几何体的结构特征
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
棱柱的分类:棱柱的底面可以是三角形、 四边形、五边形、 …… 我们把这样的棱柱 分别叫做三棱柱、四棱柱、五棱柱、……
三棱柱
四棱柱
五棱柱
如何判断一个多面体是不是棱柱?
1.有两个面互相平行(底面)
棱柱 2.其余各面都是四边形(侧面)
3.每相邻两个侧面的公共边都互相平行
思考?
1. 侧棱不垂直于底的棱柱叫做斜棱柱. 2.侧棱垂直于底的棱柱叫做直棱柱. 3. 底面是正多边形的直棱柱叫做正棱柱.
上底缩小
定义:以矩形的一边所在直线为 旋转轴,其余边旋转形成的曲面所 围成的几何体叫做圆柱。
(1)圆柱的轴——旋转轴.
A’
O’
(2)圆柱的底面——垂直于轴
的边旋转而成的圆面。
母 线
(3)圆柱的侧面——平行于轴
B’
轴
侧 面
的边旋转而成的曲面。
(4)圆柱侧面的母线——无论 旋转到什么位置,不垂直于轴的 A 边。
圆锥,底面与截面之
间的部分是圆台.
想一想:圆台能否用 旋转的方法得到?若 能,请指出用什么图 形?怎样旋转?
思考:圆柱、圆锥和圆台都是旋转体,当 底面发生变化时,它们能否互相转化?
上底扩大
上底缩小
定义:以半圆的
半径
直径所在直线为 旋转轴,半圆面 旋转一周形成的
O 球心
Leabharlann Baidu
几何体.
球的表示方法:用表示球
问题:有两个面互相平行,其余各面
都是平行四边形的几何体是棱柱吗?
答:不一定是.如图所示,不是棱柱.
探究2:
长方体按如图截去一角后所得的两部分还是棱柱吗?
D’ C’
A’
B’
D A
C B
探究2:
长方体按如图截去一角后所得的两部分还是棱柱吗?
D’
A’ F
G
G’
C’
F’ B’
H
D
H’
E
C
E’
A
B
答:都是棱柱.
简单组合体的结构特征
简单组合体构成的两种基本形式:
A、由简单几何体拼接而成 B、由简单几何体截去或挖
去一部分而成
练一练:将一个直角梯形绕其较短的底所在
的直线旋转一周得到一个几何体,关于该几何 体的以下描绘中,正确的是( D )
A、是一个圆台 B、是一个圆柱 C、是一个圆柱和一个圆锥的简单组合体 D、是一个圆柱被挖去一个圆锥后所剩的几何体
心的字母表示,如:“球O”
练习:见P8页A组第1题 的(4)小题,第2题.
几何体的分类
柱体
锥体
台体
球
多面体
旋转体
知识小结
简单几何体的结构特征
柱体
锥体
台体
球
棱柱 圆柱 棱锥 圆锥 棱台 圆台
观察下图所示的几何体,说一说它们各由哪些 简单几何体组合而成?
由简单几何体组合而成的几何体叫简单组 合体。
棱台的有关概念:
D’
D A’
C’
B’
C
A
B
棱台的分类: 由三棱锥、四棱锥、五棱锥…截
得的棱台,分别叫做三棱台,四棱台, 五棱台…
棱台的表示方法:“棱台ABCD—A'B'C'D'”
棱台的特点:两个底面是相似多边形, 侧面都是梯形;侧棱延长后交于一点。
棱台
棱台的分类: 由三棱锥、四棱锥、五棱锥…截
得的棱台,分别叫做三棱台,四棱台, 五棱台…
练习:下列几何体是不是棱台,为什么?
(1)
(2)
想一想,怎样给多面体分类呢?
答:可以按面数分类,多面体有几个面就 称为几面体。如:三棱锥是四面体,四棱柱 是六面体.
练习:见P8页A组第1题的(1),(2),(3)小题. 思考:棱柱、棱锥和棱台都是多面体,当 底面发生变化时,它们能否互相转化?
上底扩大
按底面多边形的边数,可以分为三 棱锥、四棱锥、五棱锥、……
S
A
BC
D
棱锥的性质:
侧面、对角面都是三角形;平行于底面的截面与底 面相似,其相似比等于顶点到截面距离与高的比的 平方。
想一想: 用一个平行于棱锥底面的平面去截棱锥,
得到怎样的两个几何体?
用一个平行于棱 锥底面的平面去截棱 锥,底面与截面之间 的部分是棱台.
练习:见P8页A组第3题,第4题,第5题.
谢谢!
棱锥
棱锥的有关概念
棱锥中,这个多边形面
S
叫做棱锥的底面或底,有
公共顶点的各个三角形
面叫做棱锥的侧面,各侧 侧棱 D
面的公共顶点叫做棱锥
的顶点,相邻侧面的公共 A
边叫做棱锥的侧棱。
棱锥的表示
顶点
侧面 C 底面
B
用表示顶点和底面各顶点的字母表示,如图所 示的棱锥表示为:“棱锥S—ABCD”
棱锥的分类:
观察下面的几何体,哪些是棱柱?
练习:1.观察长方体,共有多少对平行平面? 能做为棱柱底面的有多少对?
D
C
A
B
D
A
C B
探究1:
观察右边的棱柱,共有多少 对平行平面?能作为棱柱的 底面的有几对?
答:四对平行平面;只有一 对可以作为棱柱的底面.
棱柱的任何两个平行平面都可以作为棱柱 的底面吗?
答:不是.
O B
底面
圆柱的表示方法:用表示它的轴的字母表
示,如:“圆柱OO'”
定义:以直角三角形的
一条直角边所在直线为
母
旋转轴,其余两边旋转
线
形成的曲面所围成的几
何体叫做圆锥。 A
顶点 S
轴
侧 面
O B
底面
圆锥的表示方法:用表示 它的轴的字母表示, 如:“圆锥SO”
定义:用一个平行于
O’
圆锥底面的平面去截 O
三棱柱
四棱柱
五棱柱
如何判断一个多面体是不是棱柱?
1.有两个面互相平行(底面)
棱柱 2.其余各面都是四边形(侧面)
3.每相邻两个侧面的公共边都互相平行
思考?
1. 侧棱不垂直于底的棱柱叫做斜棱柱. 2.侧棱垂直于底的棱柱叫做直棱柱. 3. 底面是正多边形的直棱柱叫做正棱柱.
上底缩小
定义:以矩形的一边所在直线为 旋转轴,其余边旋转形成的曲面所 围成的几何体叫做圆柱。
(1)圆柱的轴——旋转轴.
A’
O’
(2)圆柱的底面——垂直于轴
的边旋转而成的圆面。
母 线
(3)圆柱的侧面——平行于轴
B’
轴
侧 面
的边旋转而成的曲面。
(4)圆柱侧面的母线——无论 旋转到什么位置,不垂直于轴的 A 边。
圆锥,底面与截面之
间的部分是圆台.
想一想:圆台能否用 旋转的方法得到?若 能,请指出用什么图 形?怎样旋转?
思考:圆柱、圆锥和圆台都是旋转体,当 底面发生变化时,它们能否互相转化?
上底扩大
上底缩小
定义:以半圆的
半径
直径所在直线为 旋转轴,半圆面 旋转一周形成的
O 球心
Leabharlann Baidu
几何体.
球的表示方法:用表示球
问题:有两个面互相平行,其余各面
都是平行四边形的几何体是棱柱吗?
答:不一定是.如图所示,不是棱柱.
探究2:
长方体按如图截去一角后所得的两部分还是棱柱吗?
D’ C’
A’
B’
D A
C B
探究2:
长方体按如图截去一角后所得的两部分还是棱柱吗?
D’
A’ F
G
G’
C’
F’ B’
H
D
H’
E
C
E’
A
B
答:都是棱柱.
简单组合体的结构特征
简单组合体构成的两种基本形式:
A、由简单几何体拼接而成 B、由简单几何体截去或挖
去一部分而成
练一练:将一个直角梯形绕其较短的底所在
的直线旋转一周得到一个几何体,关于该几何 体的以下描绘中,正确的是( D )
A、是一个圆台 B、是一个圆柱 C、是一个圆柱和一个圆锥的简单组合体 D、是一个圆柱被挖去一个圆锥后所剩的几何体
心的字母表示,如:“球O”
练习:见P8页A组第1题 的(4)小题,第2题.
几何体的分类
柱体
锥体
台体
球
多面体
旋转体
知识小结
简单几何体的结构特征
柱体
锥体
台体
球
棱柱 圆柱 棱锥 圆锥 棱台 圆台
观察下图所示的几何体,说一说它们各由哪些 简单几何体组合而成?
由简单几何体组合而成的几何体叫简单组 合体。
棱台的有关概念:
D’
D A’
C’
B’
C
A
B
棱台的分类: 由三棱锥、四棱锥、五棱锥…截
得的棱台,分别叫做三棱台,四棱台, 五棱台…
棱台的表示方法:“棱台ABCD—A'B'C'D'”
棱台的特点:两个底面是相似多边形, 侧面都是梯形;侧棱延长后交于一点。
棱台
棱台的分类: 由三棱锥、四棱锥、五棱锥…截
得的棱台,分别叫做三棱台,四棱台, 五棱台…
练习:下列几何体是不是棱台,为什么?
(1)
(2)
想一想,怎样给多面体分类呢?
答:可以按面数分类,多面体有几个面就 称为几面体。如:三棱锥是四面体,四棱柱 是六面体.
练习:见P8页A组第1题的(1),(2),(3)小题. 思考:棱柱、棱锥和棱台都是多面体,当 底面发生变化时,它们能否互相转化?
上底扩大
按底面多边形的边数,可以分为三 棱锥、四棱锥、五棱锥、……
S
A
BC
D
棱锥的性质:
侧面、对角面都是三角形;平行于底面的截面与底 面相似,其相似比等于顶点到截面距离与高的比的 平方。
想一想: 用一个平行于棱锥底面的平面去截棱锥,
得到怎样的两个几何体?
用一个平行于棱 锥底面的平面去截棱 锥,底面与截面之间 的部分是棱台.
练习:见P8页A组第3题,第4题,第5题.
谢谢!
棱锥
棱锥的有关概念
棱锥中,这个多边形面
S
叫做棱锥的底面或底,有
公共顶点的各个三角形
面叫做棱锥的侧面,各侧 侧棱 D
面的公共顶点叫做棱锥
的顶点,相邻侧面的公共 A
边叫做棱锥的侧棱。
棱锥的表示
顶点
侧面 C 底面
B
用表示顶点和底面各顶点的字母表示,如图所 示的棱锥表示为:“棱锥S—ABCD”
棱锥的分类:
观察下面的几何体,哪些是棱柱?
练习:1.观察长方体,共有多少对平行平面? 能做为棱柱底面的有多少对?
D
C
A
B
D
A
C B
探究1:
观察右边的棱柱,共有多少 对平行平面?能作为棱柱的 底面的有几对?
答:四对平行平面;只有一 对可以作为棱柱的底面.
棱柱的任何两个平行平面都可以作为棱柱 的底面吗?
答:不是.
O B
底面
圆柱的表示方法:用表示它的轴的字母表
示,如:“圆柱OO'”
定义:以直角三角形的
一条直角边所在直线为
母
旋转轴,其余两边旋转
线
形成的曲面所围成的几
何体叫做圆锥。 A
顶点 S
轴
侧 面
O B
底面
圆锥的表示方法:用表示 它的轴的字母表示, 如:“圆锥SO”
定义:用一个平行于
O’
圆锥底面的平面去截 O