6.1 平方根、立方根 课件(3)(沪科版七年级下)
七年数学下册第6章实数6.1平方根立方根6.1.1平方根目标六用计算器求算术平方根习题课件(新版)沪
小数格式 0.333 333 333
4 【教材P21T3改编】(1)用计算器计算,并填表(结果精 确到0.000 1);
a … 0.001 5 0.15 15 1 500 150 000 … a …… 0.038 7 0.387 3 3.873 0 38.729 8 387.298 3 …
你的猜想. (用计算器验证略)
C.0.151 7
D.1.517
【点拨】 0.002 3 是由 23 的小数点向左移动四位得到的,则它的
算术平方根由 23的小数点向左移动两位得到.本题易错之 处在于小数点移动方向或位数出现错误.
6 某工厂计划将原有的正方形场地改建成800平方米的长 方形场地,且其长、宽的比为5∶2. (1)求改建后的长方形场地的长和宽分别为多少米;
沪科版 七年级下
第6章 实数
平方根
目标六 用计算器求算术平方根
习题链接
温馨提示:点击 进入讲评
13 2C 3B 4
5B 6 7
答案呈现
1 【中考·湘西州】下面是一个简单的数值运算程序,当 输入x的值为16时,输出的数值为____3____.(用科学 计算器计算或笔算)
2 用计算器计算,若按键顺序为 4 ·5 - 0 ·5 ÷ 2
解:设改建后的长方形场地的长为 5x 米,则宽为 2x 米, 根据题意,得 5x·2x=800,解得 x= 80, 所以长为 5 80米,宽为 2 80米. 答:改建后的长方形场地的长和宽分别为 5 80米、2 80米.
(2)如果把原来面积为900平方米的正方形场地的金属栅栏 围墙全部利用,来作为新场地的长方形围墙,栅栏是否 够用?为什么? 解:栅栏不够用.理由如下: 设正方形的边长为 y 米,则 y2=900, 解得 y=30,所以原正方形的周长为 120 米. 因为新长方形的周长为(5 80+2 80)×2≈125(米), 120<125,所以栅栏不够用.
初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(17)
章节测试题1.【答题】下列说法中,不正确的是().A. 3是的算术平方根B. ±3是平方根C. -3是的算术平方根D. -3是的立方根【答案】C【分析】根据算术平方根、平方根、立方根的定义判断即可.【解答】A、3是(-3)2的算术平方根,正确;B、±3是(-3)2的平方根,正确;C、(-3)2的算术平方根是3,故本选项错误;D、3是(-3)3的立方根,正确.选C.2.【答题】下列计算正确的是()A. B.C. D.【答案】C【分析】根据算术平方根和立方根的概念计算即可求解.【解答】解:A、,选项错误;B、,选项错误;,选项正确;D、,选项错误;选C.3.【答题】下列各式中,正确的是()A. B. =4 C. D.【答案】C【分析】本题考查了平方根和立方根.【解答】A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=-3,所以C选项正确;D、原式=|-4|=4,所以D选项错误.选C.4.【答题】8的平方根和立方根分别是()A. 8和4B. 和2C. 和8D. 和2【答案】D【分析】根据平方根和立方根定义求出即可.【解答】解:8的平方根和立方根分别是±和2.5.【答题】65.下列说法正确是A. -2没有立方根B. 8的立方根是±2C. -27的立方根是-3D. 立方根等于本身的数只有0和1 【答案】C【分析】本题考查了立方根.【解答】G根据立方根的性质,易得C.6.【答题】下列语句正确的是()A. 的平方根是±2B. 36的平方根是6C. 的立方根是D. 的立方根是2【答案】D【分析】本题考查了平方根和立方根.【解答】选项A,的平方根是±;选项B,36的平方根是±6;选项C,的立方根是;选项D,的立方根是2,选D.7.【答题】下列说法中,正确的是()A. B. 64的立方根是±4C. 6平方根是D. 0.01的算术平方根是0.1【分析】本题考查了平方根和立方根.【解答】A.=3,故错误;B. 64的立方根是4,故错误;C. 6的平方根是±,故错误;D. 0.01的算术平方根是0.1,正确;选D.8.【答题】下列说法中正确的有()①都是8的立方根;②=±4;③的平方根是;④⑤是81的算术平方根A. 1个B. 2个C. 3个D. 4个【答案】B【分析】本题考查了平方根和立方根.【解答】①、2是8的立方根,则错误;②、=4,则错误;③、正确;④、正确;⑤、9是81的算术平方根.9.【答题】下列说法不正确的是()A. 的平方根是B. -9是81的一个平方根C. 0.2的算术平方根是0.04D. -27的立方根是-3【分析】本题考查了平方根和立方根.【解答】A. 的平方根是,正确;B. -9是81的一个平方根,正确;C. 0.2的是0.04算术平方根,错误;D. -27的立方根是-3,正确选C.10.【答题】-27的立方根与的平方根之和是()A. 0B. 6C. 0或-6D. -12或6【答案】C【分析】本题考查了平方根和立方根.【解答】-27的立方根是-3,的平方根是±3,所以-27的立方根与的平方根之和是-3+3=0或-3-3=-6.选:C.11.【答题】下列计算正确的是A.B.C.D.【答案】D【分析】本题考查了平方根和立方根.【解答】A、,故该项错误;B、,故该项错误;C、,故该项错误;D、,故该项正确.选D.12.【答题】下列说法正确的是()A. 3是9的立方根B. 3是(-3)2的算术平方根C. (-2)2的平方根是2D. 8的平方根是±4【答案】B【分析】根据算术平方根,平方根,立方根的概念,逐一判断.【解答】A.∵33=27,∴3是27的立方根,本选项错误;B. (-3)2=9,3是9的算术平方根,本选项正确;C. (-2)2=4,4的平方根为±2,本选项错误;D. 8的平方根是,本选项错误.13.【答题】下列各式正确的是().A. B.C. D.【答案】A【分析】本题考查了平方根和立方根.【解答】∵,则B错;,则C;,则D错,选A.14.【答题】-8的立方根与4的平方根的和是()A. 0B. 0或4C. 4D. 0或-4 【答案】D【分析】本题考查了平方根和立方根.【解答】∵-8的立方根为-2,4的平方根为±2,∴-8的立方根与4的平方根的和是0或-4.选D.15.【答题】下列说法错误的是()A. 1是1的算术平方根B.C. -27的立方根是-3D.【分析】本题考查了平方根和立方根.【解答】A、因为12=1,所以1是1的算术平方根,故此选项正确;B、=7,故此选项正确;C、(-3)3=-27,所以-27的立方根是-3,故此选项正确;D、=12,故此选项错误.选D.16.【答题】下列计算正确的是().A. B.C. D.【答案】D【分析】本题考查了平方根和立方根.【解答】项.错误;项.,错误;项.错误;.选.17.【答题】下列各式计算正确的是()A. =-9B. =±5C. =-1D. (-)2=-2【答案】C【分析】本题考查了平方根和立方根.【解答】A.=9,故该选项错误;B. =5,故该选项错误;C. =-1,正确;D. (-)2=2,故该选项错误.选C.18.【答题】64的立方根是()A. ±4B. 4C. -4D. 16【答案】B【分析】本题考查了立方根.【解答】∵43=64∴64的立方根是4.选B.19.【答题】使用某种电子计算器求+的近似值,其按键顺序正确的是()A. 8+2ndF6=B. 8+2ndF6=C. 8+6=D. 8+6=【答案】A【分析】本题考查了平方根和立方根.【解答】根据无理数运算中计算器的使用法则可知,是先按,再按8,是先按2ndf键,再按,再按6.故本题正确答案为A.20.【答题】若x2=25,则x=______;若,则x=______;若,则x=______;若x3=-216,则x=______;若=3,则x=______;若,则x=______.【答案】±5,18,,-6,27,-27【分析】本题考查了平方根和立方根.【解答】分别利用立方根和算术平方根的定义求解即可.解:∵x2=25,∴x=±5;∵,∴x=42+2=18;∵,∴x=()2=;∵x3=-216,∴x=-6;∵,∴x=33=27;∵,∴x=(-3)3=-27.故答案为:±5,18,,-6,27,-27.。
2022-2023学年沪科版数学七年级下册 立方根 课件PPT
125
5
-
- .
27
3
+
(-)
=2÷
+1=2× +1=
.
例4 已知
3
3 y-1 和 3 1-2 y互为相反数,且x≠0,y≠0,
x
求
的值.
y
解:因为 3 3 y-1和 3 1-2 y 互为相反数,
所以3y-1 和1-2x 互为相反数,
即(3y-1)+(1-2x)=0.
例2 已知x-2 的平方根是±2,2x+y+7 的立方根是3,求
x2+y2 的算术平方根.
解题秘方:一个数等于它平方根的平方,等
于它立方根的立方 .
解:因为x-2 的平方根是±2,所以x-2=4.所以x=6.
因为2x+y+7 的立方根是3,所以2x+y+7=27.
把x=6 代入解得y=8,所以x2+y2=62+82=100.
≈ 2.368,
例6
比较下列各组数的大小:
(1)
与 3 ;(2) -
与 - 3.4;(3)
与 2.
解题秘方:可以用计算器求出各个数的近似数进
行比较,也可以借助中间值进行比较 .
解: (1)用中间值法:因为 2=
<
ቤተ መጻሕፍቲ ባይዱ
,2= > ,
所以 > .
(2)用计算器求值法:因为 ≈ 3.476 > 3.4,
+
(-) .
解题秘方:根据立方根和平方根的定义进行化简计算 .
1.第2课时算术平方根PPT课件(沪科版)
;(3) .;(4) (-) .
第2课时
算术平方根
解: (1)因为 52=25,所以 =5.
(2)因为
2
= ,所以
= .
(3)因为(0.2)2=0.04,所以 .=0.2.
(4)因为(-4) =16=4 ,所以 (-) = =4.
2
2
第2课时
平方米,
= =0.8(米).
所以这种正方形地板砖的边长为 0.8 米.
第2课时
算术平方根
总结反思
算
术
平
方
根
概
念
正数a的正的 平方根叫做a的
算术平方根, 0的算术平方根
是0
求一个非负数的
算术平方根
应
用
用计算器求一个数
的算术平方根
算术平方根的实
际应用
性
质
算术平方根的
双重非负性:
± ≥0
(a ≥0)
第2课时
算术平方根
小结
知识点一 算术平方根的概念
正数 a 的正的平方根叫做 a 的算术平方根,用 Nhomakorabea
表示.
[点拨] 算术平方根的双重非负性: 是一个非负数,
而被开方数 a 也是一个非负数,因此 具有双重非负性,即
a≥0, ≥0.
第2课时
算术平方根
知识点二
算术平方根的性质
一下,用 25 块某种正方形的地板砖正好铺满客厅,请你计算一下
这种正方形地板砖的边长.
第2课时
算术平方根
[解析] 根据题意可知,25 块这种正方形地板砖的面积
平方根与算术平方根立方根无理数PPT课件
(2)个数不同:一个正数有两个平方根,而一个
正数的算术平方根只有一个。
(3)表示方法不同:正数a的算术平方根表示
第9页/共32页
立方根:
1. 定义:
一般地,如果一个数x的立方等于a,即x3=a, 那么这个数x就叫做a的立方根.(也叫做三次方 根) 。
2.表示方法:
第10页/共32页
什么叫做开平方?那开立方呢?
无理数: 无限不循环小数
含有 ~ 的数
有规律但不循环的数
第25页/共32页
按性质分类: 实数
正实数
0
负实数
正有理数
正无理数
负有理数
负无理数
负实数
正实数
0
第26页/共32页
你能在数轴上找到表示 的点吗?
2
小结:
有理数可以用数轴上的点表示,无理数也可以用数轴上的点 表示.
每一个无理数都能在数轴上表示出来. 数轴上的点有些表示有理数,有些表示无理数. 每一个实数都可以用数轴上的一个点来表示;反过来, 数轴上的每一点都表示一个实数。即实数和数轴上的 点是一一对应的。
第21页/共32页
思考:
2 介于哪两个整数之间?你是根据什么考虑的?
A
1
2
B 4D
1
2
2C
1.42 __<__( 2)2 __<__1.52
1.4 ___<_ 2 __<__1.5
1.412 _<___( 2)2 __<__1.42 2
1.41 ___<_ 2 __<__1.42
1.414 2 _<___( 2)2 _<___1.415 2
第28页/共32页
沪科版七年级下册数学教学课件 第6章 实数 6-1 平方根、立方根 立方根
课堂小结
立方根的概念及性质
立方根
开立方及相关运算
七年级数学下(HK) 教学课件
第6章 实 数导入新课
讲授新课
当堂练习
课堂小结
学习目标
情境引入
1.了解立方根的概念,会用根号表示一个数的立方根. (重点) 2.能用开立方运算求某些数的立方根,了解开立方和
立方互为逆运算.(重点,难点)
导入新课
情境引入
某化工厂使用半径为1米的一种球形储气罐储藏 气体,现在要造一个新的球形储气罐,如果要求它 的体积必须是原来体积的8倍,那么它的半径应是原 来储气罐半径的多少倍?
因为(
1 2
)3
=0.125,所以0.125的立方是(
1 2
);
因为( 0)3 =0,所以0的立方根是(0 );
因为 (-2 )3 =-8,所以-8的立方根是(-2 );
因为(
2 3
)3
= 8
27
,所以 8
27
的立方(
2 3
).
知识要点
立方根的性质
一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零.
体会:对于任何数a , 3 a3 _a__
探究2 求下列各式的值:
3 8 3 _8__
3
3 27 2__7_
( 3 8)3 _-_8_
3 27 3 -_2_7_
3 0 3 _0__
3
体会:对于任何数a , 3 a _a__
探究3 求下列各式的值: (1) 3 0.008 ; -0.2
讲授新课
一 立方根的概念及性质 问题:要做一个体积为27cm3的正方体模型(如图), 它的棱长要取多少?你是怎么知道的?
沪科版七年级下册知识点
2. 用计算器求立方根 用计算器求一个数a的立方根,其按键顺序为
2ndF
a=
三、实数 1.实数的分类
按定义分: 有理数:有限小数 或无限循环小数
实 数
无理数: 无限不循环小数
整数
分数 开方开不尽的数
含有π 的数
有规律但不循环的数
按大小分类:
实数
负实数
0
正实数
负有理数 负无理数 正有理数 正无理数
2. 算术平方根的概念及性质 a (1)定义:a的正平方根叫作a的算术平方根.
(2)性质:0的算术平方根是0,只有非负数才有 算术平方根,而且算术平方根也是非负数.
二、立方根
1. 立方根的概念及性质 3 a (1)定义:如果b3=a,那么b叫作a的立方根. (2)性质:每一个实数都有一个与它本身符号 相同的立方根.
分式的分子与分母都乘同一个非零整式,所
得分式与原分式相等.
a
即对于分式 b ,有
a b
a ·m a ·m
am am
( m 0 ).
4.分式的约分: 约分的定义 根据分式的基本性质,把一个分式的分子与分母 的公因式约去,叫做分式的约分.
最简分式的定义 分子与分母没有公因式的式子,叫做最简分式 注意:分式的约分,一般要约去分子和分母所有 的公因式,使所得的结果成为最简分式或整式.
平面位置关系两条直线相交对顶角相等垂线点到直线的距离两条直线被第三条直线所截两直线平行两直线平行的判定两直线平行的性质课堂小结同位角内错角同旁内角将贮存的编码信息转化为成适当的行为
第六章 实数知识点
6.1 平方根、立方根 6.2 实数
要点梳理
一、平方根 1. 平方根的概念及性质 a (1)定义:若r2=a,则r叫作a的一个平方根. (2)性质:正数a有两个平方根,它们互为相反数; 0的平方根是0,负数没有平方根.
6.1《立方根》(沪科版七年级下)
6.1立方根
王书富
学习目标:
2、左边算式已知底数、指数求幂,右边算式已知幂、指数求底数一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也叫做a的三次方根。
即如果X3=a,那么叫做的立方根。
请按照第7页的举例你
再举两个例子说明: 叫做开立方,立方与 互为逆运算
4、观察上面两组算式,归纳一个数的立方根的性质是:
正数 有一个正的立方根;
(1) 64 (2) 8
33- (3) -216 (4) (-4)3
(5)0.729 (6) 0.64
2、阅读课本第7页利用计算器求立方根的方法,利用计算器求下列各式的值。
(1) 328 (2) 3345.0 (3) 36.17- (4) 3
48
1 3、利用计算器求下列各数的算术平方根
C .负数没有立方根
D .如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1
3、求下列各式的值
3008.0)13343125
)2-3643
2)3+--33364
3
218164)4+---+-
4、求下列各式中的x.
(1)125x3=8 (2)(-2+x)3=-216 (3)32
x=-2
-
(4)27(x+1)3+64=0。
松滋市实验中学七年级数学下册第6章实数6.1平方根立方根2立方根课件新版沪科版3
随堂练习
1. 填空 (1)1的平方根是__±_1___ ;立方根为__1____ ;算术平方 根为____1_____. (2)平方根是它本身的数是____0______. (3)立方根是其本身的数是__±__1__, _0____. (4)算术平方根是其本身的数是__1_,__0___.
√
9. 求出以下各式中的未知数 x .
〔1〕x3=729x=9 〔2〕〔x-1〕3=125 x=6
〔3〕3 x 2 x=8
〔4〕 3 x 2 4 x=66
10. 用计算器计算 3 1845
解(1)在计算器上依次按键:2ndf 3 1845 =
,显示结果是12.264 940 82,所3 以1845 12.26
探究 : 因为 3 343 = __-_7___,- 3 343 = __-_7___ . 所以3 343 = __=____ - 3 343 因为 3 512 = __-_8___,- 3 512 = __-_8___ . 所以3 512 = __=____ - 3 512
你能从上述问题中总结出互为相反数的 两个数a与-a的立方根的关系吗?
3
你能看出正数 , 0 , 负数的立方根各有什么特点?
想一想 :
正数有立方根吗?如果有 , 有几个?负数呢?零呢?
一个正数有一个正的立方根 ;
一个负数有一个负的立方根 ,
零的立方根是零.
你能归纳出平方根和 立方根的异同点吗?
被开方数
平方根
立方根
正数 有两个互为相反数 有一个,是正数
负数
无平方根 有一个,是负数
第1章 有理数
1.4.1 有理数的乘法
第2课时 多个有理数的乘法
七年级数学下册第6章实数6.1平方根立方根第1课时平方根课件沪科版
3. a 具有双重非负性: (1)a≥0; (2) a≥0.
1.【2021·广安】16的平方根是( A ) A.±4 B.4 C.±8 D.8
2.【2021·南充】已知x2=4,则x=__±__2____.
3.求下列各数的平方根:
(1)0.025 6;
(2)2 1 . 4
解:(1)因为(±0.16)2=0.025 6,
13.如图是一张长方形纸片,将它分别沿着虚线剪开后, 拼成一个与原来面积相等的正方形,则正方形的边长 为( D ) A.3 B.5 C. 3 D. 5
14.【易错题】 a 的平方根为±3,则a=__8_1_____.
【点拨】因为 a 的平方根为±3,所以 a=9,解 得a=81,故答案为81.
15.【合肥月考】如果a的平方根是±16,则 a 的算术平方 根是__4______.
16 见习题 17 见习题 18 见习题 19 见习题
1.一个正数a的平方根有__两____个,它们互为__相__反__数__, 其中用____a____表示a的正的平方根,用__-____a__表示 a的负的平方根,a叫做被开方数,0的平方根是 ___0_____;负数没有平方根.
2.正数a的正的平方根记为___a_____,也叫做a的 _算__术__平__方__根_____;特殊地,0的算术平方根是__0____.
所以0.025 6的平方根是±0.16. (2)214=94, 因为±322=94,所以94的平方根是±32.
4.【2021·凉山州改编】 81 的算术平方根是( B ) A.±3 B.3 C.±9 D.9
5.下列说法:①-1的算术平方根是1;②-1的平方根是 ±1;③1的算术平方根是1;④ 0的算术平方根是0. 其中正确的有( B ) A.1个 B.2个 C.3个 D.4个
延川县一中七年级数学下册 第六章 实数6.1 平方根第2课时 用计算器求一个正数的算术平方根课件 新
2
无限不循环小数是 指小数位数无限 , 且小数部分不循环 的小数. 你以前见 过这种数吗 ?
练习Βιβλιοθήκη 1.实数 3 的值在〔B 〕
A.0 和 1 之间
B.1 和 2 之间
C.2 和 3 之间
D.3 和4 之间
2.与 1 + 5 最接近的整数是〔C 〕
A.1
B.2
C.3
D.4
知识点2 用计算器求一个数的算术平方根
v22 9 .8 6 .4 1 0 6 1 .1 1 0 4 因此 , 第一宇宙速度 v1 大约是 7.9×103 m/s , 第二宇宙速度 v2 大约是 1.1×104 m/s.
练习
1.用计算器计算 0.012345 ,下列按键
顺序正确的是(A )
A. ON
0.012345=
B. ON 0.012345 =
不能根据 3 的值 说出 3 0 的值.
例 3 小丽想用一块面积为 400 cm2 的正方 形纸片 , 沿着边的方向剪出一块面积为 300 cm2 的长方形纸片 , 使它的长宽之比为 3 : 2.她不知 能否裁得出来 , 正在发愁.小明见了说 : 〞别发 愁 , 一定能用一块面积大的纸片裁出一块面积小 的纸片.”你同意小明的说法吗 ?小丽能
解:∵36 < 40 < 49, ∴ 3 6 < 4 0 < 4 9 ,即6 < 4 0 < 7, ∴a = 6,b = 7,∴a + b = 6 + 7 = 13.
课堂小结
估算大小
∵1 < 2 < 4
∴1 < 2 < 2
用计算器求值
ON
2
=
已知 2+ 2 的小数部分为 a , 5 – 2 的小数
2020沪科版七年级数学下册电子课本课件【全册】
第6章 实 数
2020沪科版七年级数学下册电子课 本课件【全册】
6.1 平方根、立方根
2020沪科版七年级数学下册电子课 本课件【全册】
6.2 实 数
2020沪科版七年级数学下册电子课 本课件【全册】
第7章 一元二次不等式与不等 式组
2020沪科版七年级数学下册电子 课本课件【全册】目录
0002页 0050页 0092页 0106页 0108页 0145页 0173页 0207页 0223页 0248页 0346页 0348页 0387页
第6章 实 数 6.2 实 数 7.1 不等式及其基本性质 7.3 一元一次不等式组 第8章 整式乘法与因式分解 8.2 整式乘法 8.4 因式分解 第9章 分式 9.2 分式的运算 第10章 相交线、平行线与平移 10.2 平行线的判定 10.4 平 移 11.1 频数与频率
2020沪科版七年级不等式及其基本性质
2020沪科版七年级数学下册电子课 本课件【全册】
初中数学-沪科版-初一下-立方根 知识讲解
立方根【学习目标】1. 了解立方根的含义;2. 会表示、计算一个数的立方根,会用计算器求立方根.【要点梳理】【高清课堂:389317 立方根、实数,知识要点】要点一、立方根的定义如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果3=,那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方.x a要点诠释:一个数a a是被开方数,3是根指数. 开立方和立方互为逆运算.要点二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.要点诠释:任何数都有立方根,一个数的立方根有且只有一个,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数.要点三、立方根的性质==a3=a要点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题. 要点四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.0.060.6660.【典型例题】类型一、立方根的概念【高清课堂:389317 立方根实数,例1】1、下列结论正确的是()A.64的立方根是±4 B.12-是16-的立方根C.立方根等于本身的数只有0和1D=【答案】D;【解析】64的立方根是4;12-是18-的立方根;立方根等于本身的数只有0和±1.【总结升华】一个非零数与它的立方根符号相同;=举一反三:【变式1】下列说法正确的是()A.一个数的立方根有两个B.一个非零数与它的立方根同号C.若一个数有立方根,则它就有平方根D.一个数的立方根是非负数【答案】B;提示:任何数都有立方根,但是负数没有平方根.【变式2】(2015春•大名县期末)下列说法正确的是()A.﹣4的立方是64 B.0.1的立方根是0.001C.4的算术平方根是16 D.9的平方根是±3【答案】D.类型二、立方根的计算【高清课堂:389317 立方根实数,例2】2、求下列各式的值:(1)327102-- (2)3235411+⨯ (3)336418-⋅ (4(5)10033)1(412)2(-+÷-- 【答案与解析】解:(1)(2(3)43===9 1=241=2⎛⎫⨯- ⎪⎝⎭-(4)=331=1-++(5)3=21247=1=33÷++【总结升华】立方根的计算,注意符号和运算顺序,带分数要转化成假分数再开立方.举一反三:【变式】计算:(1=______;(2)=364611______; (3)=--312719______.(4)=-33511)(______. 【答案】(1)-0.2;(2)54;(3)23;(4)45. 类型三、利用立方根解方程3、(2015春•北京校级期中)(x ﹣2)3=﹣125.【思路点拨】利用立方根的定义开立方解答即可.【答案与解析】 解:(x ﹣2)3=﹣125, 可得:x ﹣2=﹣5, 解得:x=﹣3.【总结升华】此题考查立方根问题,关键是先将x ﹣2看成一个整体. 举一反三:【变式】求出下列各式中的a :(1)若3a =0.343,则a =______;(2)若3a -3=213,则a =______; (3)若3a +125=0,则a =______;(4)若()31a -=8,则a =______.【答案】(1)a =0.7;(2)a =6;(3)a =-5;(4)a =3.类型四、立方根实际应用4、在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱体烧杯中,并用一量筒量得铁块排出的水的体积为643cm ,小明又将铁块从水中提起,量得烧杯中的水位下降了169πcm .请问烧杯内部的底面半径和铁块的棱长各是多少? 【思路点拨】铁块排出的643cm 水的体积,是铁块的体积,也是高为169πcm 烧杯的体积. 【答案与解析】解:铁块排出的643cm 的水的体积,是铁块的体积.设铁块的棱长为y cm ,可列方程364,y =解得4y =设烧杯内部的底面半径为x cm ,可列方程216649x ππ⨯=,解得x =6. 答:烧杯内部的底面半径为6cm ,铁块的棱长 4cm .【总结升华】应该熟悉体积公式,依题意建立相等关系(方程),解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合. 举一反三:【变式】将棱长分别为和的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为____________.(不计损耗).。
沪科版七年级数学下册6.1 平方根、立方根(第1课时)公开课课件
计算各式中 x的 值 : ( 1 ) 9x 256 0
2
( 2 ) x 2 100 0 ( 3 ) 4 ( 2x 1 ) 25 0
2
补充练习;
1. 16的 算 术 平 方 根 是 ; 2 5 12 。 13
(× ) ( ×) (× ) (× ) ( ×) (√ ) (√ ) 8.如果两个数平方后相等,那么它们的也相等
例. 已知
x 有意义,则x一定是
(
)
A.正数 B. 负数 C. 非负数 D. 非正数 例3.求下列各式的值
625
21 4 25
23 42 36
例. 求使
Hale Waihona Puke 有意义x的取值范围. x 1 x 1
求一个数a的平方根的运算,叫做开平方。 平方 +1 -1 +2 -2 +3 -3 1 4 9 1 4 9 开平方 +1 -1 +2 -2 +3 -3
2 例如:∵ 52 25 (5) 25 ∴5 和 -5 都是25的平方根。
∴ 25的平方根是±5。
∵
∴
3 2 ( ) 7 3 和- 7
正数a的正的平方根叫做a的算术平方根。
正数a的算术平方根记作: a 它的另一个平方根记作: a a 一个正数a的平方根表示为:
0的算术平方根还是0
说明:这样求一个正数的平方根,只 要求出它的算术平方根后,就可以写 出它的平方根了。
“负数没有平方根”与“一个数的平方根 不能为负数”意义是否一样? 求一个数的平方根(二次方根)的运算,叫 做开平方,开平方运算的结果就是平方根。 平方与开平方是互为逆运算.
练习:下列说法中不正确的个数有 ( C ) ①0.25的平方根是0.5 ②-0.5的平方 根是-0.25 ③只有正数才有平方根 ④0的平方根是0
初中数学七年级下册 6.1 平方根、立方根-全国公开课一等奖
《 平方根》本节课是义务教育沪科版数学七年级下册第六章第一节《平方根》的内容,在此之前,学生已经学习了有理数、有理数的乘方、用字母表示数等知识,这为过渡到本节起着铺垫作用。
本节主要学习平方根和算术平方根的概念和性质,在运算方面,引入了开方运算,使学生掌握的代数运算由原来的加、减、乘、除、乘方五种扩展到六种,建立起较完善的代数运算体系。
本节内容既是对前面所学知识的深化和发展,也是今后学习二次根式、实数的预备知识,还是用直接开平方法、公式法解一元二次方程的重要依据。
因此,本节处于非常重要的地位,起着承前启后的作用。
1、了解平方根的概念,会用根号表示平方根;2、了解开方与乘方互逆运算,会用求某些非负数的平方根。
【过程与方法目标】通过尺平方根的运算,让学生体会无理数是因实际生活的需要而产生的,理解数的扩充。
【情感态度价值观目标】让学生在自主参与、合作交流的活动中体验成功的喜悦,树立自信,激发学习,发展学生的符号语言。
【教学重点】一个数的平方根的概念理解及表示方法。
【教学难点】一个数的平方根的概念理解及表示方法。
学生准备:练习本。
问题一 1.回顾:我们已经学过那些运算其中那些运算互为逆运算2.计算(- 4)2= 2= (3/5)2 = (- 5/7)2=(上面的运算都属于平方运算,是已知底数和指数,求幂的运算,是否存在一种已知指数和幂,求底数的运算呢)问题二装修房屋,选用了某种型号的正方形地砖,这种地砖4块正好铺1m2,如图所示,问这种地砖一块的边长是多少学生思考,解决问题。
若设一块正方形地砖的边长是x m,则每块正方形地砖的面积是x2 m2,根据题意,得21x4,求底数。
实际上,就是已知一个数的平方,求这个数的问题。
这就是我们这节课将要学习的问题:平方根。
)板书课题。
二、共同探究,学习新知(一)平方根的概念课件出示平方根的概念一般地,如果一个数的平方等于a,那么这个数叫做a 的平方根,也叫做二次方根。
即如果x2 = a,那么x叫做a的平方根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3) -64没有立方根
(4) -4的平方根是 2
x x x x
(5) 0的平方根和立方根都是0 想一想 立方根是它本身的数有那些? 平方根是它本身的数呢?
√
有1, -1, 0
只有0
引伸探究2
6.1 立 方 根
自学提纲:
1、什么是一个数的立方根?
2、怎样用符号表示一个数的立方根? 3、正数、0、负数的立方根各是什么? 4、你会用计算器求一个数的立方根吗? 5、当一个数扩大或缩小1000倍时,它的立 方根会怎样变化?
4 16 的平方根是 ______ 你还记得吗
没有平方根 -16的平方根是________
探究1. 根据立方根的意义填空.
因为 2 =8,所以8的立方根是( 2 ) 1 13 因为( 2) =0.125,所以0.125的立方是( 2 ) 3 因为( 0) =0,所以0的立方根是( 0 )
因为 (-2) =-8,所以-8的立方根是( -2 ) 8 3 8 2 2 因为(- ) = ,所以 的立方( - ) 3 3 27 27 你能看出正数,0,负数的立方根各有什么特点?
其中a是被开方数,3是根指数,3不能省略。
如果正方体的体积为5cm3,正方体的边 思考:
长又该是多少? 设正方体的边长为X,则 所以正方体的边长是
3
x 5
3
5 ㎝.
开立方
2.求一个数的立方根的运算,叫做开立方
立方
互逆
到现在我们学了几种运算?
+,-,x,÷,乘方,开方(开平方,开立方)
2.立方根的性质
3
3
(1)立方根的特征 正数有立方根吗?如果有,有几个? 负数呢? 零呢? 一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零。 讨论:你能归纳出平方根和立方根的异同点吗?
被开方数
正数 负数 零
平方根
立方根
有两个互为相反数 有一个,是正数 有一个,是负数 无平方根 零 零
练一练
家庭作业:《基训》同步
思考:(1)什么数的立方等于-8? -2
(2)如果问题中正方体的体积为5cm3,正方 体的边长又该是多少?
1.立方根的定义
一般地,一个数的立方等于a,这个数就 叫做a的立方根,也叫做a的三次方根.记作 . 3a
1.如何表示一个数的立方根? 一个数a的立方根可以表示为:
根指数
3
a
被开方数
读作:三次根号 a
例:求下列各式的值
(1) 3
64
3
3
(2)
3
125
(3) 3
27 64
解: (1)
(2)
64 =4
125 = 3 125 =-5
(3) 3
27 64
=
3 求一个负数的立方根,可以先求出这个负数绝 对值的立方根,然后再取它的相反数.
探究4
a
3
先填写下表,再回答问题:
0 0的平方根是________ 一个正数有正负两个平方根,它们互为 相反数;零的平方根是零,负数没有平方根.
问题:要做一个体积为27cm3的正方体模 型(如图),它的棱长要取多少?你是怎么知 道的?
设正方体的棱长为X㎝,则
x 27
3
这就是要求一个数,使它的立方等于27. 3 因为 3 27 所以 X=3. 正方体的棱长为3㎝
球 体积的比为1 :8,则甲、乙两球的半径比
为1 : 2 . r
R
甲
乙
课堂小结
1.立方根的定义,性质,计算. 2.立方根与平方根的异同
一、相同点: ①0的平方根、立方根都有一个是0 ②平方根、立方根都是开方的结果。 二、不同点: ①定义不同
②个数不同
③表示方法不同
被开方数的取值范围不同
课堂作业: P10/ 9. 10.11.12
3
3
2 2
3
3
3
3
(2) -2
3
3
(3) -3
4 4
3
3
0 0
a
3
3
规律:对于任何数a都有
3 3
3 3
8 8 ( 8) -8 27 27 27 -27 0 规律:对于任何数a都有 a a
3 3
3 3
a
3
3
0
3
3
因为 3 8 = 所以
因为
3
3
-2 , 3 8 = -2
8
= 3 8
互为相反数的 数的立方根也 互为相反数
27 = -3 , 3 27 = -3
= 3 27 所以 3 27 猜一猜: 你能从上述问题中总结出互为相反数的两个数a与 -a的立方根的关系吗? 3 3
-a
a
引伸探究3
1 1000 1000000
0.000001 0.001
a
0.01
0.1
1
10
100
从上面表格中你发现什么? 归纳: 被开方数扩大(缩小)1000倍时,它的立方根扩 大(缩小)10倍.
练习:请同学们完成教材第8页的第1——4题.
已知半径为r 的球,其体积 5.跳一跳:
4 3 的计 算公式为 V r . 如果甲、乙两 3