比较线段的长短 ppt课件5

合集下载

《比较线段的长短》课件(共27张PPT)【推荐】

《比较线段的长短》课件(共27张PPT)【推荐】

例3 比较图中各线段的长短.
例3 比较图中各线段的长短.
解析 线段AC<线段BC<线段AB 点拨 解答这类问题,可以利用叠合法,也可 以利用度量法.
知识点四 线段的和、差及尺规 作图
1.线段的和差:如图所示,点B在线段AC上,AB=a, BC=b,AC=c,则线段AC可表示为线段AB与BC的和, 即AC=AB+BC(或c=a+b);BC可表示为线段AC 与AB的差,即BC=AC-AB(或b=c-a);AB可表示为 线段AC与BC的差,即AB=AC-BC(或a=c-b).
提示: (1)连接两点的线有无数条,线段最短; (2)连线是指以两个点为端点的任意线,包括线 段、折线和曲线; (3)连接AB是指画线段AB.
例1 图中三条通往落马村的路线,哪条路线最短?请 在图中设计一条去落马村的最短的路线,并说明 理由.
解析:
①、②、③三条路线中,路线②最短如图,设计 的最短路线是路线④,理由是两点之间,线段最 短.
所以2x+3x+x=6,所以x=1.所以AC=1m,CD
=3m,BD=2m.
点拨
这种根据线段的比设出未知数,建立方程解决问 题的思想方法,数学中称为方程思想.
易错易混
易错点 忽视“直线”条件而导致漏解
例 已知点B在直线AC上,AB=6,AC=10,点P、Q分 别是AB、AC的中点,求PQ的长.
解析 有点B在线段AC上或在线段CA的延长线上两种可 能.由点P、Q分别为AB、AC的中点可知 AP= AB=3,AQ= AC=5. 如下图所示,当点B在线段AC上时,PQ=AQ-AP =2.
线段 的中 点
注意
内容
图例
把一条线段分 成两条相等线 段的点,叫做 点M是线段AB的中点,AM=BM 这条线段的中 = AB,即AB=2AM=2BM 点 (1)一条线段的中点一定在这条线段上; (2)一条线段只有一个中点.

比较线段的长短PPT教学课件

比较线段的长短PPT教学课件
找到方法的朋友方可入内 你有办法吗?
房间1
小狗跑的远,
C
D
还是小猫跑的
A
B
远,你是怎么 比较的?
房间2
线段的大小比较
C
D
(1)度量法
A
B
(2)叠合法
房间2
AM BM 1 AB 2
A
MB
中点
点M把线段AB分成相 等的两条线段AM与
BM,点M叫做线段 AB的中点。
房1.间房A间、AB、、BC、在C同顺一次在同一条直线上, 条直A线B=上4、BC=3,则AC为多少? 2.房间A、B、C在同一条直线上,AB=4、
陶渊明的诗歌,以歌咏田园生活的居多,后世称他为田园诗人。陶渊明的 田园诗主要见于他的组诗《饮酒》、《归园田居》、《拟古》、《和郭主簿》。 他的五言诗成就最高,诗歌的意境下平和、静穆、深远,在中国诗歌史上有着 重要的地位。他那种淡泊明志的人生态度,对读书人的影响很深。
通过虚构(
)一
个和平、美好、没有剥…削、没有压迫、人
赞语说:黔娄的妻子曾经说过这样的话:“不为贫贱而忧虑, 不热衷于发财做官。”从这话来看,他应是五柳先生一类人吧 ? 一 边喝酒一边做诗,用这种方式使自己的心志得到快乐,他大概是无 怀氏的子民吧?或者是葛天氏的子民吧?
板书
归去来兮,田园将芜胡不归,自以心为形役,奚惆怅而独归,悟已往之不谏,知 来者可追。实迷途其未远,觉今是而昨非。
文章线索 抒情
自责自悔
自安自乐
乐天安命
叙事
辞官 归途 家中生活 纵情山水 抒发情怀
全文主旨
《归去来兮辞》 是陶渊明辞官归隐之际与上流社 会公开决裂的政治宣言。文章以 绝大篇幅写了他脱离官场的无限 喜悦,想家归隐田园的无限乐趣, 表现了作者对大自然和隐居生活

【数学课件】比较线段的长短

【数学课件】比较线段的长短
最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间做人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身
之间
思考题
如图是一个四边
形,现在取各边的中
点并连接成四边形, 想一想得到的四边形 与原四边形,哪一个 的周长大?如是在各
D H
A G
E
边任意取一点呢?
B
ቤተ መጻሕፍቲ ባይዱ
F
C
小结
1、线段的基本性质:两点之间线段最短。 两点之间的距离:两点之间线段的长度。
2、尺规作图:作一条线段等于已知线段。 3、线段的两种比较方法:叠合法和度量法。 4、线段的中点的概念及表示方法。
BN C
M
A
解:∵M为AC的中点,∴AC=2AM.
又∵AM=3cm,∴AC=2×3=6(cm) .

《线段长短的比较》PPT 图文

《线段长短的比较》PPT  图文

我幸,今生在最美的时光遇见了 你。张 爱玲说 ,因为 爱了, 所以慈 悲。因 为懂得 ,所以 宽容。 总有那 么一个 人,即 便全世 界都不 爱你, 也会为 你低眉 ,为你 垂泪, 为你留 一盏温 暖的灯 ,默默 守护在 你身旁 ,在清 浅的时 光里, 陪你看 草长莺 飞,陪 你数散 落星辰 !
因为有缘,你我同住同修,同见 同知, 相互依 靠,相 互取暖 。生死 契阔, 与子成 说;执子 之手, 与子携 老。爱 ,最长 情的告 白,不 是千万 句“我 爱你” ,也不 是春花 秋月前 的山盟 海誓, 天长地 久。而 是愿意 用其一 生的光 阴来陪 伴你, 来包容 你!即 便在寡 味的日 子里, 也会用 爱去 浇灌, 用心去 呵护, 为你种 出一朵 妖艳之 花,㶷 烂至极 。
B
动手做一做
点P在线段AB上, (1)在线段BA上截取BQ=AP (2)延长AB到D,使BD=AP
A
P
B
小明到小英家有三条路可走,如图,你认为走哪条路最近?
(1)
A
(2)
B
(3)
答:走第(2)条路最短。
两点之间的所有连线中线段最短。
两点之间线段的长度,叫做这两
点之间的距离。
1、判断题
(1)两条线段能比较大小,而直线是不能
唯用一枝瘦笔,剪一段旧时光, 剪掉喧 嚣尘世 的纷纷 扰扰, 剪掉终 日的忙 忙碌碌 。情也 好,事 也罢, 细品红 尘,文 字相随 ,把寻 常的日 子,过 得如春 光般明 媚。光 阴珍贵 ,指尖 徘徊的 时光唯 有珍惜 ,朝圣 的路上 做一个 谦卑的 信徒, 听雨落 ,嗅花 香,心 上植花 田,蝴 蝶自会 来,心 深处自 有广阔 的天地 。旧时 光难忘 ,好的 坏的一 一纳藏 ,不辜 负每一 寸光阴 ,自会 花香满 径,盈 暗香满 袖。尘 。但就 是无数 个小小 的你我 点燃了 万家灯 火,照 亮了整 个世界 。这人 间的生 与死, 荣与辱 ,兴与 衰,从 来都让 人无法 左右, 但我们 终不负 韶光, 不负自 己,守 着草木 ,守着 云水, 演绎着 一代又 一代的 传奇。

华东师大版七上数学.2线段的长短比较课件

华东师大版七上数学.2线段的长短比较课件

C
D
A
B
(3)如果点B与点D重合, 记作AB=CD
C
D
比较线段长短的两种方法:
1、度量法——从“数值”的角度比较
2、叠合法——从“形”的角度比 较
课本练习:
视察下列三组图形,分别比较线段a、b的长短。 再用刻度尺量一下,看看你的视察结果是否正确。
(1) (2)
a
b a
(3)
b
a
b
做一做: 用直尺、圆规画一 条线段等于已知线段。
5、AE+(ED)=(AB)- DB=AC+(CD )=AD
谈谈收获吧
一、学习了怎样比较线段的长短。
1、度量法: 2、叠合法:起点对齐,看终点。
二、尺规作图
一看起点, 二看方向, 三看落点。
1、用尺规法画一条线段等于已知线段;
2、用尺规法画已知线段的和与差。
1、如图,填空:
AB
C
D
AB+BC= ( AC ) BC=( BD) - CD
AD - CD=(AC ) AD=( AB ) + ( BC ) + ( CD )
例题2:按图填空





A
CE
D
B
1、AB=(AC)+(CE )+(ED )+(DB ) 2、AE=(AB )-( ED )-(DB ) 3、AC+CD=( AB)- BD 4、CE+EB-ED=(CE )+(DB )
请比较一下我们班两位同学的身 高,谁高谁矮?
如果小明同学的朋友在北京,有两年 没见了,他们很想知道谁的个子高? 谁能帮助解决这个困难?

6.3 线段的长短比较 教学课件 (共28张PPT)

6.3 线段的长短比较 教学课件 (共28张PPT)

讲授新课
作一条线段等于已知线段 已知:线段 a,作一条线段 AB,使 AB=a. 第一步:用直尺画射线 AF; 第二步:用圆规在射线 AF 上截取 AB = a. 所以线段 AB 为所求线段.
a Aa B F
在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.
讲授新课
尺规作图的要点: 1.直尺只能用来画线,不能量距; 2.尺规作图要求作出图形,说明结果,并保留作图痕迹.
生活中我们常常会比较两个物体的长短。如图两支铅笔 谁长?
我们可以把两支铅笔看成两条线段,这样我们就把实际 问题转化为了几何问题.
讲授新课
思考:怎样比较两条线段的长短??
Aa B
(1)度量法 用刻度尺量出它们的 长度,再进行比较.
Cb
D
(2) 叠合法 将其中一条线段“移动”, 使其一端点与另一线段的 一端点重合,两线段的另 一端点均在同一射线上.
(2)连接两点的线段叫两点间的距离;
(3)两点之间所有连线中,线段最短;
(4)射个
C.3个
D.4个
当堂检测
2.某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银
杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是(

A.两点之间线段最短 C.垂线段最短
解:作图步骤如下:
aa b
(1)作射线 AM;
A B1 B2
BM
(2)在 AM 上顺次截取 AB1=a,B1B2=a,
B2B=b,则线段 AB=2a+b.
讲授新课 知识点三 有关线段的基本事实
探究
我要去书店 怎么走呀?
商场
礼堂
书店
讲授新课
根据生活经验,容易发现: 两点之间的所有连线中,线段最短

苏科版(2024)七年级数学上册第六章6.1.2 线段的长短(同步课件)

苏科版(2024)七年级数学上册第六章6.1.2 线段的长短(同步课件)


∴BE= AB=2cm,BF= BC=3cm,


①如图1,点B在A、C之间时,EF=BE+BF=2+3=5cm;
典例精析
例2、(3)点A、B、C在直线l上,AB=4cm,BC=6cm,点E是AB中
点,点F是BC的中点,EF=____________。
5cm或1cm
②如图2,点A在B、C之间时,EF=BF-BE=3-2=1cm。
苏科版 七年级(上册)
6.1.2 线 段 的 长 度
学习目标
01
02
会用度量法、叠合法比较两条线段的大小,初步接触尺规作图
理解线段的中点的概念,会求线段的长度
课堂引入
问题——如图,有一张长方形纸片,如何比较相邻两条边AB,AD
的长短?
D
C
A
B
法一:可以用刻度尺度量后比较。
BD=5cm,CD=4cm。
法二:也可以用叠合的方法比较。
课堂引入
如图,将长方形纸片折叠,使点D落在射线AB上。
B
A
D
此时,如果点D落在线段AB上(不与点B重合),那么线段AD的
长度小于线段AB的长度,记作“AD<AB”。
课堂引入
点D落在什么位置时,AD>AB,AD=AB?
B
A
D
①如果点D落在线段AB的延长线上(不与点B重合),那么
A
B
b
(1)AC=a+b;(2)AD=a-b。
A’
作法:(1)延长AB,以点B为圆心,b
为半径作弧,交AB的延长线于点C,
线段AC即为所求;
B’
A
B
(2)以点B为圆心,b为半径作弧,交

6.3线段的长短比较

6.3线段的长短比较
6.3线段的长短比较
走进生活
(1)如图:这是A、B两地之间的公路,在公路工 程改造计划时,为使A、B两地行程最短,应如何 设计线路?在图中画出。你的理由是
__两__点__之___间__线__段__最___短_____
6.3线段的长短比较
走进生活
村庄A 两点之间线段最短
大桥P 村庄B
河流
(2)如图,村庄A, B之间有一条河流,要 在河流上建造一座大桥P, 为了使村庄A, B之 间的距离最短,请问:这座大桥P应建造在 哪里。为什么?请画出图形。
B • D
6.3线段的长短比较
(2)
• A

C
• B
• D
比较方法:如图,端点A和C重合,观察 端点B和D的位置关系.
A
B

••
C
D
结论:AB > CD.
6.3线段的长短比较
(3)
• A

C
• B
• D
比较方法:如图,端点A和C重合,观察 端点B和D的位置关系.
A
B

••
C
D
结论:AB < CD.
走进生活
4cm
C”(C)
C B
C’(C)
A
那将“立方体的铁丝框”改成“立方体 的纸盒”,上述两题结论又该如何呢?
6.3线段的长短比较
此课件下载可自行编辑修改,供参考! 感谢你的支持,我们会努力做得更好!
6.3线段的长短比较
走进生活
B
4cm
A
6.3线段的长短比较
走进生活
B
4cm
A
6.3线段的长短比较
走进生活
4cm

《线段长短的比较》PPT教学课件

《线段长短的比较》PPT教学课件

A.AB<CD
B.AB>CD
C.AB=CD
D.无法确定哪条长
2.如图,AB=CD,则AC与BD的大小关系是( C )
A.AC>BD B.AC<BD
C.AC=BD
D.无法确定
3.下列说法正确的是( C ) A.两点之间,直线最短 B.线段MN就是M,N两点间的距离 C.在连接两点的所有线中,最短的连线的长度就是这两点间的距离 D.从武汉到北京,火车行走的路程就是武汉到北京的距离
7.如图所示,在一条笔直公路a的两侧,分别有A,B两个村庄,现 要在公路a上建一个汽车站C,使汽车站到A,B两村的距离之和最小, 问汽车站C的位置应如何确定?
解:如答图,连接AB,交直线a于点C,这个点C的位置就是符合 条件的汽车站的位置.
判断平面上的点与线段的位置关系的方法: 若这个点到线段两端点的距离的和大于该线段的长,则点在线段外; 若这个点到线段两端点的距离的和等于该线段的长,则点在线段上.
线段A'B'即为所求.
步骤2 以点A'为圆心, AB为半径画弧, 交射线A'C于点B'.
1. 线段长短的比较方法: (1)估测法,在两条线段长短很明显的情况下使用; (2)度量法,用刻度尺分别量出两条线段的长度再比较; (3)叠合法,使两条线段的其中一个端点重合,另一个端点都位于重合
端点的同一侧,从而比较出两条线段的长短. 2. 线段的长短比较后,结果用“>”“<”或“=”表示.
(1)如右图,如果点B与点D重合,就说线段AB与CD相等, 记作AB=CD. (2)如右图,如果点B在线段CD上,就说线段AB小于CD, 记作AB<CD. (3)如右图,如果点B在线段CD外,就说线段大于CD,记 作 AB>CD.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
B
C
E
D (E)
随堂练习 •



试用重合法比较 P125—1


• 四条线段的长短。 方法提示 用圆规把四条线段复制到射线上; 或把其中三条线段复制到另一条线段上。
中点的概念:
点M把线段AB分成相等的两条线段
AM和BM,点M线段AB的中点。
A
M
B
1 AB AM = BM = 2 AB=2AM AB=2BM
在现实生活中,哪些时候运用了 上述性质。
南口
车陂
新县城
大家看图,如果量一量新县城与南口相距多远,是 怎样量的?如果从你家到学校走了三公里,能否认 为学校与你家的距离为3公里?
2、两点之间线段的长度, 叫做这 两点之间的距离。
用圆规作一条线段等于已知线段 做一做
用圆规作一条线段等于已知线段。
① 作射线AB; ② 用圆规量出已知线段的长度(记作a); ③ 在射线AB上以A为圆心, 截取AC = a .
则AC为 所作的线段。
a
A C B
议一议
用重合法比较两线段的大小
已知两线段AB与CD。 怎样用重合法比较线段AB与CD的长短?
① 用圆规量出已知线段AB的长度; ② 在射段CD上 以C为圆心, 截取CE = AB . 当CE = CD时, AB = CD
当CE < CD时, AB < CD 当CE > CD时, AB >CD (E)
OB= OC-BC
1 (AB+BC) -BC = 2 1 = (AB-BC) 2 1 = ( cm ) 2
练习
已知直线L上顺次三个点A、B、C,已知 AB=10cm,BC=4cm。 (1)如果D是AC的中点,那么AD= cm. (2)如果M是AB的中点,那么MD= cm. (3)如图,AB=AC―( ),AM+MB=AD+( )
10
4
L C
A
M D
B
小结:
• 1、线段的性质:两点之间的所有连线中,线 段最短。 • 2、连接两点之间线段的长度叫做这两点之间 的距离。 • 3、线段中点的定义和运用。 • 4、比较线段大小的方法:叠合法和度量法。
作业:习题4.2
1、2
预习:角的度量与表示
比较线段的长短
回顾思考:
直线的特点、表示方法?
A B
a
记作:直线AB或直线a
线段的特点、表示方法?
A
a
B
记作:线段AB或线段a
射线的特点、表示方法?
O
P
记作:射线OP

小明到小英家有三条路可走,如图,你认为走那条路最 近?
(1)
(2) (3)
A
C
D
B
1、线段公理:两点之间的所有连 线中,线段最短。
判断:

若AM=BM,则M为线段AB的中点。
M
A
B
线段中点的条件: 1、在已知线段上。 2、把已知线段分成两条相等线段的点
得 AB=4cm,BC=3cm。如果O是线段AC的 中点, 求线段OB的长。
例1.
例题解析 A,B,C三点,使 在直线a上顺次截取
解:
A
OB
C
a
OB= AB-AO
1 =AB- (AB+BC) 2 1 = (AB-BC) 2 1 (cm) = 2
相关文档
最新文档