江苏省 必修5教案 1.2余弦定理1

合集下载

高中数学新苏教版精品教案《苏教版高中数学必修5 1.2.1 余弦定理》5

高中数学新苏教版精品教案《苏教版高中数学必修5 1.2.1 余弦定理》5

“余弦定理〞教学设计方案镇江市实验高级中学杨勇一、课题:余弦定理〔苏教版必修5第一章第2节〕二、教学内容分析余弦定理是“纵横〞知识网络上的一个重要结点,纵向开展的知识:勾股定理——余弦定理——秦九韶公式——海伦公式;横向联结的知识:和角公式、正弦定理及三角形面积公式.余弦定理承前的根底知识有勾股定理、向量根底知识、三角函数定义、诱导公式、和角公式、正弦定理及三角形面积公式,这些都是建立余弦定理的知识储藏,后续的知识有正余弦定理的应用及其拓展内容秦九韶公式与海伦公式.同时,余弦定理可推导证明和角公式、正弦定理等,使三角内容紧密联结成一个完整的知识体系.余弦定理是三角函数模块和平面向量模块在三角形中的具体运用,是解决生产、生活实际问题及可转化为三角形计算问题的重要工具,因此具有广泛的应用价值.本节课是“解斜三角形〞教学的第二课时,其主要任务是引入并证明余弦定理,在课型上属于“定理教学课〞.三、教学目标1知识与技能〔1〕通过两颗星之间的距离,感受余弦定理来自于现实世界、从实际生活中提炼出数学的过程,以此培养学生的数学应用意识;〔2〕通过对三角形边角关系的探索,能证明余弦定理,了解可以从向量、解析几何和三角方法等多种途径证明余弦定理;2过程与方法〔1〕理解余弦定理的两种表示形式,初步了解余弦定理的两种形式之间的关系;〔2〕通过学生动手操作、提出问题、解决问题的过程,提高学生运用余弦定理解决问题的能力;3情感态度价值观体验数学活动的过程以及数学在现实生活中的应用,让学生获得发现的成就感,在质疑、交流、合作中形成良好的数学思维品质.三、教学重点与难点对于三角形边角关系的探索过程,是学生在问题引导下,尝试问题解决,提升自信的心理历程,本节课的终结点是余弦定理纳入学生的知识结构之中,培养学生的数学应用意识,因此课堂教学的重点确立为:余弦定理的发现与证明.要获取余弦定理的关键是引入向量或建立适当的直角坐标系,这从学生的认知能力来讲,是一个较难的问题,因而,本堂课的难点确立为:余弦定理的建立.在突破难点上,采用探究式提问策略,通过解直角三角形、向量及建立直角坐标系的根底知识〔注:建立直角坐标系的方法根据学生的接受能力而定〕,使难点在学生递进式的解答过程中,层层突破,并领悟数学知识的内在联系.四、教学过程:〔一〕创设情境1 牵牛星A和织女星B分别距离地球C约17光年和26光年,从地球上观测这两颗星的张角为340,求牵牛星和织女星之间的距离〔精确到光年,其中COS340=〕设计意图:通过问题情境的创设,激发学生的兴趣,在学生发现AB无法具体测量后,转而想到正弦定理,进而发现该问题不符合正弦定理能解决的两种类型,一时激起强烈的认知冲突。

苏教版必修五1.2《余弦定理》word教学设计

苏教版必修五1.2《余弦定理》word教学设计

1.2 余弦定理南京师范大学附属中学 张跃红教学目标:1. 掌握余弦定理,并能解决一些简单的三角形度量问题;2. 能够运用余弦定理解决一些与测量和几何计算有关的实际问题.教学重点:重点是余弦定理及其证明过程.教学难点:难点是余弦定理的推导和证明.教学过程:1. 创设情景,提出问题.问题1:修建一条高速公路,要开凿隧道将一段山体打通.现要测量该山体底侧两点间的距离,即要测量该山体两底侧A ,B 两点间的距离(如图1).请想办法解决这个问题.设计意图:这是一个学生身边的实际应用问题,在其解决的过程中得到余弦定理,自然引出本课的学习内容.2. 构建模型,解决问题.学生活动:提出的方法有,先航拍,然后根据比例尺算出距离;利用等高线量出距离等;也有学生提出在远处选一点C ,然后量出AC ,BC 的长度,再测出∠ACB .△ABC 是确定的,就可以计算出AB 的长.接下来,请三位板演其解法.法1:(构造直角三角形)如图2,过点A 作垂线交BC 于点D ,则|AD |=|AC |sin C ,|CD |=|AC |cos C ,|BD |=|BC |-|CD |=|BC |-|AC |cos C ,所以, 22||||||BD AD AB += C BC AC BC AC cos ||||2||||22⋅⋅-+=.C法2:(向量方法)如图3,因为AB AC CB =+,所以,22()AB AC CB =+222cos(),AC CB AC CB C π=++⋅⋅- 即 C BC AC BC AC AB cos ||||2||||||22⋅⋅-+=.法3:(建立直角坐标系) 建立如图4所示的直角坐标系,则A (|AC |cos C , |AC |sin C ),B (|BC |, 0),根据两点间的距离公式,可得22)0sin |(||)|cos |(|||-+-=C AC BC C AC AB ,所以,C BC AC BC AC AB cos ||||2||||||22⋅⋅-+=.活动评价:师生共同评价板演.3. 追踪成果,提出猜想.师:回顾刚刚解决的问题,我们很容易得到结论:在△ABC 中,a ,b ,c 是角A ,B ,C 的对边长,则有C ab b a c cos 2222-+=成立.类似的还有其他等式, A cb b c a cos 2222-+=,B ca a c b cos 2222-+=.正弦定理反映的是三角形中边长与角度之间的一种数量关系,因为与正弦有关,就称为正弦定理;而上面等式中都与余弦有关,就叫做余弦定理.问题2:刚才问题的解题过程是否可以作为余弦定理的证明过程?设计意图:作为定理要经过严格的证明,在解决问题中培养学生严谨的思维习惯.学生活动:经过思考得出,若把解法一作为定理的证明过程,需要对角C 进行分类讨论,即分角C 为锐角、直角、钝角三种情况进行证明;第二种和第三种解法可以作为余弦定理的证明过程.教师总结:证明余弦定理,就是证明一个等式.而在证明等式的过程中,我们可以将一般三角形的问题通过作高,转化为直角三角形的问题;还可以构造向量等式,然后利用向量的数量积将其数量化;还可以建立直角坐标系,借助两点C间的距离公式来解决,等等.4. 探幽入微,深化理解.问题3:刚刚认识了余弦定理这个“新朋友”,看一看它有什么特征?学生活动:勾股定理是余弦定理的特例. 反过来也可以说,余弦定理是勾股定理的推广;当角C 为锐角或钝角时,边长之间有不等关系 222c b a >+,222c b a <+;C ab b a c cos 2222-+=是边长a 、b 、c 的轮换式,同时等式右边的角与等式左边的边相对应;等式右边有点象完全平方,等等.教师总结:我们在观察一个等式时,就如同观察一个人一样,先从远处看,然后再近处看,先从外表再到内心深处.观察等式时,先从整体(比如轮换)再到局部(比如等式左右边角的对称),从一般到特殊,或者从特殊到一般(比如勾股定理是余弦定理的特例,余弦定理是勾股定理的推广).问题4:我们为什么要学余弦定理,学它有什么用?设计意图:让学生真正体会到学习余弦定理的必要性.同时又可以得到余弦定理能解决的三角形所满足的条件,以及余弦定理的各种变形.让学生体会在使用公式或定理时,不但要会“正向使用”还要学会“逆向使用”.学生活动:解已知三角形的两边和它们夹角的三角形;如果已知三边,可以求角,进而解出三角形,即abc b a C ac b c a B bc a c b A 2cos ,2cos ,2cos 222222222-+=-+=-+=. 5. 学以致用,拓展延伸.练习:1.在△ABC 中,若a =3,b =5,c =7,求角C .2.(1)在△ABC 中,若045,6,13==+=A c b ,解这个三角形.(2)在△ABC 中,1,60,30===c B b ,求a .学生活动:练习后相互交流得出,解答题1时,利用的是余弦定理的变形形式abc b a C 2cos 222-+=;而题2既可以利用正弦定理,也可以利用余弦定理解决. 思考:正弦定理与余弦定理间是否存在着联系呢?你能用正弦定理证明余弦定理,用余弦定理证明正弦定理吗?请同学们课后思考.。

苏教版高中高三数学必修5《余弦定理》教案及教学反思

苏教版高中高三数学必修5《余弦定理》教案及教学反思

苏教版高中高三数学必修5《余弦定理》教案及教学反思一、教案1. 教学目标通过本节课的学习,让学生掌握余弦定理的含义和使用方法;培养学生的数学思维和解决实际问题的能力。

2. 教学重点掌握余弦定理的内容和应用场景。

3. 教学难点理解余弦定理的原理和证明方法。

4. 教学方法讲解、练习、归纳、探究。

5. 教学准备黑板、白板、彩色粉笔、板书设计、课件。

6. 教学过程6.1 引入老师出示三角形图形,并让学生用勾股定理求出斜边长度。

然后老师问学生怎么求另外两条边长度,学生可用勾股定理计算得出。

接下来老师提出问题:“如果已知三角形的两边长度和它们的夹角,我们可以用什么公式求出第三边的长度呢?”6.2 讲解老师介绍余弦定理的概念、公式及证明方法。

展示余弦定理的公式$$c^2 = a^2 + b^2 - 2ab\\cos C$$让学生理解其中的符号含义。

6.3 练习1.请通过余弦定理计算以下三角形的斜边长度:–边长分别为12cm, 16cm,夹角为$120^{\\circ}$ 的三角形–边长分别为5cm, 7cm,夹角为$60^{\\circ}$ 的三角形2.如果知道三角形的三边长度,如何判断它们是否能构成三角形?6.4 探究让学生互相交换刚才的练习结果,并相互核对。

然后,由学生自己设计一个类似的问题,并分组讨论如何使用余弦定理解决该问题。

6.5 总结老师归纳余弦定理的公式及应用场景,并让学生总结本节课的内容。

二、教学反思1. 教学过程本节课的教学过程分为引入、讲解、练习、探究和总结五个部分,目标明确,内容详实,这样设计是比较合理的。

2. 教学方法在教学方法方面,本节课采用了讲解、练习、归纳和探究等多种方法,正确引导学生思考,从而使学生更加深入理解和掌握知识点。

3. 教学效果本节课的教学效果比较显著,学生对余弦定理的公式、应用场景等方面有了更全面的认识,掌握了正确的求解方法,另外学生们的讨论也很活跃,互相学习存才,教学效果比较好。

苏教版高中数学必修五第一学生教案第课时余弦定理

苏教版高中数学必修五第一学生教案第课时余弦定理

听课随笔1.2 余弦定理 第1课时知识网络三角形中的向量关系→余弦定理学习要求1. 掌握余弦定理及其证明; 2. 体会向量的工具性;3. 能初步运用余弦定理解斜三角形.【课堂互动】自学评价1.余弦定理:(1)A cos bc 2c b a 222⋅-+=,______________________,______________________.(2) 变形:bc2a c b A cos 222-+=,___________________,___________________ .2.利用余弦定理,可以解决以下两类解斜三角形的问题: (1)_______________________________; (2)_______________________________.【精典范例】【例1】在ABC ∆中,(1)已知3b =,1c =,060A =,求a ; (2)已知4a =,5b =,6=c ,求A (精确到00.1).【解】点评: 利用余弦定理,可以解决以下两类解斜三角形的问题:(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角.【例2】,A B 两地之间隔着一个水塘,现选择另一点C ,测182,CA m =126,CB m = 063ACB ∠=,求,A B 两地之间的距离(精确到1m ). 【解】【例3】用余弦定理证明:在ABC ∆中,当C 为锐角时,222a b c +>;当C 为钝角时,222a b c +<.【证】点评:余弦定理可以看做是勾股定理的推广.追踪训练一1.在△ABC中,(1)已知A=60°,b=4,c=7, 求a ;(2)已知a =7,b=5,c=3,求A.2.若三条线段的长为5,6,7,则用这三条线段( ) A.能组成直角三角形 B.能组成锐角三角形 C.能组成钝角三角形听课随笔D.不能组成三角形3.在△ABC中,已知222c ab b a =++,试求∠C的大小.4.两游艇自某地同时出发,一艇以10km/h的速度向正北行驶,另一艇以7km/h的速度向北偏东45°的方向行驶,问:经过40min,两艇相距多远?【选修延伸】【例4】在△ABC 中,BC =a ,AC =b ,且a ,b 是方程02322=+-x x 的两根,()1cos 2=+B A 。

1.2.1余弦定理

1.2.1余弦定理

(以SAS为例)
sin A sin B sin C
问题情境
1 在ABC中,已知c=15,b=10,A=600 , 求a; 2在ABC中,已知c=15,b=10,a 5 7,求A.
C
A
B
一般的,在ABC中,已知b,c,A,如何表示a?理
符号:
文字: 三角形任何一边的平方等于其他两边平方的和 减去这两边与它们夹角的余弦的积的两倍。
(1)已知三边,求三个角; (2)已知两边及夹角,求第三边和其他两个角; (3)已知两边及其一边对角,
追问:常见可解三角形类型及其方法?
例2.用余弦定理证明:当C锐角时, a2 b2 c2;当C钝角时,a2 b2 c2.
小结:设 a 是最长的边,则
课堂小结
一个定理,两种证法;一个推论,两种应用
追问1:观察余弦定理三个公式,他们有何结构特征? 追问2:两边及其夹角余弦的乘积,与哪个知识有关?
问题2:试用向量数量积证明
C
A
B
请用余弦定理求解:
1 在ABC中,已知c=15,b=10,A=600 , 求c; 2在ABC中,已知c=15,b=10,a 5 7,求A.
小结:余弦定理可以解决哪些类型三角形?
余弦定理可以解决的有关三角形的问题: 1、已知两边及其夹角,求第三边和其他两个角。 2、已知三边求三个角; 3、判断三角形的形状
苏教版必修5(高一数学)
1.2.1 余弦定理
江苏省奔牛高级中学 蒋亦
引入:用正弦定理可以解两类三角形
(1)已知两角一边
AAS,ASA 唯一
(2)已知两边及其一边对角 SSA
不确定
问题1:根据三角形全等的知识,还有 哪些类型的三角形也是确定的?

高中数学 余弦定理教案 苏教版必修5

高中数学 余弦定理教案 苏教版必修5

余弦定理教学目标:了解向量知识应用,掌握余弦定理推导过程,会利用余弦定理证明简单三角形问题,会利用余弦定理求解简单斜三角形边角问题,能利用计算器进行运算;通过三角函数、余弦定理、向量数量积等多处知识间联系来体现事物之间的普遍联系与辩证统一.教学重点:余弦定理证明及应用.教学难点:1.向量知识在证明余弦定理时的应用,与向量知识的联系过程;2.余弦定理在解三角形时的应用思路.教学过程:Ⅰ.课题导入上一节,我们一起研究了正弦定理及其应用,在体会向量应用的同时,解决了在三角形已知两角一边和已知两边和其中一边对角这两类解三角形问题.当时对于已知两边夹角求第三边问题未能解决,如图(1)在直角三角形中,根据两直角边及直角可表示斜边,即勾股定理,那么对于任意三角形,能否根据已知两边及夹角来表示第三边呢?下面我们根据初中所学的平面几何的有关知识来研究这一问题.在△ABC中,设BC=a,AC=b,AB=c,试根据b,c,A来表示a.分析:由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构造直角三角形,在直角三角形内通过边角关系作进一步的转化工作,故作CD垂直于AB于D,那么在Rt△BDC中,边a可利用勾股定理用CD、DB表示,而CD可在Rt△ADC中利用边角关系表示,DB可利用AB—AD转化为AD,进而在Rt△ADC内求解.解:过C作CD⊥AB,垂足为D,则在Rt△CDB中,根据勾股定理可得:a2=CD2+BD2∵在Rt△ADC中,CD2=b2-AD2又∵BD2=(c-AD)2=c2-2c·AD+AD2∴a2=b2-AD2+c2-2c·AD+AD2=b2+c2-2c·AD又∵在Rt△ADC中,AD=b·cos A∴a2=b2+c2-2bc cos A类似地可以证明b2=a2+c2-2ac cos Bc2=a2+b2-2ab cos C另外,当A为钝角时也可证得上述结论,当A为直角时a2=b2+c2也符合上述结论,这也正是我们这一节将要研究的余弦定理,Ⅱ.讲授新课1.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.形式一:a 2=b 2+c 2-2bc cos A ,b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C .形式二:cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab. 在余弦定理中,令C =90°,这时,cos C =0,所以c 2=a 2+b 2,由此可知余弦定理是勾股定理的推广.另外,对于余弦定理的证明,我们也可以仿照正弦定理的证明方法二采用向量法证明,以进一步体会向量知识的工具性作用.2.向量法证明余弦定理(1)证明思路分析由于余弦定理中涉及到的角是以余弦形式出现,那么可以与哪些向量知识产生联系呢? 向量数量积的定义式:a ·b =|a ||b |cos θ,其中θ为a 、b 的夹角.在这一点联系上与向量法证明正弦定理有相似之处,但又有所区别,首先因为无须进行正、余弦形式的转换,也就省去添加辅助向量的麻烦.当然,在各边所在向量的联系上依然通过向量加法的三角形法则,而在数量积的构造上则以两向量夹角为引导,比如证明形式中含有角C ,则构造CB →·CA →这一数量积以使出现cos C .同样在证明过程中应注意两向量夹角是以同起点为前提.(2)向量法证明余弦定理过程:如图,在△ABC 中,设AB 、BC 、CA 的长分别是c 、a 、b .由向量加法的三角形法则可得AC →=AB →+BC →,∴AC →·AC →=(AB →+BC →)·(AB →+BC →)=AB →2+2AB →·BC →+BC →2=|AB →|2+2|AB →||BC →|cos(180°-B )+|BC →|2=c 2-2ac cos B +a 2即b 2=c 2+a 2-2ac cos B由向量减法的三角形法则可得:BC →=AC →-AB →∴BC →·BC →=(AC →-AB →)·(AC →-AB →)=AC →2-2AC →·AB →+AB →2=|AC →|2-2|AC →||AB →|cos A +|AB →|2=b 2-2bc cos A +c 2即a 2=b 2+c 2-2bc cos A由向量加法的三角形法则可得AB →=AC →+CB →=AC →-BC →∴AB →·AB →=(AC →-BC →)·(AC →-BC →)=AC →2-2AC →·BC →+BC →2=|AC →|2-2|AC →||BC →|cos C +|BC →|2=b 2-2ba cos C +a 2.即c 2=a 2+b 2-2ab cos C评述:(1)上述证明过程中应注意正确运用向量加法(减法)的三角形法则.(2)在证明过程中应强调学生注意的是两向量夹角的确定,AC →与AB →属于同起点向量,则夹角为A ;AB →与BC →是首尾相接,则夹角为角B 的补角180°-B ;AC →与BC →是同终点,则夹角仍是角C .在证明了余弦定理之后,我们来进一步学习余弦定理的应用.利用余弦定理,我们可以解决以下两类有关三角形的问题:(1)已知三边,求三个角.这类问题由于三边确定,故三角也确定,解唯一;(2)已知两边和它们的夹角,求第三边和其他两个角.这类问题第三边确定,因而其他两个角唯一,故解唯一,不会产生类似利用正弦定理解三角形所产生的判断取舍等问题.接下来,我们通过例题评析来进一步体会与总结.3.例题评析[例1]在△ABC 中,已知a =7,b =10,c =6,求A 、B 和C.(精确到1°)分析:此题属于已知三角形三边求角的问题,可以利用余弦定理,意在使学生熟悉余弦定理的形式二.解:∵cos A =b 2+c 2-a 22bc =102+62-722×10×6=0.725,∴A ≈44° ∵cos C =a 2+b 2-c 22ab =72+102-622×7×10 =113140=0.8071,∴C ≈36° ∴B =180°-(A +C )≈180°-(44°+36°)=100°.评述:(1)为保证求解结果符合三角形内角和定理,即三角形内角和为180°,可用余弦定理求出两角,第三角用三角形内角和定理求出.(2)对于较复杂运算,可以利用计算器运算.[例2]在△ABC 中,已知a =2.730,b =3.696,C =82°28′,解这个三角形(边长保留四个有效数字,角度精确到1′).分析:此题属于已知两边夹角解三角形的类型,可通过余弦定理形式一先求出第三边.在第三边求出后其余边角求解有两种思路:一是利用余弦定理的形式二根据三边求其余角,二是利用两边和一边对角结合正弦定理求解,但若用正弦定理需对两种结果进行判断取舍,而在0°~180°之间,余弦有唯一解,故用余弦定理较好.解:由c 2=a 2+b 2-2ab cos C =2.7302+3.6962-2×2.730×3.696×cos82°28′得c =4.297.∵cos A =b 2+c 2-a 22bc =3.6962+4.2972-2.73022×3.696×4.297=0.7767,∴A =39°2′ ∴B =180°-(A +C )=180°-(39°2′+82°28′)=58°30′.评述:通过例2,我们可以体会在解斜三角形时,如果正弦定理与余弦定理均可选用,那么求边两个定理均可,求角则余弦定理可免去判断取舍的麻烦.[例3]已知△ABC 中,a =8,b =7,B =60°,求c 及S △ABC .分析:根据已知条件可以先由正弦定理求出角A ,再结合三角形内角和定理求出角C ,再利用正弦定理求出边c ,而三角形面积由公式S △ABC =12ac sin B 可以求出. 若用余弦定理求c ,表面上缺少C ,但可利用余弦定理b 2=c 2+a 2-2ca cos B 建立关于c 的方程,亦能达到求c 的目的.下面给出两种解法.解法一:由正弦定理得8sin A =7sin600∴A 1=81.8°,A 2=98.2°∴C 1=38.2°,C 2=21.8°,由7sin600 =c sin C,得c 1=3,c 2=5 ∴S △ABC =12 ac 1sin B =6 3 或S △ABC =12ac 2sin B =10 3 解法二:由余弦定理得b 2=c 2+a 2-2ca cos B∴72=c 2+82-2×8×c cos60°整理得:c 2-8c +15=0解之得:c 1=3,c 2=5,∴S △ABC =12 ac 1sin B =6 3 ,或S △ABC =12ac 2sin B =10 3 . 评述:在解法一的思路里,应注意由正弦定理应有两种结果,避免遗漏;而解法二更有耐人寻味之处,体现出余弦定理作为公式而直接应用的另外用处,即可以用之建立方程,从而运用方程的观点去解决.故解法二应引起学生的注意.综合上述例题,要求学生总结余弦定理在求解三角形时的适用范围:已知三边求任意角或已知两边夹角解三角形,同时注意余弦定理在求角时的优势以及利用余弦定理建立方程的解法.为巩固本节所学的余弦定理及其应用,我们来进行下面的课堂练习.Ⅲ.课堂练习1.在△ABC 中:(1)已知b =8,c =3,A =60°,求a ;(2)已知a =20,b =29,c =21,求B ;(3)已知a =3 3 ,c =2,B =150°,求b ;(4)已知a =2,b = 2 ,c = 3 +1,求A .解:(1)由a 2=b 2+c 2-2bc cos A 得a 2=82+32-2×8×3cos60°=49,∴a =7.(2)由cos B =c 2+a 2-b 22ca得 cos B =202+212-2922×20×21=0,∴B =90°. (3)由b 2=a 2+c 2-2ac cos B 得b 2=(3 3 )2+22-2×3 3 ×2cos150°=49,∴b =7.(4)由cos A =b 2+c 2-a 22bc得 cos A =( 2 )2+( 3 +1)2-222 2 ( 3 +1)= 2 2 ,∴A =45°. 评述:此练习目的在于让学生熟悉余弦定理的基本形式,要求学生注意运算的准确性及解题效率.2.根据下列条件解三角形(角度精确到1°)(1)a =31,b =42,c =27;(2)a =9,b =10,c =15.解:(1)由cos A =b 2+c 2-a 22bc得 cos A =422+272-3122×42×27≈0.6691,∴A ≈48° 由cos B =c 2+a 2-b 22ca≈0.0523,∴B ≈93° ∴C =180°-(A +B )=180°-(48°+93°)≈39°(2)由cos A =b 2+c 2-a 22bc得 cos A =102+152-922×10×15=0.8090,∴A ≈36° 由cos B =c 2+a 2-b 22ca得 cos B =92+152-1022×9×15=0.7660,∴B ≈40° ∴C =180°-(A +B )=180°-(36°+40°)≈104°评述:此练习的目的除了让学生进一步熟悉余弦定理之外,还要求学生能够利用计算器进行较复杂的运算.同时,增强解斜三角形的能力.Ⅳ.课时小结通过本节学习,我们一起研究了余弦定理的证明方法,同时又进一步了解了向量的工具性作用,并且明确了利用余弦定理所能解决的两类有关三角形问题:已知三边求任意角;已知两边一夹角解三角形.Ⅴ.课后作业课本习题P 16 1,2,3,4.解斜三角形题型分析正弦定理和余弦定理的每一个等式中都包含三角形的四个元素,如果其中三个元素是已知的(其中至少有一个元素是边),那么这个三角形一定可解.关于斜三角形的解法,根据所给的条件及适用的定理可以归纳为下面四种类型:(1)已知两角及其中一个角的对边,如A 、B 、a 解△ABC .解:①根据A +B +C =π,求出角C ;②根据a sin A =b sin B 及a sin A =c sin C,求b 、c ; 如果已知的是两角和它们的夹边,如A 、B 、c ,那么先求出第三角C ,然后按照②来求解.求解过程中尽可能应用已知元素.(2)已知两边和它们的夹角,如a 、b 、C ,解△ABC .解:①根据c 2=a 2+b 2-2ab cos C ,求出边c ;②根据cos A =b 2+c 2-a 22bc,求出角A ; ③从B =180°-A -C ,求出角B .求出第三边c 后,往往为了计算上的方便,应用正弦定理求角,但为了避免讨论角是钝角还是锐角,应先求a 、b 较小边所对的角(它一定是锐角),当然也可用余弦定理求解.(3)已知三边a 、b 、c ,解△ABC .解:一般应用余弦定理求出两角后,再由A +B +C =180°,求出第三个角.另外,和第二种情形完全一样,当第一个角求出后,可以根据正弦定理求出第二个角,但仍然需注意要先求较小边所对的锐角.(4)已知两边及其中一条边所对的角,如a 、b 、A ,解△ABC .解:①根据a sin A =b sin B,经过讨论求出B ; ②求出B 后,由A +B +C =180°求角C ;③再根据a sin A =c sin C,求出边c . 另外,如果已知三角,则满足条件的三角形可以作出无穷多个,故此类问题解不唯一. [例1]在△ABC 中,a =1,b =7 ,B =60°,求角C .解:由余弦定理得 (7 )2=12+c 2-2c cos60°,∴c 2-c -6=0,解得c 1=3,c 2=-2(舍去).∴c =3.评述:此题应用余弦定理比正弦定理好.[例2]在△ABC 中,已知A >B >C 且A =2C ,A 、B 、C 所对的边分别为a 、b 、c ,又2b =a +c 成等差数列,且b =4,求a 、c 的长.解:由a sin A =c sin C且A =2C 得 a 2sin C cos C =c sin C ,cos C =a 2c又∵2b =a +c 且b =4,∴a +c =2b =8, ①∴cos C =a 2+42-c 28a =a +2-c a =5a -3c 4a =a 2c. ∴2a =3c ②由①②解得a =245 ,c =165.[例3]在△ABC 中,已知a =2,b = 2 ,A =45°,解此三角形. 解:由a 2=b 2+c 2-2bc cos A得22=( 2 )2+c 2-2 2 c cos45°,c 2-2c -2=0解得c =1+ 3 或c =1- 3 (舍去)∴c =1+ 3 ,cos B =c 2+a 2-b 22ca =22+(1+ 3 )2-( 2 )22×2×(1+ 3 ) = 32 .∴B =30°C =180°-(A +B )=180°-(45°+30°)=105°.[例4]在△ABC 中,已知:c 4-2(a 2+b 2)c 2+a 4+a 2b 2+b 4=0,求角C . 解:∵c 4-2(a 2+b 2)c 2+a 4+a 2b 2+b 4=0,∴[c 2-(a 2+b 2)]2-a 2b 2=0,∴c 2-(a 2+b 2)=±ab ,cos C =a 2+b 2-c 22ab =±12 ,∴C =120°或C =60°.。

余弦定理教案范文(通用5篇)

余弦定理教案范文(通用5篇)

余弦定理教案余弦定理教案范文(通用5篇)余弦定理教案1一、教材分析本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。

平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。

本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。

在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。

二、教学目标的确定基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。

引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:1、知识与技能:熟练掌握余弦定理的内容及公式,能初步应用余弦定理解决一些有关三角形边角计算的问题;2、过程与方法:掌握余弦定理的两种证明方法,通过探究余弦定理的过程学会分析问题从特殊到一般的过程与方法,提高运用已有知识分析、解决问题的能力;3、情感态度与价值观:在探究余弦定理的过程中培养学生探索精神和创新意识,形成严谨的数学思维方式,培养用数学观点解决问题的能力和意识、三、教学方法的选择基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。

高中数学新苏教版精品教案《苏教版高中数学必修5 1.2.1 余弦定理》

高中数学新苏教版精品教案《苏教版高中数学必修5 1.2.1 余弦定理》

余弦定理江苏省奔牛高级中学蒋亦【教学目标】知识与技能〔1〕掌握余弦定理,并能解决一些简单的三角形度量问题;〔2〕理解余弦定理可解的三角形类型.过程与方法(1)通过复习引出问题,经历特殊到一般的过程探究余弦定理;(2)通过对余弦定理结构特征的观察,多角度证明余弦定理;(3)通过数学应用总结出余弦定理可解的三角形类型.情感、态度与价值观经历提出问题、探究问题、解决问题的过程发现余弦定理,在应用余弦定理过程中总结规律.以问题驱动课堂,激发学生学习热情,在探究中培养学生数学抽象、逻辑推理和数学运算等核心素养,激发学生数学兴趣.教学重点:发现、证明和应用余弦定理教学难点:证明余弦定理【教学过程】复习引入前面学习了正弦定理,用正弦定理可以解两类三角形(1)两角一边 AAS,ASA〔唯一〕(2)两边及其一边对角 SSA〔不确定〕根据初中三角形全等的知识,还有那些类型的三角形也是确定的?〔SAA,SSS〕追问:能用正弦定理解吗?仅以SAS为例,比方,用正弦定理无法求解三角形.问题情境(1)在中,求;(2)在中,求.生:〔化归为直角三角形求解…〕追问:一般的,在中,如何表示生:〔化归为直角三角形求解…〕〔师板书〕余弦定理符号:追问1:你能否用文字语言表达上面表达式?文字:三角形任何一边的平方等于其他两边平方和减去这两边与他们夹角余弦积的两倍.追问2:仔细观察余弦定理的结构特征,怎样才能既迅速又准确的记住?生:…〔师小结〕等式左边是一边的平方,右边类似另两边差的完全平方展开式,但是乘积项多了这夹角的余弦值.追问3:两边及其夹角余弦的乘积,让你想起了哪个知识?〔数量积〕是哪两个向量的数量积?〔〕如何构造问题2.试用向量数量积知识证明:生:…(3)师:请用余弦定理求解问题情境〔2〕在中,求.〔小结〕余弦定理也可以写成如下形式:小结:余弦定理可以解决哪些类型三角形?生:〔1〕三边,求三个角;〔2〕两边及夹角,求第三边和其他两个角;〔3〕两边及其一边对角.追问:结合上节内容“正弦定理〞常见可解三角形类型及其方法?例1.两地之间隔着一个水塘,现选择另一点,测得,求两地之间的距离.练习3.〔1〕在中,,求角〔2〕在中,,求角例2.用余弦定理证明:当是锐角时,;当是钝角时,〔小结〕设是最长的边,那么在中,为直角,是直角三角形;为锐角,是锐角三角形;为钝角,是钝角三角形.课堂小结:这节课学了哪些数学知识和思想方法?1.一个定理,两种证法;一个推论,两种应用〔SAS,SSS〕;2.常见解三角形类型及其解法SSS——余弦定理 SAS——余弦定理 AAS,ASA——正弦定理 SSA——正弦〔或余弦〕定理可解三角形——三要素〔至少一边长〕;3.解三角形方法的本质是方程思想.。

苏教版高中数学必修五教学案第课时余弦定理(1)

苏教版高中数学必修五教学案第课时余弦定理(1)

总 课 题解三角形 总课时 第 4 课时 分 课 题 余弦定理(二) 分课时 第 2 课时 教学目标 初步运用余弦定理解决一些与测量和几何计算有关的实际问题. 重点难点 熟练运用余弦定理.引入新课1.在ABC ∆中,5=AB ,7=AC ,8=BC ,则=•BC AB ____________________.2.已知C a b sin =,B a c cos =,则ABC ∆一定是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形3.若钝角三角形的边长为连续自然数n ,1+n ,2+n ,则三边长为( )A .1,2,3B .2,3,4C .3,4,5D .4,5,64.在ABC ∆中,已知7=a ,8=b ,1413cos =C ,则最大角的余弦值是_____________. 5.在ABC ∆中,a b 2=,︒=45C ,且ABC ∆的外接圆半径2=R ,则=a _______. 例题剖析例1 在ABC ∆中,已知C B A cos sin 2sin =,试判断三角形的形状.AM 是ABC ∆中BC 边上的中线,求证:222)(221BC AC AB AM -+=.例3 为了测量学校操场四边形ABCD 的周长和面积,在操场中间取一点O ,测得m OA 40=,m OB 37=,m OC 42=,m OD 44=,且︒=∠120DOA ,︒=∠60AOB ,︒=∠45BOC ,︒=∠135COD .(1)试求四边形的周长;(2)试求四边形的面积.例2巩固练习1.在ABC ∆中,若4:3:2sin :sin :sin =C B A ,则=C cos ___________________.2.在ABC ∆中,已知2=a ,3=b ,︒=60C ,试证明此三角形为锐角三角形.3.在ABC ∆中,设a CB =,b AC =,且2||=a ,3||=b ,3-=•b a ,求AB .课堂小结熟练运用余弦定理.课后训练班级:高一( )班 姓名:____________一 基础题1.在ABC ∆中,已知B a c cos 2=,试判断ABC ∆的形状.2.用余弦定理证明:在ABC ∆中,(1)B c C b a cos cos +=;(2)C a A c b cos cos +=;(3)A b B a c cos cos +=.3.在ABC ∆中,已知c b a +=2,C B A sin sin sin 2=,试判断ABC ∆的形状.4.如图,我炮兵阵地位于A 处,两观察所分别设于C ,D ,已知ACD ∆为边长等于a 的正三角形.当目标出现于B 时,测得︒=∠45CDB ,︒=∠75BCD ,试求炮击目标的距离AB .二 提高题5.在ABC ∆中,若)())((c b b c a c a -=-+且C B A cos sin 2sin =,求证ABC ∆是等边三角形.A CB D6.在ABC ∆中,若︒=60A ,3=a ,3=+c b ,求ABC ∆的面积.7.在四边形ABCD 中,1=BC ,2=DC ,四个内角D C B A ,,,的度数之比为10:4:7:3.求(1)BD 的长; (2)AB 的长.三 能力题8.证明:在ABC ∆中,222sin )sin(c b a C B A -=-.。

苏教版高中数学必修五—学同步教学案解三角形§余弦定理

苏教版高中数学必修五—学同步教学案解三角形§余弦定理

§1.2余弦定理(一)课时目标1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形任何一边的______等于其他两边的________的和减去这两边与它们的______的余弦的积的______.即a2=________________,b2=________________,c2=________________.2.余弦定理的推论cos A=______________;cos B=______________;cos C=______________.3.在△ABC中:(1)若a2+b2-c2=0,则C=________;(2)若c2=a2+b2-ab,则C=________;(3)若c2=a2+b2+2ab,则C=________.一、填空题1.在△ABC中,若a2-b2-c2=bc,则A=________.2.在△ABC中,已知a=1,b=2,C=60°,则c=______________.3.在△ABC中,a=7,b=43,c=13,则△ABC的最小角为________.4.在△ABC中,已知a=2,则b cos C+c cos B=____________.5.△ABC中,已知a=2,b=4,C=60°,则A=________.6.在△ABC中,已知b2=ac且c=2a,则cos B等于________.7.在△ABC 中,sin 2A 2=c -b2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为________.8.三角形三边长为a ,b ,a 2+ab +b 2 (a >0,b >0),则最大角为________.9.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为________.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.二、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长;(3)求△ABC 的面积.能力提升13.在△ABC中,AB=2,AC=6,BC=1+3,AD为边BC上的高,则AD的长是____________.14.在△ABC中,a cos A+b cos B=c cos C,试判断三角形的形状.1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.§1.2 余弦定理(一)答案知识梳理1.平方 平方 夹角 两倍 b 2+c 2-2bc cos A c 2+a 2-2ca cos B a 2+b 2-2ab cos C 2.b 2+c 2-a 22bc c 2+a 2-b 22ca a 2+b 2-c 22ab3.(1)90° (2)60° (3)135° 作业设计 1.120° 2. 3 3.π6解析 ∵a>b>c ,∴C 为最小角,由余弦定理cos C =a 2+b 2-c 22ab =72+(43)2-(13)22×7×43=32.∴C =π6.4.2解析 b cos C +c cos B =b·a 2+b 2-c 22ab +c·c 2+a 2-b 22ac =2a 22a=a =2.5.30°解析 c 2=a 2+b 2-2ab cos C =22+42-2×2×4×cos 60°=12, ∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12.∵a<c ,∴A<60°,A =30°.6.34解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a·2a =34.7.直角三角形解析 ∵sin 2A 2=1-cos A 2=c -b2c,∴cos A =b c =b 2+c 2-a 22bc⇒a 2+b 2=c 2,符合勾股定理.故△ABC 为直角三角形. 8.120°解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-(a 2+ab +b 2)22ab =-12,∴θ=120°.9.45°解析 ∵S =14(a 2+b 2-c 2)=12ab sin C ,∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C.由余弦定理得:c 2=a 2+b 2-2ab cos C ,∴sin C =cos C , ∴C =45° . 10.-2 3解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13,∴cos C =a 2+b 2-c 22ab =-113,sin C =1213,∴tan C =-12=-2 3.11.解 由条件知:cos A =AB 2+AC 2-BC 22·AB·AC =92+82-722×9×8=23,设中线长为x ,由余弦定理知:x 2=⎝⎛⎭⎫AC 22+AB 2-2·AC 2·AB cos A =42+92-2×4×9×23=49⇒x =7. 所以,所求中线长为7.12.解 (1)cos C =cos [π-(A +B)]=-cos (A +B)=-12,又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎨⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b)2-ab =10, ∴AB =10.(3)S △ABC =12ab sin C =32.13. 3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC=22,∴sin C =22.∴AD =AC·sin C = 3. 14.解 由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab,代入已知条件得 a·b 2+c 2-a 22bc +b·a 2+c 2-b 22ac +c·c 2-a 2-b 22ab=0,通分得a2(b2+c2-a2)+b2(a2+c2-b2)+c2(c2-a2-b2)=0,展开整理得(a2-b2)2=c4.∴a2-b2=±c2,即a2=b2+c2或b2=a2+c2.根据勾股定理知△ABC是直角三角形.§1.2余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =c sin C=______. (2)a =__________,b =__________,c =__________.(3)sin A =__________,sin B =__________,sin C =__________. (4)sin A ∶sin B ∶sin C =________. 2.余弦定理及其推论 (1)a 2=________________. (2)cos A =________________. (3)在△ABC 中,c 2=a 2+b 2⇔C 为______;c 2>a 2+b 2⇔C 为______;c 2<a 2+b 2⇔C 为______. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =______,A +B2=____________.(2)sin(A +B )=________,cos(A +B )=________,tan(A +B )=________.(3)sin A +B 2=__________,cos A +B 2=__________.一、填空题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为________.2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是________. 3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为________.4.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________. 5.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形的形状是________. 6.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°,c =2a ,则a 与b 的大小关系是______.7.如果将直角三角形的三边增加同样的长度,则新三角形的形状是________. 8.设2a +1,a,2a -1为钝角三角形的三边,那么a 的取值范围是________. 9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________.二、解答题11.在△ABC 中,求证:a 2-b 2c 2=sin (A -B )sin C.12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cos B=35,且·AB →·BC →=-21. (1)求△ABC 的面积; (2)若a =7,求角C .能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是________. 14.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C 的值;(2)设BA →·BC →=32,求a +c 的值.1.解斜三角形的常见类型及解法(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.§1.2 余弦定理(二)答案知识梳理1.(1)2R (2)2R sin A 2R sin B 2R sin C (3)a 2R b 2R c 2R(4)a ∶b ∶c 2.(1)b 2+c 2-2bc cos A (2)b 2+c 2-a 22bc (3)直角 钝角 锐角 3.(1)π π2-C 2(2)sin C -cos C -tan C(3)cos C 2 sin C 2作业设计1.120°解析 ∵(a +b -c)(a +b +c)=ab ,∴a 2+b 2-c 2=-ab ,即a 2+b 2-c 22ab =-12, ∴cos C =-12,∴∠C =120°. 2.等腰三角形解析 ∵2cos B sin A =sin C =sin (A +B),∴sin A cos B -cos A sin B =0,即sin (A -B)=0,∴A =B.3.60°解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7,不妨设a =3,b =5,c =7,C 为最大内角,则cos C =32+52-722×3×5=-12. ∴C =120°.∴最小外角为60°. 4.19解析 由题意:a +b =5,ab =2.由余弦定理得:c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b)2-3ab =52-3×2=19, ∴c =19.5.等边三角形解析 ∵2b =a +c ,∴4b 2=(a +c)2,又b 2=ac ,即(a -c)2=0.∴a =c.∴2b =a +c =2a.∴b =a ,即a =b =c.6.a>b解析 在△ABC 中,由余弦定理得,c 2=a 2+b 2-2ab cos 120°=a 2+b 2+ab.∵c =2a ,∴2a 2=a 2+b 2+ab.∴a 2-b 2=ab>0,∴a 2>b 2,∴a>b.7.锐角三角形解析 设直角三角形三边长为a ,b ,c ,且a 2+b 2=c 2,则(a +x)2+(b +x)2-(c +x)2=a 2+b 2+2x 2+2(a +b)x -c 2-2cx -x 2=2(a +b -c)x +x 2>0, ∴c +x 所对的最大角变为锐角.8.2<a<8解析 ∵2a -1>0,∴a>12,最大边为2a +1. ∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2化简得:0<a<8.又∵a +2a -1>2a +1,∴a>2,∴2<a<8.9.12解析 S △ABC =12AB·AC·sin A =12AB·AC·sin 60°=23,∴AB·AC =8,BC 2=AB 2+AC 2-2AB·AC·cos A =AB 2+AC 2-AB·AC =(AB +AC)2-3AB·AC ,∴(AB +AC)2=BC 2+3AB·AC =49,∴AB +AC =7,∴△ABC 的周长为12.10.13π3解析 S △ABC =12bc sin A =34c =3,∴c =4, 由余弦定理:a 2=b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13,∴a =13.∴2R =a sin A =1332=2393, ∴R =393.∴S 外接圆=πR 2=13π3. 11.证明 右边=sin A cos B -cos A sin B sin C=sin A sin C ·cos B -sin B sin C ·cos A =a c ·a 2+c 2-b 22ac -b c ·b 2+c 2-a 22bc=a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c2=左边. 所以a 2-b 2c 2=sin (A -B )sin C. 12.∵AB →·BC →=-21,·BA →·BC →=21.·BA →·BC →=|BA →|·|BC →|·cos B =ac cos B =21.∴ac =35,∵cos B =35,∴sin B =45. ∴S △ABC =12ac sin B =12×35×45=14. (2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32,∴b =4 2.由正弦定理:c sin C =b sin B . ∴sin C =c b sin B =542×45=22. ∵c<b 且B 为锐角,∴C 一定是锐角.∴C =45°.13.0<C ≤π6解析 方法一 (应用正弦定理)∵AB sin C =BC sin A ,∴1sin C =2sin A ∴sin C =12sin A ,∵0<sin A ≤1, ∴0<sin C ≤12.∵AB<BC ,∴C<A ,∴C 为锐角, ∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆,则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6. 14.解 (1)由cos B =34,得sin B =1-⎝⎛⎭⎫342=74. 由b 2=ac 及正弦定理得sin 2 B =sin A sin C. 于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2 B=sin B sin 2 B =1sin B =477. (2)由BA →·BC →=32得ca·cos B =32, 由cos B =34,可得ca =2,即b 2=2. 由余弦定理:b 2=a 2+c 2-2ac·cos B ,得a 2+c 2=b 2+2ac·cos B =5,∴(a +c)2=a 2+c 2+2ac =5+4=9,∴a +c =3.。

高中数学 《余弦定理》教案5 苏教版必修5

高中数学 《余弦定理》教案5 苏教版必修5

余弦定理教案教学目的1.使学生掌握余弦定理及其证明方法.2.使学生初步掌握余弦定理的应用.教学重点与难点教学重点是余弦定理及其应用;教学难点是用解析法证明余弦定理.教学过程设计一、复习师:直角△ABC中有如下的边角关系(设∠C=90°):(1)角的关系A+B+C=180°.A+B=90°.(2)边的关系c2=a2+b2.二、引入师:在△ABC中,当∠C=90°时,有c2=a2+b2.若a,b边的长短不变,变换∠C的大小时,c2与a2+b2有什么关系呢?请同学们思考.如图1,若∠C<90°时,由于AC与BC的长度不变,所以AB的长度变短,即c2<a2+b2.如图2,若∠C>90°时,由于AC与BC的长度不变,所以AB的长度变长,即c2>a2+b2.经过议论学生已得到当∠C≠90°时,c2≠a2+b2,那么c2与a2+b2到底相差多少呢?请同学们继续思考.如图3,当∠C为锐角时,作BD⊥AC于D,BD把△ABC分成两个直角三角形:在Rt△ABD中,AB2=AD2+BD2;在Rt△BDC中,BD=BC·sinC=asinC,DC=BC·cosC=acosC.所以,AB2=AD2+BD2化为c2=(b-acosC)2+(asinC)2,c2=b2-2abcosC+a2cos2C+a2sin2C,c2=a2+b2-2abcosC.我们可以看出∠C为锐角时,△ABC的三边a,b,c具有c2=a2+b2-2abcosC的关系.从以上分析过程,我们对∠C是锐角的情况有了清楚认识.我们不仅要认识到,∠C为锐角时有c2=a2+b2-2abcosC,还要体会出怎样把一个斜三角形转化成两个直角三角形的.这种未知向已知的转化在数学中经常碰到.下面请同学们自己动手推导结论.如图4,当∠C为钝角时,作BD⊥AC,交AC的延长线于D.△ACB是两个直角三角形之差.在Rt△ABD中,AB2=AD2+BD2.在Rt△BCD中,∠BCD=π-C.BD=BC·sin(π-C),CD=BC· cos(π-C).所以AB2=AD2+BD2化为c2=(AC+CD)2+BD2=[b+acos(π-C)]2+[asin(π-C)]2=b2+2abcos(π-C)+a2cos2(π-C)+a2sin2(π-C)=b2+2abcos(π-C)+a2.因为cos(π-C)=-cosC,所以c2=b2+a2-2abcosC.这里∠C为钝角,cosC为负值,-2abcosC为正值,所以b2+a2-2abcosC>a2+b2,即c2>a2+b2.从以上我们可以看出,无论∠C是锐角还是钝角,△ABC的三边都满足c2=a2+b2-2abcosC.这就是余弦定理.我们轮换∠A,∠B,∠C的位置可以得到a2=b2+c2-2bccosA.b2=c2+a2-2accosB.三、证明余弦定理师:在引入过程中,我们不仅找到了斜三角形的边角关系,而且还给出了证明,这个证明是依据分类讨论的方法,把斜三角形化归为两个直角三角形的和或差,再利用勾股定理和锐角三角函数证明的.这是证明余弦定理的一个好方法,但比较麻烦.现在我们已学完了三角函数,无论∠α是锐角、直角或钝角,我们都有统一的定义,借用三角函数和两定点间的距离来证明余弦定理,我们就可避开分类讨论.我们仍就以∠C为主进行证明.如图5,我们把顶点C置于原点,CA落在x轴的正半轴上,由于△ABC的AC=b,CB=a,AB=c,则A,B,C点的坐标分别为A(b,0),B(acosC,asinC),C(0,0).请同学们分析B点坐标是怎样得来的.生:∠ACB=∠C,CB为∠ACB的终边,B为CB上一点,设B的坐标为(x,师:回答很准确,A,B两点间的距离如何求?生:|AB|2=(acosC-b)2+(asinC-0)2=a2cos2C-2abcosC+b2+a2sin2C=a2+b2-2abcosC,即c2=a2+b2-2abcosC.师:大家请看,我们这里也导出了余弦定理,这个证明方法是解析法.这种方法以后还要详细学习.余弦定理用语言可以这样叙述,三角形一边的平方等于另两边的平方和再减去这两边与夹角余弦的乘积的2倍.即:a2=b2+c2-2bccosA.c2=a2+b2-2abcosC.b2=a2+c2-2accosB.若用三边表示角,余弦定理可以写为四、余弦定理的作用(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边.解由余弦定理可知Bc2=Ab2+Ac2-2AB×AC·cosA所以BC=7.以上两个小例子简单说明了余弦定理的作用.五、余弦定理与勾股定理的关系、余弦定理与锐角三角函数的关系在△ABC中,c2=a2+b2-2abcosC.若∠C=90°,则cosC=0,于是c2=a2+b2-2ab·0=a2+b2.说明勾股定理是余弦定理的特例,余弦定理是勾股定理的推广.这与Rt△ABC中,∠C=90°的锐角三角函数一致,即直角三角形中的锐角三角函数是余弦定理的特例.六、应用举例例1 在△ABC中,求证c=bcosA+acosB.师:请同学们先做几分钟.生甲:如图6,作CD⊥AB于D.在Rt△ACD中,AD=b·cosA;在Rt△CBD中,DB=a·cosB.而c=AD+DB,所以c=bcosA+acosB.师:这位学生的证法是否完备,请大家讨论.生乙:他的证法有问题,因为作CD⊥AB时垂足D不一定落在AB上.若落在AB的延长线上时,c≠AD+DB,而c=AD-DB.师:学生乙的问题提得好,我们如果把学生乙所说的情况补充上是否就完备了呢?生丙:还不够.因为作CD⊥AB时,垂足D还可以落在B处.师:其实垂足D有五种落法,如落在AB上;AB的延长线上;BA的延长线上;A点或B点处.我们要分这么多种情况证明未免有些太麻烦了.请大家借用余弦定理证明.生:因为acosB+bcosA所以c=acosB+bcosA.师:这种证法显然简单,它避开了分类讨论.你们知道为什么这种证法不用分类讨论吗?生:因为余弦定理本身适用于各种三角形.例2 三角形ABC中,AB=2,AC=3,BC=4,求△ABC的面积.师:我们通常求三角形的面积要用公式这个题目,我们应该如何下手呢?生:可以用余弦定理由三边求出一个内角的余弦值,再用同角公式导出这个角的正弦后,最后代入三角形面积公式.解因为a=4,b=3,c=2,所以由sin2A+cos2A=1,且A为△ABC内角,得例3 在三角形ABC中,若CB=7,AC=8,AB=9,求AB边的中线长.请同学们先设计解题方案.生甲:我想在△ABC中,已知三边的长可求出cosB.在△BCD中,由BC=7,BD=4.5及cosB的值,再用一次余弦定理便可求出CD.师:这个方案很好.请同学很快计算出结果.解设D为AB中点,连CD.在△ACB中,由AC=8,BC=7,AB=9,得生乙:我们在初中碰到中线时,经常延长中线,所以我想延长中线CD到E,使DE=CD,想在△BCE中解决.已知BC=7,BE=AC=8,若再知道cos∠CBE,便可解决,但我不知怎样求cos∠CBE.师:这个问题提得很有价值,请大家一起帮助学生乙解决这个难点.(学生开始议论.)生丙:连接AE,由于AD=DB,CD=DE,所以四边形ACBE为平行四边形,可得AC ∥BE,∠CBE与∠ACB互补.我能利用余弦定理求出cos∠BCA,再利用互补关系解出cos ∠CBE.师:大家看看他讲得好不好.请大家用第二套方案解题.解延长CD至E,使DE=CD.因为CD=DE,AD=DB,所以四边形ACBE是平行四边形.所以BE=AC=8,∠ACB+∠CBE=180°.在△ACB中,CB=7,AC=8,AB=9,由余弦定理可得在△CBE中,这两种解法都是两次用到余弦定理,可见掌握余弦定理是十分必要的.七、总结本节课我们研究了三角形的一种边角关系,即余弦定理,它的证明我们可以用解析法.它的形式有两种,一种是用两边及夹角的余弦表示第三边,另一种是三边表示角.余弦定理适用于各种三角形,当一个三角形的一个内角为90°时,余弦定理就自然化为勾股定理或锐角三角函数.余弦定理的作用如同它的两种形式,一是已知两边及夹角解决第三边问题;另一个是已知三边解决三内角问题.注意在(0,π)范围内余弦值和角的一一对应性.若cos A>0,则A 为锐角;若cosA=0,则A为直角;若cosA<0,则A为钝角.另外本节课我们所涉及的内容有两处用到分类讨论的思想方法.请大家解决问题时要考虑全面.如果能回避分类讨论的,应尽可能回避,如用解析法证明余弦定理、用余弦定理证明例1等等.八、作业5.已知△ABC中,acosB=bcos A,请判断三角形的形状.课堂教学设计说明1.余弦定理是解三角形的重要依据,要给予足够重视.本内容安排两节课适宜.第一节,余弦定理的引出、证明和简单应用;第二节复习定理内容,加强定理的应用.2.当已知两边及一边对角需要求第三边时,可利用方程的思想,引出含第三边为未知量的方程,间接利用余弦定理解决问题,此时应注意解的不唯一性.。

高中数学新苏教版精品教案《苏教版高中数学必修5 1.2.1 余弦定理》1

高中数学新苏教版精品教案《苏教版高中数学必修5 1.2.1 余弦定理》1

余弦定理〔1〕【教材分析】“余弦定理〞是苏教版普通高中课程实验教科书〔必修5〕第一章“解三角形〞的主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理〞内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。

本节课是“余弦定理〞教学的第一节课,其主要任务是引入并证明余弦定理,在课型上属于“定理教学课〞。

【学情分析】在学习本节课之前,学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解哪些类型的三角形。

在此根底上,教师可以创设一个“三角形两边及夹角〞来解三角形的实际例子,学生发现不能用上一节所学的知识来解决这一问题,从而引发学生的学习兴趣,引出这一节的内容。

在对余弦定理教学中时,考虑到它比正弦定理形式上更加复杂,教师可以有目的的提供一些供研究的素材,并作必要的启发和引导,让学生进行思考,通过类比、联想、质疑、探究等步骤,辅以小组合作学习,建立猜测,获得命题,再想方设法去证明。

在用两种不同的方法证明余弦定理时,学生可能会遇到证明思路上的困难,教师可以适当的点拨。

教学目标:1 掌握余弦定理及其证明方法;2 初步掌握余弦定理的应用;3 培养学生推理探索数学规律和归纳总结的思维能力.教学重点:余弦定理及其应用. 教学难点:用解析法证明余弦定理.教学方法:发现教学法.教学过程:一、问题情境在上节中,我们通过等式的两边与〔为中边上的高〕作数量积,将向量等式转化为数量关系,进而推出了正弦定理..探索1 还有其他途径将向量等式数量化吗? 二、学生活动向量的平方是向量数量化的一种手段. 因为〔如图1〕,所以即 , 同理可得 ,.上述等式说明,三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.引出课题——余弦定理.三、建构数学ABC图1对任意三角形,有余弦定理: , , .探索2:回忆正弦定理的证明,尝试用其他方法证明余弦定理. 师生共同活动,探索证明过程.经过讨论,可归纳出如下方法. 方法一:如图2建立直角坐标系,那么. 所以.同理可证:,.方法二:假设是锐角,如图3,由作,垂足为,那么.所以, , 即,类似地,可以证明当是钝角时,结论也成立,而当是直角时,结论显然成立.同理可证 ,.方法三:由正弦定理,得. 所以图2 BCAD 图3.同理可证,.余弦定理也可以写成如下形式:,,.探索3 利用余弦定理可以解决斜三角形中的哪些类型问题?利用余弦定理,可以解决以下两类解斜三角形的问题:〔1〕三边,求三个角;〔2〕两边和它们的夹角,求第三边和其他两个角.四、数学运用1.例题.例1 在中,〔1〕,求;〔2〕求最大角的余弦值.解〔1〕由余弦定理,得,所以.〔2〕因为,所以为最大角,由余弦定理,得.例2 用余弦定理证明:在中,当为锐角时,;当为钝角时,.证明:当为锐角时,,由余弦定理得即;同理可证,当为钝角时,.2.练习.〔1〕在中,,求.〔2〕假设三条线段的长分别为5,6,7,那么用这三条线段〔〕A 能组成直角三角形B 能组成锐角三角形C 能组成钝角三角形D 不能组成三角形〔3〕在中,,试求的大小.练习答案:〔1〕〔2〕〔3〕五、要点归纳与方法小结本节课我们得出了任一三角形的三边及其一角之间的关系,即余弦定理.余弦定理可以解决斜三角形中这样的两类问题:三边,求三个角;两边和它们的夹角,求第三边和其他两个角.。

高中数学余弦定理(一)苏教版必修五 教案

高中数学余弦定理(一)苏教版必修五 教案

课题:余弦定理(一)【教学目标】知识目标:掌握余弦定理及其证明;使学生能初步运用余弦定理解斜三角形.能力目标:培养学生理解、分析、归纳、解决问题的能力.情感目标:认识事物的普遍联系与相互转化 , 激发学生学习数学的兴趣 ,努力培养学生的创新意识.【教学过程】一.问题情境正弦定理在解三角形中能够解决的两类问题,即已知两角和一边、已知两边和其中一边所对的角;在实际解题中,还会碰到如已知三边、已知两边和两边的夹角的三角形,显然正弦定理不能解决.那么三角形中还有没有其他的关系呢?二.学生活动问题:在上节中,通过等式BC BA AC =+的两边与AD (AD 为ABC ∆中BC 边上的高)作数量积,将向量等式转化为数量关系,进而推出了正弦定理,还有其他途径将向量等式BC BA AC =+数量化吗?三.建构数学证法二:(建立直角坐标系,利用三角函数的定义)证法三:(转化为直角三角形中的边角关系)证法四:(运用正弦定理)四.数学运用例1:在ABC ∆中,已知3=b ,33=c , 30=B ,求A ,C ,a .(两种方法)变式:在ABC ∆中,已知3=b ,32=c , 30=A ,求B ,C ,a .说明:余弦定理可以用于解决:例2:在ABC ∆中,已知37=a ,4=b ,3=c ,求最大角及C sin .例3.用余弦定理证明:在ABC ∆中,当C 为锐角时,222a b c +>;当C 为钝角时,222a b c +<.练习:1.在ABC ∆中,已知 60=A ,4=b ,7=c ,则=a .2.若三条线段的长分别为5,6,7,则用这三条线段组成的三角形是.3.已知ABC ∆中,)13(:6:2::+=c b a ,则最大角为.4.在ABC ∆中,三边长7=AB ,5=BC ,6=AC ,则=⋅BC AB .5.两游艇自某地同时出发,一艇以h km /10的速度向正北行驶,另一艇以h km /7的速度向北偏东 45的方向行驶,则经过min 40后两艇相距.五.回顾小结:六.课外作业:1.课本P17 习题1.2 (3)2.在ABC ∆中,已知7=a ,8=b ,1413cos =C ,求ABC ∆最大角的余弦值. 3.某人向正东方向走xkm 后,向右转 150,然后朝新方向走km 3,结果她离出发点恰好km 3,求x .【教后反思】。

苏教版高中数学必修五余弦定理教案(2)(1)

苏教版高中数学必修五余弦定理教案(2)(1)

听课随笔第3课时余弦定理【学习导航】知识网络⎩⎨⎧判断三角形的形状平面几何中的某些问题余弦定理 学习要求1.余弦定理的教学要达到“记熟公式”和“运算正确”这两个目标;2.能够利用正、余弦定理判断三角形的形状;3.进一步运用余弦定理解斜三角形. 【课堂互动】自学评价1.余弦定理:(1)_______________________,_______________________,_______________________. (2) 变形:____________________,_____________________,_____________________ .2.判断三角形的形状一般都有______或_________两种思路. 【精典范例】【例1】在∆ABC 中,求证:(1);sin sin sin 222222CBA c b a +=+ (2))cos cos cos (2222C abB ca A cb c b a ++=++ 【解】【例2】在ABC ∆中,已知acosA = bcosB 用两种方法判断该三角形的形状. 分析:利用正弦定理或余弦定理,“化边为角”或“化角为边”。

【解】方法1o方法2o点评: 判断三角形的形状一般都有“走边”或“走角”两条路。

【例3】在四边形ABCD 中,∠ADB=∠BCD=75︒,∠ACB=∠BDC=45︒,DC=3,求: (1) AB 的长(2) 四边形ABCD 的面积 【解】听课随笔追踪训练一1. 在△ABC 中,090C ∠=,00450<<A ,则下列各式中正确的是( )A.A A cos sin >B.A B cos sin >C.B A cos sin >D.B B cos sin > 2. 在△ABC 中,若1cos cos cos 222=++C B A ,则△ABC 的形状是______________3. 如图,已知圆内接四边形ABCD的边长分别为AB=2,BC=6,AD =CD=4,如何求出四边形ABCD的面积?【选修延伸】【例4】如图:在四边形ABCD 中,∠B=∠D=750,∠C=060,AB=3,AD=4,求对角线AC 的长。

高中数学1.2余弦定理学案1苏教版必修5

高中数学1.2余弦定理学案1苏教版必修5

§1.2 余弦定理(1)一、学习目标:1.理解用向量的数量积证明余弦定理的方法;2.掌握并熟记余弦定理;3.能运用余弦定理及其推论解三角形。

二、学法指导1.余弦定理揭示了任意三角形的边角关系,其证明的方法有向量法,解析法和几何法。

2.余弦定理适用的题型:(1)已知三边求三角,用余弦定理,有解时只有一解(2)已知两边和它们的夹角,求第三边和其他的角,用余弦定理必有一解3.余弦定理适用于判断三角形的形状。

三、课前预习(1)余弦定理:三角形任何一边的平方等于 的积的两倍,即222____________________________________________________________________________________a b c ===(2)余弦定理的推论:cos ____________________________cos ____________________________cos ____________________________A B C ===(3)用余弦定理可以解决两类有关解三角形的问题①已知三角形的三边,求② 已知 和它们的 ,求第三边和其他两个角。

四、课堂探究余弦定理的证明及理解:想一想:(1)余弦定理与勾股定理有什么关系?(2)直接应用余弦定理可解决什么样的问题?五、数学应用题型1已知三角形的三边解三角形【例1】 已知△ABC 中,(1)6,5,4===c b a ,求A ;(2)边长为875,,的三角形中,求最大角与最小角的和 (3)a :b :c =2:6:(3+1),求△ABC 各角的度数.规律归纳此题为“已知三边,求三角形的三个角”类型问题,基本解法是先利用余弦定理的推论求一个角的余弦,再判定此角的取值,求得第一个角,再用正弦定理求出另一个角,最后用三角形内角和定理,求出第三个角(一般地,先求最小角,再求最大角).题型2已知三角形的两边及夹角解三角形【例2】 在△ABC 中,(1)已知060,1,3===A c b ,求a ;(2)已知a =2,b =22,C =15°,求角A.规律归纳已知两边及其夹角解三角形(此时有唯一解)方法一:①利用余弦定理求出第三边;②利用正弦定理求出一个角;③利用三角形内角和定理求出第三个角.方法二:①利用余弦定理求出第三边;②利用余弦定理求出一个角;③利用三角形内角和定理求出第三个角.此时方法一中②通常需要分类讨论,因此建议应用方法二解三角形.题型3已知三角形的两边及一边对角解三角形【例3】 在△ABC 中,已知b =3,c =33,B =30°,求边a.规律归纳用正弦定理解三角形时要注意解的个数,往往需要讨论边角关系,而用余弦定理求角时,结果是钝角、直角还是锐角从余弦值的正负情况便可以判断出来;如果求边则类似于本题,一般可借助一元二次方程求解,它的根的个数即是三角形解的个数.特别地,已知三角形一角,往往利用余弦定理建立等量关系,利用方程解决较方便,如本题解法二.六、巩固训练1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c.下列等式不成立的是( )A .2a =2b +2c -2bccosAB .2b =2c +2a -2accosBC .cosA =bc a c b 2222-+D .cosC =aba cb 2222++2.在△ABC 中,a =2,b =5,c =6,则cosB 等于( )A.58B.6524C.1920 D .-7203.在△ABC 中,AB =1,BC =2,B =60°,则AC =________.4.在△ABC 中,B =π3且AB =1,BC =6,则边BC 上的中线AD 的长为________.5.在△ABC 中,(1)若b =3,c =1,A =60°,试求a ;(2)若a =3,b =1,c =2,试求A.6.用余弦定理证明:在ABC ∆中,当C ∠为锐角时,222a b c +>;当C ∠为钝角时,222a b c +<七、反思总结1.余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;2.余弦定理的应用范围:①已知三边求三角;②已知两边及它们的夹角,求第三边。

高中数学新苏教版精品教案《苏教版高中数学必修5 1.2 余弦定理》

高中数学新苏教版精品教案《苏教版高中数学必修5 1.2 余弦定理》

第29课余弦定理与解三角形1教学目标: 1能运用正,余弦定理解三角形重点:正,余弦定理的应用难点:在解决实际问题时,两种定理的灵活选取是难点教学过程一:激活思维1在△ABC中,若a∶b∶c=2∶3∶4,则co C=2在△ABC中,若a=2,b=2,c=2,则角A=3在△ABC中,已知abcbc-a=3bc,那么角A=4在△ABC中,已知c=2a co B,那么△ABC的形状为三角形5在△ABC中,若a=4,b=5,c=6,则△ABC的面积为二.分类解析结合余弦定理判断三角形的形状例1在△ABC中,已知ab co B-c co C=b2-c2co A,试判断它的形状【思维引导】已知条件等式中既有边又有角,因此考虑将边与角的混合关系转化为只含有边或者只含有角的关系,再作判断本题向边转化较容易变式在△ABC中,已知a co Ab co B=c co C,试判断△ABC的形状结合余弦定理解三角形例22021·宿迁一模已知△ABC的内角A,B,C所对的边分别为a,b,c,B=1若a=2,b=2,求c的值;2若tan A=2,求tan C的值【思维引导】1有关三边一角问题,首先考虑到余弦定理,求出边c;2利用两角和的正切公式求tan C变式在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a>c若·=2,co B=,b=3 1求a和c的值;2求co B-C的值结合正、余弦定理解三角形的面积问题例32021·陕西卷已知△ABC的内角A,B,C所对的边分别为a,b,c,向量m=a,b与n=co A,in B平行1求角A的大小;2若a=,b=2,求△ABC的面积变式2021·安徽卷设△ABC的内角A,B,C所对的边分别为a,b,c,且b=3,c=1,△ABC的面积为,求co A和a的值三.课堂作业1 2021·福建卷在△ABC中,若A=60°,AC=2,BC=,则AB=2 2021·苏北四市期末在△ABC中,已知AB=3,A=12021且△ABC的面积为,那么BC边的长为3 在△ABC中,内角A,B,C所对的边分别为a,b,=a,2in B=3in C,则co A=4 2021·广东卷设△ABC的内角A,B,C的对边分别为a,b,=2,c=2,co A=,且b<c,则b=5 在△ABC中,内角A,B,C所对的边分别为a,b,c,且abc=81若a=2,b=,求co C的值;2若in A co2in B co2=2in C,且△ABC的面积S=in C,求a和b的值四:小结高考中经常将三角变换与解三角形知识综合起来命题,其中关键是三角变换,而三角变换中主要是“变角、变函数名和变运算形式”,核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式五.作业课堂作业第5题六.板书设计七.教后感。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2
教学
目标
1.通过对任意三角形边长和角度关系的探索,掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。
2.能够运用余弦定理理解解决一些与测量和几何计算有关的实际问题
3.通过三角函数、余弦定理、向量数量积等多处知识间联系来体现事物之间的普遍联系与辩证统一.
思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?
(由学生总结)若 中,C= ,则 ,这时 ,由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。
三、质疑答辩,排难解惑,发展思维
例1(教材 例1)在 中,(1)已知 ,求 ;(2)已知 ,求
例2边长为 的三角形中,求最大角与最小角的和
例3在 中,最大角 为最小角,反馈矫正
1.在 中, ,那么这个三角形的最大角是_____
2.在 中, ,则 ______
五、归纳整理,整体认识
1.余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;
重点难点
重点:余弦定理的发现和证明过程及其基本应用;
难点:向量方法证明余弦定理
教学过程
一、创设情景,揭示课题
1.正弦定理的内容?
2.由正弦定理可解决哪几类斜三角形的问题?
二、研探新知
1.余弦定理的向量证明:
方法1:如图,在 中, 、 、 的长分别为 、 、 .∵ ,

+ ,
即 ;
同理可证: , .
方法2:建立直角坐标系,则 .所以
,同理可证 ,
注意:此法的优点在于不必对 是锐角、直角、钝角进行分类讨论.
于是得到以下定理
余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍,即
思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?
语言叙述:三角形任何一边的平方等于其它两边平方的和减去这两边与它们夹角的余弦的积的两倍。
用符号语言表示: ,…等;
2.理解定理
注意:(1)熟悉定理的结构,注意“平方”“夹角”“余弦”等
(2)余弦定理的应用:①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两个角
(3)当夹角为90时,即三角形为直角三角形时即为勾股定理(特例)
(4)变形:
语言叙述:三角形每个角的余弦等于这个角的夹边的平方和减去对边的平方除以夹边乘积的两倍。
2.余弦定理的应用范围:①已知三边求三角;②已知两边及它们的夹角,求第三边。
课外作业
课本16页1
教学反思
相关文档
最新文档