作业二答案单自由度机械系统动力学等效转动惯量等效力矩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业(二)单自由度机械系统动力学等效转动惯量等效力矩 1.如题图1所示的六杆机构中,已知滑块5的质量为m 5=20kg ,l AB =l ED =100mm ,l BC =l CD =l EF =200mm ,φ1=φ2=φ3=90o ,作用在滑块5上的力P=500N .当取曲柄AB 为等效构件时,求机构在图示位置的等效转动惯量和力P的等效力矩.
图1
答案:解此题的思路是:①运动分析求出机构处在该位置时,质心点的速度及各构件的角速度.
②根据等效转动惯量,等效力矩的公式求出. 做出机构的位置图,用图解法进行运动分析. V C =V B =ω1×l AB ω2=0 V D =V C =ω1×l AB 且ω3=V C /l CD =ω1
V F =V D =ω1×l AB (方向水平向右) ω4=0 由等效转动惯量的公式:
e J =m 5(V F /ω1)2
=20kg ×(ω1×l AB /ω1)2
=0.2kgm 2
由等效力矩的定义: e M =500×ω1×l AB ×cos180o
/ω1=-50Nm (因为VF 的方向
与P方向相反,所以α=180o )
∑=+=n
i i Si Si
i e J v m J 1
2
1
21
])(
)(
[ωωω∑=±=n
i i
i i
i i e M v F M 1
1
1
)](
)(
cos [ωωωα
2.题图2所示的轮系中,已知各轮齿数:z 1=z 2’=20,z 2=z 3=40,J 1=J 2’=0.01kg ·m 2,J 2=J 3=0.04kg ·m 2.作用在轴O3上的阻力矩M3=40N ·m .当取齿轮1为等效构件时,求机构的等效转动惯量和阻力矩M3的等效力矩.
图2
答案:该轮系为定轴轮系.
i 12=ω1/ω2=(-1)1z 2/z 1
∴ ω2=-ω1/2=-0.5×ω1 ω2’=ω2=-0.5×ω1
i 2’3=ω2’/ω3=(-1)1z 3/z 2’ ∴ ω3=0.25×ω1 根据等效转动惯量公式
e J = J 1×(ω1/ω1)2
+J 2×(ω2/ω1)2
+J 2’×(ω2’/ω1)2
+J 3×(ω3/ω1)2
=J 1+J 2/4+J 2’/4 +J 3/16
=0.01+0.04/4+0.01/4+0.04/16 =0.025 kg ·m 2
根据等效力矩的公式: e M =M 3×ω3/ω1=40×0.25ω1/ω1=10N ·m
3.在题图3所示减速器中,已知各轮的齿数:z 1=z 3=25,z 2=z 4=50,各轮的转动惯量J 1=J 3=0.04kg ·m 2,J 2=J 4=0.16kg ·m 2,(忽略各轴的转动惯量),作用在轴Ⅲ上的阻力矩M 3=100N ·m .试求选取轴
∑=+=n
i i Si Si
i e J v m J 12
1
21
])(
(
[ωωω∑=±=n
i i
i i
i i e M v F M 11
1
)](
)(
cos [ωωωα
Ⅰ为等效构件时,该机构的等效转动惯量J和M3的等效阻力矩M r.
图3
答案:i12=ω1/ω2=z2/z1ω2=ω1/2 ω3=ω2=ω1/2
i
=ω3/ω4=z4/z3ω4=ω1/4
34
等效转动惯量:
J=J1(ω1/ω1)2+J2(ω2/ω1)2+J3(ω3/ω1)2+J4(ω4/ω1)2
=0.042+0.16×(1/2)2+0.04×(1/2)2+0.16×(1/4)2
=0.04+0.04+0.01+0.01
=0.1kg·m2
等效阻力矩:
M r=M3×ω4/ω1=100/4=25(N·m)
4.题图4所示为一简易机床的主传动系统,由一级带传动和两级齿轮传动组成.已知直流电动机的转速n0=1500r/min,小带轮直径d=100mm,转动惯量J d=0.1kg·m2,大带轮直径D=200mm,转动惯量J D=0.3kg·m2.各齿轮的齿数和转动惯量分别为:z1=32,
J1=0.1kg·m2,z2=56,J2=0.2kg·m2,z2’=32,J2’=0.4kg·m2,z3=56,J3=0.25kg·m2.
要求在切断电源后2秒,利用装在轴上的制动器将整个传动系统制动住.求所需的制动力矩M1.
图4
答案:电机的转速n0=1500r/min
其角速度ω0=2π×1500/60=50π(rad/s)
三根轴的转速分别为:
ω1=d×ω0/D=25π(rad/s)
ω2=z1×ω1/z2=32×25π/56=1429π(rad/s)
ω3=z2’×ω2/z3=32×1429π/56=816π(rad/s)
轴的等效转动惯量:
J V=J d×(ω0/ω1)2+J D×(ω1/ω1)2+J1×(ω1/ω1)2+J2×(ω2/ω1)2+ J2’×(ω2/ω1)2+ J 3×(ω3/ω1)2
∴J V=0.1×(50π/25π)2+0.3×12+0.1×12+(0.2+0.1)×(14.29π/25π)2+0.25×(8.16π/25π)2
=0.4+0.4+0.098+0.027
=0.925 (kg·m2)
轴制动前的初始角速度ω1=25π,制动阶段做减速运动,即可求出制动时的角加速度