高中数学坐标系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲 坐标系
1.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝ ⎛⎭⎪⎫
θ-π4=22.
(1)求圆O 和直线l 的直角坐标方程;
(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. 解 (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 圆O 的直角坐标方程为:x 2+y 2=x +y , 即x 2+y 2-x -y =0, 直线l :ρsin ⎝ ⎛⎭⎪⎫
θ-π4=22,
即ρsin θ-ρcos θ=1,
则直线l 的直角坐标方程为:y -x =1,即x -y +1=0.
(2)由⎩⎨⎧x 2+y 2
-x -y =0,x -y +1=0,得⎩⎨⎧x =0,y =1,
故直线l 与圆O 公共点的一个极坐标为⎝ ⎛
⎭
⎪⎫1,π2.
2.(2017·贵阳调研)以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=2
1-sin θ.
(1)将曲线的极坐标方程化为直角坐标方程;
(2)过极点O 作直线l 交曲线于点P ,Q ,若|OP |=3|OQ |,求直线l 的极坐标方程. 解 (1)∵ρ=x 2+y 2,ρsin θ=y , ∴ρ=
2
1-sin θ
化为ρ-ρsin θ=2,
∴曲线的直角坐标方程为x 2=4y +4. (2)设直线l 的极坐标方程为θ=θ0(ρ∈R ), 根据题意21-sin θ0=3·2
1-sin (θ0+π),
解得θ0=π6或θ0=5π
6,
直线l 的极坐标方程θ=π6(ρ∈R )或θ=5π
6(ρ∈R ).
3.在极坐标系中,求曲线ρ=2cos θ关于直线θ=π
4对称的曲线的极坐标方程. 解 以极点为坐标原点,极轴为x 轴建立直角坐标系,则曲线ρ=2cos θ的直角
坐标方程为(x -1)2+y 2=1,且圆心为(1,0).直线θ=π
4的直角坐标方程为y =x ,因为圆心(1,0)关于y =x 的对称点为(0,1),
所以圆(x -1)2+y 2=1关于y =x 的对称曲线为x 2+(y -1)2=1.
所以曲线ρ=2cos θ关于直线θ=π
4对称的曲线的极坐标方程为ρ=2sin θ. 4.在极坐标系中,已知圆C 的圆心C ⎝ ⎛
⎭⎪⎫3,π3,半径r =3.
(1)求圆C 的极坐标方程;
(2)若点Q 在圆C 上运动,点P 在OQ 的延长线上,且OQ →=2QP →,求动点P 的轨
迹方程.
解 (1)设M (ρ,θ)是圆C 上任意一点.
在△OCM 中,∠COM =⎪⎪⎪⎪
⎪⎪
θ-π3,由余弦定理得
|CM |2=|OM |2+|OC |2
-2|OM |·|OC |cos ⎝ ⎛⎭
⎪⎫θ-π3,
化简得ρ=6cos ⎝ ⎛⎭⎪⎫
θ-π3.
(2)设点Q (ρ1,θ1),P (ρ,θ), 由OQ →=2QP →,得OQ →=23OP →
, ∴ρ1=2
3ρ,θ1=θ, 代入圆C 的方程,得
23ρ=6cos
⎝ ⎛⎭⎪⎫θ-π3,即ρ=9cos ⎝ ⎛⎭
⎪⎫
θ-π3. 5.(2015·全国Ⅱ卷)在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =t cos α,y =t sin α(t 为参数,t ≠0),
其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.
(1)求C 2与C 3交点的直角坐标;
(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.
解 (1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.
联立⎩⎨⎧x 2
+y 2
-2y =0,x 2+y 2-23x =0,
解得⎩⎨⎧x =0,y =0或⎩⎪⎨⎪⎧x =32,
y =32.
所以C 2与C 3交点的直角坐标为(0,0)和⎝ ⎛⎭⎪⎫
32,32.
(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0), 其中0≤α<π.
因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪
⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3. 当α=5π
6时,|AB |取得最大值,最大值为4.
6.(2017·唐山质检)已知曲线C 1:x +3y =3和C 2:⎩⎨⎧x =6cos φ,
y =2sin φ(φ为参数).以
原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.
(1)把曲线C 1和C 2的方程化为极坐标方程;
(2)设C 1与x ,y 轴交于M ,N 两点,且线段MN 的中点为P .若射线OP 与C 1,C 2交于P ,Q 两点,求P ,Q 两点间的距离. 解 (1)曲线C 1化为ρcos θ+3ρsin θ= 3. ∴ρsin ⎝ ⎛⎭
⎪⎫
θ+π6=32.
曲线C 2化为x 26+y 2
2=1(*) 将x =ρcos θ,y =ρsin θ代入(*)式
得ρ26cos 2θ+ρ22
sin 2
θ=1,即ρ2(cos 2θ+3sin 2θ)=6. ∴曲线C 2的极坐标方程为ρ2
=61+2sin 2θ.
(2)∵M (3,0),N (0,1),∴P ⎝ ⎛⎭⎪⎫
32,12,
∴OP 的极坐标方程为θ=π
6,
把θ=π6代入ρsin ⎝ ⎛⎭⎪⎫θ+π6=32,得ρ1=1,P ⎝ ⎛
⎭
⎪⎫1,π6.