简单几何体的结构特征、直观图和三视图

合集下载

空间几何体的结构特征及三视图和直观图

空间几何体的结构特征及三视图和直观图

空间几何体的结构特征及三视图和直观图考纲要求1.了解和正方体、球有关的简单组合体的结构特征,理解柱、锥、台、球的结构特征.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等简易组合)的三视图,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图或直观图,了解空间图形的不同表示形式.4.能识别三视图所表示的空间几何体;理解三视图和直观图的联系,并能进行转化.考情分析1.三视图是新增加的内容,是高考的热点和重点,几乎年年考.2.柱、锥、台、球及简单组合体的结构特征及性质是本节内容的重点,也是难点.3.以选择、填空题的形式考查,有时也会在解答题中出现.教学过程基础梳理空间几何体的直观图常用画法来画,其规则是(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为,z′轴与x′轴和y′轴所在平面.(2)原图形中平行于坐标轴的线段,直观图中仍分别.平行于x轴和z轴的线段在直观图中保持原长度,平行于y轴的线段长度在直观图中.五、三视图几何体的三视图括、、,分别是从几何体的、、观察几何体画出的轮廓线.双基自测1.(教材习题改编)无论怎么放置,其三视图完全相同的几何体是() A.正方体B.长方体C.圆锥D.球2.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆;④椭圆.其中正确的是()A.①②B.②③C.③④D.①④3.若一个底面是正三角形的直三棱柱的正视图如图所示,则其侧面积等于()A. 3 B.2C.2 3 D.64.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是________.5.(2011·山东高考改编)如图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱其正视图、俯视图如图;②存在四棱柱,其正视图、俯视图如图;③存在圆柱,其正视图、俯视图如图.其中真命题的序号是________.1.对三视图的认识及三视图画法(1)空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.(3)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体用平行投影画出的轮廓线.2.对斜二测画法的认识及直观图的画法(1)在斜二测画法中,要确定关键点及关键线段.“平行于x轴的线段平行性不变,长度不变;平行于y轴的线段平行性不变,长度减半.”(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S直观图=24S原图形,S原图形=22S直观图.典例分析考点一、空间几何体的结构特征[例1](2011·广东高考)正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20B.15C.12 D.10[巧练模拟]——————(课堂突破保分题,分分必保!)1.(2012·南昌模拟)如图:在透明塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,将容器底面一边BC固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形BFGH的面积不改变;③棱A1D1始终与水面EFGH平行;④当E∈AA1时,AE+BF是定值.其中正确说法是()A.①②③B.①③C.①②③④D.①③④2.(2012·温州五校第二次联考)下图是一个正方体的展开图,将其折叠起来,变成正方体后的图形可能是()[冲关锦囊]几种常见的多面体的结构特征(1)直棱柱:侧棱垂直于底面的棱柱.特别地,当底面是正多边形时,叫正棱柱(如正三棱柱,正四棱柱).(2)正棱锥:底面是正多边形,且顶点在底面的射影是底面中心的棱锥.特别地,各条棱均相等的正三棱锥又叫正四面体.考点二、几何体的三视图[例2] (2011·新课标全国卷)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )[巧练模拟]———————(课堂突破保分题,分分必保!) 3.(2012·西安模拟)如图,某几何体的正视图与侧视图都是边长为1 的正方形,且体积为12,则该几何体的俯视图可以是 ( )[冲关锦囊]三视图的长度特征三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.即“长对正,宽相等,高平齐”.[注意] 画三视图时,要注意虚、实线的区别.考点三、空间几何体的直观图例3.已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( ). A.34a 2 B.38a 2 C.68a 2 D.616a 2 解析 如图①②所示的实际图形和直观图.由斜二测画法可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图②中作C ′D ′⊥A ′B ′于D ′, 则C ′D ′=22O ′C ′=68a . ∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.答案 D直接根据水平放置的平面图形的直观图的斜二测画法规则即可得到平面图形的面积是其直观图面积的22倍,这是一个较常用的重要结论.[巧练模拟]———————(课堂突破保分题,分分必保!)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,则原图形是( ). A .正方形 B .矩形C .菱形D .一般的平行四边形一、选择题1.(2012·惠州模拟)下列四个几何体中,几何体只有正视图和侧视图相同的是( )A .①②B .①③C .①④D .②④2.(2011·浙江高考)若某几何体的三视图如图所示,则这个几何体的直观图可以是()3.给出下列命题:①如果一个几何体的三视图是完全相同的,则这个几何体是正方体;②如果一个几何体的正视图和俯视图都是矩形,则这个几何体是长方体;③如果一个几何体的三视图都是矩形,则这个几何体是长方体;④如果一个几何体的正视图和侧视图都是等腰梯形,则这个几何体是圆台,其中正确命题的个数是()A.0 B.1C.2 D.34.如图△A′B′C′是△ABC的直观图,那么△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形5.如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的正视图是()解析:三棱锥的正视图应为高为4,底面边长为3的直角三角形.答案:B二、填空题6.(2012·长沙模拟)用单位正方体块搭一个几何体,使它的正视图和俯视图如图所示,则它的体积的最大值为________,最小值为________.解析:由俯视图及正视图可得,如图所示,由图示可得体积的最大值为14,体积的最小值为9.答案:1497.给出下列命题:①在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4个顶点;②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;③若有两个侧面垂直于底面,则该四棱柱为直四棱柱;④一个棱锥可以有两条侧棱和底面垂直;⑤一个棱锥可以有两个侧面和底面垂直;⑥所有侧面都是正方形的四棱柱一定是正方体.其中正确命题的序号是________.解析:①正确,正四面体是每个面都是等边三角形的四面体,如正方形ABCD-A1B1C1D1中的四面体A-CB1D1;②错误,如图所示,底面△ABC为等边三角形,可令AB=VB=VC=BC=AC,则△VBC为等边三角形,△VAB和△VCA均为等腰三角形,但不能判定其为正三棱锥;③错误,必须是相邻的两个侧面;④错误,如果有两条侧棱和底面垂直,则它们平行,不可能;⑤正确,当两个侧面的公共边垂直于底面时成立;⑥错误,当底面是菱形时,此说法不成立,所以应填①⑤.答案:①⑤。

简单几何体的三视图讲解[1]

简单几何体的三视图讲解[1]
利用投影关系
根据已知的两个视图,利用投影关系,可以推断出第三个视图的基本形状和尺寸。例如, 如果已知主视图和左视图,可以通过它们的高度和宽度推断出俯视图的基本形状。
注意细节和遮挡关系
在补画第三视图时,需要注意细节和遮挡关系。例如,当几何体中存在凹槽或凸起时,需 要在第三视图中相应地表示出来。同时,还需要注意不同部分之间的遮挡关系,以确保补 画出的第三视图准确无误。

圆锥体的俯视图是一个圆面,同 样需要按照正投影法将其绘制成
椭圆。
在绘制过程中,要注意圆锥体的 高和底面直径的比例关系,以及
锥尖的位置和方向。
球体三视图简化表示方法
球体的三视图都是圆面,但由于投影角度的不同,圆面的大小和形状也会有所不同 。
在简化表示时,可以将球体的三视图都绘制成相同的圆面,但需要注明是简化表示 。
三视图概念及作用
三视图定义
三视图是指通过三个相互垂直的投影面(正面、水平面和侧 面)将三维物体投影后得到的三个二维图形(主视图、俯视 图和左视图)。
三视图作用
三视图能够准确、完整地表达三维物体的形状、结构和大小 等几何信息,是工程制图中最基本的表达方式之一。通过观 察和分析三视图,可以想象出三维物体的立体形状,为物体 的设计、制造和检测提供依据。
几何体性质
几何体具有体积、表面积等属性 ,不同几何体之间可能存在相似 或全等的性质。
常见简单几何体介绍
立方体
立方体有六个面,且每个面都 是正方形,具有相等的边长。
球体
球体是一个连续曲面立体,由 一个面围成,且这个面是曲面 。
圆柱体
圆柱体由两个平行且相等的圆 形底面和一个侧面围成,侧面 是一个曲面。
相贯线和截交线绘制要点
相贯线

1.1.2简单组合体的结构特征1.2空间几何体的三视图

1.1.2简单组合体的结构特征1.2空间几何体的三视图
1.1.2简单组合体的结构特征
简单组合体
日常生活中我们常用到的日用品,比如:消毒液、 暖瓶、洗洁精等的主要几何结构特征是什么? 由柱、锥、台、球组成了一些简单的组合体.认 识它们的结构特征要注意整体与部分的关系.
圆柱
圆台
圆柱
简单组合体
走在街上会看到一些物体,它们的主要几何结构特 征是什么?
简单组合体
D
A B a b C D A B C
d
c a b
d
c
投射线与投影面 相倾斜的平行投 影法 -----斜投影法
平行投影法
投射线与投影面相互垂 直的平行投影法 ----------正投影法。
中心投影形成的直观图能非常逼真地反映原来的物 体,主要运用于绘画领域。
平行投影形成的直观图则能比较精确地反映原来物体 的形状和特征。因此更多应用于工程制图或技术图样
正视图
侧视图
俯视图
四棱柱
由三视图想象几何体
下面是一些立体图形的三视图,请根据视 图说出立体图形的名称:
正视图
左视图
圆锥 俯视图
由三视图想象几何体
一个几何体的三视图如下,你能说出它是 什么立体图形吗?
四棱锥
回忆初中已经学过的正方体、长方体、圆 柱、圆锥、球的三视图.
正方体的三视图


长方体的三视图


长方体
圆柱的三视图


圆柱
圆锥的三视图


圆锥
球的三视图


球体
小节三视图有关概念
“视图”是将物体按正投影法向投影面投射 时所得到的投影图. 光线自物体的前面向后投影所得的投影图 称为“正视图” ,自左向右投影所得的投影图 称为“侧视图”,自上向下投影所得的投影图 称为“俯视图”.

-空间几何体的结构、三视图和直观图

-空间几何体的结构、三视图和直观图

§8.1 空间几何体的结构、三视图和直观图2014高考会这样考 1.几何体作为线面关系的载体,其结构特征是必考内容;2.考查三视图、直观图及其应用.复习备考要这样做 1.重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型;2.熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.1.多面体的结构特征(1)棱柱的上下底面平行,侧棱都平行且长度相等,上底面和下底面是全等的多边形. (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.(3)棱台可由平行于棱锥底面的平面截棱锥得到,其上下底面的两个多边形相似. 2.旋转体的结构特征(1)圆柱可以由矩形绕其一边所在直线旋转得到.(2)圆锥可以由直角三角形绕其一条直角边所在直线旋转得到.(3)圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上下底中点的连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到. (4)球可以由半圆或圆绕其直径旋转得到. 3.空间几何体的三视图空间几何体的三视图是用正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括主视图、左视图、俯视图. 4.空间几何体的直观图(1)在已知图形中建立直角坐标系xOy .画直观图时,它们分别对应x ′轴和y ′轴,两轴交于点O ′,使∠x ′O ′y ′=45°,它们确定的平面表示水平平面;(2)已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于x ′轴和y ′轴的线段;(3)已知图形中平行于x 轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,长度为原来的12.[难点正本 疑点清源]1.正棱柱:侧棱垂直于底面的棱柱叫作直棱柱,底面是正多边形的直棱柱叫作正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.2.正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫作正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.3.空间几何体的数量关系也体现在三视图中,主视图和左视图的“高平齐”,主视图和俯视图的“长对正”,左视图和俯视图的“宽相等”.其中,主视图、左视图的高就是空间几何体的高,主视图、俯视图中的长就是空间几何体的最大长度,左视图、俯视图中的宽就是空间几何体的最大宽度.要尽量按照这个规则画空间几何体的三视图.1.利用斜二测画法得到的以下结论,正确的是__________.(写出所有正确的序号)①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形.2.一个几何体的主视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.3.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是() A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体4.(2012·湖南)某几何体的主视图和左视图均如图所示,则该几何体的俯视图不可能...是()5.如图,已知三棱锥的底面是直角三角形,直角边边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是()题型一 空间几何体的结构特征 例1 设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点. 其中真命题的序号是________.以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥; ②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台; ③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台. 其中正确命题的个数为( ) A .0 B .1 C .2 D .3 题型二 几何体的三视图例2 如图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )一个长方体去掉一个小长方体,所得几何体的主视图与左视图分别如图所示,则该几何体的俯视图为( )题型三 空间几何体的直观图例3 已知△ABC 的直观图A ′B ′C ′是边长为a 的正三角形,求原△ABC 的面积.正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.三视图识图不准确致误典例:(5分)一个空间几何体的三视图,如图所示,则这个空间几何体的表面积是________.方法与技巧1.棱柱、棱锥要掌握各部分的结构特征,计算问题往往转化到一个三角形中进行解决.2.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状.3.三视图画法:(1)实虚线的画法:分界线和可见轮廓线用实线,看不见的轮廓线用虚线;(2)理解“长对正、宽平齐、高相等”.4.直观图画法:平行性、长度两个要素.失误与防范1.台体可以看成是由锥体截得的,但一定强调截面与底面平行.2.注意空间几何体的不同放置对三视图的影响.3.能够由空间几何体的三视图得到它的直观图;也能够由空间几何体的直观图得到它的三视图,提升空间想象能力.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.给出四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③有两侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱. 其中正确的命题个数是( )A .0B .1C .2D .32.(2012·福建)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱 3.(2011·课标全国)在一个几何体的三视图中,主视图和俯视图如图所示,则相应的左视图可以为( )4.如图是一个物体的三视图,则此三视图所描述物体的直观图是( )二、填空题(每小题5分,共15分)5.一个三角形在其直观图中对应一个边长为1的正三角形,原三角形的面积为________.答案 626.如图所示,E 、F 分别为正方体ABCD —A1B 1C 1D 1的面ADD 1A 1、面 BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面DCC 1D 1上的投影是 ________.(填序号)7.图中的三个直角三角形是一个体积为20 cm3的几何体的三视图,则h=________cm.三、解答题(共22分)8.(10分)一个几何体的三视图及其相关数据如图所示,求这个几何体的表面积.9.(12分)已知一个正三棱台的两底面边长分别为30 cm和20 cm,且其侧面积等于两底面面积之和,求棱台的高.B组专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.(2011·山东)右图是长和宽分别相等的两个矩形,给定下列三个命题:①存在三棱柱,其主视图、俯视图如右图;②存在四棱柱,其主视图、俯视图如右图;③存在圆柱,其主视图、俯视图如右图.其中真命题的个数是()A.3 B.2C.1 D.02.一个正方体截去两个角后所得几何体的主视图、左视图如图所示,则其俯视图为()3.在棱长为1的正方体ABCD—A1B1C1D1中,过对角线BD1的一个平面交AA1于E,交CC1于F,得四边形BFD1E,给出下列结论:①四边形BFD1E有可能为梯形;②四边形BFD1E有可能为菱形;③四边形BFD1E在底面ABCD内的投影一定是正方形;④四边形BFD1E有可能垂直于平面BB1D1D;⑤四边形BFD1E面积的最小值为6 2.其中正确的是() A.①②③④B.②③④⑤C.①③④⑤D.①②④⑤二、填空题(每小题5分,共15分)4.在直观图(如图所示)中,四边形O′A′B′C′为菱形且边长为2 cm,则在xOy坐标系中,四边形ABCO为________,面积为________ cm2.5.用半径为r的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高是________.6.如图,点O为正方体ABCD—A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的投影可能是________(填出所有可能的序号).三、解答题7.(13分)已知正三棱锥V—ABC的主视图、左视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出左视图的面积.。

空间几何体得结构、三视图和直观图

空间几何体得结构、三视图和直观图

我参与、我快乐! 2015年1月3日高三一轮复习理科补习班专用编写人:贾长江课题:空间几何体的结构、三视图和直观图【考点分析】(1)几何体作为线面关系的载体,其结构特征是必考内容;(2)考查三视图、直观图及其应用。

【重难点】(1)重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型;(2)熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图。

【知识梳理】1、空间几何体的结构特征从多面体和旋转体来构建本节知识框架。

2、空间几何体的直观图空间几何体的直观图常用_________画法来画,基本规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为__________,z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中__________.平行于x轴和z轴的线段长度在直观图中______________,平行于y轴的线段长度在直观图中________________.3、通过预习,你能说出正四面体、正棱锥、正棱柱的概念吗?【①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是__________【通关训练1】以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0个B.1个C.2个D.3个审核人审批人 班级 小组 姓名 组评 师评 2题型二 空间几何体的三视图且体积为12,则该几何体的俯视图可以是( )题型三 空间几何体的直观图的面积为( )A.34a2B.38a2C.68a2D.616a2【通关训练3】 如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A .2+ 2B.1+22C.2+22 D .1+ 2【我的收获】。

第七章第一节 空间几何体的结构特征及三视图与直观图 文 湘教版课件

第七章第一节 空间几何体的结构特征及三视图与直观图 文 湘教版课件

2.已知正三角形ABC的边长为2,那么△ABC的直观图 △A′B′C′的面积为________. 解析:如图,图①、图②所示的分别是实际图形和直观图. 从图②可知,A′B′=AB=2,
O′C′=12OC= 23,C′D′=O′C′sin 45°= 23× 22= 46.所

S△A′B′C′12A′B′·C′D′=12×2×
()
解析:给几何体的各顶点标上字母,如图1.A,E在侧投影面上 的投影重合,C,G在侧投影面上的投影重合,几何体在侧投影 面上的投影及把侧投影面展平后的情形如图2所示,故正确选项 为B(而不是A). 答案:B
2.用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下 底面的面积之比为 1∶16,截去的圆锥的母线长是 3 cm,则 圆台的母线长为________ cm. 解析:抓住轴截面,利用相似比,由底面 积之比为 1∶16,设半径分别为 r,4r. 设圆台的母线长为 l,截得圆台的上、下底 面半径分别为 r、4r.根据相似三角形的性质 得3+3 l=4rr,解得 l=9. 所以,圆台的母线长为 9 cm. 答案:9
相对位置不改变.
3.按照斜二测画法得到的平面图形的直观图,其面积与原图
形的面积的关系
S
= 直观图
2 4S
原图形,S
原图形=2
2S 直观图.
4.转化与化归思想
利用转化与化归思想解决棱台、圆台的有关问题 由棱台和圆台的定义可知棱台和圆台是分别用平行于棱锥和
圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台
4.三视图 (1)几何体的三视图包括 正(主) 视图、 侧(左)视图、 俯 视 图,分别是从几何体的 正前 方、 正左 方、 正上 方观察几
何体画出的轮廓线. (2)三视图的画法 ①基本要求:长对正 ,高平齐 , 宽相等 . ②画法规则:正侧 一样高, 正俯 一样长, 侧俯 一样

简单几何体的结构三视图直观图

简单几何体的结构三视图直观图
多面体
由平面多边形围成的封闭几何体,如正方体、长 方体、三棱锥等。
旋转体
由一个平面图形绕其一条边旋转形成的几何体, 如圆柱、圆锥、圆台等。
其他几何体
球体、椭球体等。
几何体的性质
空间占据性
封闭性
几何体占据一定的空间位置,具有大 小和形状。
除球体外,其他简单几何体都是封闭 的。
连续性

几何体的表面是连续的,没有断裂或 间隙。
02
三视图
主视图
主视图是物体正对着 观察者时所看到的形 状。
在绘制主视图时,应 将物体的主要轮廓和 特征清晰地呈现出来。
它通常表示物体的主 要特征和结构。
左视图
左视图是从物体的左侧观察到的 形状。
它显示了物体的左侧面和前侧面。
在绘制左视图时,应注意物体的 宽度和高度,以及与主视图的相
对位置。
俯视图
圆锥体的三视图是两个不同的圆(顶 部和侧面)和一个三角形(底面)。 直观图是一个三维的圆锥体。
详细描述
在三视图中,圆锥体的顶部用一个圆 表示,侧面用一个圆弧表示,底面用 一个三角形表示。在直观图中,圆锥 体以三维的形式呈现,可以看到其顶 点、底面和侧面。
05
三视图与直观图的转换
三视图转换为直观图
和形状。
设计展示
设计师可以利用直观图展示产品的 外观和结构,方便客户和生产部门 更好地理解设计意图。
工程制图
在工程制图中,直观图是表达设计 意图的重要手段,能够清晰地表达 出物体的空间关系和结构特征。
04
简单几何体的三视图与直观图
立方体的三视图与直观图
总结词
立方体的三视图是三个相同的矩形,直观图是一个三维的立 方体。

总复习《第33讲 空间几何体的结构特征及三视图和直观图》

总复习《第33讲 空间几何体的结构特征及三视图和直观图》

其中真命题的序号是________ . 答案:①②③
[例1] (2011· 广东高考)正五棱柱中,不同在任何侧面且 不同在任何底面的两顶点的连线称为它的对角线,那么 一个正五棱柱对角线的条数共有 A.20 C.12 [自主解答] B.15 D.10 如图,在正五棱柱ABCDE- ( )
A1B1C1D1E1中,从顶点A出发的对角线有 两条:AC1、AD1,同理从B、C、D、E点 出发的对角线也有两条,共2×5=10条.
3.投影的分类
中心投影 投影线交于一点 投影
直观强、接近实物
斜投影 正投影
平行投影 投影线平行
正视图 侧视图 俯视图 长对正、高平齐、宽相等

三视图
视图 直观图
斜二测画法
思考:如图,点 O 为正方体 ABCD-A′B′C′D′ 的中心 ,点 E 为面 B′ BCC′的中心 , 点 F 为 B′C′的中点,则空间四边形 D′OEF 在该正方体的各个面上的正投影可能是
②水面四边形BFGH的面积不改变;
③棱A1D1始终与水面EFGH平行; ④当E∈AA1时,AE+BF是定值. 答案:D 其中正确说法是 A.①②③ B.①③ ( )
C.①②③④
D.①③④
2.(2012· 温州五校第二次联考)下图是一个正方体的展
开图,将其折叠起来,变成正方体后的图形可能是
答案:B ( )
侧视图
考点三、空间几何体的直观图 【例5】已知正三角形ABC的边长为a, 那么△ABC的平 面直观图的面积为 ( D ) 6 a2 6 3 2 2 3 2 D. C. a B. a A. a 16 8 8 4
[巧练模拟]———————(课堂突破保分题,分分必保!)
3.(2012· 西安模拟)如图,某几何体的正视图与侧视图都是边长为1 1 的正方形,且体积为2,则该几何体的俯视图可以是 ( )

第一讲空间几何和结构特征以及三视图和直观图讲解

第一讲空间几何和结构特征以及三视图和直观图讲解
三视图分为:正视图、侧视图、俯视图 (1)正俯一样长;俯侧一样宽;正侧一样高 注 意 (2)摆放位置 (3)看不到的线划成虚线
各棱长都为2的正三棱锥的三视图如图所示:
2 2
3
3
2 2
2
2 3 体高h 2 3
三、斜二测画法:
平行于x轴长度不变平行于 x轴 平行于y轴长度减半平行于 y轴 平行于z轴长度不变平行于 z轴
是底面中心的棱锥.特别地,各条棱均相等的正三棱锥又叫
正四面体. (3)平行六面体:指的是底面为平行四边形的四棱柱.
平面内的一个四边形为平行四边形的充要条件有 多个,如两组对边分别平行,类似地,写出空间中的一个
四棱柱为平行六面体的两个充要条件:
充要条件① ;
充要条件②
(写出你认为正确的两个充要条件)
B.以三角形的一条边所在直线为旋转轴,其余两边旋转形 成的曲面所围成的几何体叫圆锥 C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能 是正六棱锥 D.圆锥的顶点与底面圆周上的任意一点的连线都是母线
解析:A错误.如图(1)所示,由两个结构相同的三棱锥叠放在
一起构成的几何体,各面都是三角形,但它不是棱锥.
解析:由三视图知,由4块木 块组成.
答案:4
5.如图,矩形O′A′B′C′是水平放置的一个平面图形的直 观图,其中O′A′=6 cm,O′C′=2 cm,则原图形的形 状是 .
解析:将直观图还原得▱OABC,
则∵O′D′=
OD=2O′D′=4 OC=
O ′ C′ = 2
cm,
cm,
C′D′=O′C′=2 cm,∴CD=2 cm, =2 cm, OA=O′A′=6 cm=OC,故原图形为菱形.
答案:菱形

高中数学——立体几何全知识点与结论梳理

高中数学——立体几何全知识点与结论梳理

向量差
a-b=(a1-b1,a2-b2,a3-b3)
数量积
a·b=a1b1+a2b2+a3b3
共线 a∥b⇒a1=λb1,a2=λb2,a3=λb3(λ∈R,b≠0)
垂直 夹角公

a⊥b⇔a1b1+a2b2+a3b3=0 cos〈a,b〉= a1b1+a2b2+a3b3
a21+a22+a23 b21+b22+b23
2.空间几何体的表面积与体积公式
名称 几何体
表面积
柱体(棱柱和 S 表面积=S 侧+2S
圆柱)

锥体(棱锥和 S 表面积=S 侧+S 底
圆锥)
体积 V=Sh V=31Sh
关 注 高 中 数 学 ( gaozhong shu-xue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 小 数 老 师 贴 心 答 疑 解 惑 。
立体几何全知识点与结论梳理
第一节 空间几何体的结构特征、三视图和直观图
[基础知识]
1.简单几何体 1多面体的结构特征
名称
棱柱
棱锥
棱台
图形
底面 侧棱 侧面形状
互相平行且相等
多边形
互相平行且相似
相交于一点,但不
互相平行且相等
延长线交于一点
一定相等
平行四边形
三角形
梯形
①特殊的四棱柱
底面为 平行 侧棱垂直 直平行 底面为 四棱柱 平―行―四――边→形 六面体 ―于―底――面→ 六面体 ―矩―形→
圆锥
侧面展开

侧面积公 式
S 圆柱侧=2πrl
S 圆锥侧=πrl
圆台 S 圆台侧=π(r+r′)l
①几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和. ②圆台、圆柱、圆锥的转化 当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥, 由此可得:

7.1 空间几何体的结构、三视图和直观图

7.1 空间几何体的结构、三视图和直观图
B、有两个面平行,其余各面都是平行四边形的几何
体叫棱柱
C、有一个面是多边形,其余各面都是三角形的几何 体叫棱锥 D、棱台是平行于底面截棱锥所得到的平面与底面之 间的部分
【分析】根据柱、锥、台的概念作出判断.
【解析】A,B中,不满足“每相邻两个侧面的公
共边互相平行”,所以不是棱柱;C中,不满足各个三 角形有唯一的公共顶点.
考点一 几何体的结构特征
判断图中所示物体是不是台体,为什么?
【分析】用台体的定义判断.
【解析】以上三图都不是台体,(1)中延长
AA1,DD1,它们交于一点,而延长BB1,CC1,它们交于
另一点,此图不能还原成锥体,故不是台体;(2)中 面ABCD与面A1B1C1D1不平行,故也不是台体;(3) 中⊙O与⊙O1也不平行,故(3)也不是台体. 【评析】判断是否是台体要看两点:一是看底面 是否平行,二是看是否可以还原成锥体.
*对应演练*
如图,长方体ABCD—A1B1C1D1.
(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?
(2)用平面BCFE把这个长方体分成两部分后,各部分形成 的几何体还是 棱柱吗?如果 是,是几棱柱? 如果不是,说 明理由.
(1)是棱柱,并且是四棱柱.因为以长方体相对的两个 面作底面都是四边形,其余各面都是矩形,当然是平行
母线.
D(A错误.如图所示,由两个结构相同的三棱锥叠放在 一起构成的几何体,各面都是三角形,但它不一定是 棱锥.
B错误.如图,若△ABC
不是直角三角形或是直
角三角形,但旋转轴不
是直角边,所得的几何
体都不是圆锥.
C显然错误.故应选D.)
考点三
基本元素的计算
圆台侧面的母线长为2a,母线与轴的夹角为30°,一个 底面的半径是另一个底面半径的2倍.求两底面的半径和 两底面面积之和.

简单几何体的结构、三视图和直观图

简单几何体的结构、三视图和直观图
几何画板展示
(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )
几何画板展示
(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是 棱台.( × )
几何画板展示
1 2 3 4 5 6
(4)正方体、球、圆锥各自的三视图中,三视图均相同.( × )
(5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.( × ) (6)菱形的直观图仍是菱形.( × )
x′轴和y′轴,两轴交于点O′,使∠x′O′y′= 45° ,它们确
定的平面表示水平平面;
(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于
x′轴 和 y′轴 的线段;
(3)已知图形中平行于x轴的线段,在直观图中保持原长度不变;平 1 行于y轴的线段,长度为原来的 2 .
3.三视图
(1)主、俯视图 长对正 ;主、左视图 高平齐;俯、左视图 宽相等,前后
所示的几何体,则该几何体的左视图为
解析
左视图中能够看到线段AD1,应画为实线,而看不到B1C,应画为
1 2 3 4 5 6

虚线.由于AD1与B1C不平行,投影为相交线,故选B.
解析
答案
6.正三角形 AOB 的边长为 a ,建立如图所示的直角坐 6 2 a 标系xOy,则它的直观图的面积是______. 16
1234来自56题组二 教材改编
2.由斜二测画法得到:
①相等的线段和角在直观图中仍然相等;
②正方形在直观图中是矩形;
③等腰三角形在直观图中仍然是等腰三角形;
④平行四边形的直观图仍然是平行四边形.
上述结论正确的个数是
A.0

B.1
C.2

空间几何体的结构特征及三视图和直观图 经典课件(最新)

空间几何体的结构特征及三视图和直观图 经典课件(最新)

图 12
高中数学课件
【反思·升华】 三视图的正(主)视图、侧(左)视图、俯视图分别是从几何体的正前方、 正左方、正上方观察几何体画出的轮廓线,主视图反映了物体的长度和高度;俯视图反 映了物体的长度和宽度;左视图反映了物体的宽度和高度,由此得到:主俯长对正,主 左高平齐,俯左宽相等.
(1)由几何体的直观图画三视图需注意的事项:①注意正视图、侧视图和俯视图对应 的观察方向;②注意能看到的线用实线画,被挡住的线用虚线画;③画出的三视图要符 合“长对正、高平齐、宽相等”的基本特征;
高中数学课件
空间几何体的结构特征及三视图和直观图 课件
高中数学课件
1.空间几何体
【最新考纲】
(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生
活中简单物体的结构.
Hale Waihona Puke (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,
能识别上述三视图所表示的立体模型,会用斜二侧画法画出它们的直观图.
高中数学课件
(3)旋转体的展开图 ①圆柱的侧面展开图是矩形,矩形的长(或宽)是底面圆周长,宽(或长)是圆柱的母线 长; ②圆锥的侧面展开图是扇形,扇形的半径长是圆锥的母线长,弧长是圆锥的底面周 长; ③圆台的侧面展开图是扇环,扇环的上、下弧长分别为圆台的上、下底面周长.
注:圆锥和圆台的侧面积公式 S 圆锥侧=21cl 和 S 圆台侧=21(c′+c)l 与三角形和梯形的面积 公式在形式上相同,可将二者联系起来记忆.
答案:D
高中数学课件
高频考点 2 空间几何体的三视图 【例 2.1】 (2018 年高考·课标全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构 件的凸出部分叫榫头,凹进部分叫卯眼,图 8 中木构件右边的小长方体是榫头.若如图 摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图 可以是( )

7-1第1讲 空间几何体的结构、三视图和直观图

7-1第1讲 空间几何体的结构、三视图和直观图

【训练3】
(2011· 浙江)若某几何体的三视图如图所示,则这个 ).
几何体的直观图可以是(
考基自主导学
考向探究导析
考题专项突破
活页限时训练
解析 A中正视图,俯视图不对,故A错.B中正视图,侧视图 不对,故B错.C中侧视图,俯视图不对,故C错,故选D. 答案 D
考基自主导学
考向探究导析
考题专项突破
考基自主导学
考向探究导析
考题专项突破
活页限时训练
【试一试】(2011· 山东)右图是长和宽分别相等的两个矩形.给 定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如右 图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆 柱,其正(主)视图,俯视图如右图.其中真命题的个数是 ( A.3 B.2 C.1 D.0 ).
考基自主导学
考向探究导析
考题专项突破
活页限时训练
两个概念 (1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多 边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形, 侧棱垂直于底面,侧面是矩形. (2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多 边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱 锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在 底面的射影是底面正多边形的中心.
考基自主导学
考向探究导析
考题专项突破
活页限时训练
2.用任意一个平面截一个几何体,各个截面都是圆面,则这 个几何体一定是( A.圆柱 B.圆锥 C.球体 D.圆柱、圆锥、球体的组合体 解析 当用过高线的平面截圆柱和圆锥时,截面分别为矩形和 三角形,只有球满足任意截面都是圆面. 答案 C ).
考基自主导学
考基自主导学

1.2空间几何体的三视图和直观图

1.2空间几何体的三视图和直观图

1 V ( S S S S )h 3
柱体、锥体、台体的体积公式之间有什么关系?
上底扩大
上底缩小
V Sh
S 0
S S V 1 Sh 1 V ( S S S S )h 3 3
S为底面面积, h为锥体高
S , S 分别为上、下
底面面积,h 为台体 高
柱体(棱柱、圆柱)的体积公式:
V Sh
(其中S为底面面积,h为柱体的高)
锥体体积
h
椎体(圆锥、棱锥)的体积公式:
1 V Sh 3
(其中S为底面面积,h为高)
由此可知, 棱柱与圆柱的体积公式类似,都是 底面面积乘高; 棱锥与圆锥的体积公式类似,都是 1 底面面积乘高的 . 3
台体体积
台体(棱台、圆台)的体积公式

考向二 空间几何体的三视图

【例2 】►(2012·湖南) 某几何体的正视图和侧视图均如图 所 示 , 则 该 几 何 体 的 俯 视 图 不 可 能 是 ( ).


[审题视点] 根据正视图和侧视图相同逐一判断.
正视图
侧视图
圆台
俯视图
根据三视图想象它们表示的几何体的结构特征
正视图
侧视图
正四棱台 俯视图
简单组合体的三视图
水平直观图
正方形的水平直观图
y y
0 0
x
x
1. 水平方向线段长度不变;
变化 规则
2. 竖直方向的线段向右倾斜450,长度减半;
3. 平行线段仍然平行.
水平直观图
正三角形的水平直观图

由三视图求几何体的相关量
若一个正三棱柱的三视图如图所示, 求这个三棱 柱的高和底面边长以及左视图的面积.

数学:11.1《空间简单几何体的结构与三视图、直观图》课件(人教a版必修二)

数学:11.1《空间简单几何体的结构与三视图、直观图》课件(人教a版必修二)

图11.1-1(1)
图11.1-1(4)
对简单几何体的概念的正确理解 下列关于简单几何体的说法中: ①斜棱柱的侧面中不可能有矩形;②有两个面互相平行,其余 各面都是平行四边形的多面体是棱柱;③侧面是等腰三角形的 棱锥是正棱锥;④圆台也可看成是圆锥被平行于底面的平面所 截得截面与底面之间的部分.正确的个数是 ( ) A.0 B.1 C.2 D.3 思路分析: 解决关于简单几何体的概念性的问题时要紧扣简 单几何体的定义,不可想当然. 解:①斜棱柱的侧面中也可能有矩形,想象将侧面正对我们的长方 体,向前(后)压斜时,正对我们的侧面及其对面可保持是矩形,可见 斜棱柱的侧面中可能0个,1个或2个矩形,但可以证明不可多于两
y
S'
S'
y' E'
F H
E
F' H' E' A'
y'
F' H' A'
F' A'
x'
E' D' C'A BO来自图11.1-16D
x
B'
O' G' C'
D'
x'
B'
O' G' C'
D'
B'
G C
图11.1-17(1)
图11.1-17(2)
图11.1-17(3)
诡秘之主在若羌县境东北部,曾是中国第二大咸水湖,海拔780米, 面积约2400-3000平方公里,因地处塔里木盆地东部的古“丝绸之路” 要道而著称于世,古诡秘之主诞生于第三纪末、第四纪初,距今已有200万年,面积约2万平方公里以上,在新构造运动影响下,湖盆地自 南向北倾斜抬升,分割成几块洼地。 ; /xs/0/892/ 诡秘之主 kgh20neg 现在诡秘之主是位于北面最低、最大的一个洼地,曾经是塔里木盆地的积水中心,古代发源于天山、昆仑山和阿尔金山的流域,源源注入 罗布洼地形成湖泊。诡秘之主曾有过许多名称,有的因它的特点而命名,如坳泽、盐泽、涸海等,有的因它的位置而得名,如蒲昌海、牢 兰海、孔雀海等。元代以后,称罗布淖尔。汉代,诡秘之主“广袤三百里,其水亭居,冬夏不增减”,它的丰盈,使人猜测它“潜行地下, 南也积石为中国河也”。这种误认诡秘之主为黄河上源的观点,由先秦至清末,流传了2000多年。到公元四世纪,曾经是“水大波深必汛” 的诡秘之主西之楼兰,到了要用法令限制用水的拮据境地。清代末叶,诡秘之主水涨时,仅有“东西长八九十里,南北宽二三里或一二里 不等”,成了区区一小湖。1921年,塔里木河改道东流,经注诡秘之主,至五十年代,湖的面积又达2000多平方公里。 60年代因塔里木河下游断流,使诡秘之主渐渐干涸,1972年底,彻底干涸。 赔出身家性命。现在想想,却竟是连个女子都不如,她不以物喜,不以已悲,淡然超脱的姿态,令他不禁感慨万千。冰凝见皇上停下了下 来,又不错眼珠地看着她,以为皇上是在考她的才学。对此,她颇为矛盾:答对了,实在是显得自己太与众不同、鹤立鸡群;答错了,自 己很没有面子,舍不下来这张脸。犹豫半响,终于还是决定诵读出后面的诗句:“饮木兰之坠露兮,夕餐秋菊之落英。 苟余情其信姱以练 要兮,长顑颔亦何伤。 揽木根以结茝兮,贯薜荔之落蕊。矫菌桂以纫蕙兮, 索胡绳之纚纚。謇吾法夫前修兮,非世俗之所服。虽不周于 今之人兮,愿依彭咸之遗则。 ” 皇上哪里知道冰凝是在答题,以为冰凝是因为理解他才会如此作答。听着她的朗朗诵诗之声,真是人间 最美的享受,不知不觉之间,皇上开始面含微笑、心怀赞赏,欣喜之情溢于言表。佟佳贵妃见皇上如此神情,自知是对这位年氏秀女极为 满意,反正早晚也是入宫做了姐妹,此时表现得大度壹些,更能博得皇上的欢心,于是顺水推舟地说:“皇上,这年氏模样俊美、学才广 博……”“爱妃说得是啊!这年家小女,真是甚全朕意。李德全!”第壹卷 第三十六章 赐婚李德全壹听皇上喊自己,赶快应声:“奴才 在!”众人壹听这话,定是皇上要留牌了,“恭喜小主”的话已经到了嘴边。只见皇上犹豫了壹下,缓缓地说:“去。”这“去”字壹出, 全场都惊呆了,佟贵妃也诧异不已,顾不得礼仪,忙问:“皇上,这是去还是留?”“爱妃没有听清楚吗?朕还要再重复壹遍?那好,都 听清楚了,去!”众人还没有缓过神儿来,冰凝已经规规矩矩地俯身行礼了:“谢吾皇万岁万万岁”待全部选定,皇上就吩咐身边的李德 全宣布圣旨。各位留牌子的秀女中,有些当场进行了册封,大部分是答应,常在,只有壹个贵人,嫔更是没有。但也有三个秀女留了牌子, 却是什么也没有封。圣旨宣完,留牌的秀女们自有太监嬷嬷安排,其余人等各自收拾回府,等待进壹步的安排,或是被指婚,没有被指婚 的,就可以自行婚配了。其实在皇上没有留冰凝的牌子时,众人开始虽然皆是壹愣,但随即也就释然了,没有留牌子,那就是第二个可能: 要被赐婚了!也好,谁不想当嫡妻呢!只是不知道谁能有这么好的运气可以娶到冰凝。依皇上刚刚对年氏秀女的态度,这喜爱之心,众人 皆看得出来,如果不是为自己选妃子,那就壹定是为自己选儿媳妇。目前,诸皇子中,十六阿哥胤禄和十七阿哥胤礼两位尚未娶嫡福晋, 看来,年氏秀女的夫君应该就是这两个阿哥之壹了。听完圣旨,冰凝说不上来喜,也说不上来忧。不需要做深宫怨妇,这个结果是很令她 最高兴的;但是目前又没有结果,还需要继续等待,又让冰

高中数学立体几何三视图课件

高中数学立体几何三视图课件

正 视 图 反 映 了 物 体 的 高 度 和 长 度
侧 视 图 反 映 了 物 体 的 高 度 和 宽 度
俯 视 图 反 映 了 物 体 的 长 度 和 宽 度
c(高) b(宽) a(长)
判断下列三视图的正误:
长未对正
宽不相等
高不平齐
例1: 圆柱的三视图

正视图
侧视图

俯视图
圆柱 正
例2: 圆锥的三视图
侧视图 四 棱 台
正视图
俯 视 图

不同的几何体可能有某一,两个视图相同.所以我们 只有通过全部三个视图才能全面准确的反映一个几 何体的特征。
三视图还原立体几何简单与否因人而 异,空间想象力强的人,一眼便能看出是什么 样的图形.我就觉得这种题目还是挺简单的, 哈哈. 首先我给你几个最常见的例子.1.三面都是 长方,就是长方体;2.上面看圆,两个侧面看 长方,就是圆柱;3.上面看圆,两侧面看三角, 就是圆锥;4.上面看多边形,两侧面看三角, 就是棱锥;5.上面看多边形,两侧看长方,就 是棱柱;6.上面看圆,两侧看梯形,就是圆台 ;7.三面都是圆,就是球.
①圆柱可以由 矩形 绕其一边所在直线旋转得到.
②圆锥可以由直角三角形绕其 直角边 所在直线旋转得到. 直角腰 ③圆台可以由直角梯形绕 所在直线或等腰梯形绕上、下 底中点连线所在直线旋转得到,也可由平行于底面的平面截 圆锥得到. ④球可以由半圆或圆绕直径 所在直线旋转得到.
答案
2.空间几何体的三视图 空间几何体的三视图是 正投影 得到,这种投影下与投影面

其次要注意的是,三视图显示了图形的 长宽高,从上方看的图显示了长宽或者直 径之类的东西,从侧面看的图显示了长和 高,或者宽和高,或者直径和高之类的. 第三要是你空间想象力不强,那么就得 多练习.至于方法,我觉得多锻炼逆向思维 能力是最好的.你可以随便想象出一个立 体图形,然后自己给那个图形画三视图,然 后再只看你的三视图想象你刚才想的图形 ,反复练习,多总结,我想你会有启发、收获 的.

第7章-第1节-空间几何体的结构特征及其三视图和直观图

第7章-第1节-空间几何体的结构特征及其三视图和直观图

(2)由题目所给旳几何体旳正视图和俯视图,可知该几何体 为半圆锥和三棱锥旳组合体,如图所示.
进而可知侧视图为等腰三角形,且轮廓线为实线,故选D. 答案:D
(3)由正视图、侧视图可知,当体积最小时,底层有3个小正 方体,上面有2个,共5个;当体积最大时,底层有9个小正方 体,上面有2个,共11个.故这个几何体旳最大致积与最小体积 旳差是6.
一、空间几何体旳构造特征
名称
构造特征
(1)棱柱旳侧棱都平行且相等
全等
旳多边形,而且相平互 行
,上下底面是 .
多面体
(2)棱锥旳底面是任意多边形,侧面是有一种
公共顶点
旳三角形.
(3)棱台可由平行于底面
旳平面截棱锥得
到,其上下底面是相同 多边形.
名称
构造特征
(1)圆柱能够由矩形
绕其任一边旋转得到.
答案:A
(2)因为EH∥A1D1,A1D1∥B1C1,所以EH∥B1C1,又EH⊄平 面BCC1B1,所以EH∥平面BCC1B1,又EH⊂平面EFGH,平面 EFGH∩平面BCC1B1=FG,所以EH∥FG,故EH∥FG∥B1C1,所 以选项A,C正确;因为A1D1⊥平面ABB1A1,EH∥A1D1,所以 EH⊥平面ABB1A1,又EF⊂平面ABB1A1,故EH⊥EF,所以选项B 也正确.故选D.
【典例剖析】 (1)(2023·湖南高考)某几何体旳正视图和侧视图均
如图所示,则该几何体旳俯视图不可能是
(2)在一个几何体旳三视图中,正视图和俯视图如图所示, 则相应旳侧视图可觉得
(3)(2023·广州模拟)用若干个体积为1旳正方体搭成一种几何
体,其正视图、侧视图都是如图所示旳图形,则这个几何体旳
答案:C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

栏目 导引
直观图是在平行投影下画出的空间图形
栏目 导引
第七章
立体几何
课前热身
1. (教材习题改编)如图所示, 4个三视图和4个 实物图配对正确的是( )
栏目 导引
第七章
立体几何
A. (1)c, (2)d, (3)b, (4)a B. B. (1)d, (2)c, (3)b, (4)a C. (1)c, (2)d, (3)a, (4)b D. (1)d, (2)c, (3)a, (4)b
不是棱锥. C不正确. 棱台是用一个平行于底面的平面去截棱锥而得到, 其 各侧棱的延长线必交于一点, 故D是正确的.
栏目 导引
第七章
立体几何
考点2
简单几何体的三视图
画出如图所示物体的三视图.
栏目 导引
第七章
立体几何
【解】
(1)画主视图. 按主视图的投影方向,
从前往后看, 物体上的平面①实形可见, 主视
1 的线段, 长度为原来的 . 2
栏目 导引
第七章
立体几何
3. 三视图
长对正 (1)三视图的特点: 主、俯视图___________;
高平齐 主、左视图__________; 俯、左视图 宽相等 ___________, 前、后对应. (2)若相邻两物体的表面相交, 表面的交线是它 分界线 们的___________, 在三视图中, 分界线和可见 实 轮廓线都用_______线画出.
它们分别对应x′轴和y′轴, 两轴交于点O′, 使
∠x′O′y′=45°, 它们确定的平面表示 水平平面 ________________.
栏目 导引
第七章
立体几何
(2)已知图形中平行于x轴或y轴的线段, 在直观 平行 图中分别画成_______于x′轴和y′轴的线段 x (3)已知图形中平行于_______轴的线段, 在直 y 观图中保持原长度不变; 平行于________轴
ABC, 四个面都是直角三角形.
【答案】 ③④⑤
栏目 导引
第七章
立体几何
变式训练
1. 下列命题中正确的是( )
A. 有两个面平行, 其余各面都是四边形的几何体叫棱柱
B. 有两个面平行, 其余各面都是平行四边形的几何体叫棱柱 C. 有一个面是多边形, 其余各面都是三角形的几何体叫棱锥 D. 棱台各侧棱的延长线交于一点
解析: 选A.由三视图的特点可知选A.
栏目 导引
第七章
立体几何
2.下列几何体中棱柱的个数为(
)
A. 5 C. 3
B. 4 D. 2
栏目 导引
第七章
立体几何
解析: 选D.棱柱的特征有三方面: 有两个面互 相平行; 其余各面是平行四边形; 这些平行四
边形面中, 每相邻两个面的公共边都互相平行.
当一个几何体同时满足这三方面的特征时, 这 个几何体才是棱柱. 很明显, 几何体②④⑤⑥ 均不符合, 仅有①③符合.
其中正确命题的序号是______________.
栏目 导引
第七章
立体几何
【解析】①不正确, 根据棱柱的 定义, 棱柱的各个侧面都是平行
四边形, 但不一定全等; ②不正确, 用平行于棱锥底面的平面去截棱锥, 棱锥底面与
截面之间的部分才是棱台; ③正确, 若三棱锥的三条侧棱两 两垂直, 则三个侧面构成的三个平面的二面角都是直二面 角; ④正确, 因为两个过相对侧棱的截面的交线平行于侧棱, 又垂直于底面; ⑤正确, 如图, 正方体AC1中的四棱锥C1-
栏目 导引
第七章
立体几何
考点探究讲练互动
考点1 简单几何体的结构特征
给出下列命题: ①棱柱的侧棱都相等, 侧面都是全等的平行四边形;
②用一个平面去截棱锥, 棱锥底面与截面之间的部分是棱台;
③若三棱锥的三条侧棱两两垂直, 则其三个侧面也两两垂直; ④若有两个过相对侧棱的截面都垂直于底面, 则该四棱柱为直四 棱柱; ⑤存在每个面都是直角三角形的四面体.
栏目 导引
第七章
立体几何
3. 给出下列四个命题: ①直角三角形绕一条边旋转得到的旋转体是
圆锥
②夹在圆柱的两个平行截面间的几何体还是 一个旋转体 ③圆锥截去一个小圆锥后剩余部分是圆台 ④通过圆台侧面上一点, 有无数条母线
其中正确命题的序号是________.
栏目 导引
第七章
立体几何
解析: ①错误, 应为直角三角形绕其一条直角 边旋转得到的旋转体是圆锥; 若绕其斜边旋转 得到的是两个同底圆锥构成的一个几何体, 如 图(1). ②错误, 没有说明这两个平行截面的位 置关系, 当这两个平行截面与底面平行时正 确, 其他情况则结论是错误的, 如图(2).
交线 ____________位置.
栏目 导引
第七章
立体几何
思考探究 2. 空间几何体的三视图和直观图在观察角度
和投影效果上有什么区别?
提示: (1)观察角度: 三视图是从三个不同位置 观察几何体而画出的图形; 直观图是从某一点 观察几何体而画出的图形. (2)投影效果: 三视图是在正投影下画出的平面图形;
栏目 导引
第七章
立体几何
物体的三视图如下:
栏目 导引
第七章
立体几何
变式训练
2. (2010· 高考北京卷)一个长方体去掉一个小长方体,
所得几何体的正(主)视图与侧(左)视图分别如图所示, 则该几何体的俯视图为( )
栏目 导引
第七章
立体几何
解析:选C.由三视图中的正(主)、侧(左)视图得 到几何体的直观图如图所示, 所以该几何体的
栏目 导引
第七章
立体几何
解析: 选D.如图1, 面ABC∥面A1B1C1, 但图中的几何体
每相邻两个四边形的公共边并不都互相平行, 故不是棱 柱. A、B都不正确. 棱锥是有一个面是多边形, 其余各 面都是有一个公共顶点的三角形即必须有一个公共顶 点的几何体. 如图2, 每个面都是三角形但形成的几何体
第七章
立体几何
第七章
立体几何
第七章
立体几何
§7.1
简单几何体的结构特
征、直观图和三视图
栏目 导引
第七章
立体几何
考向瞭望把脉高考
命题预测
从近几年的高考试题来看, 几何体的三视图是高考的热
点, 题型多为选择题、填空题, 难度中、低档. 主要考查
几何体的三视图, 以及由三视图构成的几何体, 在考查 三视图的同时, 又考查了学生的空间想象能力及运算与 推理能力.
图应反映平面①的真实形状, 而平面②③④都
积聚为直线, 与平面①的轮廓重合, 所以, 物体 的主视图就是平面①的轮廓形状, 如图(1).
栏目 导引
第七章
立体几何
(2)画俯视图. 从上往下看, 平面④实形可见, 平 面①积聚为直线, 平面③与水平面有一定的倾
斜角度, 在俯视图上是缩小的等边数图形, 画
观图中, 四边形A′B′C′D′是一直角梯形, A′B′∥C′D′, A′D′⊥C′D′, 且B′C′与y轴平行,
栏目 导引
第七章
立体几何
若A′B′=6, D′C′=4, A′D′=2, 求这个平面图 形的实际面积.
解: 由斜二测直观图画法规则知该平面图形 是直角梯形, 且 AB 与 CD 的长度不变, 仍为 6 和 4, 高 CB 为 4 2, 故面积为 1 (6+4)×4 2=20 2. 2
栏目 导引
第七章
立体几何
(3)画简单组合体的三视图应注意两个问题: 方向 ①首先, 确定主视、俯视、左视的________. 位置不同 同一物体放置的____________, 所画的三视图 ____________. 可能不同
②其次, 简单组合体是由哪几个基本几何体组
成的, 并注意它们的组成方式, 特别是它们的
俯视图为C.
栏目 导引
第七章
立体几何
考点3
简单几何体的直观图
若某几何体的三视图如图所示, 则这个几何体
的直观图可以是( )
【解析】由主视图中间的虚线可排除A, B, 由 俯视图可排除C, 故选D.
【答案】
D
栏目 导引
第七章
立体几何
变式训练
3.如图所示, 四边形A′B′C′D′是一平面图形的
水平放置的斜二测画法的直观图, 在斜二测直
栏目 导引
第七章
立体几何
预测2013年高考仍将以空间几何体的三视图为主 要考查点, 重点考查学生读图、识图能力以及空 间想象能力.
栏目 导引
第七章
立体几何
教材回扣夯实双基
基础梳理
1. 简单几何体的结构特征
栏目 导引
第七章
立体几何
栏目 导究 1. 直角三角形绕其一边所在直线旋转一周得 到的几何体一定是圆锥吗?
栏目 导引
第七章
立体几何
③正确, 如图(3). ④错误, 通过圆台侧面上一 点, 只有一条母线, 如图(4).
答案: ③
栏目 导引
第七章
立体几何
4.如图所示, △A′B′C′是△ABC的直观图, 那么
△ABC是________.
栏目 导引
第七章
立体几何
解析: 因为A′B′∥x′轴, A′C′∥y′轴, 所以AB∥x 轴, AC∥y轴. 所以在直角坐标系中, ∠BAC=90°. 所以△ABC为直角三角形. 答案: 直角三角形
俯视图时, 左、右的长度和方向都应对正, 如 图(2).
栏目 导引
第七章
立体几何
(3)画左视图. 从左往右看, 平面②实形可见, 平 面①④积聚为直线, 平面③倾斜. 根据主、左 视图高平齐和俯、左视图宽相等, 对应画出左
视图, 如图(3).
(4)主视图和俯视图之间的间隔与主视图与左 视图之间的间隔不一定相等, 但必须保证各视 图内的线都应按三视图的投影规律画出.
相关文档
最新文档