =,AD DC =,3BD =设AD CD m ==,则2AB m =, 22cos 23ADB m∠=在ABD ∆中,在BDC ∆中,22cos 23CDB m∠由cos cos 0ADB CDB ∠+∠=可得,2262BC m =-,所以2253cos 4m A m-=,则429309sin m m A -+-= 故2242591639309ABCm m m S ∆⎛⎫--+ ⎪-+-⎝⎭==易知当253m =时,面积的最大值是2. 点评:避免求边BC ,优化此解法,考虑ABD ∆中,有2253cos 4m A m -=,而2ABC ABD S S ∆∆=,同样可解.【解析二】以BD 中点O 为原点,BD 所在直线为x 轴建立如图2所示的平面直角坐标系,设(),A x y ,则2AB AD =,即2222334x y x y ⎡⎤⎛⎛⎢⎥+=+ ⎢⎥⎝⎭⎝⎭⎣⎦, 整理得,225343x y ⎛+= ⎝⎭,即有3y ≤32ABC S BD y y ∆=⨯=≤.【解析三】以BC 中点O 为原点,BC 所在直线为x 轴建立如图3所示的平面直角坐标系,设(),0C m ,(),0B m -,()0,A n ,则,22m n D ⎛⎫ ⎪⎝⎭,所以2223322m n BD ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,而223422232m n ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭≤⋅=, 当且仅当3n m =时,取等.【解析四】如图4,作AO BC ⊥于点O ,交BD 于点G ,则G 为ABC ∆的重心,43322ABCm n S mn ∆==⋅⋅则有2233BG CG BD ===所以133sin 2sin 22ABC BGC S S BG CG BGC BGC ∆∆==⨯⋅∠=∠≤,当2BGC π∠=时,取等.例3 已知圆22:1O x y +=和点()2,0A -,若定点(),0B b (2)b ≠-和常数λ满足:对圆O 上任意一点M ,都有MB MA λ=,则 (1)b = ; (2)λ= . 【答案】(1)12b =-;(2)12λ=.【分析】其实质是啊圆的逆用,设出点的坐标,恒成立问题转化为与点的坐标无关,即分子为零.【解答】设(),M x y ,则22221,1x y y x +==-,2222222222222251||()21122||(2)44154254b b MB x b y x bx b x b bx b MA x y x x x x xλ++-+-++-+-=====-++++++-++, 所以λ为常数,所以25102b b ++=,解得12b =-或2b =-(舍去),所以2124b λ=-=.例4 已知圆C :x 2+y 2=9,点A (-5,0),在直线OA 上(O 为坐标原点),存在定点B (不同于点A )满足:对于圆C 上任一点P ,都有PBP A 为一常数,则点B 的坐标为___________.【答案】⎝⎛⎭⎫-95,0 【分析】本题的实质是“逆用啊圆”. 【解析一】假设存在这样的点B (t,0).当点P 为圆C 与x 轴的左交点(-3,0)时,PB P A =|t +3|2;当点P 为圆C 与x 轴的右交点(3,0)时,PB P A =|t -3|8.依题意,|t +3|2=|t -3|8,解得t =-95或t =-5(舍去).下面证明点B ⎝⎛⎭⎫-95,0对于圆C 上任一点P ,都有PBP A 为一常数. 设P (x ,y ),则y 2=9-x 2, 所以PB 2P A2=⎝⎛⎭⎫x +952+y 2x +52+y 2=x 2+185x +9-x 2+8125x 2+10x +25+9-x 2=1825·5x +172·5x +17=925.从而PB P A =35为常数.【解析二】假设存在这样的点B (t,0),使得PBP A 为常数λ,则PB 2=λ2P A 2,所以(x -t )2+y 2=λ2[(x +5)2+y 2],将y 2=9-x 2代入,得x 2-2xt +t 2+9-x 2=λ2(x 2+10x +25+9-x 2), 即2(5λ2+t )x +34λ2-t 2-9=0对x ∈[-3,3]恒成立,所以⎩⎪⎨⎪⎧5λ2+t =0,34λ2-t 2-9=0.解得⎩⎨⎧λ=35,t =-95或⎩⎪⎨⎪⎧λ=1,t =-5(舍去). 故存在点B ⎝⎛⎭⎫-95,0对于圆C 上任一点P ,都有PB P A 为常数35. 例5 啊波罗尼斯是古希腊著名数学家,与欧几里得、啊基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,啊波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点A ,B 的距离之比为(0,1)λλλ>≠,那么点M 的轨迹就是啊波罗尼斯圆,简称啊氏圆.已知在平面直角坐标系中,圆22:4O x y +=、点()1,0A -和点()0,1B ,M 为圆O 上的动点,则2||+||MA MB 的最小值为_________. 17【分析】逆用“啊圆”,将2||MA 中系数2去掉化为“一条线段”, 从而将2||+||MA MB 化为两条线段的和,再利用“三点共线”求解.【解析】因为啊圆的圆心、两定点共线,且在该直线上的直径的端点分别是两定点构成线段分成定比的内外分点所以另一定点必在x 轴上,且()2,0-内分该点与()1,0A -连结的线段的比为2 故该点的坐标为()4,0-设()4,0C -,则圆22:4O x y +=上任意一动点M 都满足||=2||MC MA 所以2||+||=||+||MA MB MC MB又因为||+||||17MC MB BC ≥M B C 、、共线时,等号成立所以2||+||MA MB. 点评:1. 已知两定点、啊圆的圆心三点共线;2. 啊圆的在已知两定点所在直线上的直径的两端点,分别是两定点构成线段分成定比的内、外分点.例6 古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点,A B 的距离之比为定值()1λλ≠的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系xOy 中,()()2,0,4,0,A B -点12PA P PB=满足.设点P 的轨迹为C ,下列结论正确的是( ) A .C 的方程为()2249x y ++=B .在x 轴上存在异于,A B 的两定点,D E ,使得12PD PE=C .当,,A B P 三点不共线时,射线PO 是APB ∠的平分线D .在C 上存在点M ,使得2||MO MA = 【答案】BC【分析】通过设出点P 坐标,利用12PA PB=即可得到轨迹方程,找出两点,D E 即可判断B 的正误,设出M 点坐标,利用2||MO MA =与圆的方程表达式解出就存在,解不出就不存在.【解析】设点(),P x y ,则12PA PB=,化简整理得2280x y x ++=,即()22416x y ++=,故A 错误;根据对称性可知,当()()6,0,12,0,D E --时,12PD PE=,故B 正确; 对于C 选项,222cos =2AP PO AO APO AP PO +-∠⋅,222cos =2BP PO BO BPO BP PO+-∠⋅,要证PO 为角平分线,只需证明cos =cos APO BPO ∠∠,即证22222222AP PO AO BP PO BO AP PO BP PO+-+-=⋅⋅,化简整理即证2228PO AP =-,设(),P x y ,则222PO x y =+,()()222222222282828AP x x y x x y x y x y -=++=++++=+,则证cos =cos APO BPO ∠∠,故C 正确;对于D 选项,设()00,M x y ,由2||MO MA =220003316+160x y x ++=,而点M 在圆上,故满足2280x y x ++=,联立解得0=2x ,0y 无实数解,于是D 错误.故答案为BC.【巩固训练】1.(多选题)在平面直角坐标系中,三点()1,0A -,()1,0B ,()0,7C ,动点P 满足PA =,则A.点P 的轨迹方程为()2238x y -+= B.PAB △面积最大时PA =C.PAB ∠最大时,PA =D.P 到直线AC 2. 在平面直角坐标系xOy 中,点)0,4(),0,1(B A .若直线0=+-m y x 上存在点P ,使得PB PA 21=,则实数m 的取值范围是 3. 已知圆O :x 2+y 2=1和点A (-2,0),若定点B (b,0)(b ≠-2)和常数λ满足:对圆O 上任意一点M ,都有MB =λMA ,则(1)b =________; (2)λ=________.4.在△ABC 中,|AB|=2,|AC|=k|BC|(k >1),则当△ABC 面积的最大值为2√2时, k = .5.点P 是圆C :x 2+y 2=1上动点,已知A (-1,2),B (2,0),则P A +12PB 的最小值为________.6.啊波罗尼斯是古希腊著名数学家,与欧几里得、啊基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,啊波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点Q 、P 的距离之比|MQ||MP|=λ(λ>0,λ≠1),那么点M 的轨迹就是啊波罗尼斯圆.已知动点M 的轨迹是啊波罗尼斯圆,其方程为x 2+y 2=1,定点Q 为x 轴上一点,P(−12,0)且λ=2,若点B(1,1),则2|MP|+|MB|的最小值为( )A.√6 B. √7 C. √10 D. √117.已知)1,0(A,)0,1(B,)0,(tC,点D是直线AC上的动点,若BDAD2≤恒成立,则最小正整数t的值为.8.在平面四边形ABCD中,,,.若,则的最小值为.9.已知22(1)4x y-+=,__________.【答案或提示】1. 【答案】ABD【解析】由题意可设(),P x y,由PA=,可得222PA PB=,即()()2222121x y x y⎡⎤++=++⎣⎦,化简可得()2238x y-+=,故选项A正确;对于选项B,2AB=,且点P到直线AB的距离的最大值为圆()2238x y-+=的半径r,即为,所有PAB△面积最大为122⨯⨯=,此时(3,P,所以PA==B正确;对于选项C,PAB∠最大时,为过点A作圆()2238x y-+=的切点,求得切点不为(3,±,则PA≠C错误;对于选项D,直线AC的方程为770x y-+=,则圆心()3,0到直线AC的距离为5=,所以点P到直线AC距离最小值为55-=,故选项D 正确;故选ABD.2. 【答案】⎡-⎣.【解法一】设满足条件PB=2P A的P点坐标为(x,y),则(x-4)2+y2=4(x-1)2+4y2,化简得x2+y2=4.要使直线x-y+m=0有交点,则|m|2≤2.即-22≤m≤22.【解法二】设直线x-y+m=0有一点(x,x +m)满足P A=2PB,90BAD∠=︒2AB=1AD=43AB AC BA BC CA CB⋅+⋅=⋅12CB CD+则(x -4)2+(x +m )2=4(x -1)2+4(x +m )2. 整理得2x 2+2mx +m 2-4=0 (*) 方程(*)有解,则△=4m 2-8(m 2-4)≥0, 解之得:-2 2≤m ≤22. 3. 【答案】 (1)-12 (2)12【解析】 (1)因为点M 为圆O 上任意一点,所以不妨取圆O 与x 轴的两个交点(-1,0)和(1,0). 当M 点取(-1,0)时,由MB =λMA ,得|b +1|=λ; 当M 点取(1,0)时,由MB =λMA ,得|b -1|=3λ. 消去λ,得|b -1|=3|b +1|.两边平方,化简得2b 2+5b +2=0, 解得b =-12或b =-2(舍去).(2)由|b +1|=λ,得λ=12.4.【答案】√2【分析】本题考查轨迹方程的求解,以及新定义,直线与圆的位置关系的应用,属于较难题.根据条件得到点C 的轨迹方程(k 2−1)x 2+(k 2−1)y 2+2(k 2+1)x +k 2−1=0,作图,可得当点C 到AB 的距离d 等于其所在圆半径r 时,面积最大,通过面积求得r ,进而得到k .【解析】如图,不妨设A(1,0),B(−1,0),C (x,y), 则|AC|=k|BC|,可化为(x −1)2+y 2=k 2[(x +1)2+y 2], 整理可得(k 2−1)x 2+(k 2−1)y 2+2(k 2+1)x +k 2−1=0, 即(x +k 2+1k 2−1)2+y 2=(k 2+1k 2−1)2−1,圆心(−k 2+1k 2−1,0),r 2=(k 2+1k 2−1)2−1,由图可知当点C 到AB(x 轴)距离最大时,△ABC 的面积最大, 即当点C 到AB 的距离d 等于半径r 时,面积最大, ∴△ABC 面积的最大值是12×2r =2√2,解得r =2√2, 故有(k 2+1k 2−1)2−1=(2√2)2,解得k =±√2,k =±√22, 因为k >1,所以k =√2. 故答案为:√2.5.【答案】52【提示】已知动点轨迹为圆,将12PB 转化为P 到一个定点的距离,即求动点到两个定点距离之和. 6.【答案】C【分析】令2|MP|=|MQ|,则2|MP|+|MB|=|MQ|+|MB|,由啊波罗尼斯圆的定义及已知可求得点Q 的坐标,进而利用图象得解.本题以啊波罗尼斯圆为背景,考查学生在陌生环境下灵活运用知识的能力,考查创新意识,逻辑推理能力及运算求解能力,考查数形结合思想,属于拔高题.【解析】由题意可得圆x 2+y 2=1是关于P ,Q 的啊波罗尼斯圆,且λ=2,则|MQ||MP|=2, 设点Q 的坐标为(m,n),则√(x−m)2+(y−n)2√(x+12)2+y 2=2, 整理得,x 2+y 2+4+2m 3x +2n 3y +1−m 2−n 23=0,由已知该圆的方程为x 2+y 2=1,则{4+2m =02n =01−m 2−n 23=−1,解得{m =−2n =0, ∴点Q 的坐标为(−2,0),∴2|MP|+|MB|=|MQ|+|MB|,由图象可知,当点M 位于M 1或M 2时取得最小值,且最小值为|QB|=√(−2−1)2+1=√10. 故选:C . 7. 【答案】4【解析】直线AC 的方程为1=+y tx即0=-+t ty x ,设),(y x D BD AD 2≤ 即224BD AD ≤∴])1[(4)1(2222y x y x ++-≤-+98)31()34(22≥++-y x 表示圆外区域及圆周上的点 直线0=-+t ty x 与圆98)31()34(22=++-y x 相离或相切 所以3221|3134|2≥+--t t t ,化简得0142≥+-t t 解得32+≥t 或32-≤t∴正整数t 的值的值为4.8.【提示】已知可化为: ,故,点的轨迹是圆;所求 中含系数不同,需化一,由于,故应构造出 或,这里所求圆的圆心在直线AB 上,故需在直线AB 上寻求一点E ,使CE =2CB ,将化为一条线段,逆用“啊波罗尼斯圆”即可.9. 【提示】为使所求具有几何意义,利用已知22(1)4x y -+=进行常数代换,12. 43AB AC BA BC CA CB ⋅+⋅=⋅2=AB AC BA BC AB AC AB CB AB ⋅+⋅=⋅+⋅=3CA CB ⋅C 12CB CD +11=(2)22CB CD CB CD ++12CD 2CB 2CB。
备战2024年中考数学压轴题之二次函数篇(全国通用)专题12 二次函数-阿氏圆求最小值(教师版)

第十二讲二次函数--阿氏圆求最值必备知识点点P 在直线上运动的类型称之为“胡不归”问题;点P 在圆周上运动的类型称之为“阿氏圆”问题,“阿氏圆”又称“阿波罗尼斯圆”,已知平面上两点A、B,则所有满足PA=k·PB(k≠1)的点P 的轨迹是一个圆,这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。
如图1所示,⊙O 的半径为r,点A、B 都在⊙O 外,P 为⊙O 上一动点,已知r=k·OB,连接PA、PB,则当“PA+k·PB”的值最小时,P点的位置如何确定?如图2,在线段OB 上截取OC 使OC=k·r,则可说明△BPO 与△PCO 相似,即k·PB=PC。
故本题求“PA+k·PB”的最小值可以转化为“PA+PC”的最小值,其中与A 与C 为定点,P 为动点,故当A、P、C 三点共线时,“PA+PC”值最小。
如图3所示:知识导航【破解策略详细步骤解析】例题演练1.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x ﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值.【解答】解:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,∴,∴,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+n过点A,B,∴,∴,∴直线AB的解析式为y=2x+4,设E(m,2m+4),∴G(m,﹣m2﹣2m+4),∵四边形GEOB是平行四边形,∴EG=OB=4,∴﹣m2﹣2m+4﹣2m﹣4=4,∴m=﹣2∴G(﹣2,4).(3)①如图1,由(2)知,直线AB的解析式为y=2x+4,∴设E(a,2a+4),∵直线AC:y=﹣x﹣6,∴F(a,﹣a﹣6),设H(0,p),∵以点A,E,F,H为顶点的四边形是矩形,∵直线AB的解析式为y=2x+4,直线AC:y=﹣x﹣6,∴AB⊥AC,∴EF为对角线,∴EF与AH互相平分,∴(﹣4+0)=(a+a),(﹣4+p)=(2a+4﹣a﹣6),∴a=﹣2,P=﹣1,∴E(﹣2,0).H(0,﹣1);②如图2,由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),∴EH=,AE=2,设AE交⊙E于G,取EG的中点P,∴PE=,连接PC交⊙E于M,连接EM,∴EM=EH=,∴=,∵=,∴=,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴,∴PM=AM,∴AM+CM的最小值=PC,设点P(p,2p+4),∵E(﹣2,0),∴PE2=(p+2)2+(2p+4)2=5(p+2)2,∵PE=,∴5(p+2)2=,∴p=﹣或p=﹣(由于E(﹣2,0),所以舍去),∴P(﹣,﹣1),∵C(0,﹣6),∴PC==,即:AM+CM的最小值为.2.如图,抛物线y=﹣x2+bx+c经过点A(﹣4,﹣4),B(0,4),直线AC的解析式为y=﹣x﹣6,且与y轴相交于点C,若点E是直线AB上的一个动点,过点E作EF⊥x轴交AC于点F.(1)求抛物线y=﹣x2+bx+c的解析式;(2)点H是y轴上一动点,连接EH,HF,当点E运动到什么位置时,四边形EAFH是矩形?求出此时点E,H的坐标;(3)在(2)的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上以动点,求AM+CM 的最小值.【解答】解:(1)将点A(﹣4,﹣4),B(0,4)代入y=﹣x2+bx+c得:,解得:,∴抛物线解析式为:y=﹣x2﹣2x+4;(2)如图,当点E运动到(﹣2,0)时,四边形EAFH是矩形,设直线AB的解析式为y=kx+b,将点A(﹣4,﹣4),B(0,4)代入得:,解得:,∴线AB的解析式为y=2x+4,∵直线AC的解析式为y=﹣x﹣6,∴AB⊥AC,∴当四边形EAFH是平行四边形时,四边形EAFH是矩形,此时,EF与AH互相平分,设E(m,2m+4),H(0,t)则F(m,﹣m﹣6),∵A(﹣4,﹣4),∴,解得:∴E(﹣2,0),H(0,﹣1);(3)如图,由(2)可知E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),∴EH=,AE=2,设AE交⊙E于点G,取GE的中点P,则PE=,设P(k,2k+4),∵E(﹣2,0),∴PE2=(k+2)2+(2k+4)2=()2,∴k=﹣或k=﹣(舍去),∴P(,﹣1),∵C(0,﹣6),∴PC==,连接PC交⊙E于点M,连接EM,则EM=EH=,∴==,∵==,∴=,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴==,∴PM=AM,∴AM+CM=PM+CM,∴当P、M、C三点共线时,AM+CM取得最小值即PC的长,∴AM+CM最小值为.3.如图1,抛物线y=ax2+bx+c与x轴正半轴交于点A,点B(点A在点B的左侧),与y轴交于点C.若线段AB绕点A逆时针旋转120°,点B刚好与点C重合,点B的坐标为(3,0).(1)求抛物线的表达式;(2)抛物线的对称轴上是否存在一点P,使△ACP为直角三角形?若存在,请求出点P的坐标,若不存在,请说明理由;(3)如图2,以点B为圆心,以1为半径画圆,若点Q为⊙B上的一个动点,连接AQ,CQ,求AQ+CQ的最小值.【解答】解:(1)线段AB绕点A逆时针旋转120°,点B刚好与点C重合,∴∠CAB=120°,AB=AC,∴∠OAC=60°,∴OA=AC•cos60°=AC,OC=AC•sin60°=AC,∵点B的坐标为(3,0),∴OB=3即OA+AC=3,∴OA=1,AC=2,OC=,∴A(1,0),C(0,),又B(3,0),将A、B、C坐标代入y=ax2+bx+c得:,解得,∴抛物线的表达式为y=x2﹣x+;(2)抛物线y=x2﹣x+的对称轴是直线x=2,抛物线的对称轴上存在一点P,使△ACP为直角三角形,设P(2,m),分三种情况:①若∠PCA=90°,如答图1:过P作PD⊥y轴于D,∵A(1,0),C(0,),P(2,m),∴OA=1,OC=,CD=m﹣,PD=2,∵∠DPC=90°﹣∠DCP=∠AOC,∠PDC=∠AOC=90°,∴△PDC∽△COA,∴即,解得m=,∴P坐标为(2,),②若∠CAP=90°,对称轴与x轴交于E,如答图2:∵A(1,0),C(0,),P(2,m),∴OA=1,OC=,PE=m,AE=1,同理可知△AOC∽△PEA,∴即,解得m=,∴P(2,),③若∠APC=90°,∵以AC为直径的圆与对称轴无交点,∴点P不存在,综上所述,△ACP为直角三角形,P坐标为(2,)或(2,);(3)在AB上取BM,使BM=BQ,连接CM,如答图3:∵A(1,0),B(3,0),∴AB=2,以点B为圆心,以1为半径画圆,∴BQ=1,∴=,且∠QBM=∠ABQ,∴△ABQ∽△QBM,∴,即QM=AQ,∴AQ+CQ的最小即是QM+CQ最小,∴当C、Q、M共线时,AQ+CQ的最小为CM的长度,此时OM=,而OC=,∴CM==,∴AQ+CQ的最小值为.4.如图,已知抛物线y=﹣x2+2x+3与x轴交于点A,B(点A在点B的右侧),与y轴交于点C.(1)如图①,若点D为抛物线的顶点,以点B为圆心,3为半径作⊙B.点E为⊙B上的动点,连接A,DE,求DE+AE的最小值.(2)如图②,若点H是直线AC与抛物线对称轴的交点,以点H为圆心,1为半径作⊙H,点Q 是⊙H上一动点,连接OQ,AQ,求OQ+AQ的最小值;(3)如图③,点D是抛物线上横坐标为2的点,过点D作DE⊥x轴于点E,点P是以O为圆心,1为半径的⊙O上的动点,连接CD,DP,PE,求PD﹣PE的最大值.【解答】解:(1)如图1,连接BE,在BA上截取BI=,连接IE,DI,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),抛物线的对称轴为直线:x=1,2+2x+3=0得,x1=﹣1,x2=3,∴OB=1,OA=3,∴AB=OA+OB=4,∵=,∠EBI=∠ABE,∴△BIE∽△BEA,∴,∴IE=AE,∴DE+AE=DE+IE≥DI,∴当点D、E、I共线时,DE+IE最小,最小值是DI的长,∵D(1,4),I(,0),∴DI==,∴DE+AE的最小值为:;(2)如图2,连接OH,QH,QI,在OH上截取HI=,∵A(3,0),C(0,3),∴直线AC的解析式是:y=﹣x+3,当x=1时,y=﹣1+3=2,∴H(1,2),∴OH=,∴,∵∠QHI=∠OHQ,∴△HIQ∽△HQO,∴,∴IQ=,∴+AQ=IQ+AQ≥AI,∴当A、Q(图中Q′)共线时,IQ+AQ=AI,作IE⊥OA于E,HF⊥OA于F,∴IE∥HF,∴△OEI∽△OHF,∴,∴=,∴IE=,OE=,∴AE=OA﹣OE=3﹣=,∴AI===,∴的最小值为:,∵OQ+AQ=(+AQ),∴OQ+AQ的最小值为:×=;(3)如图3,连接OP,在OE上截取OI=,当x=2时,y=﹣22+2×2+3=3,∴D(2,3),,∠POI=∠EOP,∴△POI∽△EOP,∴,∴PI=,∵PD﹣PI≤DI,∴当D,P(图中P′)、I共线时,PD﹣PI最小,∵DI==,∴PD﹣PE的最大值为:.5.如图,直线y=x+2与抛物线y=x2﹣2mx+m2+m交于A、B两点(A在B的左侧),与y轴交于点C,抛物线的顶点为D,抛物线的对称轴与直线AB交于点M.(1)当四边形CODM是菱形时,求点D的坐标;(2)若点P为直线OD上一动点,求△APB的面积;′(3)作点B关于直线MD的对称点B',以点M为圆心,MD为半径作⊙M,点Q是⊙M上一动点,求QB'+QB的最小值.【解答】解:(1)∵D(m,m),OD=m,四边形CODM为菱形,∴OD=OC=2=m,∴m=,∴D();(2)∵y=x+2与抛物线y=x2﹣2mx+m2+m交于A、B两点,∴联立,解得,,∵点A在点B的左侧,∴A(m﹣1,m+1),B(m+2,m+4),∴AB==3,∵直线OD的解析式为y=x,直线AB的解析式为y=x+2,∴AB∥OD,两直线AB、OD之间距离h=2×=,∴SAPB=AB•h=×3×=3;△(3)∵A(m﹣1,m+1),B(m+2,m+4),∴AM=1×=,BM=2×=2,由M点坐标(m,m+2),D点坐标(m,m)可知以MC为半径的圆的半径为(m+2)﹣m=2,取MB的中点N,连接QB、QN、QB′,∴MN=BM=,∵,∠QMN=∠BMQ,∴△MNQ∽△MQB,∴,∴,由三角形三边关系,当Q、N、B′三点共线时QB′+QB最小,∵直线AB的解析式为y=x+2,∴直线AB与对称轴夹角为45°,∵点B、B′关于对称轴对称,∴∠BMB′=90°,由勾股定理得,QB′+QB最小值为B'N===.即QB'+QB的最小值是.6.在平面直角坐标系中,抛物线y=x2﹣2mx+m2+m的顶点为C,(1)求点C的坐标(用含m的代数式表示);(2)如图,当m=0时,直线y=x+2与抛物线交于A、B两点,点A,点B分别在抛物线的对称轴左右两侧;①抛物线的对称轴与直线AB交于点M,点G(1,3),在直线AB上,作B点关于直线MC的对称点B′,以M为圆心,MC为半径作圆,动点Q在圆周上运动时,的比值是否发生变化?若不变,求出比值;若变化,说明变化规律;②直接写出B′Q+QB的最小值.【解答】解:(1)∵y=x2﹣2mx+m2+m=(x﹣m)2+m,∴顶点坐标为C(m,m);(2)①的比值不变,理由如下:∵y=x+2与抛物线y=x2﹣2mx+m2+m交于A、B两点,且m=0,∴令y=x+2=x2,解得:x=﹣1或2,∵点A在点B的左侧,∴A(﹣1,1),B(2,4),∴AB==3,∵直线AB的解析式为y=x+2,∴M(0,2),∴AM==,∴BM=AB﹣AM=2,∵M(0,2),C(0,0)∴⊙M的半径为2,连接QM,∴QM=2,∵G(1,3),∴G为BM的中点,且MG=BM==,∴=,==,∴△MGQ∽△MQB,∴==,∴QG=QB,∴;②由三角形三边关系,当Q、N、B′三点共线时QB′+QB最小,∵直线AB的解析式为y=x+2,∴直线AB与对称轴夹角为45°,∵点B、B′关于对称轴对称,∴∠BMB′=90°,由勾股定理得,QB′+QB最小值===.7.如图,已知点A(﹣4,0),点B(﹣2,﹣1),直线y=2x+b过点B,交y轴于点C,抛物线y=ax2+x+c经过点A,C.(1)求抛物线的解析式;(2)D为直线AC上方的抛物线上一点,且tan∠ACD=,求点D的坐标;(3)平面内任意一点P,与点O距离始终为2,连接PA,PC.直接写出PA+PC的最小值.【解答】解:(1)由题意得,﹣1=2×(﹣2)+b,∴b=3,∴直线AC的解析式是:y=2x+3,∴C(0,3),∴,∴,∴抛物线的解析式是:y=+;(2)如图1,作AF⊥CD于F,作EF⊥y轴于F,作AG⊥EF于G,∵tan∠ACO=,tan∠ACD=,∴∠ACD=∠ACO,∴CE=OC=3,AE=OB=3,可得:△EFC∽△AGE,∴==,设CF=x,则AG=OF=3+x,∴EF==(x+3),在Rt△EFC中,由勾股定理得,x2+[]2=32,∴x1=,x2=﹣3(舍去),∴EF=,OF=,∴E(﹣,),∴直线CD的解析式是:y=﹣x+3,由=﹣得,x3=0(舍去),x4=﹣,当x=﹣时,y=﹣×(﹣)+3=,∴D(﹣,);(3)如2,∵点O距离始终为2,∴点P在以O为圆心,2为半径的圆O上运动,在OA上取OI=1,∵∠POI=∠AOP,=,∴△POI∽△AOP,∴,∴PI=AP,∴PA+PC=PI+PC,∴当C、P、I共线时,PI+PC最小,此时P在线段AI与⊙O的交点P′处,PI+PC=CI,在Rt△COI中,CI===,∴PA+PC的最小值是.8.如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=ax2+x+c经过A、B两点.(1)求二次函数解析式;(2)如图1,点E在线段AB上方的抛物线上运动(不与A、B重合),过点E作ED⊥AB,交AB于点D,作EF⊥AC,交AC于点F,交AB于点M,求△DEM的周长的最大值;(3)在(2)的结论下,连接CM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、C、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.(4)如图2,点N的坐标是(1,0),将线段ON绕点O逆时针旋转得到ON′,旋转角为α(0°<α<90°),连接N′A、N′B,求N′A+N′B的最小值.【解答】解:(1)∵直线y=﹣x+3与x轴交于点A,与y轴交于点B,∴A(4,0),B(0,3).∵抛物线y=ax2+x+c经过A、B两点,∴,解得.∴二次函数的解析式为:y=﹣x2+x+3.(2)∵A(4,0),B(0,3).∴OA=4,OB=3,∴AB=5.∵ED⊥AB,∴∠EDM=∠AOB=90°,∵∠DEM+∠EMD=∠FMA+∠BAO=90°,∠FMA=∠EMD,∴∠DEM=∠BAO,∴△AOB∽△EDM,∴AO:OB:AB=ED:DM:EM=4:3:5,设E的横坐标为t,则E(t,﹣t2+t+3),∴M(t,﹣t+3),∴EM=﹣t2+t+3﹣(﹣t+3)=﹣t2+t.∴△DEM的周长为:ED+DM+EM=EM=﹣(t﹣2)2+,∴当t=2时,△DEM的周长的最大值为.(3)存在以P、Q、C、M为顶点的四边形是平行四边形,理由如下:由y=﹣x2+x+3可知,C(﹣2,0),点Q的横坐标为1,由(2)知,M(2,).①当CM为边,且点P在点Q的左侧时,有x P﹣x Q=x C﹣x M,∴x P﹣1=﹣2﹣2,即x P=﹣3,∴P(﹣3,﹣).当点P在点Q右侧时,x Q﹣x P=x C﹣x M,∴﹣1﹣x P=﹣2﹣2,即x P=5,∴P(5,﹣);②当AM为对角线时,x P+x Q=x C+x M,∴x P+1=﹣2+2,即x P=﹣1,∴P(﹣1,).综上,当以P、Q、C、M为顶点的四边形是平行四边形时,点P的坐标为(﹣3,﹣)或(5,﹣)或(﹣1,).(4)如图,在y轴的正半轴取OG,使得OG=,连接GN′,∵OG•OB=1,ON2=1,∴OG•OB=ON2,∵∠GON′=∠N′OB,∴△OBN′∽△ON′G,∴BN′:N′G=OB:ON′=3,∴N′G=N′B,∴N′A+N′B=N′C+N′G,∴当A,N′,G三点共线时,N'A+N'B的值最小.此时AG==.∴N'A+N'B的最小值为.9.如图1,抛物线y=ax2+bx﹣4与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣1,0),抛物线的对称轴是直线x=.(1)求抛物线的解析式;(2)若点P是直线BC下方的抛物线上一个动点,是否存在点P使四边形ABPC的面积为16,若存在,求出点P的坐标若不存在,请说明理由;(3)如图2,过点B作BF⊥BC交抛物线的对称轴于点F,以点C为圆心,2为半径作⊙C,点Q为⊙C上的一个动点,求BQ+FQ的最小值.【解答】解:(1)∵抛物线y=ax2+bx﹣4与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣1,0),抛物线的对称轴是直线x=,∴,解得.∴抛物线的解析式为:y=x2﹣3x﹣4.(2)由(1)知抛物线的解析式为:y=x2﹣3x﹣4.令y=0,解得x=﹣1或x=4,∴A(﹣1,0),B(4,0),设直线BC的解析式为:y=kx+n,∴,解得.∴直线BC的解析式为:y=x﹣4.设点P的横坐标为m,则P(m,m2﹣3m﹣4),过点P作PM∥y轴交BC于点M,∴M(m,m﹣4),∴PM=(m﹣4)﹣(m2﹣3m﹣4)=﹣m2+4m.∴SABPC=S△ABC+S△BCP四边形=×(4+1)×4+(m2﹣4m)×4=﹣2m2+8m+10.∵四边形ABPC的面积为16,∴﹣2m2+8m+10=16,解得m=1或m=3,∴P(1,﹣6)或(3,﹣4).(3)如图,过点B作BF⊥BC交抛物线的对称轴于点F,以点C为圆心,2为半径作⊙C,∵B(4,0),C(0,﹣4),∴OB=OC=4,∴BC=4,∠OBC=45°,∵BF⊥BC,∴∠FBO=45°,∵抛物线的对称轴是直线x=,∴点F的纵坐标为:4﹣=,∴F(,).在CB上取CE=,过点E作EG⊥OC,交y轴于点G,交抛物线对称轴于点H,∴CG=EG=,EH=﹣=1.∴FH=6,∵CQ=2,CE=,BC=4,∴=,=,∠QCE=∠BCQ,∴△CQE∽△CBQ,∴==,∴QE=BQ,∴BQ+FQ=QE+FQ≥FE,∴当F,Q,E三点共线时,取得最小值,最小值为FE的长,∵EH⊥FH,∴EF=.则BQ+FQ的最小值为:.10.如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0),点A为抛物线的顶点.(1)求二次函数的表达式;(2)在抛物线的对称轴上是否存在点M,使△ABM是等腰三角形?如果存在,请求出点M的坐标.如果不存在,请说明理由;(3)若点P为⊙O上的动点,且⊙O的半径为,求的最小值.【解答】解:(1)由题意,解得:,∴二次函数的表达式为y=x2﹣2x;(2)过点A作直线AF⊥x轴于点F,由(1)得y=(x﹣4)2﹣4,∴抛物线的顶点A(4,﹣4),①AM=BM,∵B(8,0),∴BF=4,∵∠AFB=90°,AF=BF=4,∴△ABF是等腰直角三角形,∴M在点F处,△ABM是等腰直角三角形,此时M为(4,0),②AB=AM,由①得△ABF是等腰直角三角形,BF=4,∴AB===4,∴M为(4,﹣4﹣4)或(4,﹣4+4),③AB=BM,∵AB=BM,BF⊥AM,∴MF=AF,∴M为(4,4),综上所述,M为(4,0),(4,﹣4﹣4)或(4,﹣4+4)或(4,4);(3)如图2,以O为圆心,为半径作圆,则点P在圆周上,在OA上取点D,使OD=,连接PD,则在△APO和△PDO中,满足:==2,∠AOP=∠POD,∴△APO∽△PDO,∴===2,从而得:PD=AP,∴AP+PB=PD+PB,∴当B、P、D三点共线时,PD+PB取得最小值,过点D作DG⊥OB于点G,由于OD=,且△ABO为等腰直角三角形,则有DG=1,∠DOG=45°,∴AP+PB的最小值为:AP+PB=DB===5.。
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例 1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B 重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
(三)动线(定点)位置需变换线段变换的方法:(1)等值变换:翻折、平移;(2)比例变换:三角、相似。
2025中考数学二次函数压轴题专题练习21 阿氏圆模型(学生版+解析版)

专题21阿氏圆模型一、知识导航所谓“阿氏圆",是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不力l)的点的栠合叫做圆.如下图,已知A、B两点,点P满足PA:PB=k (k* I),则满足条件的所有的点P构成的图形为圆.pA下给出证明法一:首先了解两个定理(I)角平分线定理:如图,在6-ABC中,AD是乙BAC的角平分线则AB DBAC DCAB DcS BD S ABxDE AB AB DB 证明:一竺丛=---坐上==--,即一一=--s AC/) CD S ACD ACxDF AC. AC DC(2)外角平分线定理;如图,在6.ABC中,外角CAE的角平分线AD交BC的延长线于点D,则AB DB AC DC ^EA,,``B C\\\\IID证明:在B A 延长线上取点E 使得AE=AC ,连接BO,则6.ACD 兰6.AED (SAS), CD=ED 且AD DB ABAB DB 平分乙BDE ,则一一=一一,即一一=一一.DE AE AC DC接下来开始证明步骤:仁',,夕夕2A、、、、、、、、、、、、、MB'N如图,PA:PB=k,作LAPB 的角平分线交AB 于M 点,根据角平分线定理,MA PA —=—=k '故M 点为定MB PB点,即乙APB 的角平分线交AB 于定点;作乙APB 外角平分线交直线AB于N 点,根据外角平分线定理,NA PA—=—=k,故N 点为定点,即乙APB NB PB外角十分线交直线AB 于定点;又乙MPN=90°,定边对定角,故P 点轨迹是以MN 为直径的圆AN法二:达系不妨将点A 、B 两点置于x轴上且关于原点对称,设A (-m, 0),则B (m, 0),设P (x, y), PA=kPB, 即:J (x+m)2+y 2 =k J(x -m)2+ y 2 (x+m)2+y 2 =k 2(x -m )2+k 2y 2 (炉-1)(x2+ y 2)-(2m +2k 2m)x+(k 2-1)矿=02 2m +2k'n /, X-+y-k 2-lx+ni 2 =0解析式满足圆的一般方程,故P点所构成的图形是固,且圆心与AB 共线.除了证明之外,我们还需了解“阿氏圆”的一些性质:(1)PA MA NA —=—=—=k.PB MB NB应用:祁据点A 、B的位置及k的值可确定M 、N及圆心0.OB OP(2) 6.0BPV>/:::,.QPA,即一一=一一,变形为OP 2=OA-OB.OP OA 应用:粮据圆心及半径和A 、B其中一点,可求A 、B另外一点位置.(3)OP OB PA —=—=—=k .OA OP PB应用:已知半径及A 、B中的其中一点,即可知道PA:PB的值.pAN匡I1如图,在L.ABC中,AB=4,AC=2,点D为AB边上一点,当AD=时,L.ACDv>L.ABCC8二二AAC AD觯:若6.ACDV)6.A B C 则有—-=——即AC 2=AB·ADAB AC·: A B =4,AC =2AC2:. AD =—= 1AD故答案为I.2如图,点P 是半径为2的O O 上一动,点,点A 、B为o o 外的定点,连接PA 、P B,点B 与固心0的I距离为4要使PA+�PB 的值最小,如何确定点P,并说明理由.2ABI 思路分析)构造相似三角形,将所求两条线段的和转化为一条线段,此线段与圆的交点即为所求A(详解J连接OB,OP ,在OB 上截取o c 亏1,连接AC 交('0于点P',连接PC.OP OC l ·—=—=-,乙POC =乙BOPOB OP 2 :.�POC BOPPC ll :.—= -,即-PB =PC PB 2· 21:. PA+.:..PB= PA+PC�AC2当点A 、P 、C三点共线时,PA+PC的值最小,最小值为AC的长,即当点P与P'重合时,PA+�PB的2 根据阿氏圆可得OP 2=0B -OC即O P 2 22OC =—=—=1OB 4值最小.23如图,平面直角坐标系中,A(4,0),B(0,3),点E在以原点0为圆心,2力半径的圆上运动,求AE+�BE3 的最小值.y j.... _3一3-,(思路分析)在坐标轴上找一点,构造相似三角形,利用对应边成比例将两条线段的和转化为求一条线段的长,即为最小值.(详解】如图,在y轴上取一点M(O,-:-)4 3 . OE OM 2 4,连接OE,EM, AM,则OE =2,0B =3, OM=-:-3==-OB OE 3又?乙EOM=乙BOE :. EOM =、BOE EM OM 2 2 :.—=—=-,即EM =::::_BEBE OE3. 3 2:. AE+::::_B E=AE+EM切AM3当A 、E 、M三点共线时,AE+BM的值最小,最小值为AM的长在Rt ,.AOM 中,A M =拓夼言夼=幸2:.当E 为线段A.11与o o 的交点时,AE +78E 有最小值为一—-.4而3 3y ·--3-3-'3 2.9 4.如图,已知抛物线y =--x +-x+3与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,44点E的坐标为(2,0),将线段OE绕点0逆时针旋转得到OE',旋转角力a(0°<a<90°),连接BE'、2CE',求BE'+�CE'的敢小值.3(思路分析】由旋转可知E'点的运动轨迹为以原点0为圆心,2为半径的圆在笫一象限内的一段固弧,在y轴上找一点,构造相似三角形,再结合各点坐标求解即可3 9(详解】解.?抛物线的解析式为y=--x 2+-x+34 4 :. B (4,0),C(0,3) ·..点E的坐标为(2,0):.,占、E'的运动轨迹为以原点0为圆心,2为半径的圆在第一象限内的一段圆弧4 如图在y轴上取一点M (O,-::),连接OE',E'M,B M,则OE'=2, OC = 3, OM =-:: 43......3 . E'M OM 2..-=-=-OCOE' 3 又?L.E'OM=乙COE':. E'OM(/) COE'. EM 2 2:.-—=-即E 'M=::..CE 'C E '33 2:. BE'+::..CE'=BE'+E'M�BM当B 、E',M三点共线时,BE'+E'M的值最小,最小值为BM的长·:BM=豆二尸三3)32 4而:.当E'为BM与圆弧的交点时,BE'+7CE'有最小值为3 3I三、中考真题演练I.(2022广东惠州一模)如图1,抛物线y=,矿+bx~4与X轴交于A、B两点,与Y轴交千点C,其中点A的坐标为(-1,0),抛物线的对称轴是迎线x=-.3 2yy图1图2(1)求抛物线的解析式:(2)若点P是直线BC下方的抛物线上一个动点,是否存在点P使四边形ABPC的面积为16,若存在,求出点P的坐标若不存在,请说明理由;(3)如图2,过点B 作BF 上BC 交抛物线的对称轴千点F,以点C 为圆心,2为半径作(,C'点Q 为C上的五一个动点,求--B Q+FQ的最小值.42如图),抛物线)1=成+(a+3)..I,+3(a'1'0)与x轴交于点A(4,0),与y轴交于点B,;{:丘轴上有一动点E(m,O )(0<m<4),过点E作x轴的垂线交直线AB千点N,交抛物线于点P,过点P作PM上AB千点M.y yxX图l(I)求a的值和且线AB的函数表达式:图2C. 6(2)设t:.PMN的周长为C,,t:.A EN的周长为C“若-=-求m的值C 5(3)如图2,在(2)的条件下,将线段OE绕点0逆时针旋转得到OE',旋转角为a (0°<a<90勺,连按E'A 、EB,求E'A+二E'B的最小值.33.(20l9山东中考真题)如图I,在平面直角坐标系中,直线y=-5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B图1图2(l)求抛物线解析式及B点坐标;(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC 面积最大,求此时点M的坐标及四边形AMBC的面积;(3)如图2,若P点是半径为2的0B上一动点,连接PC、PA,当点P运动到某一位置时,PC+�PA的2值最小,请求出这个最小值,并说明理由.4.(2018广西柳州中考真题)如图,抛物线y= a.x2 +bx+c圭卢轴交千A(.J3,0), 8两点(点8在点A的左侧),与Y轴交于点C,且08=30A=./3oc'LO A C的平分线AD交Y轴于点D,过点A且垂直于AD的均线[交Y轴于点E,点P是X轴下方抛物线上的一个动点,过点P作PF..l.x轴,垂足为F,交直线AD千点H.(l)求抛物线的解析式:(2)设点P的横坐标为111,当FH=HP时,求1/1.的值:I(3)当归线P F为抛物线的对称轴时,以点H为圆心,-H C为半径作1)H,点Q为o H上的一个动点,求2l�AQ+EQ的最小值4x专题21阿氏圆模型一、知识导航所谓“阿氏圆",是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不力l)的点的栠合叫做圆.如下图,已知A、B两点,点P满足PA:PB=k (k* I),则满足条件的所有的点P构成的图形为圆.pA下给出证明法一:首先了解两个定理(I)角平分线定理:如图,在6-ABC中,AD是乙BAC的角平分线则AB DBAC DCAB DcS BD S ABxDE AB AB DB 证明:一竺丛=---坐上==--,即一一=--s AC/) CD S ACD ACxDF AC. AC DC(2)外角平分线定理;如图,在6.ABC中,外角CAE的角平分线AD交BC的延长线于点D,则AB DB AC DC ^EA,,``B C\\\\IID证明:在B A 延长线上取点E 使得AE=AC ,连接BO,则6.ACD 兰6.AED (SAS), CD=ED 且AD DB ABAB DB 平分乙BDE ,则一一=一一,即一一=一一.DE AE AC DC接下来开始证明步骤:仁',,夕夕2A、、、、、、、、、、、、、MB'N如图,PA:PB=k,作LAPB 的角平分线交AB 于M 点,根据角平分线定理,MA PA —=—=k '故M 点为定MB PB点,即乙APB 的角平分线交AB 于定点;作乙APB 外角平分线交直线AB于N 点,根据外角平分线定理,NA PA—=—=k,故N 点为定点,即乙APB NB PB外角十分线交直线AB 于定点;又乙MPN=90°,定边对定角,故P 点轨迹是以MN 为直径的圆AN法二:达系不妨将点A 、B 两点置于x轴上且关于原点对称,设A (-m, 0),则B (m, 0),设P (x, y), PA=kPB, 即:J (x+m)2+y 2 =k J(x -m)2+ y 2 (x+m)2+y 2 =k 2(x -m )2+k 2y 2 (炉-1)(x2+ y 2)-(2m +2k 2m)x+(k 2-1)矿=02 2m +2k'n /, X-+y-k 2-lx+ni 2 =0解析式满足圆的一般方程,故P点所构成的图形是固,且圆心与AB 共线.除了证明之外,我们还需了解“阿氏圆”的一些性质:(1) PA MA NA —=—=—=k .PB MB NB应用:祁据点A 、B的位置及k的值可确定M 、N及圆心0.OB OP(2) 6.0BPV>/:::,.QPA,即一一=一一,变形为OP 2=OA-OB.OP OA 应用:粮据圆心及半径和A 、B其中一点,可求A 、B另外一点位置.(3)OP OB PA —=—=—=k .OA OP PB应用:已知半径及A 、B中的其中一点,即可知道PA:PB的值.pAN匡I1如图,在L.ABC中,AB=4,AC=2,点D为AB边上一点,当AD=时,L.ACDv>L.ABCC8二二AAC AD觯:若6.ACDV)6.A B C 则有—-=——即AC 2=AB·ADAB AC·: AB =4,AC =2AC2:. AD =—= 1AD故答案为I.2如图,点P 是半径为2的O O 上一动点,点A 、B为o o 外的定点,连接PA 、P B,点B 与固心0的I距离为4要使PA+�PB的值最小,如何确定点P,并说明理由.2ABI 思路分析)构造相似三角形,将所求两条线段的和转化为一条线段,此线段与圆的交点即为所求.A(详解J连接OB,OP ,在OB 上截取o c 亏1,连接AC 交('0于点P',连接PC.OP OC l ·—=—=-,乙POC =乙BOPOB OP 2 :.�POC BOPPC ll :.—= -,即-PB =PC PB 2· 21:. PA+.:..PB= PA+PC�AC2当点A 、P 、C三点共线时,PA+PC的值最小,最小值为AC的长,即当点P与P'重合时,PA+�PB的2 根据阿氏圆可得O P 2=0B -O C 即O P 2 22OC =—=—=1OB 4值最小.23如图,平面直角坐标系中,A(4,0),B(0,3),点E在以原点0为圆心,2力半径的圆上运动,求AE+�BE3 的最小值.y j一3-,(思路分析)在坐标轴上找一点,构造相似三角形,利用对应边成比例将两条线段的和转化为求一条线段的长,即为最小值.(详解】如图,在y轴上取一点M(O,-:-)4 3 . OE OM 2 4,连接OE,EM, AM,则OE =2,0B=3, O M=-:-3==-OB OE 3又?乙EOM=乙BOE :. EOM =、BOE EM OM 2 2 :.—=—=-,即EM =::::_BEBE OE3. 3 2:. AE+::::_B E=AE+EM切AM3当A 、E 、M三点共线时,AE+BM的值最小,最小值为AM的长在Rt ,.AOM 中,AM =拓千言夼=孛2:.当E 为线段A.11与o o 的交点时,AE +78E 有最小值为一—-.4而3 3y ·--3-3-'3 2. 94.如图,已知抛物线y =--x +-x+3与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,4 4点E的坐标为(2,0),将线段OE绕点0逆时针旋转得到OE',旋转角力a(0°<a<90°),连接BE'、2CE',求BE'+�CE'的敢小值.3(思路分析】由旋转可知E'点的运动轨迹为以原点0为圆心,2为半径的圆在笫一象限内的一段圆弧,在y轴上找一点,构造相似三角形,再结合各点坐标求解即可3 9(详解】解.?抛物线的解析式为y=--x 2+-x+34 4 :. B (4,0),C(0,3) ·.点E的坐标为(2,0):.,占、E'的运动轨迹为以原点0为圆心,2为半径的圆在第一象限内的一段圆弧4 如图在y轴上取一点M (O,-::),连接OE',E'M,BM,则OE'=2,OC=3, OM=-::43......3 . E'M OM 2..-=-=-OCOE' 3 又?L.E'OM =乙COE':. E'OM(/) COE'. EM 2 2:.-—=-即E 'M=::..CE 'C E '33 2:. B E'+::..CE'=BE'+E'M�BM当B 、E',M三点共线时,BE'+E'M的值最小,最小值为BM的长·:BM =芦言尸=玉3 J3 2 4而:当E'为BM与圆弧的交点时,BE'+7CE'有最小值为3 3I三、中考真题演练I.(2022广东惠州一模)如图1,抛物线y=,矿+bx~4与X轴交于A、B两点,与Y轴交千点C,其中点A的坐标为(-1,0),抛物线的对称轴是迎线x=-.3 2yy图1图2(1)求抛物线的解析式:(2)若点P是直线BC下方的抛物线上一个动点,是否存在点P使四边形ABPC的面积为16,若存在,求出点P的坐标若不存在,请说明理由;(3)如图2,过点B作BF上BC交抛物线的对称轴千点F,以点C为圆心,2为半径作(,C'点Q为C上的五一个动点,求--B Q+F Q的最小值.4【答案】(I)y=入.2-3x-4(2)P{l,6)或(3,4)(3)扫3【分析】(I)根据点A的坐标为(-1,0),抛物线的对称轴是直线x=-.待定系数法求二次函数解析式即可,2(2)先求得直线BC解析式,设P(m,m2-3m-4),则Q(m m-4),过点P作PQ轴交直线BC千点Q,根据S四边彤A BPC= s AOC +S如,等干16建立方程,解一元二次方程即可求得Ill的值,然后求得P的坐标,五(3)在CB上取CE=--,过点E作EG J_OC,构造CQE V>.C BQ,则当F,Q E三点共线时,取得最小值,最小值为FE,勾股定理解直角三形即可.【详解】(I)解:?抛物线y=矿+bx-4与X轴交于A、B两点,与Y轴交于点C,点A的坐标为-l,O),抛物线的对称轴是宜线x=-,3:. C(O,--4),, 4 , 。
阿氏圆中考数学压轴热点

阿氏圆模型专题训练阿氏圆 ( 阿波罗尼斯圆 ) :已知平面上两定点 A 、B ,则全部知足 PA/PB=k(k 不等于 1) 的点 P 的轨迹是一个圆,这个轨迹最初由古希腊数学家阿波罗尼斯发现, 故称阿氏圆。
在初中的题目中常常利用逆向思想结构 "斜 A"型相像 ( 也叫 " 母子型相像 " 或 " 佳人鱼相像 ")+ 两点间线段最短解决带系数两线段之和的最值问题。
察看下边的图形,当 P 在在圆上运动时, PA 、PB 的长在不停的发生变化,但它们的比值却一直保持不变。
解决阿氏圆问题,第一要娴熟掌握母子型相像三角形的性质和结构方法。
如图,在△ ABC 的边 AC 上找一点 D ,使得 AD/AB=AB/AC ,则此时△ ABD ∽△ ACB 。
母子型相像(共角共边)BA D C那么怎样应用 " 阿氏圆 " 的性质解答带系数的两条线段和的最小值呢 ?我们来看一道基此题目 :已知∠ ACB=90°, CB=4,CA=6,⊙ C 半径为 2,P 为圆上一动点 .A1BP 的最小值为(1) 求 AP2(2) 求 1AP BP 的最小值为3P(3)CB实战练习:1、已知⊙ O 半径为 1, AC 、 BD 为切线, AC=1,BD=2,P 为弧 AB 上一动点,D试求2 PC PD 的最小值2C PA OB2、已知点 A (4, 0),B (4,4),点 P 在半径为 2 的⊙ O 上运动,试求 1AP BP 的最小值2yBPOA x3、已知点A(-3,0) , B( 0,3 ), C( 1,0 ),若点 P为⊙ C 上一动点,且⊙ C与 y 轴相切,(1)1AP BP 的最小值;y 4B(2)S VPAB的最小值 .PA OCx4、如图 1,在平面直角坐标系 xoy 中,半⊙ O交 x 轴与点 A、B(2,0) 两点, AD、BC均为半⊙ O 的切线, AD=2, BC=7.(1)求 OD的长;(2)如图 2,若点 P 是半⊙ O上的动点, Q为 OD的中点 . 连结 PO、 PQ.①求证:△ OPQ∽△ ODP;②能否存在点P,使PD2PC有最小值,若存在,试求出点P 的坐标;若不存在,请说明原因.5、(1)如图 1,已知正方形 ABC的边长为 4,圆 B 的半径为 2,点 P 是圆 B 上的一个动点,1122(2)如图 2,已知正方形 ABCD的边长为 9,圆 B 的半径为 6,点 P 是圆 B 上的一个动点,那么PD 2 PC的最小值为; PD2 PC的最大值为33(3)如图3,已知菱形ABCD的边长为4,∠ B=60°,圆 B 的半径为 2. 点P 是圆 B 上的一个动点. 那么PD 1PC的最小值为; PD1PC的最大值为22。
(完整word版)专题:阿氏圆与线段和最值问题(含答案),推荐文档

专题:阿氏圆与线段和最值问题以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要.具体内容如下: 阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P 到两定点A 、B 的距离之比等于定比n m (≠1),则P 点的轨迹,是以定比n m内分和外分定线段AB 的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB ,(k ≠1)P 点的运动轨迹是圆或者圆弧的题型.PA+kPB,(k ≠1)P 点的运动轨迹是圆或圆弧的题型阿氏圆基本解法:构造母子三角形相似例题1、问题提出:如图1,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连结AP 、BP ,求AP +BP 的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD =1,则有==,又∵∠PCD =∠BCP ,∴△PCD ∽△BCP .∴=,∴PD =BP ,∴AP +BP =AP +PD .请你完成余下的思考,并直接写出答案:AP +BP 的最小值为 .(2)自主探索:在“问题提出”的条件不变的情况下,AP +BP 的最小值为 . (3)拓展延伸:已知扇形COD 中,∠COD =90°,OC =6,OA =3,OB =5,点P 是上一点,求2P A +PB 的最小值.【分析】(1)利用勾股定理即可求出,最小值为AD =;(2)连接CP,在CA上取点D,使CD=,则有,可证△PCD∽△ACP,得到PD=AP,即:AP+BP=BP+PD,从而AP+BP的最小值为BD;(3)延长OA到点E,使CE=6,连接PE、OP,可证△OAP∽△OPE,得到EP=2P A,得到2P A+PB=EP+PB,当E、P、B三点共线时,得到最小值.【解答】解:(1)如图1,连结AD,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,在Rt△ACD中,CD=1,AC=6,∴AD==,AP+BP的最小值为,故答案为:;(2)如图2,连接CP,在CA上取点D,使CD=,∴,∵∠PCD=∠ACP,∴△PCD∽△ACP,∴,∴PD=AP,∴AP+BP=BP+PD,∴同(1)的方法得出AP+BP的最小值为BD==.故答案为:;(3)如图3,延长OA到点E,使CE=6,∴OE=OC+CE=12,连接PE、OP,∵OA=3,∴,∵∠AOP=∠AOP,∴△OAP∽△OPE,∴,∴EP=2P A,∴2P A+PB=EP+PB,∴当E、P、B三点共线时,取得最小值为:BE==13.【点评】此题是圆的综合题,主要考查了勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出△PCD ∽△ACP和△OAP∽△OPE,也是解本题的难点.例题2、问题背景如图1,在△ABC中,BC=4,AB=2AC.问题初探请写出任意一对满足条件的AB与AC的值:AB=,AC=.问题再探如图2,在AC右侧作∠CAD=∠B,交BC的延长线于点D,求CD的长.问题解决求△ABC的面积的最大值.【分析】问题初探:设AC=x,则AB=2x,根据三角形三边间的关系知2x﹣x<4且2x+x >4,解之得出x的范围,在此范围内确定AC的值即可得出答案;问题再探:设CD=a、AD=b,证△DAC∽△DBA得==,据此知,解之可得;问题解决:设AC=m、则AB=2m,根据面积公式可得S△ABC=2m,由余弦定理可得cos C,代入化简S△ABC=,结合m的取值范围,利用二次函数的性质求解可得.【解答】解:问题初探,设AC=x,则AB=2x,∵BC=4,∴2x﹣x<4且2x+x>4,解得:<x<4,取x=3,则AC=3、AB=6,故答案为:6、3;问题再探,∵∠CAD=∠B,∠D=∠D,∴△DAC∽△DBA,则==,设CD=a、AD=b,∴,解得:,即CD=;问题解决,设AC=m、则AB=2m,根据面积公式可得S△ABC=AC•BC sin C=2m sin C=2m,由余弦定理可得cos C=,∴S△ABC=2m=2m===由三角形三边关系知<m<4,所以当m=时,S△ABC取得最大值.【点评】本题主要考查三角形三边关系、相似三角形的判定与性质及二次函数的应用,解题的关键是熟练掌握相似三角形的判定与性质、三角形的面积公式、余弦定理及二次函数的性质.例题3、如图,已知AC=6,BC=8,AB=10,⊙C的半径为 4,点D 是⊙C上的动点,连接AD,BD,则12AD BD的最小值为_________【解答】例题4、在△ABC中,AB=9,BC=8,∠ABC=60°,⊙A 的半径为6,P是⊙A上的动点,连接PB,PC,则3PC+2PB的最小值为___________【解答】21练习1.如图,在平面直角坐标系中,点A(4,0),B(4,4),点P在半径为2的圆O上运动,则AP+BP的最小值是.【分析】如图,取点K(1,0),连接OP、PK、BK.由△POK∽△AOP,可得==,推出PK=P A,在△PBK中,PB+PK≥BK,推出PB+P A=PB+PK的最小值为BK的长.【解答】解:如图,取点K(1,0),连接OP、PK、BK.∵OP=2,OA=4,OK=1,∴==,∵∠POK=∠AOP,∴△POK∽△AOP,∴==,∴PK=P A,∴PB+P A=PB+PK,在△PBK中,PB+PK≥BK,∴PB+P A=PB+PK的最小值为BK的长,∵B(4,4),K(1,0),∴BK==5.故答案为5.【点评】本题考查坐标与图形的性质、相似三角形的判定和性质、三角形的三边关系、两点之间的距离公式等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考填空题中的压轴题.2.如图,正方形ABCD的边长为4,⊙B的半径为2,P为⊙B上的动点,则PD+PC的最小值等于.【分析】在BC上截取BE=1,连接BP,PE,由正方形的性质可得BC=4=CD,BP=2,EC=3,可证△PBE∽△CBP,可得PE=PC,即当点D,点P,点E三点共线时,PD+PE 有最小值,即PD+PC有最小值,【解答】解:如图,在BC上截取BE=1,连接BP,PE,∵正方形ABCD的边长为4,⊙B的半径为2,∴BC=4=CD,BP=2,EC=3∵,且∠PBE=∠PBE∴△PBE∽△CBP∴∴PE=PC∴PD+PC=PD+PE∴当点D,点P,点E三点共线时,PD+PE有最小值,即PD+PC有最小值,∴PD+PC最小值为DE==5故答案为:5【点评】本题考查了正方形的性质,圆的有关知识,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+ PC的最小值为;PD+4PC的最小值为.【分析】①如图,连接PB、在BC上取一点E,使得BE=1.只要证明△PBE∽△CBP,可得==,推出PD+PC=PD+PE,再根据三角形的三边关系PE+PD≤DE即可解决问题;②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.只要证明△PBE∽△DBP,可得==,推出PE=PD,推出PD+4PC=4(PD+PC)=4(PE+PC),根据三角形的三边关系PE+PC≤EC即可解决问题;【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE•BC=4,∴PB2=BE•BC,∴=,∵∠PBE=∠CBP,∴△PBE∽△CBP,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.∵PB2=4,BE•BD=×4=4,∴BP2=BE•BD,∴=,∵∠PBE=∠PBD,∴△PBE∽△DBP,∴==,∴PE=PD,∴PD+4PC=4(PD+PC)=4(PE+PC),∵PE+PC≥EC,在Rt△EFC中,EF=,FC=,∴EC=,∴PD+4PC的最小值为10.故答案为5,10.【点评】本题考查轴对称最短问题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会根据相似三角形解决问题,属于中考填空题中的压轴题.4.如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD的最小值.【分析】如图当A、P、D共线时,PC+PD最小,根据PC+PD=PM+PD=DM=AD﹣AM即可计算.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,∵AB=BD=4,BD是切线,∴∠ABD=90°,∠BAD=∠D=45°,∵AB是直径,∴∠APB=90°,∴∠P AB=∠PBA=45°,∴P A=PB,PO⊥AB,∵AC=PO=2,AC∥PO,∴四边形AOPC是平行四边形,∴OA=OP,∠AOP=90°,∴四边形AOPC是正方形,∴PM=PC,∴PC+PD=PM+PD=DM,∵DM⊥CO,∴此时PC+DP最小=AD﹣AM=2﹣=.【点评】本题考查切线的性质、轴对称﹣最短问题、正方形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是找到点P的位置,学会通过特殊点探究问题,找到解题的突破口,属于中考常考题型.5.如图,在Rt△ABC中,∠A=30°,AC=8,以C为圆心,4为半径作⊙C.(1)试判断⊙C与AB的位置关系,并说明理由;(2)点F是⊙C上一动点,点D在AC上且CD=2,试说明△FCD~△ACF;(3)点E是AB边上任意一点,在(2)的情况下,试求出EF+F A的最小值.【分析】(1)结论:相切.作CM⊥AB于M.,只要证明CM=4,即可解决问题;(2)由CF=4,CD=2,CA=8,推出CF2=CD•CA,推出=,由∠FCD=∠ACF,即可推出△FCD∽△ACF;(3)作DE′⊥AB于E′,交⊙C于F′.由△FCD∽△ACF,可得==,推出DF=AC,推出EF+AF=EF+DF,所以欲求EF+AF的最小值,就是要求EF+DF 的最小值;【解答】(1)解:结论:相切.理由:作CM⊥AB于M.在Rt△ACM中,∵∠AMC=90°,∠CAM=30°,AC=8,∴CM=AC=4,∵⊙O的半径为4,∴CM=r,∴AB是⊙C的切线.(2)证明:∵CF=4,CD=2,CA=8,∴CF2=CD•CA,∴=,∵∠FCD=∠ACF,∴△FCD∽△ACF.(3)解:作DE′⊥AB于E′,交⊙C于F′.∵△FCD∽△ACF,∴==,∴DF=AC,∴EF+AF=EF+DF,∴欲求EF+AF的最小值,就是要求EF+DF的最小值,当E与E′,F与F′重合时,EF+DF的值最小,最小值=DE′=AD=3.【点评】本题考查圆综合题、切线的判定和性质、相似三角形的判定和性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,正确切线的证明方法,学会正确寻找相似三角形解决问题,学会利用垂线段最短解决问题,属于中考压轴题.6.问题提出:如图1,在等边△ABC中,AB=12,⊙C半径为6,P为圆上一动点,连结AP,BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB 上取点D,使CD=3,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,AP+PC的最小值为.(3)拓展延伸:如图4,扇形COD中,O为圆心,∠COD=120°,OC=4,OA=2,OB=3,点P是上一点,求2P A+PB的最小值,画出示意图并写出求解过程.【分析】(1)由等边三角形的性质可得CF=6,AF=6,由勾股定理可求AD的长;(2)在AB上截取BF=1,连接PF,PC,由,可证△ABP∽△PBF,可得PF=AP,即AP+PC=PF+PC,则当点F,点P,点C三点共线时,AP+PC的值最小,由勾股定理可求AP+PC的值最小值;(3)延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,由,可得△AOP∽△POF,可得PF=2AP,即2P A+PB=PF+PB,则当点F,点P,点B三点共线时,2AP+PB的值最小,由勾股定理可求2P A+PB的最小值.【解答】解:(1)解:(1)如图1,连结AD,过点A作AF⊥CB于点F,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,∵AC=12,AF⊥BC,∠ACB=60°∴CF=6,AF=6∴DF=CF﹣CD=6﹣3=3∴AD==3∴AP+BP的最小值为3(2)如图,在AB上截取BF=1,连接PF,PC,∵AB=9,PB=3,BF=1∴,且∠ABP=∠ABP,∴△ABP∽△PBF,∴∴PF=AP∴AP+PC=PF+PC,∴当点F,点P,点C三点共线时,AP+PC的值最小,∴CF===5∴AP+PC的值最小值为5,(3)如图,延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,∵OC=4,FC=4,∴FO=8,且OP=4,OA=2,∴,且∠AOP=∠AOP∴△AOP∽△POF∴∴PF=2AP∴2P A+PB=PF+PB,∴当点F,点P,点B三点共线时,2AP+PB的值最小,∵∠COD=120°,∴∠FOM=60°,且FO=8,FM⊥OM∴OM=4,FM=4∴MB=OM+OB=4+3=7∴FB==∴2P A+PB的最小值为.【点评】此题是圆的综合题,主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出相似三角形,也是解本题的难点.7.(1)如图1,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+的最小值和PD﹣的最大值;(2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B 上的一个动点,那么PD+的最小值为,PD﹣的最大值为.【分析】(1)如图1中,在BC上取一点G,使得BG=1.由△PBG∽△CBP,推出==,推出PG=PC,推出PD+PC=DP+PG,由DP+PG≥DG,当D、G、P 共线时,PD+PC的值最小,最小值为DG==5.由PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5;(2)如图3中,在BC上取一点G,使得BG=4.解法类似(1);(3)如图4中,在BC上取一点G,使得BG=4,作DF⊥BC于F.解法类似(1);【解答】解:(1)如图1中,在BC上取一点G,使得BG=1.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==5.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5.(2)如图3中,在BC上取一点G,使得BG=4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(3)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.【点评】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.8.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)在(2)的前提下,y轴上是否存在一点H,使∠AHF=∠AEF?如果存在,求出此时点H的坐标,如果不存在,请说明理由.【分析】(1)把A、B点的坐标分别代入代入y=﹣x2+bx+c得关于b、c的方程组,然后解方程组求出b、c,从而得到抛物线的解析式;(2)先利用待定系数法求出直线AB的解析式为y=2x+4,设G(x,﹣x2﹣2x+4),则E(x,2x+4),根据平行四边形的判定,当GE=OB时,且点G在点E的上方,四边形GEOB为平行四边形,从而得到﹣x2﹣2x+4﹣(2x+4)=4,然后解方程即可得到此时G 点坐标;(3)先确定C(0,﹣6),再利用勾股定理的逆定理证明△BAC为直角三角形,∠BAC =90°,接着根据圆周角定理,由∠AHF=∠AEF可判断点H在以EF为直径的圆上,EF的中点为M,如图,设H(0,t),由于E(﹣2,0),F(﹣2,﹣5),则M(﹣2,﹣),然后根据HM=EF得到22+(t+)2=×52,最后解方程即可得到H点的坐标.【解答】解:(1)把A(﹣4,﹣4),B(0,4)代入y=﹣x2+bx+c得,解得,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+m,把A(﹣4,﹣4),B(0,4)代入得,解得,∴直线AB的解析式为y=2x+4,设G(x,﹣x2﹣2x+4),则E(x,2x+4),∵OB∥GE,∴当GE=OB时,且点G在点E的上方,四边形GEOB为平行四边形,∴﹣x2﹣2x+4﹣(2x+4)=4,解得x1=x2=﹣2,此时G点坐标为(﹣2,4);(3)存在.当x=0时,y=﹣x﹣6=﹣6,则C(0,﹣6),∵AB2=42+82=80,AC2=42+22=20,BC2=102=100,∴AB2+AC2=BC2,∴△BAC为直角三角形,∠BAC=90°,∵∠AHF=∠AEF,∴点H在以EF为直径的圆上,EF的中点为M,如图,设H(0,t),∵G(﹣2,4),∴E(﹣2,0),F(﹣2,﹣5),∴M(﹣2,﹣),∵HM=EF,∴22+(t+)2=×52,解得t1=﹣1,t2=﹣4,∴H点的坐标为(0,﹣1)或(0,﹣4).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和平行四边形的判定;会利用待定系数法求函数解析式;会利用勾股定理的逆定理证明直角三角形,能运用圆周角定理判断点在圆上;理解坐标与图形的性质,记住两点间的距离公式.9.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【分析】(1)令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式.(2)由△PNM∽△ANE,推出=,列出方程即可解决问题.(3)在y轴上取一点M使得OM′=,构造相似三角形,可以证明AM′就是E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4﹣m),∵抛物线解析式为y=﹣x2+x+3,∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m,∴=,解得m=2.(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=×3=4,∴OE′2=OM′•OB,∴=,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴==,∴M′E′=BE′,∴AE′+BE′=AE′+E′M′=AM′,此时AE′+BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′==.【点评】本题考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM′就是E′A+E′B的最小值,属于中考压轴题.。
专题09 圆中的最值模型之阿氏圆模型(解析版)

专题09 圆中的最值模型之阿氏圆模型最值问题在中考数学常以压轴题的形式考查,“阿氏圆”又称“阿波罗尼斯圆”,主要考查转化与化归等的数学思想。
在各类考试中都以高档题为主,中考说明中曾多处涉及。
本专题就最值模型中的阿氏圆问题进行梳理及对应试题分析,方便掌握。
【模型背景】已知平面上两点A、B,则所有满足PA=k·PB(k≠1)的点P的轨迹是一个圆,这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。
【模型解读】如图 1 所示,⊙O的半径为r,点A、B都在⊙O外,P为⊙O上一动点,已知r=k·OB,连接PA、PB,则当“PA+k·PB”的值最小时,P点的位置如何确定?如图2,在线段OB上截取OC使OC=k·r,则可说明△BPO与△PCO相似,即k·PB=PC。
故本题求“PA+k·PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C三点共线时,“PA+PC”值最小。
如图3所示:注意区分胡不归模型和阿氏圆模型:在前面的“胡不归”问题中,我们见识了“k·PA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【最值原理】两点之间线段最短及垂线段最短解题。
例1.(2022·安徽·九年级期末)如图,在Rt△ABC中,∠ACB=90°,CB=7,AC=9,以C为圆心、3为半径作⊙C,P为⊙C上一动点,连接AP、BP,则13AP+BP的最小值为()A.7B.C.4D.例2.(2022·湖北·九年级专题练习)如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的PC的最大值为_____.一个动点,则PD﹣12例3.(2023·成都市·九年级专题练习)如图,已知菱形ABCD 的边长为4,=60B а,B e 的半径为2,P 为B e 上一动点,则12PD PC +的最小值_______.PC PD 的最小值_______∵221PB BG ==,422BC PB ==,∴PB BC BG PB =,∵PBG PBC Ð=Ð,∴PBG CBP D D :,∴PG BG PC PB =∴1PG PC =,∴1PD PC DP PG +=+,∵DP +3∵四边形ABCD 是菱形,且60ABC Ð=°, ∴AC ⊥BD ,∠AOB =90°,∠ABO =∠CBO =12∠ABC =30°,例4.(2022·江苏·无锡市九年级期中)如图,⊙O与y轴、x轴的正半轴分别相交于点M、点N,⊙O半径为3,点A(0,1),点B(2,0),点P在弧MN上移动,连接PA,PB,则3PA+PB的最小值为___.例5.(2022·江苏淮安·九年级期中)问题提出:如图1,在等边△ABC中,AB=12,⊙C半径为6,P为圆上一动点,连结AP,BP,求AP+12BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=3,则有CDCP=CPCB=12,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴PDBP=12,∴PD=12BP,∴AP+12BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+12BP的最小值为.(2)自主探索:如图1,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,13AP+PC的最小值为.(3)拓展延伸:如图2,扇形COD中,O为圆心,∠COD=120°,OC=4,OA=2,OB=3,点P是 CD上一点,求2PA+PB的最小值,画出示意图并写出求解过程.例6.(2022·重庆·九年级专题练习)(1)如图1,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+23PC的最小值为__,PD﹣23PC的最大值为__.(2)如图2,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+12PC的最小值为__,PD﹣12PC的最大值为__.如图3中,在BC 上取一点6342PB BG ==Q ,BC PB PBG CBP \V :V ,\23PG PC \=,PD \221PB BG ==Q ,422BC PB ==,PBG CBP \V :V ,PG BG PC PB \=PD PG DG +³Q (当且仅当G PD PG \+的最小值为DG , 例7.(2022·江苏·苏州九年级阶段练习)阅读以下材料,并按要求完成相应的任务.已知平面上两点A B 、,则所有符合0(PA k k PB=>且1)k ¹的点P 会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆. 阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标中,在x 轴,y 轴上分别有点()(),0,0,C m D n ,点P 是平面内一动点,且OP r =,设OP k OD =,求PC kPD +的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD 上取点M ,使得::OM OP OP OD k ==;第二步:证明kPD PM =;第三步:连接CM ,此时CM 即为所求的最小值.下面是该题的解答过程(部分):解:在OD 上取点M ,使得::OM OP OP OD k ==,又,POD MOP POM DOP Ð=Ð\Q V :V .任务:()1将以上解答过程补充完整.()2如图2,在Rt ABC V 中,90,4,3,ACB AC BC D Ð=°==为ABC V 内一动点,满足2CD =,利用()1中的结论,请直接写出23AD BD +的最小值.课后专项训练2.(2023·江苏·苏州九年级阶段练习)如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP,BP,则2AP+BP的最小值为( )A.B.12C.2D.8,3.(2023·广西·南宁市一模)如图,在平面直角坐标系中,A(2,0)、B(0,2)、C(4,0)、D(3,2),P是AOB 外部的第一象限内一动点,且∠BPA=135°,则2PD+PC的最小值是_____.4.(2022·浙江·九年级专题练习)如图,在Rt ABC V 中,∠C =90°,CA =3,CB =4.C e 的半径为2,点P 是C e 上一动点,则12AP BP +的最小值______________23+PB PA 的最小值_______∵12DC PC PC BC ==,∠PCD =∠BCP ,PDC BPC D ∽,∴12PD PB =,且12PA PB PA PD AD +=+³,∴229110AC CD =+=+=,∴PA PB 1+的最小值为10,故答案为:10;∵221PB BG ==,422BC PB ==,∴PB BC BG PB =,∵PBG PBC Ð=Ð,∴PBG CBP D D :,∴PG PC ∴12PG PC =,∴12PD PC DP PG +=+,3∵四边形ABCD 是菱形,且60ABC Ð=°,∴AC ⊥BD ,∠∴AO =12AB =2,BO =22224223AB AO -=-=,∴BD【答案】410【分析】延长OB 到2CM DM +的最小值问题转化为求【详解】解:延长6OM =Q ,3OD DB ==,MOD TOM Ð=ÐQ ,MOD \△2CM DM CM MT CT +=+³Q【答案】17【分析】取点(0,1)T ,连接PT ,12PT OP PA OA ==,进而可得12PT =则有1172BP AP +³,问题得解.【详解】解:如图,取点(0,1)T ,连接(0,1)T Q ,(0,4)A ,(4,0)B ,OT \2OP =Q ,2OP OT OA \=×,\OP OT11.(2022·重庆·九年级专题练习)如图,在RT△ABC中,∠,AB=CB=2,以点B为圆心作圆与AC相切,圆C,点P为圆B上的一动点,求AP PC的最小值.12.(2023·黑龙江哈尔滨·模拟预测)已知:图1 图2 图3(1)初步思考:如图1, 在PCB D 中,已知2PB =,BC=4,N 为BC 上一点且1BN =,试说明:12PN PC =(2)问题提出:如图2,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值.(3)推广运用:如图3,已知菱形ABCD的边长为4,∠B﹦60°,圆B的半径为2,点P是圆B上的一个动点,求12 PD PC-的最大值.PB BC13.(2023·山东·九年级专题练习)如图,在Rt △ABC 中,∠C =90°,CA =3,CB =4,C e 的半径为2,点P 是C e 上的一动点,则12AP PB +的最小值为?由题意得:PC =2,∵CD =1,BC ∵∠PCB =∠PCD ,∴△PCD ∽△BCP14.(2022·江苏·无锡市九年级阶段练习)问题提出:如图①,在Rt ABC △中,90C =o ∠,4CB =,6CA =,⊙C 的半径为2,P 为圆上一动点,连接AP 、BP ,求12AP BP +的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图①,连接CP ,在CB 上取一点D ,使1CD =,则12CD CP CP CB ==.又PCD BCP Ð=Ð,所以PCD V ∽BCP V .所以12PD CD BP CP ==.所以12PD PB =,所以12AP BP AP PD +=+.请你完成余下的思考,并直接写出答案:12AP BP +的最小值为________;(2)自主探索:在“问题提出”的条件不变的前提下,求13AP BP +的最小值;(3)拓展延伸:如图②,已知在扇形COD 中,90COD Ð=o ,6OC =,3OA =,5OB =,P 是 CD上一点,求2PA PB +的最小值.OP ,OAP ∽OPE V ,∴OA OP OP OE ==、P 、B 三点共线时,15.(2022·广东·九年级专题练习)如图,点A 、B 在O e 上,且OA =OB =6,且OA ⊥OB ,点C 是OA 的中点,点D 在OB 上,且OD =4,动点P 在O e 上.求2PC +PD 的最小值.16.【问题背景】如图1,△ABC中,∠BAC>∠B,点D在边BC上,若∠CAD=∠B,则可得△CAB∽△CAD,进而可得,进一步变形有AC2=CD•CB.【简单运用】(1)如图1,若AC=2,BC=4,则BD长为 ;= .(2)如图2,⊙O中,弦AD、BC相交于点E,已知AB=2AE,BE=15,且C是劣弧AD的中点,求CD的长.【灵活运用】如图3,平面直角坐标系中,直线y=﹣x+9交于坐标轴于A、B两点,点P坐标为(m,n),且m2+n2=36,连接PA,PB,则3PB+2PA的最小值为 .【解答】解:(1)∵AC2=CD•BD,∴4CD=4,∴CD=1,∴BD=BC﹣CD=3,∵△CAB∽△CAD,∴===,故答案是3,;(2)如图1,∵=,∴∠B=∠CAE,由上知,∴△ACE∽△BCA,∴====,AC2=CE•BC,∴AC=2CE,∴4CE2=CE•(CE+15),∴CE=5,∴CD=AC=2CE=10;【灵活运用】如图2,由题意得,OA =OB =9,∵且m 2+n 2=36,∴OP =6,在OA 上截取OC =4,∴=,又∵∠AOP 是公共角,∴△AOP ∽△POC ,∴=,∴PA =PC ,∴PB +PA =PB +PC ≥BC ,当B 、P 、C 共线时,(PB +PC )最小=BC ==,∵3PB +2PA =3(PB +PA ),∴(3PB +2PA )最小=3,故答案是3.17.(2022·河北·九年级专题练习)如图1,在RT △ABC 中,∠ACB =90°,CB =4,CA =6,圆C 的半径为2,点P 为圆上一动点,连接AP ,BP ,求:①12AP BP +,②2AP BP +,③13AP BP +,④3AP BP +的最小值.∵1CD =,2CP =,4CB =∴12PD BP =,即12PD BP =,∴当A 、P 、D 三点共线时,∵在Rt ACD V 中,AD AC =②∵122(2AP BP AP BP +=+∵23CE =,2CP =,CA =又∵ECP PCA Ð=Ð,∴ECP V ∴当B 、P 、E 三点共线时,【问题呈现】如图1,∠AOB=90°,OA=4,OB=5,点P在半径为2的⊙O上,求12 AP【问题解决】小明是这样做的:如图2,在OA上取一点∠COP=∠POA,所以可得△COP ∽△POA,所以CP AP=又因为,所以1AP BP+[能力提升]在BC 上取一点E 2163CE BE \==,41123CF BF ==连接DE ,DF ,由DEC DBE S EC S BE =V V \点E ,F 到BD ,CD 的距离相等,Q 点D 是平面内任意一点,过点O 作DG AB ^交AB 的延长线于点【点睛】本题考查了圆和相似三角形的综合题,考查了相似三角形的判定和性质,勾股定理,圆的性质,直径所对的圆周角直角,角平分线的判定,最短路径,锐角三角函数等知识,构造辅助线是角本题的关键19.(2023·江苏连云港·统考一模)如图1,平面内有一点PC ,若有222PA PB PC =+,则称点P 为V (1)如图2,在55´的网格中,每个小正方形的边长均为1,点A ,B 、C 、点D 是ABC V 关于点______的勾股点;若点F 在格点上,且点E 是ABF △中画出ABF △;(2)如图3,菱形ABCD 中,AC 与BD 交于点O ,点E 是平面内一点,且点点E 的勾股点.①求证:OE AB =;②若12OA =,1OB =,则AE 的最大值为③若12OA =,1OB =,且ABE V 是以AE 为底的等腰三角形,求AE 的长.(2)解:①∵点O是∵菱形ABCD中,AC②∵12OA=,1OB=,∴点E在以O为圆心,半径为(3)解:如图4,在BC 上取点∵C 是ABE V 关于点A 的勾股点,在Rt ABC △中,22AC AB =又∵ECB FCE Ð=Ð,∴CFE △∴34AE BE AE EF +=+,∴当【点睛】本题主要考查了相似三角形的性质与判定,圆外一点到圆上一点距离的最值问题,菱形的性质,勾股定理,矩形的性质,正方形的性质与判定等等,灵活运用数形结合的思想是解题的关键.。
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等) (1)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。
(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
压轴题型07 阿波罗尼斯圆问题(解析版)-2023年高考数学压轴题专项训练

压轴题07阿波罗尼斯圆问题在近几年的高考中,以阿波罗尼斯圆为背景的考题不断出现,备受命题者的青睐,下面我们通过一例高考题,讲解如何运用阿波罗尼斯圆进一步加强对与此圆与关试题的认识。
背景展示阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一.求证:到两定点的距离的比值是不等于1的常数的点的轨迹是圆.如图,点B A ,为两定点,动点P 满足PB P A λ=,则1=λ时,动点P 的轨迹为直线;当1≠λ时,动点P 的轨迹为圆,后世称之为阿波罗尼斯圆.证明:设PB P A m m AB λ=>=,02)(.以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则),,(0m A -),(0m B .又设),(y x C ,则由PB P A λ=得:2222)()(y m x ym x +-=++λ,两边平方并化简整理得:)()()()(222222211121λλλλ-=-++--m y x m x ,当1=λ时,0=x ,轨迹为线段AB 的垂直平分线;当1>λ时,22222222)1(4)11(-=+-+-λλλλm y m x ,轨迹为以点)0,11(22m -+λλ为圆心,以122-λλm 长为半径的圆.○热○点○题○型隐形的阿波罗尼斯圆典型例题例1、如图,圆C与x轴相切于点(1,0)T,与y轴正半轴交于两点,A B(B在A的上方),且2AB=.(Ⅰ)圆C的标准..方程为;(Ⅱ)过点A任作一条直线与圆22:1O x y+=相交于,M N两点,下列三个结论:①NA MANB MB=;②2NB MANA MB-=;③NB MANAMB+=其中正确结论的序号是.(写出所有正确结论的序号)解析:(Ⅰ)易知半径r=()(2212x y-+-=;(Ⅱ)方法一:因为圆心)2,1(C,)2,0(E∴又因为2AB=,且E为AB中点,所以()()1,1A B因为,M N在圆22:1O x y+=上,可设)sin,(cosααM,)sin,(cosββN所以:22)]12([sin)0(cos--+-=ββNA所以:12)sin2)(12(2)sin2)(12(2-=-+--=ββNBNA,同理:12-=MBMA,所以:NA MANB MB=1-2=,①正确;2)12(121-=---=MBMANANB,②正确22)12(121=-+-=+MBMANANB,③正确所以:①、②、③正确方法一可以改进为:设(),P x y为圆C上任意一点,则有:12)12(2224)12(2224)12()12(2222-=+-+---=--++-+=yy y x y x PBP A ,①正确;同理2)12()12(-=--+=MBMA NA NB,②正确;22)12()12(=-++=+MBMA NANB ,③正确.这里的第(Ⅰ)问并不很难,只要考生有一定平面几何基础既能轻易解出.但第(Ⅱ)问有难度.这是因为当圆O 的弦MN 绕定点A 旋转时,各有关线段的长度都在变化,从而相应线段的比值也就难于确定,方法一运算量较大。
专题2.6 阿氏圆 (隐圆压轴三)(原卷版)

专题2.6 阿氏圆阿氏圆问题问题:求解“AP nPB+”类加权线段和最小值方法:①定:定系数,并确定是半径和哪条线段的比值②造:根据线段比,构造母子型相似③算:根据母子型结论,计算定点位置④转:“AP nPB+”问题+”转化为“AP PM关键:①可解性:半径长与圆心到加权线段中定点距离比等于加权系数②系数小于1:内部构造母子型③系数大于1:外部构造母子型【典例1】阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.下面是该题的解答过程(部分):解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD=2,利用(1)中的结论,请直接写出AD+BD的最小值.【变式1-1】如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=9,⊙B的半径为3,点P是⊙B上一点,连接AP,CP,则AP+CP的最小值为.【变式1-2】如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,则AP+BP的最小值为()A.B.6 C.2 D.4【变式1-3】如图,在正方形ABCD中.AB=8,点P是正方形ABCD内部的一点,且满足BP=4,则PD+PC的最小值是()A.6 B.8 C.10 D.12【变式1-4】如图,已知抛物线y=﹣x2+x+3与x轴交于A,B两点(A在点B的左侧),与y轴交于点C,⊙O与x轴交于点E(2,0),点P是⊙O上一点,连接CP,BP,求BP+CP的最小值.【变式1-5】(西峡县期末)如图,在△ABC中,∠A=90°,AB=AC=4,点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,则的最小值等于()A.4B.C.D.【变式1-6】(2022春•长顺县月考)如图,在Rt△ABC中,∠ACB=90°,AC =6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接P A,PB,则P A+PB的最小值为.【变式1-7】(龙凤区期末)如图,在Rt△ABC中,∠C=90°,AC=9,BC=4,以点C为圆心,3为半径做⊙C,分别交AC,BC于D,E两点,点P是⊙C上一个动点,则P A+PB的最小值为.【变式1-8】如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为△ABC内一动点,且满足CD=2,则AD+BD的最小值为.【变式1-9】如图,正方形ABCD的边长为4,E为BC的中点,以B为圆心,BE为半径作⊙B,点P是⊙B上一动点,连接PD、PC,则PD+PC的最小值为.【典例2】如图,在扇形AOB中,∠AOB=90°,OA=4,C,D分别为OA,OB的中点,点P是上一点,则2PC+PD的最小值为.【变式2-1】如图,在扇形COD中,∠COD=90°,OC=3,点A是OC中点,OB =2,点P是为CD上一点,则PB+2PA的最小值为.【变式2-2】(梁溪区校级期中)如图,⊙O与y轴、x轴的正半轴分别相交于点M、点N,⊙O半径为3,点A(0,1),点B(2,0),点P在弧MN上移动,连接P A,PB,则3P A+PB的最小值为.【变式2-3】(溧阳市一模)如图,在⊙O中,点A、点B在⊙O上,∠AOB=90°,OA=6,点C在OA上,且OC=2AC,点D是OB的中点,点M是劣弧AB上的动点,则CM+2DM的最小值为.【变式2-4】如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则P A+PB的最小值为.。
阿氏圆最值模型(学生版)

中考数学几何模型11:阿氏圆最值模型名师点睛拨开云雾开门见山在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【模型来源】“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.【模型建立】如图1所示,⊙O 的半径为R ,点A 、B 都在⊙O 外,P 为⊙O 上一动点,已知R=25OB ,连接PA 、PB ,则当“PA+25PB ”的值最小时,P 点的位置如何确定?解决办法:如图2,在线段OB 上截取OC 使OC=25R ,则可说明△BPO 与△PCO 相似,则有25PB=PC 。
故本题求“PA+25PB ”的最小值可以转化为“PA+PC ”的最小值,其中与A 与C 为定点,P 为动点,故当A 、P 、C 三点共线时,“PA+PC ”值最小。
【技巧总结】计算PA k PB + 的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P 使得PA k PB + 的值最小,解决步骤具体如下:1.如图,将系数不为1的线段两端点与圆心相连即OP ,OB2.计算出这两条线段的长度比OP k OB =3.在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PC k PB =,PC k PB = 4.则=PA k PB PA PC AC ++≥ ,当A 、P 、C 三点共线时可得最小值典题探究启迪思维探究重点例题1.如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12PA PB +的最小值为__________.变式练习>>>1.如图1,在RT △ABC 中,∠ACB=90°,CB=4,CA=6,圆C 的半径为2,点P 为圆上一动点,连接AP,BP ,求①BP AP 21+,②BP AP +2,③BP AP +31,④BP AP 3+的最小值.例题2.如图,点C 坐标为(2,5),点A 的坐标为(7,0),⊙C 的半径为10,点B 在⊙C 上一动点,AB OB 55 的最小值为________.变式练习>>>2.如图,在平面直角坐标系xoy 中,A(6,-1),M(4,4),以M 为圆心,22为半径画圆,O 为原点,P 是⊙M 上一动点,则PO+2PA 的最小值为________.例题3.如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD 的最小值.变式练习>>>3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+PC的最小值为;PD+4PC的最小值为.例题4.如图,已知正方ABCD的边长为6,圆B的半径为3,点P是圆B上的一个动点,则12PD PC的最大值为_______.变式练习>>>4.(1)如图1,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(2)如图2,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.图1图2例题5.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣12x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值.变式练习>>>5.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB 于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.达标检测领悟提升强化落实1.如图,在RT △ABC 中,∠B=90°,AB=CB=2,以点B 为圆心作圆与AC 相切,圆C ,点P 为圆B 上的一动点,则PC AP 22+的最小值________.2.如图,边长为4的正方形,内切圆记为⊙O ,P 是⊙O 上一动点,则2PA+PB 的最小值为________.3.如图,等边△ABC 的边长为6,内切圆记为⊙O ,P 是⊙O 上一动点,则2PB+PC 的最小值为________.4.如图,在Rt △ABC 中,∠C=90°,CA=3,CB=4,C 的半径为2,点P 是C 上的一动点,则12AP PB +的最小值为?5.如图,在平面直角坐标系中,()2,0A ,()0,2B ,()4,0C ,()3,2D ,P 是△AOB 外部第一象限内的一动点,且∠BPA=135°,则2PD PC +的最小值是多少?6.如图,Rt △ABC ,∠ACB =90°,AC =BC =2,以C 为顶点的正方形CDEF (C 、D 、E 、F 四个顶点按逆时针方向排列)可以绕点C 自由转动,且CD =,连接AF ,BD(1)求证:△BDC ≌△AFC ;(2)当正方形CDEF 有顶点在线段AB 上时,直接写出BD +AD 的值;(3)直接写出正方形CDEF 旋转过程中,BD +AD 的最小值.7.(1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,PA=3,求PC+PD的最小值;(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+MD最小时,画出点M的位置,并求出MC+MD的最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阿波罗尼斯圆中的数学压轴题
到两点点的距离之和为定值(大于两定点距离)的点的轨迹是椭圆.到两点点的距离之差为定值(小于两定点距离)的点的轨迹是双曲线.那么到两定点的距离之比为定值的点的轨迹是什么呢?没错就是阿氏圆.阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P到两定点A、B的距离之比等于定比m:n,则P点的轨迹,是以定比m:n内分和外分定线段AB的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.【分析】令B为坐标原点,A的坐标为(a,0).则动点P(x,y).满足PA/PB=k (为实数,且不为±1)得(k2-1)(x2+y2)+2ax-a2=0,当k不为±1时,它的图形是圆.当k为±1时,轨迹是两点连线的中垂线.【典型例题】问题提出:如图1,在Rt△ABC 中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+1/2BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有CD/CP =CP/CB=1/2,又∵∠PCD=∠BCP,
∴△PCD∽△BCP.∴PD/BP=1/2,∴PD=1/2BP,∴AP+1/2BP=AP+PD.请你完成余下的思考,并直接写出答
案:AP+1/2BP的最小值为.(2)自主探索:在“问题提出”的条件不变的情况下,1/3AP+BP的最小值为.(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是弧CD上一点,求2PA+PB的最小值.【解题过程】我爱压轴题中考数学压轴题全解析¥37.4 京东购买。