八年级下册数学练习册答案青岛版

合集下载

八年级下册数学练习册答案青岛版

八年级下册数学练习册答案青岛版

八年级下册数学练习册答案青岛版平行四边形及其性质第1课时一、填空1、相等;相等2、互补3、120;60二、选择题4、C5、B6、B三、解答题7、解:由题意知:∠C:∠D=13:5,∠C+∠D=180°∵∠A=∠C,∠B=∠D∴∠C=180°×13/(13+5)=130°,∠D=18°-130°=50°∴∠A=∠C=130°,∠B=∠D=50°8、证明:∵四边形ABCD是平行四边形∴CD∥AB∴∠A=∠C∴∠1=∠BEC∵∠A=∠1=60°∴∠BEC=∠C=60°∴△BCE是等边三角形∴CE=BC∴CE=AD9、证明:∵四边形AEDF是平行四边形∴AE=DF,DE=AF∵AB=BE+AE∴AB=BE+DF∵AC=AF+FC∴AC=AF+FC∴AC=ED+FC∴BE+ED+DF+FC=AB+AC【探索与创新】10、证明:延长FD交AB于N,延长ED交AC于M∵DE∥AB,EG∥AC∴四边形AGEM是平行四边形∴GE=AM又∵FH∥AB,DF∥AC∴四边形ANFH是平行四边形∴FH∥AN同理可得四边形DEGH与四边形DFHM均为平行四边形∴DE=NG,DF=MH又∵AN+NG+BE=AB,AM+MH+HC=AC∴BE+GE+ED+DF+FH+HC=AB+AC(解题思路:解答此题可根据平行四边形的性质,可证得四边形AGEM、四边形AHFN、四边形DEGN、四边形DFHM均为平行四边形即可,再由等量代换求得BE+GE+ED+DF+FH+HC=AB+AC)特殊的平行四边形第1课时【复习与巩固】一、填空1、四个角都是直角且相等;对角线互相平分且相等2、23、10cm、5cm二、选择题4、B5、A6、A三、解答题7、证明:∵BE是△ABC的高,M为BC的中点∴ME=1/2BC∵CF是△ABC的高,M为BC的中点∴MF=1/2BC∴ME=MF【拓展与延伸】8、证明:∵BE=CF∴BE+EF=FC+EF即BF=EC∵四边形ABCD是矩形∴∠B=∠C=90°,AB=CD,∠BAD=∠CDE在△ABF和△DCE中,AB=CD,∠B=∠C,FB=FC ∴△ABF≌△DCE∴∠BAF=∠CDE∴∠DAF=∠ADE∴AP=DP【探索与创新】9、AD=CF,证明如下:∵四边形ABCD是矩形∴CD∥AE,AB=CD∴∠AED=∠FDC∵DE=AB∴DE=AB=CD又∵CF⊥DE∴∠CFD=∠A=90°∴△ABE≌△FCD(AAS)∴AD=CF中位线定理【复习与巩固】一、填空题1、12cm;20cm;24cm2、53、2a二、选择题4、B5、B三、解答题6、四边形EGFH是平行四边形∵F、H分别是CD、BD的中点∴FH是△DBC的中位线∴FH∥BC,FH=1/2BC同理可得:GE是△ABC的中位线,GE∥BC,GE=1/2BC ∴GE∥FH且GE=FH∴四边形EGFH是平行四边形【拓展与延伸】7、证明:∵DE∥BC∴∠ADE=∠B,∠AED=∠C∴△ADE∽△ABC∴AD/AB=AE/AC∵D是AB的中点∴AD/AB=AE/AC=1/2【探索与创新】8、AP=AQ,证明如下:取BC的中点H,连接MH、NH∵M、H为BE、DC的中点∴MH∥EC且MH=1/2EC∵N、H为CD、BC的中点∴NH∥BD且NH=1/2BD∵BD=CE∴MH=NH∴∠AMN=∠ANB∵MH∥EC∴∠AMN=∠PQA,∠HNM=∠QPA ∴△APQ为等腰三角形∴AP=AQ。

青岛版八年级数学下7.4勾股定理的逆定理同步训练题含答案

青岛版八年级数学下7.4勾股定理的逆定理同步训练题含答案

青岛版八年级数学下册第7章7.4勾股定理的逆定理同步训练题(含答案)一.选择题(共10小题)1.(•桂林)下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,6 2.(春•兴业县期末)下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.8,15,17 C.6,8,10 D.9,12,15 3.(•岳池县模拟)如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米(3题图)(4题图)(5题图)(6题图)4.(春•天津期末)由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m 处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m5.(•科左中旗校级一模)如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.9 B.10 C.D.6.(•峄城区校级模拟)如图所示,是一圆柱体,已知圆柱的高AB=3,底面直径BC=10,现在有一只蚂蚁想要从A处沿圆柱表面爬行到对角C处去捕食,则它爬行最短路径是()(本题π取3).A.13 B.3C.D.27.(•资阳)如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C.cm D.2cm(7题图)(8题图)(9题图)(10题图)8.(春•大同期末)如图,正方形ABCD是由9个边长为1的小正方形组成,每个小正方形的顶点都叫格点,连接AE,AF,则∠EAF=()A.30°B.45°C.60°D.35°9.(春•东平县校级期末)如图,某公司举行周年庆典,准备在门口长25米,高7米的台阶上铺设红地毯,已知台阶的宽为3米,则共需购买()m2的红地毯.A.21 B.75 C.93 D.9610.(春•武昌区期中)如图,四边形ABCD中,AB=6cm,BC=8cm,CD=24cm,DA=26cm,且∠ABC=90°,则四边形ABCD的面积是()cm2.A.336 B.144 C.102 D.无法确定二.填空题(共10小题)11.(•魏县二模)四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠BAD=90°,则△BDC 为三角形.12.(•本溪模拟)如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的点C有个.(12题图)(14题图)(18题图)(19题图)13.(春•博兴县期末)有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为.14.(春•大石桥市校级期末)如图,平行四边形ABCD的两条对角线AC、BD相交于点O,AB=5,AC=6,DB=8,则四边形ABCD的周长为.15.(春•日照期中)已知一个三角形的三边长分别为12、16、20,则这个三角形的面积是.16.(春•祁阳县期末)下列四组数:①4,5,8;②7,24,25;③6,8,10;④,,2.其中可以为直角三角形三边长的有.(把所有你认为正确的序号都写上)17.(春•潍坊期中)已知Rt△ABC的三边AC=6cm,BC=8cm,AB=10cm,则AB边上的中线为cm,AB边上的高为cm.18.(春•启东市期中)如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需米.19.(•庆阳)在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)20.(春•台安县期中)如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2=时∠ACB=90°.三.解答题(共5小题)21.(春•大石桥市校级期末)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.22.(春•临清市期中)如图,在△ABD中,∠A是直角,AB=3,AD=4,BC=12,DC=13,求四边形ABCD的面积.23.(春•天河区期中)一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量出了这个零件各边尺寸,那么这个零件符合要求吗?求出四边形ABCD 的面积.24.(春•石林县校级月考)如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,求这块空地的面积?25.(春•邹平县校级期末)已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC的顶点在格点上,称为格点三角形,试判断△ABC的形状.请说明理由.青岛版八年级数学下册第7章7.4勾股定理的逆定理同步训练题参考答案一.选择题(共10小题)1.A 2.A 3.B 4.C 5.B 6.A 7.A 8.B 9.C 10.B 二.填空题(共10小题)11.直角12.4 13.3或 14.20 15.96 16.②③④17.54.818.7 19. 20.16三.解答题(共5小题)21.解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.(21题图)(22题图)22.解:连接BD,在△ABD中,∠A是直角,AB=3,AD=4,∴BD===5,△BCD中,BC=12,DC=13,DB=5,52+122=132,即BC2+BD2=DC2,∴△BCD是直角三角形,∴S四边形ABCD=S△ABD+S△BDC=AD•AB+BD•BC=×4×3+×5×12=6+30=36.23.解:∵AD=4,AB=3,BD=5,DC=13,BC=12,∴AB2+AD2=BD2,BD2+BC2=DC2,∴△ABD、△BDC是直角三角形,∴∠A=90°,∠DBC=90°,∴这个零件的面积=△ABD的面积+△BDC的面积=3×4÷2+5×12÷2,=6+30,=36.故这个零件的面积是36.24、解:如图,连接AC.在△ACD中,∵AD=4米,CD=3米,∠ADC=90°,∴AC=5米,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积=×5×12﹣×3×4=24(平方米).25.解:△ABC是直角三角形.理由:∵AB===,BC==,AC===,∴AC2+BC2=45+20=65,AB2=65,∴AC2+BC2=AB2,∴△ABC是直角三角形.。

(汇总)青岛版八年级下册数学第6章 平行四边形含答案

(汇总)青岛版八年级下册数学第6章 平行四边形含答案

青岛版八年级下册数学第6章平行四边形含答案一、单选题(共15题,共计45分)1、如图,平行四边形ABCD对角线AC、BD交于点O,∠ADB=20°,∠ACB=50°,过点O的直线交AD于点E,交BC于点F当点E从点A向点D移动过程中(点E与点A、点D不重合),四边形AFCE的形状变化依次是()A.平行四边形→矩形→平行四边形→菱形→平行四边形B.平行四边形→矩形→平行四边形→正方形→平行四边形C.平行四边形→菱形→平行四边形→矩形→平行四边形D.平行四边形→矩形→菱形→正方形→平行四边形2、如图,矩形ABCD的边AB=1,BC=2,以点B为圆心,BC为半径画弧,交AD于点E,则图中阴影部分的面积是( )A. B.2 C. D.2﹣3、如图,菱形ABCD中,,点P从点B出发,沿折线方向移动,移动到点D停止.在形状的变化过程中,依次出现的特殊三角形是()A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形4、在下列条件中,不能判定四边形为平行四边形的是( )A.对角线互相平分B.一组对边平行且相等C.两组对边分别平行 D.一组对边平行,另一组对边相等5、如图,□ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为( )A.8cmB.12cmC.4cmD.6cm6、如图,在四边形ABCD中,∠DAC=∠ACB,要使四边形ABCD成为平行四边形,则应增加的条件不能是()A.AD=BCB.OA=OCC.AB=CDD.∠ABC+∠BCD=180°7、如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A.1B.2C.3D.48、如图,在平面直角坐标系中,一个含有45〫角的三角板的其中一个锐角顶点置于点A(﹣3,﹣3)处,将其绕点A旋转,这个45〫角的两边所在的直线分别交x轴,y轴的正半轴于点B,C,连结BC,函数y=(x>0)的图象经过BC的中点D,则()A. B. C. D.9、如图,在平行四边形ABCD中,∠B=60度,AB=5cm,则下面结论正确的是()A.BC=5cm,∠D=60度B.∠C=120度,CD=5cmC.AD=5cm,∠A=60度D.∠A=120度,AD=5cm10、平行四边形的一个内角是70°,则其他三个角是()A.70°,130°,130°B.110°,70°,120°C.110°,70°,110°D.70°,120°,120°11、矩形具有而一般平行四边形不具有的性质是()A.对角线相等B.对角相等C.对边相等D.对角线互相平分12、在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4B.1:2:2:1C.1:2:1:2D.1:1:2:213、如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s的速度分别沿CB﹣BA、CD﹣DA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为()A. B. C. D.14、如图,正方形ABCD,点F在边AB上,且,CE⊥DF,垂足为点M,且交AD于点E,AC与DF交于点N,延长CB至G,使BG=BC,连接CM.有如下结论:①AE=BF;②AN=AD;③∠ADF=∠GMF;④S△ANF =S△ABC,上述结论中,正确的是()A.①②B.①③C.①②③D.②③④15、下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形二、填空题(共10题,共计30分)16、如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间________秒时,以点P,Q,E,D为顶点的四边形是平行四边形.17、如图,在平面直角坐标系xOy中,函数y= (k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为________.18、如图是小章为学校举办的数学文化节没计的标志,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI上,若AC+BC=6,空自部分面积为10.5,则阴影部分面积为________.19、如图,矩形中,,点为上一点,将沿折叠得到,点为上一点,将沿折叠得到,且落在线段上,当时,则的长为________.20、如图,在矩形ABCD中,AB=4,BC=2.点E在边AB上,点F在边CD上,点G,H在对角线AC上.若四边形EGFH是菱形,则AE的长是________.21、如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为________.22、如图,在正方形ABCD中,AB=6,点E在边CD上,DE= DC,连接AE,将△ADE沿AE翻折,点D落在点F处,点O是对角线BD的中点,连接OF并延长OF交CD于点G,连接BF,BG,则△BFG的周长是________.23、如图,平行四边形ABCD中,顶点A的坐标是(0,2),AD//x轴,BC交y 轴于点E,点E的纵坐标是﹣4,平行四边形ABCD的面积是24,反比例函数y=的图象经过点B和D.则k=________.24、如图,正方形中,点在上,交、于点、,点、分别为、的中点,连接、,若,,则________.25、如图,点O为正方形ABCD的两条对角线AC、BD的交点,若正方形ABCD的边长为2cm,则阴影部分的面积为________.三、解答题(共5题,共计25分)26、四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.若BC=8,DE=3,求△AEF的面积.27、如图,矩形ABCD的对角线相交于点O,DE∥AC,CE//BD.求证:四边形OCED 是菱形.28、如图,已知平行四边形ABCD中,点E为BC边的中点,延长DE,AB相交于点F.求证:CD=BF.29、如图,在中,AE平分∠BAD且与BC相交于点E,,与AD相交于点F,求证:四边形ABEF是菱形.30、如图,△ABC中∠ACB=90°,点D、E分别是AC,AB的中点,点F在BC 的延长线上,且∠CDF=∠A.求证:四边形DECF是平行四边形.参考答案一、单选题(共15题,共计45分)1、C2、A3、C4、D5、A6、C8、D9、B10、C11、A12、C13、D14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

完整版青岛版八年级下册数学第10章 一次函数含答案

完整版青岛版八年级下册数学第10章 一次函数含答案

青岛版八年级下册数学第10章一次函数含答案一、单选题(共15题,共计45分)1、如图,一次函数的图像经过,两点,则解集是()A. B. C. D.2、点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0),设△OPA 的面积为S.当S=12时,则点P的坐标为()A.(6,2)B.(4,4)C.(2,6)D.(12,﹣4)3、已知反比例函数y=(b为常数),当x>0时,y随x的增大而增大,则一次函数y=x+b的图象不经过第几象限()A.一B.二C.三D.四4、若点(a,y1)、(a+1,y2)在直线y=kx+1上,且y1>y2,则该直线所经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限5、关于的二元一次方程组的解满足,则直线与双曲线在同一平面直角坐标系中大致图象是()A. B. C. D.6、一次函数y=ax+b和反比例函数在同一直角坐标系中的大致图象是()A. B. C.D.7、下列各图中,表示y是x的函数的是()A. B. C.D.8、小明和小亮在同一条笔直的跑道上进行500米匀速跑步训练,他们从同一地点出发,先到达终点的人原地休息,已知小明先出发2秒,在跑步的过程中,小明和小亮的距离(米)与小亮出发的时间(秒)之间的函数关系如图所示,下列说法错误的是()A.小明的速度是4米/秒;B.小亮出发100秒时到达终点;C.小明出发125秒时到达了终点;D.小亮出发20秒时,小亮在小明前方10米.9、在同一坐标系内,一次函数与二次函数 y=ax2+8x+b 的图象可能是 ( )A. B. C.D.10、在动画片《喜羊羊与灰太狼》中,有一次灰太狼追赶喜羊羊,在距羊村40m处追上了喜羊羊.如图中s表示它们与羊村的距离(单位:m),t表示时间(单位:s).根据相关信息判断,下列说法中错误的是()A.喜羊羊与灰太狼最初的距离是30mB.灰太狼用15s追上了喜羊羊 C.灰太狼跑了60m追上了喜羊羊 D.灰太狼追上喜羊羊时,喜羊羊跑了60m11、若把函数y=2x-3图象向上平移3个单位长度,得到图象对应的函数解析式为( )A.y=2xB.y=2x-6C.y=4x-3D.y=-x-312、函数y=(k2﹣1)x+3k是一次函数,则k的取值范围是()A.k≠﹣1B.k≠1C.k≠±1D.k为一切实数13、如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x>﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A.0B.1C.2D.314、甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x (h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()A.4个B.3个C.2个D.1个15、1﹣7月份,某种蔬菜每斤的进价与每斤的售价的信息如图所示,则出售该种蔬菜每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份二、填空题(共10题,共计30分)16、已知一次函数y= x+m﹣1(其中m是常数),如果函数值y随x的增大而减小,且与y轴交于点P(0,t),那么t的取值范围是________.17、复习课中,教师给出关于x的函数y=−2mx+m−1(m≠0).学生们在独立思考后,给出了5条关于这个函数的结论:①此函数是一次函数,但不可能是正比例函数;②函数的值y 随着自变量x的增大而减小;③该函数图象与y轴的交点在y轴的正半轴上;④若函数图象与x轴交于A(a,0),则a<0.5;⑤此函数图象与直线y=4x−3、y轴围成的面积必小于0.5.对于以上5个结论是正确的有________个.18、小雨拿5元钱去邮局买面值为80分的邮票,小雨买邮票后所剩钱数y (元)与买邮票的枚数x(枚)之间的关系式为________.19、已知直线的解析式为y=ax+b,现从﹣1,﹣2,﹣3,4四个数中任选两个不同的数分别作为a、b的值,则直线y=ax+b同时经过第一象限和第二象限的概率是________.20、如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为________.21、一条笔直的公路上依次有A,B,C三地,甲,乙两人同时从A地出发,甲先使用共享单车,经过B地到达停车点C地后再步行返回B地,此时直接步行的乙也恰好到达B地.已知两人步行速度相同,两人离起点A的距离y(米)关于时间x(分)的函数关系如图,则________.22、已知关于x的方程mx+3=4的解为x=1,则直线y=(m-2)x-3一定不经过第________象限.23、函数与的图象如图所示,这两个函数的图象交点在y轴上,则使得的值都大于零的x的取值范围是________.24、如果每盒钢笔有10支,总售价100元,那么购买钢笔的总钱数y(元)与所买支数x之间的关系式为________.25、已知□ABCD的顶点B(1,1),C(5,1),直线BD,CD的解析式分别是y=kx,y=mx-14,则BC=________,点A的坐标是________.三、解答题(共5题,共计25分)26、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.27、已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.28、从甲地到乙地,先是一段上坡路,然后是一段平路,小明骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小明骑车在上坡、平路、下坡时分别保持匀速前进,已知小明骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km,设小明出发xh后,到达离乙地ykm的地方,图中的折线ABCDEF表示y与x之间的函数关系.(1)小明骑车在平路上的速度为多少km/h,他在乙地休息了多少小时.(2)分别求线段AB、EF所对应的函数关系式.(3)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程.29、世界上大部分国家都使用摄氏温度,但美国、英国等国家的天气预报仍然使用华氏温度.两种计量之间有如下对应:摄氏温度/℃0 10 20 30 40华氏温度/℉32 50 68 86 104(Ⅰ)如果两种计量之间的关系是一次函数,设摄氏温度为x(℃)时对应的华氏温度为y(℉),请你写出华氏温度关于摄氏温度的函数表达式;(Ⅱ)求当华氏温度为0℉时,摄氏温度是多少℃?(Ⅲ)华氏温度的值与对应的摄氏温度的值有可能相等吗?若可能,求出此值;若不可能,请说明理由.30、已知一次函数y1=-2x+1,y2=x-2.⑴当x分别满足什么条件时,y1=y2, y1<y2, y1>y2?⑵在同一直角坐标系中作出这两个函数的图象,并用自己的话归纳出⑴中的答案与函数图象之间的关系.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、B5、E6、A7、C8、D9、C10、D11、A12、C13、D14、B15、A二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、30、。

(完整版)青岛版数学配套练习册八下答案

(完整版)青岛版数学配套练习册八下答案

青岛版数学练习册八年级下册参考答案6.1第1课时1.相等;相等.2.互补.3.120°;60°.4.C.5.B6.B7.130°,50°.8.提示:先证△BEC是等边三角形.9.略.10.提示:延长ED交AC于点M,延长FD交AB于点N,证明四边形DFHM与EDNG都是平行四边形.第2课时1.互相平分.2.4;△ABD与△CDB,△ABC与△CDA,△OAB与△OCD,△OAD与△OCB3.C4.C5.(1)略;(2)14.6.略.7.9,5.8.如OE=OF,DE=DF,AE=CF,DE=BF.6.2第1课时1.平行,相等;平行且相等的四边形.2.6;3.3.C4.D5.提示:可利用判定定理1或平行四边形定义证明.6.本题是第5题的拓展,可直接证明,亦可利用第5题的结论.7.提示:证明四边形BDEF是平行四边形.第2课时1.105°.2.平行四边形.3.B4.B5.提示:证明四边形MFNE的两组对边分别相等.6.略.7.四边形EGFH是平行四边形,提示:利用三角形全等证明OE=OF.6.3第1课时1.四个角都是直角;两条对角线相等.2.2.3.5 cm和10 cm.4.B5.A6.A7.提示:利用直角三角形性质定理2.8.提示:证明Rt△ABF≌Rt△DCE.9.AD=CF.提示:证明△AED≌△FDC.第2课时1.32.对角线或两个邻角.3.D4.D5.矩形,证略.6.略.7.提示:四边形AEBD是矩形.8.提示:连PE.S△BDE=12ED·(PF+PG),又S△BDE=12ED·AB..第3课时1.菱形.2.菱.3.AD平分∠BAC.4.A5.D6.略.7.60°.提示:连接BF,则∠CDF=∠CBF.8.菱形,证略.第4课时1.4.2.一组邻边相等;一个角是直角.3.D4.A5.正方形,证略.6.正方形,证略.7.提示:延长CB至P点,使PB=DN,连接AP,△ABP≌△ADN,AP=AN,∠PAB=∠NAD.∠PAM=45°,△AMP≌△AMN,S△AMN=S△ABM+S△ADN.6.41.12,20,242.53.2a4.B5.B6.平行四边形,证明略.7.提示:过点E 作EF∥AB,交BC于点F,证明△ADE≌△EFC.8.AP=AQ.提示:取BC 的中点F,连接MF,NF,证明MF=NF,从而∠FMN=∠FNM,∠PQC=∠QPB,再证∠APQ=∠AQP.第六章综合练习1.6;32.123.正方形4.17或14或185.C6.C7.B8.C9.48 cm210.略.11.60°;75°12.提示:先证四边形AECF是平行四边形.13.提示:取BF的中点G,连接DG,证明△EDG≌△EAF.14.提示:证明Rt△AFD≌Rt△BEA.15.(1)菱形;(2)∠A为45°,证明略.16.正确,证明略.17.提示:连接AC交EF于点O.△AOE≌△COF.AE=CF,四边形AFCE是平行四边形,由AC⊥EF,可知AFCE是菱形.18.取AE中点P,连OP.OP=12CE.OP∥AD.∠OFP=∠ABD+∠BAE=∠BAE+45°,∵∠EAC=∠BAE,∠OPF=∠PAO+∠AOP=∠EAC+45°=∠OFP,∴△OPF是等腰三角形,OF=OP=12CE.19.提示:(1)用t表示AQ,AP,列方程6-t=2t,得t=2;(2)求出S△QAC=36-6t,S△APC=6t,S四边形QAPC=(36-6t)+6t=36,故与t无关.检测站1.平行四边形;菱形2.45°3.B4.B5.112.5°6.提示:连接CP,得ACPQ,因而AQ=CP=AP.7.(1)略;(2)四边形ACFD为平行四边形,证略.8.(1)略;(2)当∠BAC=90°时,四边形ADCE是正方形,证略. 7.11.14,142.1,03.0.4,34.B5.D6.B7.(1)1.2;(2)97;(3)10-2.8.(1)-0.2;(2)2.5;(3)5.9.0.5 m.10.111 111 1117.21.122.253.100或28.4.C5.A6.257.128.89.165.提示:利用△ADE面积.10.提示:AB=10.设DE=x,则x2+(10-6)2=(8-x)2,解得x=3,也可以利用S△ABC=S△ADC+S△ABD来求.7.3第1课时1.无限不循环小数,无限不循环小数,循环小数2.略3.6,74.C5.D6.B7.3,不是有理数,1.738.2,8,189.可能是5,是有理数;也可能是7,是无理数10.易证明四边形EFGH是正方形,设正方形ABCD的边长为xcm,则x2=64,∴x=8,于是AH=AE=4,∴EF=42+42=32.由52<32≤62,5.62<32<5.72,5.652<32<5.662,可以估计正方形EFGH的每条边长精确到0.01 cm的不足近似值为5.65 cm,过剩近似值为5.66 cm.第2课时1.32.1,2,无数个,1.5,1.7,2.1,无数个,3,2+0.1,5-0.13.C4.C5.(1)略;(2)先作出表示2的点A,再作OA的垂直平分线,它与OA的交点表示22;(3)略.6.8个.提示:以A为顶点有3个等腰三角形,以B为顶点有5个等腰三角形.7.可构造一条边长为10的直角三角形,或利用方格纸、数轴、第8题中的方法等.8.(1)11;(2)n2;(3)14(1+2+…+10)=5547.41.1202.直角三角形3.C4.B5.32+42=526.BC2=34=BD2+CD2,△BDC是直角三角形7.BD2+CD2=BC2,△BCD为直角三角形.在△ACD中,设AD=x,则x2+162=(12+x)2,x=143,周长=16038.a2+b2=c2,c=b+2.∵(c+b)(c-b)=a2,c-b=2,∴c+b=12a2,c=14a2+1,b=14a2-1.当a=20时,b=99,c=101.7.51.平方根有两个,算术平方根只有一个;算术平方根是正的平方根2.±4,±2,±3,±33.D4.C5.C6.(1)0.6,±0.6;(2)911,±911;(3)103,±103;(4)5,±57.(1)±0.2;(2)-65;(3)58.(1)x=±19;(2)x=±6;(3)x=32或x=12.9.88个7.61.立方根,x=3a,正,负,02.2,-3,-35,0.13.5 m4.D5.B6.(1)-12;(2)37.8, 328.(1)-512;(2)139.略10.382=4,3272=9.7.71.6.694 027 188,6.692.-1.77 939 465 2,-1.783.(1)85.15;(2)1.77;(3)0.28;(4)67.234.(1)12.62;(2)1.46;(3)-1.55;(4)-0.245.(1)6<315;(2)27>31336.4817.(1)其绝对值逐渐减小且越来越接近-1;(2)其绝对值逐渐增大且越来越接近-18.(1)450,447.2;(2)16,15.967.8第1课时1.5,-15,52.π3.D4.B5.略6.-3<-8<-5<-2<2<5<8<37.(1)17,17;(2)4,5;(3)略8.左边,因为32<2.第2课时1.(-2,-3);(2,3).2.223.y=2.4.B5.C6.(1)A(0,-3);(2)B′(-3,2);B″(3,2)7.C(3,0),D(32,32).8.O(0,0),B(322,322),C(0,32),D(-322,322).第3课时1.加、减、乘、除、乘方、开方.2.2-1和2-2.3.C4.D5.2+3<2×3<2+36.(1)0.82;(2)4.597.2608.v=78.9>70,超过规定的速度.9.(1)AC=AB=13;(2)522.第七章综合练习1.±32.4或343.(3+13)m4.35.76.答案开放,如-30,-π-2等.7.48.B9.D10.B11.B12.略.13.(1)8.2;(2)11.14.(1)26<5.23;(2)10>326.15.1316.设两直角边长为a,b,得(a2)2+b2=16,(b2)2+a2=9,两式相加,得54(a2+b2)=25,a2+b2=20,斜边长为20.17.2.0 s.18.提示:由AB=5,在方格纸上找出格点C,使C点到A,B 的距离分别为10,5,由(5)2+(5)2=(10)2,可知△ABC是直角三角形,面积为12(5)(5)=2.5.点C位置不唯一.19.1220.13 m21.5.3 m22.原式=(10-a)(10+a)=10-a2=10-9=1.23.弟弟大一岁.检测站1.-2+3,10-3.2.<3.D4.C5.26.0,±1,±2,±3,±4.7.(1)>;(2)<.8.4.3 cm.9.30cm2.10.3,33,333,33…3(n个3).提示:根号下表为(10n-1)2/9.8.1第1课时1.>2.<3.>4.>5.C6.A7.(1)a>1a;(2)3a+5>20;(3)23a-11≤2;(4)a(1-x%)≥15(元)8.(1)a-2<a<a+1<a+3;(2)-22<-33<33<229.4v≥31010.(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)11.设两个港口距离为s,江水水速为a,汽船在静水中速度为v,则t1=2sv,t2=sv+a+sv-a=2vsv2-a2,t1=2vsv2<2vsv2-a2=t2 第2课时1.>2.<3.>4.<5.<6.D7.D8.A9.(1)x<10;(2)x>4;(3)x>57;(4)x>210.(1)>;(2)<;(3)>;(4)>,<11.a+23<2a+13<a,在a>1两边同加2a,得3a>2a+1,在a>1两边同加a+1,得2a+1>a+2,都除以3即得.12.如改为:“若a>b>0,则a2>b2”或改为“若a>b,且a+b>0,则a2>b2”则成为真命题.8.2第1课时1.x>-32.x≤23.0,1,2,3,4,54.7,8,9,105.C6.C7.略8.-4,-3,-2,-19.略10.满足x>3的每个x的值都能使x-2>0成立,但不能说x>3是x-2>0的解集,这是因为满足x>3的x 的值不是x-2>0的所有解11.x2>0第2课时1.x>522.y≥123.x<-454.k>135.x≤-46.D7.B8.(1)x≥-1;(2)x>53;(3)x>-2;(4)y≤29.最后一步由-x>-13得x>13是错误的10.a=811.m>128.31.x≥892.23.100 m/min4.C5.B6.307.348.a>29.72,81,908.4第1课时1.6<x<102.x>13.如x+1≥3,2x+5>14.m≤25.D6.C7.B8.(1)x>34;(2)-134≤x<59.-1,0,1,2 10.-3<m≤-2.11.x<32a+72b,x>-53a+2b,由32a+72b=22,-53a+2b=5,得a=3,b=5第2课时1.-1,0,1.2.-1<a<5.提示:解方程组,得x=4a+4,y=-a+5.所以4a+4>0,-a+5>0.解得a>-1且a<5.3.B.4.C.5.-4≤x<8.6.-3≤m≤1,提示:解方程组,得x=1+m2,y=1-m4,由1+m2≤1,1-m4≤1,推出.7.(1)-1<a<5;提示:解方程组得x=4a+4,y=-a+5.由x>0,y>0,解不等式组得出答案.8.-45<x<1.提示:原不等式相当于解以下两个不等式组:①x-1>0,x+45<0;②x-1<0,x+45>0..不等式组①无解,所以不等式组②的解集即为原不等式的解集:-45<x<1.第八章综合练习1.<2.-123.a<-14.65.120元~130元6.A7.D,提示:由a-b<c<a+b都加(a+b)可得8.C9.B10.(1)x<-10;(2)x≤2;(3)1≤x<3211.a=412.3,4,513.当x>2,x=2,x<2时,第1个代数式的值分别大于、等于、小于第2个代数式的值.14.4人15.a<0或a>8.提示:满足条件的a的取值范围应是a+1<1或a>8.16.a=0,1,2.检测站1.x>-6.2.a+b<0.3.1.4.x>8.5.B.6.D.7.A.8.(1)x>2;(2)-2≤x<3;(3)x≤-6.9.2>m>-4.10.x<40时,去甲店;x=40时,两家均可;x>40时,去乙店.9.1第1课时1.≥-322.10;923.B4.C5.(1)35;(2)12;(3)12;(4)6.6.a2+17.x≥3且x≠4.8.(1)(a+10)(a-10);(2)(2a+3)(2a-3).第2课时1.0.30.3a3b22.≥13.B4.B5.D6.(1)128;(2)43;(3)18;(4)75.7.628.(1)π-3;(2)a+1;(3)12;(4)702.9.设宽为x,x=4.对角线长410.10.小莹解答正确.小亮答案错在(1-a)2=1-a,当a=5时,1-a<0,所以当a=5时,(1-a)2=a-1.第3课时1.15,30,42.2.x<33.C4.D5.A6.(1)25;(2)33;(3)216;(4)xx2.7.(1)2491;(2)2-a.8.(1)第11个为64729,第12个为827;(2)第2n-1个是(23)n,第2n 个也是(23)n.9.21.2,32,-33.2.A3.C4.(1)14059;(2)563-334;(3)-43;(4)28105.5.22.6.162或172.7.439.3第1课时1.(1)-833;(2)48;(3)62(4)2.2.B3.B4.(1)302;(2)1;(3)2;(4)32.5.(1)46;(2)23.6.(1)36;(2)510;(3)2n2 n(n为正整数).第2课时1.(1)1;(2)6+106.2.D3.A4.(1)6(6-2-3+1);(2)1+5;(3)352;(4)1;(5) 36+43.5.(1)7;(2)125.7.2 015第九章综合练习1.(1)76;(2)-33;(3)2+3;(4)-5.2.B3.D4.C5.(1)-246;(2)152.6.略.7.(1)2;(2)-64+362.8.122.9.22.10.(1)-1;(2)都不满足;(3)±12.11.(1)略;(2)a=m2+2n2,b=2mn;(3)略.检测站1. 2.√ 3.√ 4. 5.6.D7.A8.-1+3+62.9.-42.10.(1)45-542;(2)42(3-6).11.设另一直角边长为a,则(6)2+a2=(32)2,a=23.设斜边上的高为h,则12×32h=12×23×6,h=2.12.x=16.10.1第1课时1.(1)2;(2)0,1,1,2;(3)1.2.A3.(1)大气压与海拔高度的函数关系,海拔高度;(2)80 Kpa;(3)海平面的大气压,海拔12 km时的大气压;(4)海拔高度逐渐上升时,大气压逐渐下降.4.(1)24 min,90 km/h;(2)2~6,30 km/h,16~21,90 km/h;(3)汽车停止;(4)略.5.(1)10元;(2)1.5元/kg;(3)35.第2课时1.300,17.2.B3.A4.略.5~7.略.8.(1)略;(2)超过8 kg不超过9 kg.10.2第1课时1.52.≠3,=-33.C4.C5.y=3x6.(1)y=-x+40;(2)10件.7.(1)0.92;(2)4 852元/人.第2课时1.(4,0)(0,8).2.一、二、四.3.D4.B5.略.6.a=-52.7.(1)y=t+0.5;(2)1;(3)(t+0.5)万公顷.10.31.三2.增大3.二、三、四,减少.4.C5.D6.(1)y=x+2;(2)(-2,0);(3)1.7.(1)3;(2)a>3;(3)a>3.8.y=79x-83或y=-79x-13.10.41.y=25x+152.10x-15y=93.A4.C5.x=-1,y=-1..6.x+2y=3,2x-y=1.7.6.提示:由直线y=2x+a与y=-x+b都经过点A(-2,0),得a=4,b=-2.又得B(0,4),C(0,-2).BC=6,AO=2,S△ABC=12BC×AO=6.8.y=4x-3.提示:l经过(2,5)(1,1)两点.10.51.x>12,x<12,x=12.2.x<123.x>24.x<0,x>2,0≤x≤2.5.B.6.D.7.A.8.B.9.y=-12x+3.当x<6时,y >0;当x=6时,y=0;当x>6时,y<0.10.x>111.y1=-2x+1.当x<35时,y1>y2;当x=53时,y1=y2;当x>53时,y1<y2.12.(1)k=1,b=2;(2)略;(3)x>13.13.m>714.(1)-4<k<1;(2)4对:l1:x-2y=9,l2:x+3y=-11;l1:x-2y=8,l2:x+3y=-7;l1:x-2y=7,l2:x+3y=-3l1:x-2y=6,l2:x+3y=1.10.61.大于80 L2.x>1(kg)3.B4.D5.(1)y甲=5x+200(x≥10),y乙=4.5x+225.(2)由(1),x=50时,y甲=y乙;10≤x<50时,y甲<y 乙;x>50时,y甲>y乙.6.(1)设A种商品销售x件,则B种商品销售(100-x)件.10x+15(100-x)=1 350,x=30,100-x=70.(2)设该商店购进A种商品a件,则B种商品购进(200-a)件,由200-a≤3a,得a≥50.利润w=10a+15(200-a)=-5a+3 000.由于-5<0,当a=50时,w达到最大,最大值为-5×50+3 000=2 750元.即当购进A,B两种商品分别为50件和150件时,获利最大,最大利润为2 750元.7.3≤b≤68.(1)共3种方案:A:30,B:20;A:31,B:19;A:32,B:18;(2)y=700x+1 200(50-x)=60 000-500x;(3)采用第1种方案获利最多,为45 000元.第十章综合练习1.-12.>-13,<-13,=-13.3.2,73.4.B5.A6.C7.C8.(1)(3,0),(0,4);(2)是.9.略.10.(1)l1:y=2x-1,l2:y=6x+7;(2)l1与x轴交点坐标为(12,0),l2与x轴交点坐标为(-76,0),l1,l2与x轴围成的三角形底边长为53,l1,l2交于(-2,-5),底边上的高为5.S=12×53×5=256;(3)当x <-2时,l1的函数值大于l2的函数值.11.(1)y甲=300x,y乙=350(x-3);(2)乙旅行社;(3)当人数少于21人时,选乙旅行社合算,人数多于21人时,选甲旅行社合算.12.2+23.提示:点P在线段OA的垂直平分线PM上,M为PM与x轴的交点.OM=2,OP=4,PM=OP2-OM2=23.P(2,23),点P在直线y=-x+m上,所以m=2+23.13.(1)y=150-x;(2)由题意得y≥2x.所以150-x≥2x.解得x ≤50.又因为x≥0,150-x≥0,因此0≤x≤50.所以p=1 500x+2 000(150-x)=-500x+300 000,从而x=300 000-p500,于是0≤300 000-p500≤50,解得275 000≤p≤300 000.检测站1.y=-2x+7.2.>.提示:y随x增大而增大,可知k>0,图象与y轴交点在原点上方,故b>0.所以kb>0.3.A.4.C.5.画图略,x=23y=73..6.(1,3)7.1<k≤2.提示:因为图象不过第一象限,所以2(1-k)<0,12k-1≤0.11.1第1课时1.平移方向平移距离全等.2.平行(或在同一条直线上)且相等3.9+2或3+24.4;30°,≌5.C6.略7.略8.(1)92 cm2;(2)y=12(4-x)2第2课时1.AB=DE,AC=DF,BC=EF,BE=CF;∠DEF2.16 cm.3.A4.C5.平移距离为56.四边形ABCA′与ACC′A′为平行四边形,理由略7.△BEF与△CGH都是等边三角形,则 BF=EF,GC=GH,∴六边形EFGHIJ 的周长=2(EF+FG+GH)=2(BF+FG+GC)=2BC=2.第3课时1.(3,-1);(3,-5);(1,-3);(5,-3)2.(a+3,b+2);(a-2,b-3)3.D4.A′(2,1),B′(1,-1,),C′(3,0),图略5.(1)平移距离为13;(2)B′(2,-1),C′(1,2);(3)P′(a+3,b+2)6.(1)D(-4,3);(2)A′(-4+2,1-2),B′(-1+2,1-2),C′(-1+2,3-2),D′(-4+2,3-2);(3)8-52.提示:重叠部分是一个矩形,它的长等于点B与D′的横坐标的差3-2,宽等于点D′与B的纵坐标的差2-2.11.2第1课时1.旋转中心,旋转方向,旋转角,全等2.相等;相等3.D4.B5.略6.327.(1)6-23(cm);提示:C′C=BD-BC′-CD=(6+63)-23-63=6-23;(2)30°第2课时1.PB;60°2.△FDE或△EDC或△AFE;点D或点D或点F;逆时针或逆时针或顺时针;60 °或120 °或120 °3.A4.D5.略6.(1)3;(2)BE⊥DF.提示:延长BE,交DF于点G,∠DGE=∠DAB=90°.7.四边形AHCG的面积不变为16,证明略.提示:证明△AHB≌△AGD.第3课时1.2.提示:连A′B,OA=OA′,∠A′OA=60°,∠AOB=30°,△AOB≌△A′OB.A′B=AB=2.2.(1)10,135°.(2)平行.提示:A′C′∥CB.A′C′=AC=BC.3.D.提示:连接OA,OB,旋转角为∠AOB.4.2-33.提示:连AE.∠B′AD=60°,∠DAE=30°.DE=AD×13=33.CE=CD-DE=1-33.四边形ADEB′的面积=2×S△ADE=2×12×1×33=33.所求的蝶形面积=2-33.5.等边三角形.提示:∠APD=60°,△PAD为等边三角形.∠PDC=∠PAE=30°,∠DAE=∠DAP-∠PAE=30°,∠PAE=30°,∠BAE=60°,又CD=AB=EA,△ABE为等边三角形.6.PA=PB+DQ.提示:将Rt△ADQ绕点A 顺时针方向旋转90°到Rt△ABE,Rt△ADQ≌Rt△ABE,∠AQD=∠E,DQ=BE.由旋转角=90°,∠BAE+∠BAP+∠PAQ=90°.又因∠PAQ=∠DAQ,∠BAE+∠BAD+∠DAQ=90°.在Rt△ADQ中,∠AQD+∠DAQ=90°,故∠AQD=∠BAE+∠BAP=∠EAP.又因∠ABP=∠ABE=90°,所以P,B,E在同一条直线上.△AEP为等腰三角形,PA=PE=PB+BE=PB+DQ.11.3第1课时1.180°2.略3.454.B5.略6.BC∥DE.理由略.7.延长AD至G,使DG=AD,连接BG.因为点D是AG,BC的中点,所以△ADC与△GDB关于点D成中心对称.△ADC≌△GDB.AC=BG,∠G=∠CAD.又因为AE=EF,∠CAD=∠AFE,而∠AFE=∠BFD,∠G=∠BFG,BG=BF.推出BF=AC.第2课时1.中心对称图形2.对称中心;被对称中心平分3.A4.C5.(1)略;(2)无数条,过对称中心;(3)菱形、正方形、平行四边形;(4)中心对称性质.6.(1)连接AD,交BE于O.将△ABC绕O旋转180°;(2)是.O是对称中心.7.(1)(2)(3)点H是矩形ABEF与矩形KEBC的对称中心,也是矩形ACDG与矩形KFGD的对称中心.第十一章综合练习1.41 °;平行;相等2.ED;103.48 cm24.∠B;∠DAE;点A;∠BAD;35.60 °6.120°7.B8.C9.B10.略11.(1)向左平移3个单位长度,向上平移2个单位长度.平移距离13单位长度;(2)A′(-2,4),B′(-5,1)12.(1)60°;(2)3.13.6+23.提示:∠B′AC=60°-15°=45°,△AB′D是等腰直角三角形.由AD=22,得AB′=2,AB=AB′=2,BC=23,△ABC的周长=2+4+23=6+23.14.略15.不变,1.16.(1)∠AGD=∠D+∠ACD=30°+120°=150°.(2)旋转角∠AFE=∠DEF=60°时DE∥AB.17.(1)提示:△ABQ≌△ACP,因而△ABQ可以看作是由△ACP绕点A旋转得到的;(2)BQ=CP仍成立;(3)BQ=CP仍成立.18.(1)不能;(2)以正方形对角线交点为旋转中心逆时针旋转90°.检测站1.水平;82.35°;6;123.D4.略5.(1)略;(2)如以点C为旋转中心顺时针旋转90°,或以点C为旋转中心逆时针旋转90°,等.6.(1)四边形ABC′D′是平行四边形,提示:证明AB瘙綊 C′D′;(2)当移动距离为3时,四边形ABC′D′是菱形,提示:设BB′=x,由BC′=C′D′得BB′2+B′C′2=C′D′2,得x2+1=22.当移动距离为133时,四边形ABC′D′是矩形.提示:由BC′⊥C′D′得BC′2+C′D′2=BD′2,得x2+1+22=(x+3)2.总复习题1.平行四边形.2.12 cm,20 cm.3.平行四边形.4.2-15.A,50°,等腰三角形.6.c<bc<ac<ab.7.C.8.D.9.D.10.D.11.提示:通过三角形全等关系推出,GE=FH,GF=EH.12.(1)163;(2)2;(3)2+3;(4)192.13.(23,23),(2,-2).14.37.5 cm2.15.提示:梯形BCC′D′面积有两种算法:一是12(BC+C′D′)·BD′=12(BD′)2=12(a+b)2;一是S△ACC′+S△ABC+S△AC′D′=12c2+12ab+12ab.由此推出a2+b2=c2.16.(1)80 km/h和60 km/h;(2)240+34×240=420 (km);(3)160 km.17.(1)购进甲种商品40件,乙种商品60件;(2)购进甲种商品20件,乙种商品80件,总利润最大,最大利润900元.18.(1)x=6;(2)-2≤x<6;(3)-3k+b<-7k+b.19.(1)A(-2,-1-3);(2)A1(0,1+3),B1(1,1),C(-1,1);(3)A9(16,1+3),B9(17, 1),C9(15,1).20.32.提示:x2+1+(x-3)2+4=(x-0)2+12+(x-3)2+22,在直角坐标系中,上或右端可视为x轴同侧两点A(0,1)和B(3,2)分别与x轴上的点P(x,0)的距离PA,PB的和.作点A关于x轴的对称点A′(0,-1),则线段A′B的长为PA+PB的最小值.由勾股定理,A′B=32+32=32.21.45°.提示:把Rt△CDQ绕点C旋转到Rt△CBE,其中E 在直线AB上.证明△CQP≌△CEP.22.提示:设批发市场两次卖出的白糖价格分别为x,y(单位:元/kg),A,B分别是甲、乙两超市购进白糖的平均价格,则根据题意:A=(2×1 000)÷(1 000x+1 000y)=2xyx+y,B=(1 000x+1 000y)÷(2×1 000)=x+y2.B-A=x+y2-2xyx+y=(x+y)2-2xy2(x+y)=x2+y22(x+y)>0.所以,乙超市购进白糖的平均价格高些,甲超市的进货方式比较合算.23.提示:A,B两公司有化肥数量恰好等于张村、李庄所需化肥数量.设A公司化肥运往张村x吨,则运往李庄(200-x)吨,B公司化肥运往张村(220-x)吨,运往李庄[280-(200-x)]吨=(80+x)吨,需要总运费设为y元.据题意,得y=20x+25(200-x)+15(220-x)+22(80+x)=2x+10 060,0≤x≤200.当x=0时,y最小=10 060.所以运费最少为10 060元,只要从A公司运往李庄200吨,从B公司运往张村220吨,运往李庄80吨,即达到运费最少.总检测站1.3 cm2.2.∠B=90°或AB∥CD等.3.5,25.4.D.5.A.6.C.7.AC=EH+FG.提示:过点H作HK∥AB,交AC于K,得AEHK,KC=FG,AK=EH.8.4.9.90°,等腰直角三角形.10.(1)AC=13,BC=5,AB=4,AC2+BC2≠AC2,△ABC不是直角三角形.CD=13,AD=26,AC2+CD2=AD2,△ACD是直角三角形;(2)D,C,B不在一条直线上,因∠ACD+∠ACB≠180°;(3)45°.11.(1)设l1:y1=k1x+2,由图象知17=500k1+2,解得k1=0.03.所以y1=0.03x+2(0≤x≤2 000).类似地可求出y2=0.012x+20(0≤x≤2 000).(3)看法不对.两灯同时点亮时,当0≤x≤1 000时,白炽灯省钱;当x=1 000时,两灯费用相同;当1000<x≤2 000时,节能灯省钱.12.结论(1)不成立.结论(2)(3)成立.提示:证明△ABG≌△CBE.1..≤≥<>×÷′△∠°αβ⊥∥≌≠∵∴S△ACC′。

青岛版数学八下 第8章 一元一次不等式(含答案)

青岛版数学八下  第8章 一元一次不等式(含答案)

青岛版八年级下册第8章一元一次不等式1.若a≤b,则(1)≤,(2) 2c-a≥2c-b,上述两个结论中()A. 只有(1)正确B. 只有(2)正确C. (1)(2)都正确D. (1)(2)都不正确2.三个连续自然数的和小于15,这样的自然数组共有()A. 6组B. 5组C. 4组D. 3组3.点A(m-4,1-2m)在第三象限,则m的取值范围是()A. m>B. m<4C. <m<4D. m>44.一元一次不等式组的解集为x>a,且a≠b,则a与b的关系是()A. a>bB. a<bC. a>b>0D. a<b<05.下列命题中正确的是()A. 若m≠n,则|m|≠|n|B. 若a+b=0,ab>0C. 若ab<0,且a<b,则|a|<|b|D. 互为倒数的两数之积为正6.无论x取什么数,下列不等式总成立的是()A. x+5>0B. x+5<0C. -(x+5)2<0D. (x-5)2≥07.若=-1,则x的取值范围是()A. x>1B. x≤1C. x≥1D. x<18.解集在数轴上表示为如图所示的不等式组是()A. B. C. D.9.关于x的不等式2x-a≤-1的解集如图所示,则a的取值是()A. 0B. -3C. -2D. -110.已知关于x的不等式(1-a)x>2的解集为x<,则a的取值范围是()A. a>0B. a>1C. a<0D. a<111.如果不等式组无解,则a的取值范围是()A. a>1B. a≥1C. a<1D. a≤112.已知关于x的不等式组的解集为3≤x<5,则的值为()A. -2B. -C. -4D. -13.如果不等式组有一个整数解,那么m的取值范围是______ .14.当x<a<0时,x2与ax的大小关系是x2______ ax.15.如果a(x-1)>x+1-2a的解集是x<-1,则a的取值范围是______ .16.不等式-1>的解集为______ .17.若点P(1-m,m)在第二象限,则(m-1)x>1-m的解集为______ .18.已知不等式组的解集是-1<x<1,则(a+1)(b+1)的值是的______.19.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打______折.20.已知关于x的不等式组的整数解共有6个,则a的取值范围是______ .21.已知0≤x≤4,那么|x-2|-|3-x|的最大值为______ .22.一堆玩具分给若干个小朋友,若每人分3件,则剩余3件;若前面每人分5件,则最后一人得到的玩具不足3件.则小朋友的人数为______ 人.23.解下列不等式(组),并把解集表示在数轴上.(1)≥;(2).24.解不等式组-2≤<4,并写出该不等式组的整数解.25.已知不等式(x-m)>3-m的解集为x>1,求m的值.26.“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.27.义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?答案和解析1.【答案】C【解析】【解答】解:(1)∵a≤b,>0,∴≤,故(1)正确;(2)∵a≤b,∴-a≥-b,2c-a≥2c-b,故(2)正确.故选C.【分析】(1)可根据不等式的基本性质2解答;(2)可根据不等式的基本性质1和3解答.本题考查的是不等式的基本性质,解答此题的关键是熟知以下知识:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.【答案】C【解析】解:设这三个连续自然数为:x-1,x,x+1,则0<x-1+x+x+1<15,即0<3x<15,∴0<x<5,因此x=1,2,3,4.共有4组.故选:C.本题可设三个连续自然数分别为x-1,x,x+1,然后将三者相加令其的和大于0而小于15,解出x的取值,再在x的取值中找出自然数的个数即可知道有几组.本题考查了一元一次不等式的运用,解此类题目时常常是设中间的数为x,然后根据题意列出不等式,解出x的取值.3.【答案】C【解析】解:∵点A(m-4,1-2m)在第三象限,∴,解得<m<4.故选:C.点在第三象限的条件是:横坐标是负数,纵坐标是负数.坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点.该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m的取值范围.4.【答案】A【解析】解:∵的解集为x>a,且a≠b,∴a>b.故选:A.根据不等式组解集的“同大取较大”的原则,a≥b,由已知得a>b.本题考查了不等式组解集的四种情况:①同大取较大,②同小取较小,③小大大小中间找,④大大小小解不了.5.【答案】D【解析】解:A、可举例子-1≠1,则|-1|=|1|,故本选项错误;B、可举例子a=-1,b=1,ab<0,故本选项错误;C、可举例子a=-5,b=1,|-5|>|1|,故本选项错误;D、互为倒数的两数之积为1,所以互为倒数的两数之积为正,故本选项正确.故选D.A、可举反例-1≠1,则|-1|=|1|,B、a=-1,b=1,ab<0,C、a=-5,b=1,ab<0,且a<b,则|a|>|b|D、互为倒数的两数之积为1,所以为正.本题考查了有理数的绝对值,倒数,乘积等知识,可用反例来说明问题.6.【答案】D【解析】解:A、x>-5时成立;B、x<-5时成立;C、根据非负数的性质,-(x+5)2≤0;D、根据非负数的性质,(x-5)2为非负数,所以(x-5)2≥0成立.故选:D.通过解不等式可得A、B中x的取值范围;根据非负数的性质,可对C、D进行判断.解答此题不仅要会解不等式,还要知道非负数的性质.7.【答案】D【解析】分析本题考查了解一元一次不等式,关键是根据题意,判断出x-1<0,此题属于基础题.根据=-1,可得x-1<0,解不等式即可.解答解:由题意得,x-1<0,解得:x<1.故选D.8.【答案】D【解析】解:根据数轴得到不等式的解集是:-3<x≤2.A、不等式组的解集是x≥2,故A选项错误;B、不等式组的解集是x<-3,故B选项错误;C、不等式组无解,故C选项错误.D、不等式组的解集是-3<x≤2,故D选项正确.故选:D.由数轴可以看出不等式的解集在-3到2之间,且不能取到-3,能取到2,即-3<x≤2.在数轴上表示不等式组解集时,实心圆点表示“≥”或“≤”,空心圆圈表示“>”或“<”.9.【答案】D【解析】解:不等式2x-a≤-1,解得x≤,由数轴可知,x≤-1,所以=-1,解得a=-1.故选:D.首先根据不等式的性质,解出x≤,由数轴可知,x≤-1,所以,=-1,解出即可.本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10.【答案】B【解析】解:∵不等式(1-a)x>2的解集为x<,又∵不等号方向改变了,∴1-a<0,∴a>1;故选:B.化系数为1时,不等号方向改变了,利用不等式基本性质可知1-a<0,所以可解得a的取值范围.解不等式要依据不等式的基本性质:在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.11.【答案】C【解析】解:整理不等式组得,∵不等式组无解,∴a<1,故选C.整理不等式组得,由题意得a<1,选择答案即可.通过不等式组无解,确定a的取值范围,这是此题的突破口.12.【答案】A【解析】解:不等式组由①得,x≥a+b,由②得,x<,∴,解得,∴=-2.故选:A.先解不等式组,解集为a+b≤x<,再由不等式组的解集为3≤x<5,转化成关于a,b的方程组来解即可.本题是一道综合性的题目.考查了不等式组和二元一次方程组的解法,是中考的热点,要灵活运用.13.【答案】6≤m<7【解析】解:的解集是m<x<8,∵不等式组有一个整数解,∴6≤m<7,故答案为:6≤m<7.求出不等式组的解集m<x<8,根据已知得出6≤m<7即可得到答案.本题主要考查对解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集和已知得出6≤m<7是解此题的关键.14.【答案】>【解析】解:∵x<a<0两边同时乘以负数x得到:x2>ax.故答案为:>.原不等式两边都乘负数x即可.解决本题的关键是,能够理解从已知的式子是如何变化到所要求的式子的,理解不等号的方向何时不变,何时变化.15.【答案】a<1【解析】解:去括号得,ax-a>x+1-2a,移项得,ax-x>1-2a+a,合并得,(a-1)x>1-a,∵a(x-1)>x+1-2a的解集是x<-1,∴a-1<0,即a<1,故答案为:a<1.先将不等式整理成ax>b的形式,再根据解集,求出a的取值范围.本题考查了不等式解集的求法,注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.16.【答案】x<【解析】【分析】利用不等式的基本性质,先去分母,再去括号,然后移项、合并同类项、化系数为1即可求出不等式的解集.解不等式依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.【解答】解:去分母得3x+15-6>6x+4,移项合并同类项得3x<5,化系数为1得x<.所以不等式-1>的解集为x<.17.【答案】x>-1【解析】解:∵点P(1-m,m)在第二象限,∴1-m<0,即m-1>0;∴不等式(m-1)x>1-m,∴(m-1)x>-(m-1),不等式两边同时除以m-1,得:x>-1.第二象限的点的横坐标小于0,纵坐标大于0,即1-m<0,则m-1>0;解这个不等式组就是不等式左右两边同时除以m-1,因为m-1>0,不等号的方向不变.解不等式,系数化为1的过程中,一定要先判断两边所除的式子的符号.18.【答案】-2【解析】解:,由①得,x<,由②得,x>2b+3,所以,不等式组的解集是2b+3<x<,∵不等式组的解集是-1<x<1,∴2b+3=-1,=1,解得a=1,b=-2,所以,(a+1)(b+1)=(1+1)(-2+1)=-2.故答案为:-2.先求出两个不等式的解集,再求其公共解,然后根据不等式组的解集列出求出a、b的值,再代入代数式进行计算即可得解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.【答案】7【解析】解:设至多打x折则1200×-800≥800×5%,解得x≥7,即最多可打7折.故答案为:7.利润率不低于5%,即利润要大于或等于800×5%元,设打x折,则售价是1200x元.根据利润率不低于5%就可以列出不等式,求出x的范围.本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.20.【答案】-5≤a<-4【解析】解:由不等式组可得:a<x<1.5.因为有6个整数解,可以知道x可取-4,-3,-2,-1,0,1,因此-5≤a<-4.故答案为:-5≤a<-4.先解出不等式组的解,然后确定x的取值范围,根据整数解的个数可知a的取值.本题考查不等式组中不等式的未知字母的取值,利用数轴能直观的得到,易于理解.21.【答案】1【解析】解:根据绝对值的几何意义,令t=|x-2|-|3-x|=|x-2|-|x-3|,其几何意义为x表示的点到点2与点3的距离之差,根据数轴分析可得,当x≥3时,t=1,取得最大值,故答案为1.令t=|x-2|-|3-x|=|x-2|-|x-3|,根据绝对值的几何意义可得,t的几何意义为x表示的点到点2与点3的距离之差,根据数轴分析可得答案.本题考查绝对值的几何意义,|a-b|即两实数a、b表示两个点间的距离.22.【答案】3【解析】【分析】本题考查理解题意能力,关键是找到最后一人得到的玩具不足3件这个不等量关系,列不等式组求解.设小朋友的人数为x人,则玩具数为(3x+3),根据若前面每人分5件,则最后一人得到的玩具不足3件.可列一元一次不等式组求解.【解答】解:设小朋友的人数为x人.,解得:2.5<x<4,故x=3.故答案为3.23.【答案】解:(1)去分母得:6+3x≥4x-2,移项合并得:x≤8;(2),由①得:x≤1;由②得:x>-2,则不等式组的解集为-2<x≤1,【解析】(1)不等式去分母,去括号,移项合并,将x系数化为1,即可求出解集;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.24.【答案】解:解不等式≥-2得,x≤5,解不等式<4得,x>-4,则该不等式组的解集为:-4<x≤5,故该不等式组的整数解为:-3,-2,-1,0,1,2,3,4,5.【解析】分别求解两个不等式,然后求其交集,最后找出不等式组的整数解.本题考查了解一元一次不等式和不等式组的整数解,关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.25.【答案】解:去分母得,x-m>3(3-m),去括号得,x-m>9-3m,移项,合并同类项得,x>9-2m,∵此不等式的解集为x>1,∴9-2m=1,解得m=4.【解析】本题考查了解一元一次不等式,关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.先根据一元一次不等式的解法求解不等式,然后根据不等式的解集为x>1,得出9-2m=1,求出m的值.26.【答案】解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x辆、y辆,根据题意得:,解之得:.答:“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;(2)设载重量为8吨的卡车增加了z辆,依题意得:8(5+z)+10(7+6-z)>165,解之得:z<,∵z≥0且为整数,∴z=0,1,2;∴6-z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;②载重量为8吨的卡车购买2辆,10吨的卡车购买4辆;③载重量为8吨的卡车不购买,10吨的卡车购买6辆.【解析】(1)根据“‘益安’车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石”分别得出等式组成方程组,求出即可;(2)利用“‘益安’车队需要一次运输沙石165吨以上”得出不等式求出购买方案即可.此题主要考查了二元一次方程组的应用以及不等式的应用,根据已知得出正确的不等式关系是解题关键.27.【答案】解:(1)设购买一块A型小黑板需要x元,一块B型为(x-20)元,5x+4(x-20)=820,x=100,x-20=80,购买A型100元,B型80元;(2)设购买A型小黑板m块,则购买B型小黑板(60-m)块,,∴20<m≤22,而m为整数,所以m为21或22.当m=21时,60-m=39;当m=22时,60-m=38.所以有两种购买方案:方案一购买A21块,B 39块、方案二购买A 22块,B38块.【解析】(1)设购买一块A型小黑板需要x元,一块B型为(x-20)元,根据,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元可列方程求解.(2)设购买A型小黑板m块,则购买B型小黑板(60-m)块,根据需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,可列不等式组求解.本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,列出不等式组求解.。

八年级下册数学练习册答案青岛版

八年级下册数学练习册答案青岛版

八年级下册数学练习册答案青岛版【练习一:实数的概念和性质】1. 判断题:实数包括有理数和无理数。

(对)2. 选择题:下列数中,哪个数是有理数?A. πB. √2C. 0.33333(无限循环小数)D. √3答案:C3. 填空题:若a是一个无理数,b是一个有理数,那么a+b的结果可能是____。

答案:实数4. 计算题:求下列各数的平方根。

(1) 9(2) 16答案:(1) ±3;(2) ±4【练习二:代数方程的解法】1. 解一元一次方程:3x - 5 = 14答案:x = 72. 解一元二次方程:x² - 4x + 4 = 0答案:x₁ = x₂ = 2(重根)3. 解应用题:一个长方形的长比宽多2米,面积是20平方米,求长和宽。

答案:设宽为x米,则长为x+2米。

根据面积公式x(x+2)=20,解得x=4,所以宽为4米,长为6米。

【练习三:几何图形的性质】1. 判断题:直角三角形的斜边是最长的边。

(对)2. 选择题:下列哪个图形的对角线相等?A. 矩形B. 菱形C. 平行四边形D. 梯形答案:B3. 填空题:如果一个三角形的两边长分别为3和4,第三边的长x满足的条件是____。

答案:1 < x < 74. 计算题:已知一个圆的半径为5厘米,求圆的面积。

答案:πr² = 25π平方厘米【练习四:函数的概念和性质】1. 判断题:函数的自变量可以取任意实数。

(对)2. 选择题:下列哪个函数是一次函数?A. y = x²B. y = 3x + 5C. y = 1/xD. y = sin(x)答案:B3. 填空题:如果一个函数的图象是一条直线,那么这个函数是____。

答案:一次函数4. 计算题:已知函数y = 2x - 3,求当x = 4时的函数值。

答案:y = 2*4 - 3 = 5结束语:同学们,通过这些练习,我们复习了实数的概念和性质、代数方程的解法、几何图形的性质以及函数的概念和性质。

青岛版八年级下册《第6章 平行四边形》答案

青岛版八年级下册《第6章 平行四边形》答案

答案和解析1.【答案】C【解析】解:由题意得:平行四边形的一组邻边长正好是三角形的两边,平行四边形的对角线正好为三角形的第三边,∵平行四边形的一条对角线长为10,∴它的一组邻边必须:满足之和大于10,差小于10,∴它的一组邻边可能是:4和8,故选:C.平行四边形的一条对角线正好把平行四边形分成两个三角形,平行四边形的一组邻边长正好是三角形的两边,平行四边形的对角线正好为三角形的第三边,所以要讨论第三边与两边之和的关系.此题主要考查了平行四边形的性质和三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.2.【答案】D【解析】解:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,CD=AB=4,AD=BC=7∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,OE=OF=3,∴EF=6,∴四边形EFCD的周长是:CD+DE+EF+CF=CD+DE+AE+EF=CD+AD+EF=4+7+6=17.故选D.由在平行四边形ABCD中,EF过两条对角线的交点O,易证得△AOE≌△COF,则可得DE+CF=AD,EF=2OE=6,继而求得四边形EFCD的周长.此题考查了平行四边形的性质和全等三角形的判定与性质.此题难度适中,注意掌握转化思想与数形结合思想的应用.3.【答案】B【解析】解:∵四边形ABCD是平行四边形∴AD∥BC,AD=BC,AB=CD,∵E,F分别是AB,CD的中点,∴AE=BE=DF=FC,∴四边形ADFE是平行四边形,四边形EFCB是平行四边形,四边形BEDF是平行四边形∴共有4个.故选B.【分析】根据平行四边形的判定及性质进行分析,从而可得到共有四个平行四边形,分别是:ADFE,EFCB,BEDF,ABCD.此题主要考查平行四边形的判定及性质的理解及运用.4.【答案】B【解析】解:如图,∵四边形ABCD是矩形,∴OA=OB,∵AC、BD的夹角∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=5cm,∴AC=2OA=2×5=10cm.故选B.作出图形,根据矩形的对角线互相平分且相等可得OA=OB,然后判断出△AOB是等边三角形,根据等边三角形的性质可得OA=AB,再求解即可.本题考查了矩形的性质,等边三角形的判定与性质,熟记性质是解题的关键,作出图形更形象直观.5.【答案】C【解析】解:顺次连接对角线相等的四边形各边中点,所得四边形是菱形,如图所示:已知:E,F,G,H分别为四边形ABCD各边的中点,且AC=BD,求证:四边形EFGH为菱形,证明:∵E,F,G,H分别为四边形ABCD各边的中点,∴EH为△ABD的中位线,FG为△CBD的中位线,∴EH∥BD,EH=BD,FG∥BD,FG=BD,∴EH∥FG,EH=FG=BD,∴四边形EFGH为平行四边形,又EF为△ABC的中位线,∴EF=AC,又EH=BD,且AC=BD,∴EF=EH,∴四边形EFGH为菱形.故选:C.顺次连接对角线相等的四边形各边中点,所得四边形是菱形,理由为:根据题意画出四边形ABCD,E,F,G,H分别为各边的中点,写出已知,求证,由E,H分别为AB,AD的中点,得到EH为三角形ABD的中位线,根据三角形的中位线定理得到EH平行于BD,且等于BD的一半,同理FG平行于BD,且等于BD的一半,可得出EH与FG平行且相等,根据一组对边平行且相等的四边形为平行四边形得出EFGH为平行四边形,再由EF为三角形ABC的中位线,得出EF等于AC的一半,由EH等于BD的一半,且AC=BD,可得出EH=EF,根据邻边相等的平行四边形为菱形可得证.此题考查了三角形的中位线定理,平行四边形的判定,以及菱形的判定,利用了数形结合及等量代换的思想,灵活运用三角形中位线定理是解本题的关键.6.【答案】C【解析】解:菱形的周长为40cm,则菱形的边长为10cm,设菱形的对角线分别是2x、2y,则x、y满足4y=3x,x2+y2=102,解得x=6cm,y=8cm,∴对角线的长为12cm,16cm.故选C.根据菱形的周长可以计算菱形的边长,设菱形的对角线分别是2x、2y,则x、y满足4y=3x,x2+y2=102,求得x、y的值即可解题.本题考查了菱形对角线互相垂直平分的性质,考查了勾股定理在直角三角形中的运用,本题中找出x、y的关系并求解x、y的值是解题的关键.7.【答案】D【解析】解:A、不正确,平行四边形的对角线不互相垂直;B、不正确,矩形的对角线不互相垂直;C、不正确,矩形的对角线不互相垂直;D、正确,两者的对角线均具有此性质;故选:D.根据菱形的对角线互相垂直平分,正方形的对角线互相垂直平分性质进行分析从而得到正确答案.本题考查了多边形的对角线.掌握特殊平行四边形的判定方法即对角线平分且相等的四边形是矩形,对角线平分且垂直的四边形是菱形.8.【答案】A【解析】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC=OB=OD,∠DAB=∠ABC=∠BCD=∠CDA=90°,∴B、C、D选项结论都正确,AB=AD不一定成立.故选A.根据矩形的对角线互相平分且相等,四个角都是直角对各选项分析判断利用排除法求解.本题考查了矩形的性质,是基础题,熟记性质是解题的关键.9.【答案】D【解析】解:严格按照图中的顺序向右下对折,向左下对折,从上方角剪去一个直角三角形,展开得到结论.故选D.严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.10.【答案】C【解析】解:甲的作法正确;∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACN,∵MN是AC的垂直平分线,∴AO=CO,在△AOM和△CON中,∴△AOM≌△CON(ASA),∴MO=NO,∴四边形ANCM是平行四边形,∵AC⊥MN,∴四边形ANCM是菱形;乙的作法正确;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选:C.首先证明△AOM≌△CON(ASA),可得MO=NO,再根据对角线互相平分的四边形是平行四边形可判定判定四边形ANCM是平行四边形,再由AC⊥MN,可根据对角线互相垂直的四边形是菱形判定出ANCM是菱形;四边形ABCD是平行四边形,可根据角平分线的定义和平行线的定义,求得AB=AF,所以四边形ABEF是菱形.此题主要考查了菱形形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).11.【答案】A【解析】解:由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以甲的作业正确;由乙同学的作业可知,CM=AM,MD=MB,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以乙的作业正确;故选A.先由两组对边分别相等的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断甲的作业正确;先由对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断乙的作业也正确.本题考查了作图-复杂作图的应用及矩形的判定,从两位同学的作图语句中获取正确信息及熟练掌握矩形的判定定理是解题的关键.12.【答案】B【解析】解:∵四边形ABCD为正方形,∴AB=AD=DC,∠BAD=∠D=90°,而CE=DF,∴AF=DE,在△ABF和△DAE中,∴△ABF≌△DAE,∴AE=BF,所以(1)正确;∴∠ABF=∠EAD,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE⊥BF,所以(2)正确;连结BE,∵BE>BC,∴BA≠BE,而BO⊥AE,∴OA≠OE,所以(3)错误;∵△ABF≌△DAE,∴S△ABF=S△DAE,∴S△ABF-S△AOF=S△DAE-S△AOF,∴S△AOB=S四边形DEOF,所以(4)正确.故选:B.根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,所以AE=BF;根据全等的性质得∠ABF=∠EAD,利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE⊥BF;连结BE,BE>BC,BA≠BE,而BO⊥AE,根据垂直平分线的性质得到OA≠OE;最后根据△ABF≌△DAE得S△ABF=S△DAE,则S△ABF-S△AOF=S△DAE-S△AOF,即S△AOB=S四边形DEOF.本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.13.【答案】60;120【解析】解:由平行四边形的性质得,∠C=∠A=60°,∠B=180°-∠A=120°.故答案为:60°,120°.根据平行四边形的对角相等,邻角互补可得出∠C及∠B的度数.本题考查了平行四边形的性质,属于基础题,掌握平行四边形的对角相等,邻角互补是解答本题的关键.14.【答案】=【解析】解:∵四边形ABCD是平行四边形,∴AB∥DC,∴AB和CD之间的距离处处相等,即S△CDE=S△CDF,故答案为:=.根据平行四边形的性质可知:AB∥DC,所以AB和CD之间的距离处处相等,再由同底等高的三角形面积相等即可得问题答案.本题考查了平行四边形的性质以及平行线的性质,解题的关键是得到AB和CD之间的距离处处相.15.【答案】b(a-c)或ab-bc【解析】解:∵矩形的面积=ab,小平行四边形的面积=bc,∴阴影部分的面积为:b(a-c)或ab-bc,故答案为:b(a-c)或ab-bc.根据图形的提示可知,阴影部分的面积=矩形面积-小平行四边形的面积,问题得解.本题考查了平行四边形的面积公式和矩形面积公式的运用,解题的关键是读懂题目中图形提供的信息.16.【答案】9【解析】解:在Rt△ABC中,AC==10cm,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,EF=OD=BD=AC=cm,AF=AD=BC=4cm,AE=AO=AC=cm,∴△AEF的周长=AE+AF+EF=9cm.故答案为:9.先求出矩形的对角线AC,根据中位线定理可得出EF,继而可得出△AEF的周长.本题考查了三角形的中位线定理、勾股定理及矩形的性质,解答本题需要我们熟练掌握三角形中位线的判定与性质.17.【答案】20cm;24cm2【解析】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD,∵AC=8cm,BD=6cm,∴AD=5cm,S菱形ABCD=AC•BD=24cm2.故答案为:20cm、24cm2.根据菱形的对角线互相平分且垂直,可得菱形的周长为20cm;根据菱形的面积等于对角线积的一半,可得菱形的面积为24cm2.此题考查了菱形的性质:菱形的对角线互相平分且垂直;菱形的四条边都相等.解题的关键注意菱形面积的求解方法:底乘以高或对角线积的一半.18.【答案】【解析】解:设AP=x,PD=4-x,由勾股定理,得AC=BD==5,∵∠PAE=∠CAD,∠AEP=∠ADC=90°,∴Rt△AEP∽Rt△ADC;∴=,即=①同理可得Rt△DFP∽Rt△DAB,∴=,②故①+②,得=,∴PE+PF=.另解:∵四边形ABCD为矩形,∴△OAD为等腰三角形,∴PE+PF等于△OAD腰OA上的高,即Rt△ADC斜边上的高,∴PE+PF==.故答案是:.根据已知条件得到△AEP∽△ADC,△DFP∽△DAB.从而可得出PE,PF的关系式,然后整理即可解答本题.本题考查了矩形的性质,比较简单,根据矩形的性质及相似三角形的性质解答即可.19.【答案】解:(1)(2)组合可根据一组对边平行且相等的四边形是平行四边形判定;(2)(3)组合可根据两组对边分别平行的四边形是平行四边形四边形ABCD是平行四边形;(5)(6)组合可根据两组对角分别平行的四边形是平行四边形四边形ABCD是平行四边形.【解析】根据平行四边形的判定定理分别进行组合即可.此题主要考查了平行四边形的判定,关键是熟练掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.20.【答案】无数【解析】解:(1)无数;(2)作图的时候要首先找到对角线的交点,只要过对角线的交点,任画一条直线即可.如图有:AE=BE=DF=CF,AM=CN.(3)这两条直线过平行四边形的对称中心(或对角线的交点).注意由于平行四边形是中心对称图形,故只要过它的对称中心画直线即可.平行四边形是中心对称图形,平行四边形的两条对角线交于一点,这个点是平行四边形的中心,也是两条对角线的中点,经过中心的任意一条直线可将平行四边形分成完全重合的两个图形.21.【答案】证明:如图,过点B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°,∴∠BCF=∠D,在△BCF和△CDE中,,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四边形AEFB是矩形,∴AE=BF,∴AE=CE.【解析】过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB 是矩形,根据矩形的对边相等可得AE=BF,从而得证,本题考查了全等三角形的判定与性质,矩形的判定与性质,难度中等,作辅助线构造出全等三角形与矩形是解题的关键.22.【答案】解:(1)∵AB∥MP,QM∥AC,∴四边形APMQ是平行四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a.(2)∵PM∥AB,∴△PCM∽△ACB,∵QM∥AC,∴△BMQ∽△BCA;(3)当点M在BC的中点时,四边形APMQ是菱形,∵AB∥MP,点M是BC的中点,∴==,∴P是AC的中点,∴PM是三角形ABC的中位线,同理:QM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由(1)知四边形APMQ是平行四边形,∴平行四边形APMQ是菱形.【解析】(1)根据平行四边形的性质可得到对应角相等对应边相等,从而不难求得其周长;(2)因为∠B=∠C=∠PMC=∠QMB,所以△PMC∽△QMB∽△ABC;(3)根据中位线的性质及菱形的判定不难求得四边形AQMP为菱形.此题主要考查了平行四边形的判定和性质,中位线的性质,菱形的判定等知识点的综合运用.23.【答案】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【解析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.24.【答案】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=DC.(2)四边形ADCF是菱形,证明:AF∥BC,AF=DC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴AD=BC=DC,∴平行四边形ADCF是菱形.【解析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案;(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.本题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,主要考查学生的推理能力.25.【答案】解:(1)∵四边形ABCD是正方形,BD为对角线,∴∠DBC=45°;(2)∵四边形ABCD是正方形,∴∠DBC=45°,∵四边形EFGH是矩形,∴EG∥BC,EF∥CD,∴∠DEG=45°,∠BFE=∠DGE=90°,∴△DEG与△EBF是等腰直角三角形,∴EG=DG,EF=BF;(3)∵正方形的面积为25cm2,∴DC=5cm,∵由(1)知EG=DG,EF=BF,∴EG+CG=DC=5cm,∴矩形EFCG的周长=2DC=10cm.【解析】(1)直接根据正方形的性质即可得出结论;(2)根据四边形ABCD是正方形可知,∠DBC=45°,再根据四边形EFGH是矩形可知,EG∥BC,EF∥CD,所以∠DEG=45°,∠BFE=∠DGE=90°,故△DEG与△EBF是等腰直角三角形,故EG=DG,EF=BF;(3)先根据正方形的面积为25cm2求出边长,由(1)知EG=DG,EF=BF,所以EG+CG=DC,由此即可得出结论.本题考查的是正方形的性质,熟知正方形的四条边相等,四个角都是直角是解答此题的关键.。

青岛版八年级数学下高效课时通练习6.1平行四边形及其性质(含答案)

青岛版八年级数学下高效课时通练习6.1平行四边形及其性质(含答案)
!"#$%&'()*+,-./0*,1.2345678.#34;$ '" + 9 6 "$ 6 "7 #
! " " ! "#$%&'()*
################ #### "" )("7 012345+ $& 6 (" '8 "8 " % "# $ % & $ % &4 $ %(fDg7 ," & /0 N+,'() # U7 # $ %, $ &-./ ' # & # % * +) ! # % $ &* )& ! ' ) $ % VWC (h $ %DijIk+,'() # $ % &4 $ %( &)*+ # ' &0 #0 # " #% ) fDg ,VW\]J?)Dlm^Y -%($% * " $ % , * , " '" ! / " '& ! 0 " '7 ! 2 " '1 ! ) ) $ % &7+,'()4 # & % 4## & $ * /03'() # $$ " $ %*)& ! "- 3 #& # % *+) ! 4 #& ' % * ## & $5 #& ) ) -"#$%&*& " # % * '7 ! " #& "
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学练习册答案青岛版
做八年级数学练习册习题一定要认真,知而好问,然后能才。

整理了关于青岛版八年级下册数学练习册的答案,希望对大家有帮助!
八年级下册数学练习册答案青岛版(一) 平行四边形及其性质第1课时
【复习与巩固】
一、填空
1、相等;相等
2、互补
3、120;60
二、选择题
4、C
5、B
6、B
三、解答题
7、解:由题意知:C:D=13:5,C+ D=180
∵A= C,B= D
C=180 13/(13+5)=130 ,D=18 -130 =50
A= C=130 ,B= D=50
8、证明:∵四边形ABCD是平行四边形
CD∥AB
A= C
1= BEC
∵A= 1=60
BEC= C=60
△BCE是等边三角形
CE=BC
CE=AD
【拓展与延伸】
9、证明:∵四边形AEDF是平行四边形
AE=DF,DE=AF
∵AB=BE+AE
AB=BE+DF
∵AC=AF+FC
AC=AF+FC
AC=ED+FC
BE+ED+DF+FC=AB+AC
【探索与创新】
10、证明:延长FD交AB于N,延长ED交AC于M ∵DE∥AB,EG∥AC
四边形AGEM是平行四边形
GE=AM
又∵FH∥AB,DF∥AC
四边形ANFH是平行四边形
FH∥AN
同理可得四边形DEGH与四边形DFHM均为平行四边形
DE=NG,DF=MH
又∵AN+NG+BE=AB,AM+MH+HC=AC
BE+GE+ED+DF+FH+HC=AB+AC
(解题思路:解答此题可根据平行四边形的性质,可证得四边形AGEM、四边形AHFN、四边形DEGN、四边形DFHM均为平行四边形即可,再由等量代换求得BE+GE+ED+DF+FH+HC=AB+AC) 八年级下册数学练习册答案青岛版(二) 特殊的平行四边形第1课时
【复习与巩固】
一、填空
1、四个角都是直角且相等;对角线互相平分且相等
2、2
3、10cm、5cm
二、选择题
4、B
5、A
6、A
三、解答题
7、证明:∵BE是△ABC的高,M为BC的中点ME=1/2BC
∵CF是△ABC的高,M为BC的中点
MF=1/2BC
ME=MF
【拓展与延伸】
8、证明:∵BE=CF
BE+EF=FC+EF即BF=EC
∵四边形ABCD是矩形
B= C=90 ,AB=CD,BAD= CDE
在△ABF和△DCE中,AB=CD,B= C,FB=FC △ABF≌△DCE
BAF= CDE
DAF= ADE
AP=DP
【探索与创新】
9、AD=CF,证明如下:
∵四边形ABCD是矩形
CD∥AE,AB=CD
AED= FDC
∵DE=AB
DE=AB=CD
又∵CF DE
CFD= A=90
△ABE≌△FCD(AAS)
AD=CF
八年级下册数学练习册答案青岛版(三) 中位线定理【复习与巩固】
一、填空题
1、12cm;20cm;24cm
2、5
3、2a
二、选择题
4、B
5、B
三、解答题
6、四边形EGFH是平行四边形
∵F、H分别是CD、BD的中点
FH是△DBC的中位线
FH∥BC,FH=1/2BC
同理可得:GE是△ABC的中位线,GE∥BC,GE=1/2BC GE∥FH且GE=FH
四边形EGFH是平行四边形【拓展与延伸】
7、证明:∵DE∥BC
ADE= B,AED= C
△ADE∽△ABC
AD/AB=AE/AC
∵D是AB的中点
AD/AB=AE/AC=1/2
【探索与创新】
8、AP=AQ,证明如下:
取BC的中点H,连接MH、NH ∵M、H为BE、DC的中点
MH∥EC且MH=1/2EC
∵N、H为CD、BC的中点
NH∥BD且NH=1/2BD
∵BD=CE
MH=NH
AMN= ANB
∵MH∥EC
AMN= PQA,HNM= QPA
△APQ为等腰三角形
AP=AQ。

相关文档
最新文档