这些几何体叫做简单组合体

合集下载

高一数学知识点总结_空间几何体的结构知识点

高一数学知识点总结_空间几何体的结构知识点

高一数学知识点总结_空间几何体的结构知识点高一数学空间几何体的结构知识点篇1空间几何体的结构知识点1、静态的观点有两个平行的平面,其他的面是曲面;动态的观点:矩形绕其一边旋转形成的面围成的旋转体,象这样的旋转体称为圆柱。

2、定义:以矩形的一边所在直线为旋转轴,其余各边旋转而形成的的曲面所围成的旋转体叫做圆柱,旋转轴叫圆柱的轴;垂直于旋转轴的边旋转而成的圆面叫做圆柱的底面;平行于圆柱轴的边旋转而成的面叫圆柱的侧面,圆柱的侧面又称圆柱的面。

无论转到什么位置,不垂直于轴的边都叫圆柱侧面的母线。

表示:圆柱用表示轴的字母表示。

规定:圆柱和棱柱统称为柱体。

3、静态观点:有一平面,其他的面是曲面;动态的观点:直角三角形绕其一直角旋转形成的面围成的旋转体,像这样的旋转体称为圆锥。

4、定义:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转而形成的面所围成的旋转体叫做圆锥。

旋转轴叫圆锥的轴;垂直于旋转轴的边旋转而成的圆面成为圆锥的底面;不垂直于旋转轴的边旋转而成的曲面叫圆锥的侧面,圆锥的侧面又称圆锥的面,无论旋转到什么位置,这条边都叫做圆锥侧面的母线。

表示:圆锥用表示轴的字母表示。

规定:圆锥和棱锥统称为锥体。

5、定义:以半直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆台。

还可以看成用平行于圆锥底面的平面截这个圆锥,截面于底面之间的部分。

旋转轴叫圆台的轴。

垂直于旋转轴的边旋转而形成的圆面称为圆台的底面;不垂直于旋转轴的边旋转而成的曲面叫做圆台的侧面,无论转到什么位置,这条边都叫圆台侧面的母线。

表示:圆台用表示轴的字母表示。

规定:圆台和棱台统称为台体。

6、定义:以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的旋转体称为球体,简称为球。

半圆的圆心称为球心,连接球面上任意一点与球心的线段称为球的半径,连接球面上两点并且过球心的线段称为球的直径。

表示:用表示球心的字母表示。

高中数学必修二课件:基本立体图形 简单组合体

高中数学必修二课件:基本立体图形 简单组合体

思考题1 (1)说出下面的两个几何体分别是由哪些简单的几何体构成的?
【解析】 ①四棱台挖去一个圆柱. ②三棱柱和四棱柱.
(2)如图①②所示的图形绕虚线旋转一周后形成的立体图形分别是由哪些简 单几何体组成的?
【解析】 旋转后的图形如图所示.其中③是由一个圆柱O1O2和两个圆台 O2O3,O4O3组成的;④是由一个圆锥O5O4,一个圆柱O3O4及一个圆台O1O3中挖 去圆锥O2O1组成的.
8.1 基本立体图形(第3课时) 简单组合体
要点1 简单组合体的定义 由_柱__体_、__锥_体__、_台__体_、__球_体___等简单几何体组合而成的几何体叫做简单组合体. 要点2 简单组合体的构成形式
(1)___由_简__单_几__何_体__拼_接__而_成______,如图1所示. (2)____由__简_单__几_何__体_截__去_或__挖_去__一_部__分_而__成_____,如图2所示.
【解析】 (1)底面为正方形的四棱锥(如图①). (2)如图②,需要3个,分别为四棱锥A1-ABCD,A1-CDD1C1,A1- BCC1B1.
题型三 组合体中的简单计算
例3 一个圆锥底面半径为1 cm,高为 2 cm,其中有一个内接正方体,则
2
这个内接正方体的棱长为___2__c_m__.
【解析】 设该圆锥的轴截面为SEF,正方体的对角面为ACC1A1.
探究2 几何体的割补过程,实质上就是组合体的研判过程,灵活地割补, 是计算、判断的有力工具.
思考题2 如下图,甲为一几何体的展开图.
(1)沿图甲中虚线将它们折叠起来,是哪一种几何体?试用文字描述并画出 示意图;
(2)需要多少个这样的几何体才能拼成一个棱长为6 cm的正方体?请在图乙中的 棱长为6 cm的正方体ABCD-A1B1C1D1中指出这几个几何体的名称.(用字母表示)

简单组合体的结构特征

简单组合体的结构特征

简单组合体的结构特征首先,简单组合体具有明确定义的几何形状。

每个简单物体的几何形状可以是基本的几何体,如立方体、圆柱体、圆锥体等,也可以是自定义的形状。

每个简单物体都具有确定的尺寸、表面形状和边界,这些几何参数决定了它们在组合体中的位置和相互之间的关系。

其次,简单组合体具有确定的组合关系。

多个简单物体可以通过连接、堆叠、平移、旋转等方式组合在一起,形成复杂的结构。

组合关系可以是紧密连接的,如接缝无缝衔接的构件;也可以是间接连接的,如通过螺栓、焊接等方式连接的构件;还可以是外部约束的,如支撑、固定、挂吊等。

组合关系决定了简单物体之间的相对位置和运动关系。

第三,简单组合体具有确定的材质和物性。

每个简单物体都由一种或多种材质构成,其物性如弹性、硬度、重量、导热性等对组合体的性能和功能有重要影响。

在实际应用中,选择合适的材料和物性参数可以满足结构的强度、刚度、耐久性、防腐蚀等要求。

第四,简单组合体具有确定的载荷和边界条件。

在现实应用中,组合体通常需要承受各种静力和动力载荷,如重力、风荷载、振动等。

此外,组合体还可能受到约束条件的限制,如支撑、固定、边界约束等。

载荷和边界条件的确定对于结构的安全性和合理性至关重要。

第五,简单组合体具有明确的功能和用途。

通过合理设计和组合,简单物体可以构成功能复杂的结构体,如建筑物、机械装置、航天器等。

其功能可以是承重、支撑、隔离、连接、导向等。

为了实现特定的功能,还需要考虑材料选型、结构形式、制造工艺等方面的因素。

总之,简单组合体的结构特征可以通过几何形状、组合关系、材质和物性、载荷和边界条件以及功能和用途等方面来描述。

通过合理的设计和组合,可以实现各种结构的要求,从而满足不同领域的应用需求。

【新人教版】数学必修二第八章 8.1 第2课时圆柱、圆锥、圆台、球、简单组合体

【新人教版】数学必修二第八章 8.1 第2课时圆柱、圆锥、圆台、球、简单组合体

【新人教版】数学必修二第八单元第2课时圆柱、圆锥、圆台、球、简单组合体学习目标 1.了解圆柱、圆锥、圆台、球的定义.2.掌握圆柱、圆锥、圆台、球的结构特征.3.了解简单组合体的概念及结构特征.知识点一圆柱的结构特征圆柱图形及表示定义:以矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体叫做圆柱图中圆柱表示为圆柱O′O 相关概念:圆柱的轴:旋转轴圆柱的底面:垂直于轴的边旋转而成的圆面圆柱的侧面:平行于轴的边旋转而成的曲面圆柱侧面的母线:无论旋转到什么位置,平行于轴的边思考圆柱的轴截面有________个,它们________(填“全等”或“相似”),圆柱的母线有________条,它们与圆柱的高________.答案无穷多全等无穷多相等知识点二圆锥的结构特征圆锥图形及表示定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体图中圆锥表示为圆锥SO相关概念: 圆锥的轴:旋转轴圆锥的底面:垂直于轴的边旋转而成的圆面侧面:直角三角形的斜边旋转而成的曲面母线:无论旋转到什么位置 ,不垂直于轴的边思考 圆锥的轴截面有多少个?母线有多少条?圆锥顶点和底面圆周上任意一点的连线都是母线吗?答案 圆锥的轴截面有无穷多个,母线有无穷多条,圆锥顶点和底面圆周上任意一点的连线都是母线. 知识点三 圆台的结构特征圆台图形及表示定义:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台图中圆台表示为圆台O ′O相关概念: 圆台的轴:旋转轴圆台的底面:垂直于轴的边旋转一周所形成的圆面圆台的侧面:不垂直于轴的边旋转一周所形成的曲面母线:无论旋转到什么位置,不垂直于轴的边知识点四球的结构特征球图形及表示定义:半圆以它的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,球面所围成的旋转体叫做球体,简称球图中的球表示为球O 相关概念:球心:半圆的圆心半径:连接球心和球面上任意一点的线段直径:连接球面上两点并经过球心的线段知识点五简单组合体的结构特征1.概念:由简单几何体组合而成的,这些几何体叫做简单组合体.2.基本形式:一种是由简单几何体拼接而成,另一种是由简单几何体截去或挖去一部分而成.1.直角三角形绕一边所在直线旋转得到的旋转体是圆锥.(×)2.圆锥截去一个小圆锥后剩余部分是圆台.(√)3.夹在圆柱的两个平行截面间的几何体是一圆柱.(×)4.半圆绕其直径所在直线旋转一周形成球.(×)一、旋转体的结构特征例1下列说法正确的是________.(填序号)①以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;②圆柱、圆锥、圆台的底面都是圆;③以等腰三角形的底边上的高线所在的直线为旋转轴,其余各边旋转一周形成的曲面所围成的几何体是圆锥;④用一个平面去截球,得到的截面是一个圆面.答案③④解析①以直角梯形垂直于底边的一腰所在直线为轴旋转一周可得到圆台;②它们的底面为圆面;③④正确.反思感悟(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成.②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.跟踪训练1下列说法,正确的是()①圆柱的母线与它的轴可以不平行;②圆锥的顶点、底面圆的圆心与圆锥底面圆周上任意一点这三点的连线都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在直线是互相平行的.A.①②B.②③C.①③D.②④答案 D解析由圆柱、圆锥、圆台的定义及母线的性质可知②④正确,①③错误.二、简单组合体的结构特征例2(1)请描述如图所示的几何体是如何形成的.解①是由一个圆锥和一个圆台拼接而成的组合体;②是由一个长方体截去一个三棱锥后得到的几何体;③是由一个圆柱挖去一个三棱锥后得到的几何体.(2)如图所示,已知梯形ABCD中,AD∥BC,且AD<BC.当梯形ABCD 绕AD所在直线旋转一周时,其他各边旋转形成的面围成一个几何体,试描述该几何体的结构特征.解如下图所示,旋转所得的几何体可看成由一个圆柱挖去两个圆锥后剩余部分而成的组合体.反思感悟(1)解决简单组合体的结构特征相关问题,首先要熟练掌握各类几何体的特征,其次要有一定的空间想象能力.(2)判断旋转体形状的关键是轴的确定,看是由平面图形绕哪条直线旋转所得,同一个平面图形绕不同的轴旋转,所得的旋转体一般是不同的.跟踪训练2(1)如图所示的简单组合体的组成是()A.棱柱、棱台B.棱柱、棱锥C.棱锥、棱台D.棱柱、棱柱答案 B(2)将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括()A.一个圆台、两个圆锥B.两个圆柱、一个圆锥C.两个圆台、一个圆柱D.一个圆柱、两个圆锥答案 D解析图①是一个等腰梯形,CD为较长的底边,以CD边所在直线为旋转轴旋转一周所得几何体为一个组合体,如图②,包括一个圆柱、两个圆锥.三、旋转体的有关计算例3一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2,求:(1)圆台的高;(2)将圆台还原为圆锥后,圆锥的母线长.解 (1)圆台的轴截面是等腰梯形ABCD (如图所示). 由已知可得O 1A =2 cm ,OB =5 cm. 又由题意知腰长AB =12 cm , 所以高AM =122-(5-2)2 =315(cm).(2)如图所示,延长BA ,OO 1,CD ,交于点S , 设截得此圆台的圆锥的母线长为l , 则由△SAO 1∽△SBO ,可得l -12l =25, 解得l =20.即截得此圆台的圆锥的母线长为20 cm.反思感悟 用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的经过旋转轴的截面(轴截面)的性质,利用相似三角形中的相似比,构设相关几何变量的方程(组)而得解.跟踪训练3 如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台O ′O 的母线长.解 设圆台的母线长为l cm ,由截得的圆台上、下底面面积之比为1∶16,可设截得的圆台的上、下底面的半径分别为r cm,4r cm.过轴SO 作截面,如图所示.则△SO ′A ′∽△SOA ,SA ′=3 cm. 所以SA ′SA =O ′A ′OA . 所以33+l=r 4r =14.解得l =9,即圆台的母线长为9 cm.1.下列说法中正确的是( ) A.将正方形旋转不可能形成圆柱B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线 答案 C解析 将正方形绕其一边所在直线旋转可以形成圆柱,所以A 错误;B 中没有说明这两个平行截面的位置关系,当这两个平行截面与底面平行时正确,其他情况下结论不一定正确,所以B 错误;通过圆台侧面上一点,只有一条母线,所以D 错误. 2.(多选)下列命题中正确的是( )A.过球心的截面所截得的圆面的半径等于球的半径B.母线长相等的不同圆锥的轴截面的面积相等C.圆台中所有平行于底面的截面都是圆面D.圆锥所有的轴截面都是全等的等腰三角形答案ACD3.下列几何体是台体的是()答案 D解析台体包括棱台和圆台两种,A的错误在于四条侧棱没有交于一点,B的错误在于截面与圆锥底面不平行.C是棱锥,结合棱台和圆台的定义可知D正确.4.用一个平面去截一个几何体,得到的截面是三角形,这个几何体可能是()A.圆柱B.圆台C.球体D.棱台答案 D解析圆柱、圆台和球体无论怎样截,截面可能是曲面,也可能是矩形(圆柱)或等腰梯形(圆台),不可能截出三角形.只有棱台可以截出三角形.5.两相邻边长分别为3 cm和4 cm的矩形,以一边所在的直线为轴旋转所成的圆柱的底面积为________ cm2.答案16π或9π解析当以3 cm长的一边所在直线为轴旋转时,得到的圆柱的底面半径为4 cm,底面积为16π cm2;当以4 cm长的一边所在直线为轴旋转时,得到的圆柱的底面半径为3 cm,底面积为9π cm2.1.知识清单:(1)圆柱、圆锥、圆台的结构特征.(2)球的结构特征.(3)简单组合体的结构特征.2.方法归纳:分类讨论.3.常见误区:同一平面图形以不同的轴旋转形成的旋转体一般是不同的.1.下列几何体中不是旋转体的是()答案 D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的答案 A3.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖去一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体答案 B解析圆面绕着直径所在的轴,旋转而形成球,矩形绕着轴旋转而形成圆柱. 故选B.4.若圆柱的母线长为10,则其高等于()A.5B.10C.20D.不确定答案 B解析圆柱的母线长与高相等,则其高等于10.5.如图所示的几何体是由哪个平面图形旋转得到的()答案 D解析图中所给的几何体是由上部的圆锥和下部的圆台组合而成的,故所求平面图形的上部是直角三角形,下部为直角梯形构成.6.观察下列四个几何体,其中可看作是由两个棱柱拼接而成的是________.(填序号)答案①④解析①可看作由一个四棱柱和一个三棱柱组合而成,④可看作由两个四棱柱组合而成.7.已知一个圆柱的轴截面是一个正方形,且其面积是Q,则此圆柱的底面半径为________.(用Q表示)答案Q 2解析设圆柱的底面半径为r,则母线长为2r.∴4r2=Q,解得r=Q 2,∴此圆柱的底面半径为Q 2.8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的高为________.答案 3解析由题意知一个圆锥的侧面展开图是面积为2π的半圆面,因为4π=πl2,所以母线长为l=2,又半圆的弧长为2π,圆锥的底面的周长为2πr=2π,所以底面圆半径为r=1,所以该圆锥的高为h=l2-r2=22-12= 3.9.一个圆锥的高为2 cm,母线与轴的夹角为30°,求圆锥的母线长及圆锥的轴截面的面积.解如图轴截面SAB,圆锥SO的底面直径为AB,SO为高,SA为母线,则∠ASO=30°.在Rt△SOA中,AO=SO·tan 30°=233(cm).SA=SOcos 30°=232=433(cm).所以S△ASB=12SO·2AO=433(cm2).所以圆锥的母线长为433cm,圆锥的轴截面的面积为433cm2. 10.如图所示,有一个底面半径为1,高为2的圆柱体,在A点处有一只蚂蚁,现在这只蚂蚁要围绕圆柱表面由A点爬到B点,问蚂蚁爬行的最短距离是多少?解把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,则AB′即为蚂蚁爬行的最短距离.∵AA′为底面圆的周长,∴AA′=2π×1=2π.又AB=A′B′=2,∴AB′=A′B′2+AA′2=4+(2π)2=21+π2,即蚂蚁爬行的最短距离为21+π2.11.上、下底面面积分别为36π和49π,母线长为5的圆台,其两底面之间的距离为()A.4B.3 2C.2 3D.2 6答案 D解析圆台的母线长l、高h和上、下两底面圆的半径r,R满足关系式l2=h2+(R-r)2,由题意知l=5,R=7,r=6,求得h=26,即两底面之间的距离为2 6.12.已知球的半径为10 cm,若它的一个截面圆的面积为36π cm2,则球心与截面圆圆心的距离是______cm.答案8解析如图,设截面圆的半径为r,球心与截面圆圆心之间的距离为d,球半径为R.由示意图易构造出一个直角三角形,解该直角三角形即可.由题意知,R=10 cm,由πr2=36π,得r=6,所以d=R2-r2=100-36=8(cm).13.边长为5的正方形EFGH是圆柱的轴截面,则从点E沿圆柱的侧面到相对顶点G的最短距离为________.答案52π2+4解析如图,矩形E1F1GH是圆柱沿着其母线EF剪开半个侧面展开而得到的,由题意可知GH =5,GF 1=5π2,GE 1=254π2+25=52π2+4.所以从点E 沿圆柱的侧面到相对顶点G 的最短距离是52π2+4. 14.如图所示的几何体是由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而成的.现用一个竖直的平面去截这个几何体,则所截得的图形可能是________.(填序号)答案 ①⑤解析 由于截面平行于圆锥的轴或过圆锥的轴,故只能是①⑤.15.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且距离为1,那么这个球的半径是( ) A.4 B.3 C.2 D.0.5 答案 B解析 如图所示,∵两个平行截面的面积分别为5π和8π,∴两个截面圆的半径分别为r 1=5, r 2=2 2.∵球心到两个截面的距离d 1=R 2-r 21,d 2=R 2-r 22,∴d 1-d 2=R 2-5-R 2-8=1,∴R 2=9,∴R =3.16.圆台的上、下底面半径分别为5 cm,10 cm,母线长AB=20 cm,从圆台母线AB的中点M拉一条绳子绕圆台侧面转到点A,求:(1)绳子的最短长度;(2)在绳子最短时,上底圆周上的点到绳子的最短距离.解(1)如图所示,将侧面展开,绳子的最短长度为侧面展开图中AM 的长度,设OB=l,则θ·l=2π×5,θ·(l+20)=2π×10,解得θ=π2,l=20 cm.∴OA=40 cm,OM=30 cm.∴AM=OA2+OM2=50 cm.即绳子最短长度为50 cm.(2)作OQ⊥AM于点Q,交弧BB′于点P,则PQ为所求的最短距离.∵OA·OM=AM·OQ,∴OQ=24 cm.故PQ=OQ-OP=24-20=4(cm),即上底圆周上的点到绳子的最短距离为4 cm.。

立体几何概念

立体几何概念

立体几何一、空间几何体由简单几何体组合而成的几何体叫做简单组合体常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合。

其基本形式实质上有两种:一种是由简单几何体拼接而成的简单组合体;另一种是由简单几何体截去或挖去一部分而成的简单组合体。

1.多面体(1)多面体的概念:由若干个多边形围成的空间图形叫多面体;每个多边形叫多面体的面,两个面的公共边叫多面体的棱,棱和棱的公共点叫多面体的顶点,连结不在同一面上的两个顶点的线段叫多面体的对角线。

2.棱柱(1)棱柱的概念:有两个面互相平行,其余每相邻两个面的交线互相平行,这样的多面体叫棱柱。

两个互相平行的面叫棱柱的底面(简称底),其余各面叫棱柱的侧面,两侧面的公共边叫棱柱的侧棱,两底面所在平面的公垂线段叫棱柱的高(公垂线段长也简称高)。

(2)棱柱的分类:侧棱不垂直于底面的棱柱叫斜棱柱,侧棱垂直于底面的棱柱叫直棱柱,底面的是正多边形的直棱柱叫正棱柱。

(3)棱柱的性质【1】棱柱的侧棱相等,侧面都是平行四边形,直棱柱侧面都是矩形,正棱柱侧面都是全等的矩形。

【2】棱柱的两个底面与平行于底面的截面是对应边互相平行的全等的多边形。

【3】过棱柱不相邻的两条侧棱的截面都是平行四边形。

3.棱锥(1)棱锥的概念:有一个面是多边形,其余各面是有一个公共顶点的三角形。

由这些面所围成的几何体叫做棱锥。

这个多边形叫做棱锥的底面,其余各面叫做棱锥的侧面,相邻侧面的公共边叫做棱锥的侧棱,各侧面的公共顶点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高。

(2)棱锥的分类:根据棱锥底面多边形的边数可分为三棱锥,四棱锥,五棱锥等。

(3)正棱锥的定义:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。

(4)正棱锥的性质【1】各侧棱相等,各侧面都是全等的等腰三角形。

【2】各等腰三角形底边上的高相等,它叫做正棱锥的斜高 。

【3】棱锥的高,侧棱和侧棱在底面上的射影组成一个直角三角形。

圆柱、圆锥、圆台、球、简单组合体的结构特征 课件

圆柱、圆锥、圆台、球、简单组合体的结构特征     课件

2.圆柱、圆锥、圆台的关系
探究点 1 旋转体的结构特征 判断下列各命题是否正确.
(1)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成 的几何体是圆台; (2)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰 三角形,圆台的轴截面是等腰梯形; (3)到定点的距离等于定长的点的集合是球.
【解】 (1)错误.直角梯形绕下底所在直线旋转一周所形成 的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图 所示.
(3)圆台的截面 ①平行于圆台底面的截面都是圆面,如图(1)所示.
②过轴的截面(简称轴截面)是全等的等腰梯形,如图(2)所示. ③圆台的母线 l、高 h 和上下两底面圆的半径 r、R 组成一个 直角梯形,且有 l2=h2+(R-r)2 成立,圆台的有关计算问题, 常归结为解这个直角梯形.
(4)球的截面 ①球心和截面圆心的连线垂直于截面. ②球心到截面的距离 d 与球的半径 R 及截面圆的半径 r 有如 下关系:r= R2-d2.
简单组合体的结构特征
1.圆柱、圆锥、圆台、球的结构特征
定义及结构特征
图形及记法
定义:以__矩__形____的一边所在 直线为旋转轴,其余三边旋转
形成的面所围成的旋转体叫做
圆柱
_圆__柱_____ 特征:(1)圆柱的轴垂直于底面,
所有母线互相平行且相等
记作:__圆__柱__O__′O____
(2)底面是平行且全等的两个圆
截得圆台的圆锥的母线长为 12 cm,求圆台的母线长.
【解】 如图是圆台的轴截面,由题意知 AO=
2 cm,A′O′=1 cm,SA=12 cm.
由 A′O′ = SA′ , 得 AO SA
SA′

A′O′ AO

组合体的概念

组合体的概念

组合体的概念组合体是指在机械、建筑、电子、航空航天等工程领域中,由两个或多个基本几何体或简单体组合而成的整体。

组合体可以是复杂的三维实体,也可以是二维的平面图形。

1.组合体的定义组合体是指由两个或多个基本几何体或简单体组合而成的整体。

这些基本几何体或简单体可以是棱柱、圆柱、圆锥、球体、立方体等,也可以是各种形状的曲面或曲线。

组合体的定义可以根据具体的应用领域和需求而有所不同,但它们都具有一些共同的特征。

2.组合体的构成组合体的构成可以分为两种类型:叠加型和挖切型。

叠加型组合体是由两个或多个基本几何体或简单体沿着某一方向叠加而成的整体。

挖切型组合体则是在一个或多个基本几何体或简单体上进行挖切、去除部分材料而形成的整体。

3.组合体的特征组合体具有以下特征:(1)具有形状多样性:组合体的形状可以非常复杂,包括各种曲线和曲面,这使得它们在机械、建筑、电子等领域中具有广泛的应用。

(2)具有可拆卸性:组合体可以由两个或多个基本几何体或简单体组成,这些基本单元可以根据需要进行拆卸和组装。

这种可拆卸性使得组合体在维修、运输和生产方面具有便利性。

(3)具有可调整性:组合体的组成单元通常可以调整其相对位置、大小、形状等参数,以适应不同的应用需求。

这种可调整性使得组合体在设计过程中具有很高的灵活性。

4.组合体的应用领域组合体在各个工程领域中都有广泛的应用,例如:(1)机械工程:在机械设计中,组合体经常被用于构建各种复杂的机械零件和装配体,如减速器、机床、齿轮等。

(2)建筑工程:在建筑设计中,组合体经常被用于构建各种建筑结构,如桥梁、房屋、高层建筑等。

(3)电子工程:在电子行业中,组合体经常被用于构建各种电子设备,如手机、电脑、电视等。

此外,在航空航天领域中,组合体也经常被用于构建各种飞机、火箭和卫星等。

5.组合体的设计原则组合体的设计需要遵循一些基本原则,如:(1)功能需求原则:设计时需要满足用户对产品功能的需求,包括使用功能、操作性能、维护性等方面。

第1课时 棱柱、棱锥、棱台的结构特征——原卷

第1课时 棱柱、棱锥、棱台的结构特征——原卷

第1课时棱柱、棱锥、棱台的结构特征学习目标 1.通过对实物模型的观察,归纳认知棱柱、棱锥、棱台的结构特征.2.理解棱柱、棱锥、棱台之间的关系.3.能运用棱柱、棱锥、棱台的结构特征描述现实生活中简单物体的结构和有关计算.知识点一空间几何体的定义、分类及相关概念思考观察下面两组物体,你能说出各组物体的共同点吗?答案(1)几何体的表面由若干个平面多边形围成.(2)几何体的表面由平面图形绕其所在平面内的一条定直线旋转而成.梳理(1)空间几何体的定义及分类①定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.②分类:常见的空间几何体有多面体与旋转体两类.(2)多面体与旋转体类别多面体旋转体定义由若干个平面多边形围成的几由一个平面图形绕它所在平面内的一何体条定直线旋转所形成的封闭几何体图形相关概念面:围成多面体的各个多边形棱:相邻两个面的公共边顶点:棱与棱的公共点轴:形成旋转体所绕的定直线知识点二棱柱的结构特征思考观察下列多面体,有什么共同特点?答案(1)有两个面相互平行;(2)其余各面都是平行四边形;(3)每相邻两个四边形的公共边都互相平行.梳理棱柱的结构特征名称定义图形及表示相关概念分类棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱如图可记作:棱柱ABCDEF—A′B′C′D′E′F′底面(底):两个互相平行的面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与底面的公共顶点按底面多边形的边数分:三棱柱、四棱柱、……知识点三棱锥的结构特征思考观察下列多面体,有什么共同特点?答案(1)有一个面是多边形;(2)其余各面都是有一个公共顶点的三角形.梳理棱锥的结构特征名称定义图形及表示相关概念分类棱锥有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥如图可记作:棱锥S—ABCD底面(底):多边形面侧面:有公共顶点的各个三角形面侧棱:相邻侧面的公共边顶点:各侧面的公共顶点按底面多边形的边数分:三棱锥、四棱锥、……知识点四棱台的结构特征思考观察下列多面体,分析其与棱锥有何区别与联系?答案(1)区别:有两个面相互平行.(2)联系:用平行于棱锥底面的平面去截棱锥,其底面和截面之间的部分即为该几何体.梳理棱台的结构特征名称定义图形及表示相关概念分类棱台用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台如图可记作:棱台ABCD—A′B′C′D′上底面:原棱锥的截面下底面:原棱锥的底面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与上(下)底面的公共顶点由三棱锥、四棱锥、五棱锥……截得的棱台分别叫做三棱台、四棱台、五棱台……知识点五棱柱、棱锥、棱台之间的关系类型一棱柱、棱锥、棱台的结构特征命题角度1棱柱的结构特征例1下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平行于底面的平面截成的两部分可以都是棱柱.其中正确说法的序号是________.跟踪训练1关于棱柱,下列说法正确的是________.①有两个面平行,其余各面都是平行四边形的几何体是棱柱;②棱柱的侧棱长相等,侧面都是平行四边形;③各侧面都是正方形的四棱柱一定是正方体.命题角度2棱锥、棱台的结构特征例2(1)判断如图所示的物体是不是棱锥,为什么?(2)如图所示的多面体是不是棱台?反思与感悟棱锥、棱台结构特征问题的判断方法(1)举反例法结合棱锥、棱台的定义举反例直接说明关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点跟踪训练2有下列三个命题:①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中正确的有()A.0个B.1个C.2个D.3个类型二多面体的识别和判断例3如图,已知长方体ABCD-A1B1C1D1.用平面BCFE把这个长方体分成两部分后,各部分形成的几何体还是棱柱吗?如果是,是几棱柱?如果不是,说明理由.引申探究用一个平面去截本例中的四棱柱,能截出三棱锥吗?跟踪训练3如图所示,关于该几何体的正确说法有________.①这是一个六面体;②这是一个四棱台;③这是一个四棱柱;④此几何体可由三棱柱截去一个三棱柱得到;⑤此几何体可由四棱柱截去一个三棱柱得到.类型三多面体的表面展开图例4(1)请画出如图所示的几何体的表面展开图;(2)如图是两个几何体的表面展开图,请问各是什么几何体?跟踪训练4如图所示,不是正四面体(各棱长都相等的三棱锥)的展开图的是()A.①③B.②④C.③④D.①②1.下面多面体中,是棱柱的有()A.1个B.2个C.3个D.4个2.有一个多面体,共有四个面围成,每一个面都是三角形,则这个几何体为() A.四棱柱B.四棱锥C.三棱柱D.三棱锥3.三棱柱的平面展开图是()4.下列叙述,其中正确的有()①两个底面平行且相似,其余的面都是梯形的多面体是棱台;②如图所示,截正方体所得的几何体是棱台;③棱锥被平面截成的两部分不可能都是棱锥.A.0个B.1个C.2个D.3个5.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________ cm.1.棱柱、棱锥定义的关注点(1)棱柱的定义有以下两个要点,缺一不可:①有两个平面(底面)互相平行;②其余各面(侧面)每相邻两个面的公共边(侧棱)都互相平行.(2)棱锥的定义有以下两个要点,缺一不可:①有一个面(底面)是多边形;②其余各面(侧面)是有一个公共顶点的三角形.2.棱柱、棱锥、棱台之间的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).3.根据几何体的结构特点判定几何体的类型,首先要熟练掌握各几何体的概念,把握好各类几何体的性质,其次要有一定的空间想象能力.课时作业一、选择题1.在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行2.下面多面体中有12条棱的是()A.四棱柱B.四棱锥C.五棱锥D.五棱柱3.有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错4.棱台不具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱都平行D.侧棱延长后都交于一点5.如图所示,在三棱台A′B′C′-ABC中,截去三棱锥A′-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.三棱台6.下面图形中是正方体展开图的是()7.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是()A.1∶2 B.1∶4 C.2∶1 D.4∶18.五棱柱中,不同在同一个侧面且不同在同一个底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有()A.20 B.15 C.12 D.10二、填空题9.以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成________个三棱锥.10.一个长方体共顶点的三个面的面积分别是2,3,6,则这个长方体对角线的长是________.11.如图,已知正三棱锥P-ABC的侧棱长为2,底面边长为2,Q是侧棱P A的中点,一条折线从A点出发,绕侧面一周到Q点,则这条折线长度的最小值为________.三、解答题12.试从正方体ABCD-A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥;(2)四个面都是等边三角形的三棱锥;(3)三棱柱.13.在一个长方体的容器中,里面装有少量水,现将容器绕着其底部的一条棱倾斜,在倾斜的过程中.(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,上面的第(1)题和第(2)题对不对?四、探究与拓展14.一个无盖的正方体盒子的平面展开图如图,A,B,C是展开图上的三点,则在正方体盒子中,∠ABC=________.15.如图,已知长方体ABCD-A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF把这个长方体分成两部分,各部分几何体的形状是什么?第2课时 旋转体与简单组合体的结构特征学习目标 1.了解圆柱、圆锥、圆台、球的定义.2.掌握圆柱、圆锥、圆台、球的结构特征.3.了解简单组合体的概念及结构特征.知识点一 圆柱思考 观察如图所示的旋转体,你能说出它们是什么平面图形通过怎样的旋转得到的吗?答案 以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体. 梳理 圆柱的结构特征圆柱图形及表示定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱图中圆柱表示为圆柱O ′O相关概念: 圆柱的轴:旋转轴圆柱的底面:垂直于轴的边旋转而成的圆面 圆柱的侧面:平行于轴的边旋转而成的曲面圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边 知识点二 圆锥思考 仿照圆柱的定义,你能定义什么是圆锥吗?答案 以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体.梳理 圆锥的结构特征圆锥图形及表示定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体图中圆锥表示为圆锥SO相关概念:圆锥的轴:旋转轴圆锥的底面:垂直于轴的边旋转而成的圆面侧面:直角三角形的斜边旋转而成的曲面母线:无论旋转到什么位置,不垂直于轴的边知识点三圆台思考下图中的物体叫做圆台,也是旋转体,它是什么图形通过怎样的旋转得到的呢?除了旋转得到以外,对比棱台,圆台还可以怎样得到呢?答案(1)圆台可以是直角梯形以垂直于底边的腰所在的直线为旋转轴,其他三边旋转一周形成的面所围成的几何体.(2)圆台也可以看作是等腰梯形以其底边的中垂线为轴,各边旋转180°形成的面所围成的几何体.(3)类比棱台的定义圆台还可以如下得到:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.梳理圆台的结构特征圆台图形及表示定义:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台旋转法定义:以直角梯形中垂直于底边的腰所在直线为旋转轴,将直角梯形绕旋转轴旋转一周而形成的旋转体叫做圆台图中圆台表示为:圆台O′O 相关概念:圆台的轴:旋转轴圆台的底面:垂直于轴的边旋转一周所形成的圆面圆台的侧面:不垂直于轴的边旋转一周所形成的曲面母线:无论旋转到什么位置,不垂直于轴的边知识点四 球思考 球也是旋转体,它是由什么图形旋转得到的?答案 以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体. 梳理 球的结构特征球图形及表示定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球图中的球表示为球O相关概念: 球心:半圆的圆心 半径:半圆的半径 直径:半圆的直径知识点五 简单组合体思考 下图中的两个空间几何体是柱、锥、台、球体中的一种吗?它们是如何构成的?答案 这两个几何体都不是单纯的柱、锥、台、球体,而是由柱、锥、台、球体中的两种或三种组合而成的几何体. 梳理 简单组合体(1)概念:由简单几何体组合而成的,这些几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组合而成的.(2)基本形式:一种是由简单几何体拼接而成,另一种是由简单几何体截去或挖去一部分而成.类型一 旋转体的结构特征 例1 下列命题正确的是________.①以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥; ②以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台; ③圆柱、圆锥、圆台的底面都是圆;④以等腰三角形的底边上的高线所在的直线为旋转轴,其余各边旋转一周形成的几何体是圆锥;⑤半圆面绕其直径所在直线旋转一周形成球;⑥用一个平面去截球,得到的截面是一个圆面.跟踪训练1下列命题:①圆柱的轴截面是过母线的截面中最大的一个;②用任意一个平面去截圆锥得到的截面一定是一个圆;③圆台的任意两条母线的延长线,可能相交也可能不相交;④球的半径是球面上任意一点与球心的连线段.其中正确的个数为()A.0 B.1 C.2 D.3类型二简单组合体命题角度1直接描述组合体的构成例2观察下图中的几何体,分析它们是由哪些基本几何体组成的.跟踪训练2请描述如图所示的几何体是如何形成的.(1)________________________________________________________________________;(2)________________________________________________________________________;(3)________________________________________________________________________.命题角度2图形旋转所得组合体问题例3直角梯形ABCD如图所示,分别以CD,DA所在直线为轴旋转,试说明所得几何体的形状.引申探究例3中直角梯形分别以AB、BC所在直线为轴旋转,试说明所得几何体的形状.跟踪训练3如图所示,已知梯形ABCD中,AD∥BC,且AD<BC.当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转形成的面围成一个几何体,试描述该几何体的结构特征.类型三旋转体中的有关计算例4一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2,求:(1)圆台的高;(2)将圆台还原为圆锥后,圆锥的母线长.跟踪训练4有一根长为3π cm,底面半径为1 cm的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,求铁丝的最短长度.1.下列说法正确的是()A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心2.下列选项中的三角形绕直线l旋转一周,能得到如图1中的几何体的是()图13.下面几何体的截面一定是圆面的是()A.圆台B.球C.圆柱D.棱柱4.下图中的组合体的结构特征有以下几种说法:①由一个长方体割去一个四棱柱构成;②由一个长方体与两个四棱柱组合而成;③由一个长方体挖去一个四棱台构成;④由一个长方体与两个四棱台组合而成.其中正确说法的序号是________.5.用一个平行于圆锥底面的平面截该圆锥,截得圆台的上、下底面半径之比是1∶4,截去的小圆锥的母线长是3 cm,则圆台的母线长为________ cm.1.圆柱、圆锥、圆台的关系如图所示.2.处理台体问题常采用还台为锥的补体思想.3.处理组合体问题常采用分割思想.4.重视圆柱、圆锥、圆台的轴截面在解决几何问题中的特殊作用,切实体会空间几何平面化的思想.课时作业一、选择题1.下列几何体中不是旋转体的是()2.下列命题中正确的是( ) A .将正方形旋转不可能形成圆柱B .夹在圆柱的两个平行截面间的几何体还是一个旋转体C .圆锥截去一个小圆锥后剩余部分是圆台D .通过圆台侧面上一点,有无数条母线3.如图所示的几何体是由下面哪一个平面图形旋转而形成的( )4.如图所示的几何体,关于其结构特征,下列说法不正确的是( )A .该几何体是由两个同底的四棱锥组成的B .该几何体有12条棱、6个顶点C .该几何体有8个面,并且各面均为三角形D .该几何体有9个面,其中一个面是四边形,其余均为三角形5.用一张长为8,宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是( ) A .2 B .2π C.2π或4πD.π2或π46.一个圆锥的母线长为20 cm ,母线与轴的夹角为30°,则圆锥的高为( ) A .10 3 cm B .20 3 cm C .20 cmD .10 cm7.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为( )A.一个球体B.一个球体中间挖去一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体8.一个正方体内有一个内切球,作正方体的对角面,所得截面图形是下图中的()二、填空题9.正方形绕其一条对角线所在直线旋转一周,所得几何体是________.10.若母线长是4的圆锥的轴截面的面积是8,则该圆锥的高是________.11.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且距离为1,那么这个球的半径是________.三、解答题12.一个有30°角的直角三角尺绕其各条边所在直线旋转一周所得的几何体都是圆锥吗?如果以斜边上的高所在的直线为轴旋转180°得到什么图形?旋转360°又得到什么图形?13.圆台的上、下底面半径分别为5 cm,10 cm,母线长AB=20 cm,从圆台母线AB的中点M拉一条绳子绕圆台侧面转到点A,求:(1)绳子的最短长度;(2)在绳子最短时,上底圆周上的点到绳子的最短距离.四、探究与拓展14.用一个平面去截几何体,如果截面是三角形,那么这个几何体可能是________.(填序号)①棱柱;②棱锥;③棱台;④圆柱;⑤圆锥;⑥圆台;⑦球.15.指出图中的三个几何体分别是由哪些简单几何体组成的.1.2.1中心投影与平行投影1.2.2空间几何体的三视图学习目标 1.了解中心投影和平行投影.2.能画出简单空间图形的三视图.3.能识别三视图所表示的立体模型.知识点一投影的概念思考由下图你能说出影子是怎样得到的吗?答案光照射到不透明物体(比如手)上,在后面的屏幕上留下影子.梳理(1)定义:由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.(2)投影线:光线.(3)投影面:留下物体影子的屏幕.知识点二投影的分类投影定义特征分类中心投影光由一点向外散射形成的投影投影线交于一点平行投影在一束平行光线照射下形成的投影投影线平行正投影和斜投影知识点三三视图思考如梦似幻!——这是无数来自全世界的游客对国家游泳中心“水立方”的第一印象.假如你站在水立方入口处的正前方或在“水立方”的左侧看水立方,你看到的是什么?若你在“水立方”的正上方观察水立方看到什么?根据上述三个方向观察到的平面,能否画出“水立方”的形状?答案“水立方”的一个侧面.“水立方”的一个表面.可以.梳理三视图的概念(1)定义(2)三视图的画法规则①正、俯视图都反映物体的长度——“长对正”;②正、侧视图都反映物体的高度——“高平齐”;③俯、侧视图都反映物体的宽度——“宽相等”.(3)三视图的排列顺序:先画正视图,侧视图在正视图的右边,俯视图在正视图的下边.类型一中心投影与平行投影例1(1)①平行投影的投影线互相平行,中心投影的投影线相交于一点;②空间图形经过中心投影后,直线变成直线,但平行线可能变成了相交的直线;③几何体在平行投影与中心投影下有不同的表现形式.其中正确说法的个数为()A.0 B.1 C.2 D.3(2)如图所示,在正方体ABCD-A′B′C′D′中,E,F分别是A′A,C′C的中点,则下列判断正确的是________.(只填序号)①四边形BFD′E在底面ABCD内的投影是正方形;②四边形BFD′E在面A′D′DA内的投影是菱形;③四边形BFD′E在面A′D′DA内的投影与在面ABB′A′内的投影是全等的平行四边形.跟踪训练1(1)已知△ABC,选定的投影面与△ABC所在平面平行,则经过中心投影后所得的△A′B′C′与△ABC的关系是()A.全等B.相似C.不相似D.以上都不对(2)如图,E,F分别是正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是图中的________.(要求把所有可能的序号都填上)类型二三视图的画法与识别命题角度1三视图的识别例2一个长方体截去两个三棱锥,得到的几何体如图所示,则该几何体的三视图为()跟踪训练2将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为()命题角度2画几何体的三视图例3画出如图所示的几何体的三视图.引申探究例3(2)中的组合体改为如下图形,画出其三视图.反思与感悟画三视图的注意事项:(1)务必做到长对正,宽相等,高平齐.(2)三视图的安排方法是正视图与侧视图在同一水平位置,且正视图在左,侧视图在右,俯视图在正视图的正下方.(3)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.跟踪训练3如图是同一个圆柱的不同放置,阴影面为正面,分别画出它们的三视图.类型三由三视图还原几何体例4(1)说出下面的三视图表示的几何体的结构特征.(2)根据以下三视图想象物体原形,并画出物体的实物草图.跟踪训练4(1)根据图①②③所示的几何体的三视图,想象其实物模型,画出示意图.(2)如图所示为长方体木块堆成的几何体的三视图,此几何体共由________块木块堆成.1.一条直线在平面上的平行投影是()A.直线B.点C.线段D.直线或点2.如图,甲、乙、丙是三个立体图形的三视图,与甲、乙、丙相对应的标号是()①长方体;②圆锥;③三棱锥;④圆柱.A.③①②B.①②③C.③②④D.④②③3.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()4.将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为()5.一个几何体的三视图如图所示,则其侧视图的面积为________.1.理解平行投影和中心投影的概念时,可以从一束光线去照射一个物体所形成的影子,研究两者的不同之处.另外应注意平行投影的性质,尤其注意图形中的直线或线段不平行于投影线的情况.2.空间几何体的三视图可以使我们很好地把握空间几何体的性质,由空间几何体可画出它的三视图,同样由三视图可以想象出空间几何体的形状,两者之间的相互转化,可以培养我们的空间想象能力.课时作业一、选择题1.下列命题正确的是()A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段(不与投射线平行)中点的平行投影仍是这条线段投影的中点2.如图,在正方体ABCD-A1B1C1D1中,M,N分别是BB1,BC的中点,则图中阴影部分在平面ADD1A1上的投影为()3.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④4.某几何体的直观图如图所示,下列给出的四个俯视图中正确的是()5.如果用□表示1个立方体,用表示2个立方体叠加,用■表示3个立方体叠加,那么图中由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是()6.一个几何体的三视图如图所示,则该几何体的直观图可以是()。

空间立体几何知识点归纳

空间立体几何知识点归纳

空间几何体知识点归纳1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

简单组合体的构成形式: 一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成。

⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。

1、空间几何体的三视图和直观图投影:中心投影 平行投影(1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。

(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x Oy ∠,使'''x O y ∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;一般地,原图的面积是其直观图面积的22倍,即22S S 原图直观=4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面 ⑶圆台侧面积:()S r R l π=+侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体; ()13V h S S S S =+⋅+下下台体上上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。

第二章 点、直线、平面之间的位置关系及其论证1 、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面。

8.1 基本立体图形(第2课时)圆柱、圆锥、圆台、球与简单组合体的结构特征

8.1 基本立体图形(第2课时)圆柱、圆锥、圆台、球与简单组合体的结构特征

得的圆台的上、下底面的半径分别为 ,4 ,过轴作截面,如图所示.则
∆’ ’

∆,’
=4

.所以

=
’ ’
4
,所以

4+
解得 = 12(),即圆台的母线长为12 .
=

4
,即
4
4+
=
1

4
练习
变3.如图所示,已知一个圆台的上、下底面半径分别是1 ,2 ,截得圆台
思考1:圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到.圆台是
否也可以由平面图形旋转得到?如果可以,由什么平面图形旋转得到?如何
旋转?
圆柱是由以直角梯形的直角腰所在直线为旋转轴,其余三边旋转一周形成的
面围成的旋转体叫做圆台.
新知探索
如图,半圆以它的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,
新知探索
现实世界中的物体表示的几何体,除柱体、锥体、台体和球等简单几何体外,
还有大量的几何体是由简单几何体组合而成的,这些几何体称作简单组合体.
图1
图2
简单组合体的构成有两种基本形式,一种是由简单几何体拼接而成,如图1中的物
体表示的几何体;一种是由简单几何体截去或挖去一部分而成,如图2中的几何体.
间所连线段的长;③空间中到定点的距离等于定长的所有点构成的曲面是球面.
其中准确说法的序号是______.
答案:①③.
例析
例2.如图中的(1),以直角梯形的下底所在直线为轴,其余三边旋转一
周形成的面围成一个几何体.说出这个几何体的结构特征.
解:几何体如图(2)所示,其中 ⊥ ,垂足为.
(4)画圆柱、圆锥、圆台、球的图.

第1章 1.1.2 简单组合体的结构特征

第1章 1.1.2 简单组合体的结构特征

1.1.2简单组合体的结构特征【课时目标】1.正确认识由柱、锥、台、球组成的简单几何体的结构特征.2.能运用这些结构特征描述现实生活中简单物体的结构.1.定义:由____________________组合而成的几何体叫做简单组合体.2.组合形式一、选择题1.如图,由等腰梯形、矩形、半圆、圆、倒三角形对接形成的轴对称平面图形,若将它绕轴l旋转180°后形成一个组合体,下面说法不正确的是()A.该组合体可以分割成圆台、圆柱、圆锥和两个球体B.该组合体仍然关于轴l对称C.该组合体中的圆锥和球只有一个公共点D.该组合体中的球和半球只有一个公共点2.右图所示的几何体是由哪个平面图形通过旋转得到的()3.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是() A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥4.将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体是由() A.一个圆台、两个圆锥构成B.两个圆台、一个圆锥构成C.两个圆柱、一个圆锥构成D.一个圆柱、两个圆锥构成5.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥组合体D.不能确定6.如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是()A.(1)(2) B.(1)(3)C.(1)(4) D.(1)(5)二、填空题7.下列叙述中错误的是________.(填序号)①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④用一个平面去截圆锥,得到一个圆锥和一个圆台.8.如图所示为一空间几何体的竖直截面图形,那么这个空间几何体自上而下可能是__________________.9.以任意方式截一个几何体,各个截面都是圆,则这个几何体一定是________.三、解答题10.如图是一个数学奥林匹克竞赛的奖杯,请指出它是由哪些简单几何体组合而成的.11.如图所示几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.能力提升12.一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切(球在三棱锥的内部,且球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面图形是()13.已知圆锥的底面半径为r,高为h,且正方体ABCD-A1B1C1D1内接于圆锥,求这个正方体的棱长.组合体的结构特征有两种组成:(1)是由简单几何体拼接而成;(2)是由简单几何体截去一部分构成.要仔细观察组合体的组成,柱、锥、台、球是最基本的几何体.1.1.2简单组合体的结构特征答案知识梳理1.简单几何体2.截去或挖去一部分作业设计1.A2.A3.D4.D5.A6.D[一个圆柱挖去一个圆锥后,剩下的几何体被一个竖直的平面所截后,圆柱的轮廓是矩形除去一条边,圆锥的轮廓是三角形除去一条边或抛物线的一部分.]7.①②③④ 8.圆台和圆柱(或棱台和棱柱) 9.球体10.解 将该几何体分解成简单几何体可知,它是由一个球、一个四棱柱和一个四棱台组合而成.11.解 先画出几何体的轴,然后再观察寻找平面图形.旋转前的平面图形如下:12.B 13.解 如图所示,过内接正方体的一组对棱作圆锥的轴截面,设圆锥内接正方体的棱长为x ,则在轴截面中,正方体的对角面A 1ACC 1的一组邻边的长分别为x 和2x .因为△V A 1C 1∽△VMN ,解得2x 2r =h -x h,所以2hx =2rh -2rx ,解得x =2rh2r +2h.即圆锥内接正方体的棱长为2rh2r +2h.。

空间几何体_三视图直观图

空间几何体_三视图直观图

直棱柱
正棱柱 其它直棱柱
棱锥的概念复习
定义: 有一个面是多边形,其余各面是有一个公共顶点的 三角形,由这些面所围成的几何体叫棱锥。 如果一个棱锥的底面是正多边形,并且顶点在底面 的射影是底面中心,这样的棱锥叫做正棱锥。
棱柱
概念 性质 有两个面互相平行, (1) 侧棱都相等: 有两个面互相平行,(1) 其余各面都是四边 (2)侧面都是平行 其余各面都是四边 (2) 形,并且每相邻两 形,并且每相邻两 四边形: 四边形: 个四边形的公共边 个四边形的公共边 (3) (3)两个底面与平 都互相平行,这些 都互相平行,这些 行底面的截面是全 行底面的截面是 面围成的几何体叫 面围成的几何体叫 等的多边形; 全等的多边形; 做棱柱。 做棱柱。
投影面
物体位置改变,投 影大小也改变
在一束平行光线的照射下形成的投射,叫做平行投影。 平行投影分正投影和斜投影两种。
D A C d D A B d b
B
a
C
b
c
a
c
投射线与投影面 相倾斜的平行投 影法 -----斜投影法
平行投影法
投射线与投影面相互垂 直的平行投影法 --------正投影法
• 三视图 • 正(主)视图——从正面看到的图 • 侧(左)视图——从左面看到的图 • 俯视图——从上面看到的图 • 画物体的三视图时,要符合如下原则: • 位置:正视图 侧视图 • 俯视图 • 大小:长对正,高平齐,宽相等.
棱柱的概念复习
· · H’ A’ · · · · · · · · · 平行的面
E’ C’ H’ B’ H’ H’ H’ D’ H’ 两个互相 叫做棱柱 的底 E H

顶点
A H
底 ·· H · · ·· · · · · ·

(完整版)高一数学必修2_第一章空间几何体知识点

(完整版)高一数学必修2_第一章空间几何体知识点

第一章空间几何体1.1 空间几何体的结构1. 多面体与旋转体:(1)由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面.相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.(2)由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴.2. 棱柱:(1)有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.棱柱中,两个互相平行的面叫做棱柱的底面(简称底),其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.(2)侧棱垂直于底面的棱柱叫直棱柱,否则斜棱柱;底面是正多边形的直棱柱叫正棱柱。

(3)棱柱的分类:按底面的多边形的边数分,有三棱柱、四棱柱、五棱柱等.按侧棱与底面的关系分为直棱柱和斜棱柱。

(4)底面是平行四边形的四棱柱叫平行六面体;侧棱与底面垂直的平行六面体叫直平行六面体;底面为矩形的直平行六面体叫长方体;底面为正方形的长方体叫正四棱柱;棱长都相等的正四棱柱叫正方体。

(5)棱柱的性质:①两底面是对应边平行的全等多边形;②侧面、对角面都是平行四边形;③侧棱平行且相等;④平行于底面的截面是与底面全等的多边形。

3. 棱锥:(1)有一个面是多边形,其余各面都是有一公共点的三角形,由这些面所围成的几何体叫做棱锥.棱锥中,这个多边形面叫做棱锥的底面或底,有公共顶点的各个三角形面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶点,相邻侧面的公共边叫做棱锥的侧棱.(2)底面是正多边形,顶点在底面的射影是正多边形的中心的棱锥叫正棱柱。

正棱柱顶点与底面中心的连线段叫正棱锥的高;正棱锥侧面等腰三角形底边上的高叫正棱锥的斜高。

(3)棱锥的分类:按底面的多边形的边数分,有三棱锥、四棱锥、五棱锥等.(4)棱锥的性质:①侧面、对角面都是三角形;②平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(5)正棱锥的性质:①正棱锥各侧棱都相等,各侧面都是全等的等腰三角形。

新人教版高中数学必修2课件:8.1 第2课时 圆柱、圆锥、圆台、球的结构特征 简单组合体的结构特征

新人教版高中数学必修2课件:8.1 第2课时 圆柱、圆锥、圆台、球的结构特征 简单组合体的结构特征
平面互相平行又都和轴垂直.
(2)平行于底面的截面是圆面.
(3)通过轴的各个截面是轴截面,各轴截面是全等的等腰
梯形,如梯形ABB1A1.
(4)任意两条母线确定的平面,截圆台所得的截面是等腰梯形,如梯形ACC1A.
(5)母线都相等,各母线延长后都相交于一点.
微练习
(1)下列说法正确的是(
)
A.以直角三角形的一直角边所在的直线为轴旋转一周所得的旋转体是圆
)
答案 (1)A
(2)①×
②×
解析 (1)以直角梯形垂直于底边的腰所在的直线为轴,旋转一周所得的旋
转体才是圆台,所以选项B不正确;圆锥仅有一个底面,所以选项C不正确;圆
锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的母线长,所以选
项D不正确.很明显选项A正确.
知识点四、球的结构特征
球及相关概念
提示空间中到定点的距离等于定长的点的集合叫做球面,球面所围成的几
何体叫做球体,简称球.这个定点叫球心,定长叫做球的半径.
知识点五、简单组合体
1.简单组合体的概念:由简单几何体组合而成的几何体称作简单组合体.常
见的简单组合体大多是由具有柱体、锥体、台体、球等结构特征的物体
组成的.
2.简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一种
形成的面所围成的旋转体是圆锥;
②半圆绕其直径所在直线旋转一周形成的曲面所围成的旋转体是球;
③用一个平面去截球,得到的截面是一个圆面.
答案 ①②③
反思感悟 1.判断简单旋转体结构特征的方法
(1)明确由哪个平面图形旋转而成.
(2)明确旋转轴是哪条直线.
2.简单旋转体的轴截面及其应用
(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构

《7.1.3简单组合体》中职数学基础模块

《7.1.3简单组合体》中职数学基础模块

这些几何体叫做简单组合体. 简单几何体的构成由两种基本形式:一种是由简单几何体拼接 而成的;另一种是由几何体截去或挖去一部分几何体而形成的.
7.1.3 简单组合体
情境导入 探索新知 例题辨析 巩固练习
我们可以将组合体分解为学习过的一些简单几何体来进行研究.
7.1.3 简单组合体
练一练
情境导入 探索新知 例题辨析 巩固练习
第7章 简单几何体
7.1.3 简单组合体Fra bibliotek7.1.3 简单组合体
情境导入 探索新知 例题辨析 巩固练习
观察与思考 我们从现实世界中的物体抽象出来的几何体,除了柱体、锥体和球 体外,还有大量的几何体是由它们组合而成的.
你能说出上图中的物体是由哪些简单几何体组合而成的吗?
7.1.3 简单组合体
情境导入 探索新知 例题辨析 巩固练习
练习 P63 1,2
7.1.3 简单组合体
归纳小结
1,简单几何体的构成与拆分.
7.1.3 简单组合体
再见
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三棱台
四棱台ABCD-A'B'C'D'
棱台的应用
4. 圆柱的结构特征
什么叫圆柱? 以矩形的一边所在直线为旋转轴,其余三 边旋转形成的面所围成的旋转体叫做圆柱.
底面
侧面 轴 母线
旋转轴叫做圆柱的轴
无论旋转到什么 位置不垂直于轴 的边都叫做圆柱 侧面的母线
平行于轴的 边旋转而成 的曲面叫做 圆柱的侧面
棱台和圆台统称为台体
7. 球的结构特征
什么叫球? 以半圆的直径所在直线为旋转轴,半圆面旋 转一周形成的旋转体叫做球体,简称球.
球心
球的半径
探究
棱柱、棱锥与棱台都是多面体,它 们在结构上有哪些相同点和不同点?三 者关系如何?当底面发生变化时,它们 能否互相转化?
圆柱、圆锥与圆台呢?
探究
问题:侧面都是等边三角形的棱锥不可能是( D ) A. 三棱锥 B. 四棱锥 C.五棱锥 D.六棱锥
旋转轴叫做圆锥的轴
无论旋转到什么位置 不垂直于轴的边都叫 做圆锥侧面的母线
垂直于轴的边旋转而 成的面叫圆锥的底面
6. 圆台的结构特征
什么是圆台? 与棱台类似,用一个平行于圆锥底面的平 面去截圆锥,底面和截面中间的部分的旋转体 叫做棱台.
母线 上底面
侧面 下底面

探究:类比圆柱、圆锥, 圆台可以看成由什么平 面图形旋转得到?
小结
空间几何体的结构特征 1. 棱柱的结构特征 2. 棱锥的结构特征 3. 棱台的结构特征 4. 圆柱的结构特征 5. 圆锥的结构特征 6. 圆台的结构特征 7. 球的结构特征
1.1.2
简单组合体的 结构特征
问题1:有两个面互相平行, 其余各面都是四边形的几何体是 棱柱吗?
答:不一定是.如右图所 示,不是棱柱.
1.1.1 柱、 锥、 台、 球
的结构特征
1. 棱柱的结构特征
什么叫棱柱?
有两个面互相平行, 其余各面都是四边形,并 且每相邻两个四边形的公
侧面
共边都互相平行,由这些 面围成的多面体叫做棱柱.
底面
侧棱
顶点
记为:棱柱ABCDEF-A'B'C'D'E'F'
棱柱的分类
棱柱的底面可以是三角形、四边形、五边 形、……把这样的棱柱分别叫做三棱柱、四棱柱、 五棱柱、……
正多面体的展开图
简单组合体
现实世界中的物体表示的几何体, 除柱体、锥体、台体和球体等简单几何 体外,还有大量的几何体是是由简单几 何体组合而成的,这些几何体叫做简单 组合体.
探究
观察实物图形判断这些几何体是怎样由简单几 何体组成的?
简单组合体的构成
一、由简单几何体拼接而成 二归类分析
归类分析
旋转体
一个矩形绕着它的一条边所在的一条直 线旋转所成的封闭几何体叫做圆柱,这条定 直线叫做圆柱的轴.
我们把一个平面图形绕着它所在平面内 的一条直线旋转所行成的封闭几何体叫做旋 转体,这条定直线叫做旋转体的轴.
探究问题
分别以直角三角形的不同的边所在的直线为 轴旋转三角形得到的旋转体形状相同吗? 如果不 同请你画出来。
空间几何体的结构
全州三中高数组 胡文杰
主要内容
空间几何体导入 1.1.1棱、锥、台、球的结构特征 1.1.2简单组合体的结构特征
空间几何体导入
奥运场馆
鸟巢
奥运场馆
水立方
世博场馆
中国馆 世博轴 演艺中心
观察实例,思考共性
观察下面的图片,这些图片中的物体具有什 么几何结构特征?你能对它们进行分类吗?分类 依据是什么?
问题2:有两个面互相平行, 其余各面都是平行四边形的几 何体是棱柱吗?
答:不一定是.如右图所 示,不是棱柱.
凸多面体和凹多面体
V
C
D
A
B
E 把多面体的任何一个面伸展为平面,如果 所有其他各面都在这个平面的同侧,这样的多
面体叫做凸多面体。
正多面体
正四面体
正六面体
正八面体
正十二面体
正二十面体
多面体
S
截面A' B'C' D' E'∽ 底面 ABCDE
D'
E'
C'
D A'
B'
S A'B'C'D'E' S ABCDE

S' H '2 SH 2
E
O
C
AB
3. 棱台的结构特征
什么是棱台? 一般地,用一个平行于棱锥底面的平面去截 棱锥,底面和截面中间的部分的多面体叫做棱台.
上底面 侧面
下底面
侧棱 顶点
一部分而成
观察两个实物几何体,你能说出它们各由哪 些简单几何体组合而成吗?
(1)
(2)
思考1
世博轴的曲面是如何构成的?
思考2
世博中国馆是外形如何构成的?
思考3 课后思考题
观察本地标志性建筑思考其外观几何体是如 何构成的?
凸多面体 正多面体 简单的组合体
小结
三棱柱
四棱柱
五棱柱
棱柱的表示
三棱柱ABC-A'B'C' 四棱柱ABCD-A'B'C'D' 六棱柱ABCD-A'B'C'D'E'F
常见的棱柱


平行六面体 直平行六面体 长方体 正方体
正方体 长方体 直平行六面体 平行六面体
你能举出关于棱柱的生活实例吗?
2.棱锥的结构特征
什么是棱锥? 一般地,有一个面是 多边形,其余各面都是有 一个公共点的三角形,由 这些面围成的多面体叫做 棱锥.
符号表示:四棱锥S-ABCD
棱锥的分类
依据底面多边形的边数进行分类,底面是n 边形的棱锥叫做n棱锥.
常见的棱锥:三棱锥、四棱锥、五棱锥等
你能举出关于棱柱的生活实例吗?
思考?
这两个几何体与棱锥有什么关系?
观察实例,思考共性
观察实例,思考共性
观察实例,思考共性
归类分析
归类分析
多面体
我们把由若干个平面多边形围成的几何体叫 做多面体.
围成多面体的各个多边形叫做多面体的面 相邻两个面的公共边叫做多面体的棱 棱与棱的公共点叫做多面体的顶点
多面体

A1

D1
C1
B1
顶点
D A
面ADD1 A1 , 面 ABCD等 棱A1A, 棱AB等 顶点 A, 顶点B等
垂直于轴的边 旋转而成的面 叫圆柱的底面
棱柱和圆柱统称为柱体
5. 圆锥的结构特征
什么叫圆锥? 与圆柱一样,以直角三角形的一条直角边所 在直线为旋转轴,其余两边旋转形成的面所围成 的旋转体叫做圆锥.

侧面
底面
母线
探究圆锥的轴、底面、 侧面、母线的定义.
不垂直于轴的边旋 转而成的曲面叫做 圆锥的侧面
相关文档
最新文档