向量的数量积和向量积PPT课件

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此时,对于非零向量a,b,有 a // b x1 y1 z1 x2 y2 z2
约定:若分母中有零,相应地,分子也为零。
13
例3 设向量 a 3i 2 j k,b 2i j 3k, 求a b.
解:
ijk
a b 3 2 1 5i 11 j 7k
2 1 3
例4 设向量 a 2i 问a×b与c是否平行?
而M的方向垂直于 OP 与F所决定的平面,M的指向是
是按右手规则从 OP 以不超过π的角的转向F来确定, 因而实际上
M OP F
11
2 两向量积的性质 (1)a×a=o;
ii j j kk o
(2)a || b a b o
(3)若a≠o,b≠o,a,b的夹角为θ,则
sin | a b |
i jk
ab 2 3 1 4i 2 j 2k
0 1 1
所以,
( a b )• c ( 4i 2 j 2k )•( i j k )
=4-2-2=0
因而a,b,c共面。
15
例6 求以点A(1,2,3),B(3,4,5)和C(-1, -2,7)为顶点的三角形的面积S。
如右图,则力对物体做的功为
θ
A
S
B
W | F || S | cos 2
2 性质: (1) a·a=|a|2
i • i 1, j • j 1, k • k 1
(2)a b a •b 0
i • j 0, j • k 0, k • i 0
(3)θ表示两非零向量a和b的夹角,则有
cos a • b
| a || b |
源自文库
3 两向量的向量积的运算律 (1) a×b=-b×a;
(2)(λa)×b=a×(λb)=λ(a×b
(λ为常数)
(3)(a+b)×c=a×c+b×c
12
4 两向量的向量积的坐标表示 设向量
a x1i y1 j z1k, b x2i y2 j z2k
则有
i
jk
a b x1 y1 z1 x2 y2 z2
a • b x1x2 y1 y2 z1z2
4
证明:
a • b (x1i y1 j z1k ) • (x2i y2 j z2k )
x1x2i • i x1 y2i • j x1z2i • k y1x2 j • i y1y2 j • j y1z2 j • k z1x2k • i z1y2k • j z1z2k • k
第三节 向量的数量积和向量积
一、 两向量的数量积 二、 两向量的向量积
1
一、两向量的数量积
1 定义 两个向量a和b的模与它们之间夹角的余弦之积,
称为向量a与b的数量积, 记作a·b,即
a • b | a || b | cos(a, b)
数量积也称点积。
力学意义:一物体在力F的作用下,
F
沿直线AB移动了S, F与AB的夹角为α,
θ为边CA,CB的夹角。 A 证明:如图所示的△ABC,可得
那么
AB CB CA B
θ C
2
AB
( CB CA )2
( CB CA )•( CB CA )
2
2
CB CA 2CB • CA
令 | CB | a,| CA| b,| AB| c, 所以
c2 a2 b2 2ab cos
3
j
k
,b
i
k,
c
i
1 3
j
k
解:
ijk
a b 2 3 1 3i j 3k
1 0 1
显然
故a×b//c.
14
例5 问向量 a = -2i+ 3j + k,b = -j + k,c = i - j - k
是否共面? 解:判断三个向量是否共面,只要判断其中的两个
向量的向量及与第三个向量是否垂直即可。(为什么?) 由于
★向量积模的几何意义是:以
a,b为邻边的平行四边形的面积。
c
b θ a
10
★力学意义:力矩, 如下图所示。
O为一根杠杆L的支点,
F
有一个力F作用于其上点P处, O
F与OP 的夹角为θ,由力学
规定,力F对支点O的力矩是 一个向量M, 它的模
θ
P
L
Q
M OP F
| M ||OQ|| F ||OP|| F | sin
x1x2 y1 y2 z1z2
则有两非零向量a和b的夹角θ的余弦坐标表示为
cos a • b
x1x2 y1 y2 z1z2
| a || b |
x12 y12 z12 x22 y22 z22
5
此时,对于非零向量a,b,有
a b x1x2 y1 y2 z1z2
5 向量在轴上的投影
| a || b |
3
3 运算律
(1)交换律 a •b b • a
(2)分配律 (a b) • c a • c b • c
(3)结合律 (a) • b (a • b) a • (b)
其中λ为常数。
4 数量积的计算公式
设向量
a x1i y1 j z1k,
则有
b x2i y2 j z2k
用e表示u轴上的单位向量, 则a·e为向量a在e方向 上的投影,那么有
a • e | a || e | cos | a | cos
例1 已知a={1,1,-4},b={1,-2,2},求: (1)a·b; (2)a与b的夹角; (3)a在b上的投影。
7
解:(1)a •b 11 1( 2 ) (-4) 2
9
(2) cos(
a ,b
)
|
a a
•b || b
|
9
1
12 12 ( 4 )2 12 ( 2 )2 22
2
所以
( a,b ) 3
(3) 因为
4
a • b | a || b | cos( a,b ) | b | Pr jba
所以
Pr
ju AB
a•b |b|
9 3
3
8
例2 求证余弦定理 c2 a2 b2 2ab cos
设A为空间一点,u轴已知,如图。 过点A作与轴垂直的平面,平面与轴 A
的交点A‘称为A在轴上的投影。
对于已知向量 AB,u轴上的有向
A'
线段 AB 的模称为向量 AB 在轴u
上的投影,它是一个数量,记作
Pr ju AB
B
B'
u
6
那么
Pr ju AB | AB| cos
θ为向量 AB 与轴u的夹角。
证毕
9
二、两向量的向量积
1 定义 设向量c由两个向量a和b按下列规定给出:
(1)|c|=|a| |b| sinθ,θ为向量a和b的夹角; (2)c a, c b ,且向量a,b , c的方向满足右 手定则,如图; 那么向量c称为向量a和b的向量积,记作a×b,即
C= a×b 向量积又称为叉积。
相关文档
最新文档