人教版初中数学不等式与不等式组知识点及习题总汇

合集下载

人教版七年级下册第九章《不等式与不等式组》全章练习(分层分结典型练习题含答案)

人教版七年级下册第九章《不等式与不等式组》全章练习(分层分结典型练习题含答案)

第九章不等式与不等式组9.1不等式9.1.1不等式及其解集基础题知识点1不等式1.给出下面5个式子:①3>0;②4x+3y≠0;③x=3;④x-1;⑤x+2<3,其中不等式有(B)A.2个B.3个C.4个D.5个2.选择适当的不等号填空:(1)2<3;(2)-9>-4;(3)若a为正方形的边长,则a>0;(4)若x≠y,则-x≠-y.3.如图,左边物体的质量为x g,右边物体的质量为50g,用不等式表示下列数量关系是x>50.第3题第4题4.如图,身高为x cm的1号同学与身高为y cm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,那么这个式子可以表示成x<y(用“>”或“<”填空).5.用适当的符号表示下列关系:(1)x是正数:x>0;(2)m大于-3:m>-3;11(3)a-b是负数:a-b<0;(4)a的3比5大:3a>5.116.“b的2与c的和是负数”用不等式表示为2b+c<0.知识点2不等式的解和解集7.用不等式表示如图所示的解集,其中正确的是(A)A.x>-2B.x<-2C.x>2D.x≠-28.下列说法中,错误的是(C)A.x=1是不等式x<2的解;B.-2是不等式2x-1<0的一个解;C.不等式-3x>9的解集是x=-3;D.不等式x<10的整数解有无数个。

229.下列各数:-2,-2.5,0,1,6中,不等式3x>1的解有6;不等式-3x>1的解有-2,-2.5.10.把下列不等式的解集在数轴上表示出来.(1)x>-3;解:(2)x>-1;解:(3)x<3;解:3(4)x<-2.解:中档题11.x与3的和的一半是负数,用不等式表示为(C)1111A.2x+3>0B.2x+3<0C.2(x+3)<0D.2(x+3)>012.实数a,b在数轴上的位置如图所示,则下列不等式成立的是(D)A.a>bB.ab>0C.a+b>0D.a+b<013.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.x+4]=5,则x的取值可以是(C)若[10A.40B.45C.51D.5614.请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解:x<1;(2)-2,-1,0,1都是不等式的解:x<2;(3)0不是这个不等式的解:x>0;(4)与x<-1的解集相同的不等式:x+2<1.15.有如图所示的两种广告牌,其中图1是由两个两直角边相等的直角三角形构成的,图2是一个长方形,从图形上确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a,b 11的不等式表示为2a2+2b2>ab.16.用不等式表示:(1)7x与1的差小于4;(2)x的一半比y的2倍大;1(3)a的9倍与b的2的和是正数.11(3)9a+2b>0.解:(1)7x-1<4.(2)2x>2y.17.直接写出下列各不等式的解集:(1)x+1>0;解:x>-1.(2)3x<6.解:x<2.18.已知一支圆珠笔1.5元,签字笔与圆珠笔相比每支贵2元.小华想要买x支圆珠笔和10支签字笔.若付50元仍找回若干元,则如何用含x的不等式来表示小华所需支付的金额与50元之间的关系?解:列不等式为:1.5x+10×(1.5+2)<50.19.在爆破时,如果导火索燃烧的速度是每秒钟0.8cm,人跑开的速度是每秒钟4m,为了使点导火索的人在爆破时能够跑到100m以外的安全地区,设导火索的长为s cm.(1)用不等式表示题中的数量关系;s解:4×0.8>100.(2)当导火索是下列哪个长度时,人能跑到安全地区(D)A.15cmB.18cmC.20cmD.25cm综合题20.阅读下列材料,并完成填空:你能比较20172018和20182017的大小吗?为了解决这个问题,先把问题一般化,即:比较n n +1和(n+1)n的大小(n>0,且n为整数).从分析n=1,2,3,…的简单情况入手,从中发现规律,经过归纳猜想出结论:(1)通过计算,填“>”或“<”;①12<21;②23<32;③34>43;④45>54.(2)根据(1)的结果,猜想n n+1和(n+1)n的大小关系;(3)根据(2)中的猜想,知20172018>20182017.解:当n=1或2时,n n+1<(n+1)n;当n>2,且n为整数时,n n+1>(n+1)n.4.若 a >b ,则 3a >3b ; > ;ac 2>bc 2(c 为非零实数).(填“>”“=”或“<”)5.如果 2m <3n ,那么不等式两边同时乘 (或除以 6),可变为 m< n.2 3 3第九章 不等式与不等式组9.1 不等式9.1.2不等式的性质第 1 课时 不等式的基本性质基础题知识点 1 不等式的性质 11.若 a >b ,则 a -3>b -3.(填“>”“<”或“=”)2.若 a -4<b -4,则 a <b.(填“>”“<”或“=”)3.已知实数 a ,b 在数轴上的对应点的位置如图所示,则 a -2<b -2.知识点 2 不等式的性质 2a b5 51 1 16 3 2知识点 3 不等式的性质 316.若- a≥b,则 a≤-2b ,其根据是(C)A.不等式的两边加(或减)同一个数(或式子),不等号的方向不变B.不等式的两边乘(或除以)同一个正数,不等号的方向不变C.不等式的两边乘(或除以)同一个负数,不等号的方向改变D.以上答案均不对7.若 a >b ,am <bm ,则一定有(B)A.m =0B.m <0C.m >0D.m 为任何实数中档题8.若 x >y ,则下列式子中错误的是(D)x y A.x -3>y -3B. >C.x +3>y +3D.-3x >-3y9.(2017·株洲)已知实数 a ,b 满足 a +1>b +1,则下列选项错误的为(D)A.a >bB.a +2>b +2C.-a <-bD.2a >3bc b12.已知关于x的不等式(1-a)x>2的解集为x<210.下列说法不一定成立的是(C)A.若a>b,则a+c>b+c;B.若a+c>b+c,则a>b;C.若a>b,则ac2>bc2;D.若ac2>bc2,则a>b11.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是(B)A.a-c>b-cB.a+c<b+ca cC.ac>bcD.<1-a,则a的取值范围是a>1.13.如图所示,A,B,C,D四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为B<A<D<C.14.张华在进行不等式变形时遇到不等式b<-b,他将不等式两边同时除以b得1<-1,这显然是不成立的,你能解释这是为什么吗?你能求出b的取值范围吗?解:∵不知道b的正负,∴将不等式两边同时除以b,不等号的方向不知道改变不改变.张华把b看成大于0,所以才得出错误的结论.不等式两边同时加上b,得2b<0.不等式两边同时除以2,得b<0.3 6 3 6 7 44第 2 课时 不等式的基本性质的运用基础题知识点 1 利用不等式的性质解不等式1.不等式 x -2>1 的解集是(C)A.x>1B.x>2C.x>3D.x>42.(2016·临夏)在数轴上表示不等式 x -1<0 的解集,正确的是(C)3.利用不等式的基本性质求下列不等式的解集,并写出变形的依据.(1)若 x +2 016>2 017,则 x>1;(不等式两边同时减去 2__016,不等号方向不变)1 1(2)若 2x>- ,则 x>- ;(不等式两边同时除以 2,不等号方向不变)1 1(3)若-2x>- ,则 x< ;(不等式两边同时除以-2,不等号方向改变)x(4)若- >-1,则 x<7.(不等式两边同时乘-7,不等号方向改变)4.根据不等式的性质,将下列不等式化成“x>a”或“x<a”的形式.3(1)8x >7x +1;(2)-3x <-4x - .3解:(1)不等式两边都减 7x ,得 x >1.(2)不等式两边都加 4x ,得 x <- .知识点 2 不等式的简单应用5.某单位打算和一个体车主或一出租车公司签订月租合同.个体车主答应除去每月 1 500 元租金外,每千米收 1 元;出租车公司规定每千米收 2 元,不收其他费用.设该单位每月用车 x 千米时,乘坐出租车划算,请写出 x 的取值范围.解:根据题意,得1 500+x>2x ,解得 x<1 500.∵单位每月用车 x(千米)是正数,∴x 的取值范围是 x >0 并且 x <1 500.33336.若式子3x+4的值不大于0,则x的取值范围是(D)4444A.x<-B.x≥C.x<D.x≤-7.如图是关于x的不等式2x-a≤-1的解集,则a的取值是(C)A.a≤-1B.a≤-2C.a=-1D.a=-28.利用不等式的性质解下列不等式.(1)5x≥3x-2;解:不等式两边同时减去3x,得2x≥-2.不等式两边同时除以2,得x≥-1.(2)8-3x<4-x.解:不等式两边同时加上x,得8-2x<4.不等式两边同时减去8,得-2x<-4.不等式两边同时除以-2,得x>2.9.已知一台升降机的最大载重量是1200kg,在一名体重为75kg的工人乘坐的情况下,它最多能装载多少件25kg重的货物?解:设能载x件25kg重的货物,因为升降机最大载重量是1200kg,所以有75+25x≤1200,解得x≤45.因此,升降机最多载45件25kg重的货物.a b10.已知关于 x 的不等式 ax <-b 的解集是 x >1,求关于 y 的不等式 by >a 的解集.解:∵不等式 ax <-b 的解集是 x >1,b∴a<0,- =1.∴b=-a ,b >0.a∴不等式 by >a 的解集为 y > =-1,即不等式 by >a 的解集为 y >-1.第九章 不等式与不等式组9.1 不等式9.2 一元一次不等式第 1 课时 一元一次不等式的解法基础题知识点 一元一次不等式及其解法1.下列不等式中,属于一元一次不等式的是(B)1 A.4>1B.3x -16<4C.x<2.4x -3<2y -712.(2017· 眉山)不等式-2x >2的解集是(A)11A.x <-4B.x <-1C.x >-4D.x >-13.(2017· 吉林)不等式 x +1≥2 的解集在数轴上表示正确的是(A)4.(2016· 六盘水)不等式 3x +2<2x +3 的解集在数轴上表示正确的是(D)x x -15.不等式2- 3 ≤1 的解集是(A)A.x ≤4B.x ≥4C.x ≤-1D.x ≥-16.(2017· 遵义)不等式 6-4x ≥3x -8 的非负整数解有(B)A.2 个B.3 个C.4 个D.5 个77.已知 y 1=-x +3,y 2=3x -4,当 x >4时,y 1<y 2.8.解不等式,并把解集在数轴上表示出来:(1)5x-2≤3x;解:移项,得5x-3x≤2.合并同类项,得2x≤2.系数化为1,得x≤1.其解集在数轴上表示为:(2)2(x-1)+5<3x;解:去括号,得2x-2+5<3x.移项,得2x-3x<2-5.合并同类项,得-x<-3.系数化为1,得x>3.其解集在数轴上表示为:x-27-x.(3)2≤3解:去分母,得3(x-2)≤2(7-x).去括号,得3x-6≤14-2x.移项、合并同类项,得5x≤20.解得x≤4.其解集在数轴上表示为:1+x 2x +19.(2017· 舟山)小明解不等式 2 - 3 ≤1 的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.解:去分母,得 3(1+x)-2(2x +1)≤1.①去括号,得 3+3x -4x +1≤1.②移项,得 3x -4x ≤1-3-1.③合并同类项,得-x ≤-3.④两边都除以-1,得 x ≤3.⑤解:错误的是①②⑤,正确的解答过程如下:去分母,得 3(1+x)-2(2x +1)≤6.去括号,得 3+3x -4x -2≤6.移项,得 3x -4x ≤6-3+2.合并同类项,得-x ≤5.两边都除以-1,得 x ≥-5.中档题10.(2017· 丽水)若关于 x 的一元一次方程 x -m +2=0 的解是负数,则 m 的取值范围是(C)A.m ≥2B.m >2C.m <2 D .m ≤2111.不等式3(x -m)>2-m 的解集为 x >2,则 m 的值为(B)31 A.4 B.2C.2D.2312.要使 4x -2的值不大于 3x +5,则 x 的最大值是(B)A.4B.6.5C.7D.不存在x +1 2x +213.(2016· 南充)不等式 2 > 3 -1 的正整数解的个数是(D)A.1B.2C.3D.414.(2017·大庆)若实数3是不等式2x-a-2<0的一个解,则a可取的最小正整数为(D)A.2B.3C.4D.515.(2017·烟台)运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作.若输入x后程序操作仅进行了一次就停止,则x的取值范围是x<8.16.解不等式,并把解集在数轴上表示出来:(1)2(x+1)-1≥3x+2;解:去括号,得2x+2-1≥3x+2.移项,得2x-3x≥2-2+1.合并同类项,得-x≥1.系数化为1,得x≤-1.其解集在数轴上表示为:1(2)(2017·晋江月考)3(x-1)<4(x-2)-3;解:去括号,得3x-3<4x-2-3.移项,得3x-4x<3-2-3.合并同类项,得-x<-2.系数化为1,得x>2.其解集在数轴上表示为:(3)2x-19x+2323=23-6≤1;解:去分母,得2(2x-1)-(9x+2)≤6.去括号,得4x-2-9x-2≤6.移项,得4x-9x≤6+2+2.合并同类项,得-5x≤10.系数化为1,得x≥-2.其解集在数轴上表示为:x+1(4)2≥3(x-1)-4.解:去分母,得x+1≥6(x-1)-8.去括号,得x+1≥6x-6-8.移项,得x-6x≥-6-1-8.合并同类项,得-5x≥-15.系数化为1,得x≤3.其解集在数轴上表示为:综合题17.已知关于x的方程4(x+2)-2=5+3a的解不小于方程(3a+1)x a(2x+3)=的解,试求a的取值范围.3a-1解:解方程4(x+2)-2=5+3a,得x=4.(3a+1)x a(2x+3)9a解方程,得x=2.3a-19a11依题意,得4≥2.解得a≤-15.故a的取值范围为a≤-15.第九章不等式与不等式组9.2一元一次不等式第2课时一元一次不等式的应用基础题知识点1一元一次不等式的简单应用1.(2017·齐齐哈尔)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买(A)A.16个B.17个C.33个D.34个2.某校举行关于“保护环境”的知识竞赛,共有25道题,答对一题得10分,答错(或不答)一题倒扣5分,小明参加本次竞赛,得分超过了100分,则他至少答对的题数是(B)A.17B.16C.15D.123.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x千米,出租车费为21元,那么x的最大值是(B)A.11B.8C.7D.54.(2016·西宁)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有(C)A.103块B.104块C.105块D.106块5.为了举行班级晚会,孔明准备去商店购买20个乒乓球作道具,并买一些乒乓球拍作奖品,已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?解:设孔明应该买x个球拍,根据题意,得81.5×20+22x≤200,解得x≤711.由于x取整数,故x的最大值为7.答:孔明应该买7个球拍.知识点2利用一元一次不等式设计方案6.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?解:(1)120×0.95=114(元).答:实际应支付114元.(2)设购买商品的价格为x元,由题意得0.8x+168<0.95x,解得x>1120.答:当购买商品的价格超过1120元时,采用方案一更合算.7.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人.售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式.解:设参加旅游的儿童有m人,则成人有(30-m)人.根据题意,得按团体票购买时,总费用为100×80%×30=2400(元).分别按成人票、儿童票购买时,总费用为100(30-m)+50m=(3000-50m)元.①若3000-50m=2400,解得m=12.即当儿童为12人时,两种购票方式花费相同.②若选择购买团体票花费少,则有3000-50m>2400,解得m<12.即当儿童少于12人时,选择购买团体票花费少.③若选择分别按成人票、儿童票购票花费少,则有3000-50m<2400,解得m>12.即当儿童多于12人时,选择分别按成人票、儿童票购票花费少.中档题8.(2016·雅安)“一方有难,八方支援”,雅安芦山4·20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为(C)A.60B.70C.80D.909.(2017·牡丹江)某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打8折.10.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3∶2,则该行李箱的长的最大值为78cm.11.2017年的5月20日是第28个全国学生营养日,某市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?信息1.快餐成分:蛋白质、脂肪、碳水化合物和其他.2.快餐总质量为400克.3.碳水化合物质量是蛋白质质量的4倍.解:设这份快餐含有x克的蛋白质,则这份快餐含有4x克的碳水化合物,根据题意,得x+4x≤400×70%,解得x≤56.答:这份快餐最多含有56克的蛋白质.12.某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.假设你是决策者,你认为应该选择哪种方案?并说明理由.解:设纸箱的个数为x,则当两种方案费用一样时,4x=2.4x+16000,解得x=10000;当方案一费用低时,4x<2.4x+16000,解得x<10000;当方案二费用低时,4x>2.4x+16000,解得x>10000.答:当需要纸箱的个数为10000时,两种方案都可以;当需要纸箱的个数小于10000时,方案一便宜;当需要纸箱的个数大于10000时,方案二便宜.综合题13.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知方案一购买较为合算;(只填“方案一”或“方案二”,不要求解题过程)(2)当x>20时,①该客户按方案一购买,需付款(40x+3__200)元;(用含x的式子表示)②该客户按方案二购买,需付款(36x+3__600)元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?解:若按方案一购买更省钱,则有40x+3200<36x+3600.解得x<100.即当买的领带数少于100时,方案一付费较少.若按方案二购买更省钱,则有40x+3200>36x+3600.解得x>100.即当买的领带数超过100时,方案二付费较少;若40x+3200=36x+3600,解得x=100.即当买100条领带时,两种方案付费一样.第九章不等式与不等式组周周练(9.1~9.2)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.下列各式中,是一元一次不等式的是(C)A.5+4>8B.2x-11C.2x≤5D.x-3x≥02.下列数值中不是不等式5x≥2x+9的解的是(D)A.5B.4C.3D.23.(2017·六盘水)不等式3x+6≥9的解集在数轴上表示正确的是(C)4.(2017·杭州)若x+5>0,则(D)xD.-2x<12 A.x+1<0 B.x-1<0C.5<-12+x2x-15.下列解不等式3>5的过程中,出现错误的一步是(D)①去分母,得5(x+2)>3(2x-1);②去括号,得5x+10>6x-3;③移项,得5x-6x>-10-3;④系数化为1,得x>13.A.①B.②C.③D.④6.设a,b,c表示三种不同物体的质量,用天平秤两次,情况如图所示,则这三种物体的质量从小到大排列正确的是(A)A.c<b<aB.b<c<aC.c<a<bD.b<a<c7.(2017· 毕节)关于 x 的一元一次不等式m -2x11.若不等式(a -2)x <1 的两边同时除以 a -2 后变成 x> ,则 a 的取值范围是 a <2.3 ≤-2 的解集为 x ≥4,则 m 的值为(D)A.14B.7C.-2D.28.某射击运动员在一次比赛中(共 10 次射击,每次射击最多是 10 环),前 6 次射击共中 52 环.如果他要打破 89 环的记录,那么第 7 次射击不能少于(D)A.5 环B.6 环C.7 环D.8 环二、填空题(每小题 3 分,共 18 分)1 19.用不等式表示“y 的2与 5 的和是正数”为2y +5>0.2 7 1210.不等式3x +1<3x -3 的解集是 x > 5 .1a -212.不等式 3(x -1)≤5-x 的非负整数解有 3 个.13.某校规定期中考试成绩的 40%和期末考试成绩的 60%的和作为学生成绩总成绩.该校李红同学期中数学考了 85 分,她希望自己学期总成绩不低于 90 分,则她在期末考试中数学至少应得多少分?设她在期末应考 x 分,可列不等式为 40%×85+60%x ≥90.⎧x +2y =3,14.已知关于 x ,y 的方程组⎨的解满足不等式 x +y >3,则 a 的取值范围是 a >1. ⎩2x +y =6a三、解答题(共 50 分)15.(8 分)解下列不等式,并将其解集在数轴上表示出来.(1)8x -1≥6x +3;解:移项,得 8x -6x ≥3+1.合并同类项,得 2x ≥4.系数化为 1,得 x ≥2.其解集在数轴上表示为:6 . 16.(6 分)已知式子 1-3x∴3+ m >0.10x +1(2)2x -1<解:去分母,得 12x -6<10x +1.移项,得 12x -10x <1+6.合并同类项,得 2x <7.7系数化为 1,得x<2.其解集在数轴上表示为:2 与 x -2 的差是负数,求 x 的取值范围.解:∵1-3x2 与 x -2 的差是负数,1-3x ∴ 2 -(x -2)<0.解得 x >1.17.(6 分)已知关于 x 的方程 x +m =3(x -2)的解是正数,求 m 的取值范围.解:解方程 x +m =3(x -2),1得 x =3+2m.∵方程的解是正数,12∴m >-6,即 m 的取值范围是 m >-6.2-x18.(8分)已知:不等式3≤2+x.(1)解该不等式,并把它的解集表示在数轴上;(2)若实数a满足a>2,说明a是不是该不等式的解.解:(1)2-x≤3(2+x),2-x≤6+3x,-4x≤4,x≥-1.解集表示在数轴上如下:(2)∵a>2,不等式的解集为x≥-1,而2>-1,∴a是该不等式的解.19.(10分)(2017·贵港)某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?解:(1)设甲队胜了x场,则负了(10-x)场,根据题意,得2x+10-x=18,解得x=8.则10-x=2.答:甲队胜了8场,负了2场.(2)设乙队在初赛阶段胜a场,根据题意,得2a+(10-a)>15,解得a>5.答:乙队在初赛阶段至少要胜6场.20.(12分)某市某中学要印制本校高中招生的录取通知书,有两个印刷厂前来联系制作业务.甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而制版费900元六折优惠.且甲、乙两厂都规定:一次印刷数至少是500份.如何根据印刷的数量选择比较合算的方案?如果这个中学要印制2000份录取通知书,那么应选择哪个厂?需要多少费用?解:设印刷数量为x份,则当1.2x+900=1.5x+540,此时x=1200.∴当印刷数量为1200份时,两个印刷厂费用一样,二者任选其一.当1.2x+900<1.5x+540,此时x>1200.∴当印刷数量大于1200份时,选择甲印刷厂费用少,比较合算.当1.2x+900>1.5x+540,此时500≤x<1200.∴当印刷数量大于或等于500且小于1200份时,选择乙印刷厂费用少,比较合算.当印制2000份时,选择甲印刷厂比较合算,所需费用为1.2×2000+900=3300(元).∴如果要印制2000份录取通知书,应选择甲印刷厂,需要3300元.x+1>x⎪⎩⎪⎩2第九章不等式与不等式组9.3一元一次不等式组基础题知识点1一元一次不等式组1.下列不等式组中,是一元一次不等式组的是(A)⎧x>2⎧x+1>0A.⎨B.⎨⎩x<-3⎩y-2<0⎧3x-2>0⎧⎪3x-2>0C.⎨D.⎨1⎩(x-2)(x+3)>0知识点2解一元一次不等式组2.如图表示下列四个不等式组中其中一个的解集,这个不等式组是(D)⎧x≥2⎧x≤2⎧x≥2⎧x≤2A.⎨B.⎨C.⎨D.⎨⎩x>-3⎩x<-3⎩x<-3⎩x>-3⎧3x-6<0,3.下列四个数中,为不等式组⎨的解的是(C)⎩3+x>3A.-1B.0C.1D.2⎧⎪2x>x-1,4.(2017·湖州)一元一次不等式组⎨1的解集是(C)x≤1A.x>-1B.x≤2C.-1<x≤2D.x>-1或x≤2⎧2x+9≥3,5.(2017·德州)不等式组⎨1+2x的解集是(B)⎩3>x-1A.x≥-3B.-3≤x<4C.-3≤x<2D.x>4⎧x+1>2,6.(2017·自贡)不等式组⎨的解集表示在数轴上正确的是(C)⎩3x-4≤2⎧2x-1>x+1,7.(2017·襄阳)不等式组⎨的解集为2<x≤3.⎩x+8≥4x-1⎧x+1≥2,①8.(2017·天津)解不等式组:⎨⎩5x≤4x+3.②请结合题意填空,完成本题的解答.(1)解不等式①,得x≥1;(2)解不等式②,得x≤3;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为1≤x≤3.9.解不等式组:⎧x-3<1,①(1)⎨⎩4x-4≥x+2;②解:解不等式①,得x<4.解不等式②,得x≥2.∴不等式组的解集为2≤x<4.⎧⎪1 x -6≤1-3x ,⎧x -1>0,①(2)(2016· 郴州)⎨⎩3(x -1)<2x.②解:解不等式①,得 x >1.解不等式②,得 x <3.∴不等式组的解集是 1<x <3.知识点 3 一元一次不等式组的运用10.已知点 P(3-m ,m -1)在第二象限,则 m 的取值范围在数轴上表示正确的是(A)⎧x +1<2a ,11.已知不等式组⎨的解集是 2<x <3,则 a =2,b =1. ⎩x -b >1中档题⎧2x +1>0,12.一元一次不等式组⎨的解集中,整数解的个数是(C) ⎩x -5≤0A.4B.5C.6D.75 13.(2017· 鄂州)对于不等式组⎨3下列说法正确的是(A) ⎪⎩3(x -1)<5x -1,7A.此不等式组的正整数解为 1,2,3;B.此不等式组的解集为-1<x ≤6;C.此不等式组有 5 个整数解;D.此不等式组无解。

(文末附答案)人教版初中数学不等式与不等式组常考必考知识点总结

(文末附答案)人教版初中数学不等式与不等式组常考必考知识点总结

(文末附答案)人教版初中数学不等式与不等式组常考必考知识点总结单选题1、不等式3x −2<4中,x 可取的最大整数值是( )A .0B .1C .2D .32、若关于x 的不等式mx - n >0的解集是x <15,则关于x 的不等式(m +n)x >n −m 的解集是( ) A .x >−23B .x <−23C .x <23D .x >233、已知非负数 x ,y ,z 满足.3−x 2=y+23=z+54.,设 W =3x −2y +z ,则 W 的最大值与最小值的和为( )A .−2B .−4C .−6D .−84、已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m≤7D .4<m≤75、如果关于x 的不等式组{13(2x +5)>x −512(x +3)<x +a只有5个整数解,则a 的取值范围是( ) A .−6<a <−112B .−6≤a <−112C .−6≤a ≤−112D .−6<a ≤−112 6、下列说法中,错误的是( )A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个7、已知x =m +15,y =5−2m ,若m >−3,则x 与y 的关系为( )A .x =yB .x >yC .x <yD .不能确定8、小明放学回家后,问爸爸妈妈小牛队与太阳队篮球比赛的结果.爸爸说:“本场比赛太阳队的纳什比小牛队的特里多得了12分.”妈妈说:特里得分的两倍与纳什得分的差大于10;纳什得分的两倍比特里得分的三倍还多.”爸爸又说:“如果特里得分超过20分,则小牛队赢;否则太阳队赢.”请你帮小明分析一下,那么本场比赛特里、纳什各得了()分?A.23,25B.25,35C.35,25D.23,35 填空题9、已知实数x满足{5(x+1)≥3x−112x−1≤7−32x,若S=|x﹣1|+|x+1|的最大值为m,最小值为n,则mn=_____.10、(1)已知x<a的解集中的最大整数为3,则a的取值范围是________.(2)已知x>a的解集中最小整数为-2,则a的取值范围是________.11、不等式−5x>11的解集是__________.12、不等式4(x+1)≤16的正整数解是_____.13、不等式4x﹣6≥7x﹣12的非负整数解为________________.解答题14、(1)解二元一次方程组:{x−y=2x−y=y+1.(2)解不等式:x−2≥x+12+3.15、小明距书店8 km,他上午8∶30出发,以15 km/h的速度行驶了xh之后,又以18 km/h的速度行驶,结果在9∶00前赶到了书店,请列出不等式.(文末附答案)人教版初中数学不等式与不等式组_009参考答案1、答案:B解析:首先解不等式,再从不等式的解集中找出适合条件的最大正整数即可.解:3x−2<4,3x<4+23x<6x<2,∴最大整数解是1.故选为:B.小提示:本题考查解一元一次不等式,一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.2、答案:B解析:可判断m、n都是负数,且可得到m、n之间的数量关系,再解不等式(m+先解不等式mx- n>0,根据解集x<15n)x>n−m可求得解不等式:mx- n>0mx>n∵不等式的解集为:x<15∴m<0解得:x<nm∴nm =15,∴n<0,m=5n∴m+n<0解不等式:(m+n)x>n−mx<n−mm+n将m=5n代入n−mm+n得:n−m m+n =n−5n5n+n=−4n6n=−23∴x<−23故选:B小提示:本题考查解含有参数的不等式,解题关键在在系数化为1的过程中,若不等式两边同时乘除负数,则不等号需要变号.3、答案:C解析:首先设3−x2=y+23=z+54=k,求得x=−2k+3,y=3k−2,z=4k−5,又由x,y,z均为非负实数,即可求得k的取值范围,则可求得W的取值范围.解:设3−x2=y+23=z+54=k,则x=−2k+3,y=3k−2,z=4k−5,∵x,y,z均为非负实数,∴{−2k+3⩾03k−2⩾04k−5⩾0,解得54⩽k⩽32,于是W=3x−2y+z=3(−2k+3)−2(3k−2)+(4k−5)=−8k+8,∴−8×32+8⩽−8k+8⩽−8×54+8,即−4⩽W⩽−2.∴W的最大值是−2,最小值是−4,∴W的最大值与最小值的和为−6,故选:C.小提示:此题考查了最值问题.解此题的关键是设比例式:3−x2=y+23=z+54=k,根据已知求得k的取值范围.此题难度适中,注意仔细分析求解.4、答案:A解析:先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.解:解不等式3x﹣m+1>0,得:x>m−13,∵不等式有最小整数解2,∴1≤m−13<2,解得:4≤m<7,故选A.小提示:本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.5、答案:D解析:解不等式组得解集,根据解集可确定这5个整数解,从而可关于a的不等式,解不等式即可得a的取值范围.解不等式组得{x<20x>3−2a,∴3−2a<x<20,∴5个整数解为19,18,17,16,15,∴14≤3−2a<15,∴−6<a≤−112.故选:D小提示:本题考查了解一元一次不等式组,关键是根据不等式组的整数解得到不等式.6、答案:C解析:A、B、D正确,C. 不等式-3x>9的解集是x<-3.故选C.7、答案:B根据题意,直接利用作差法进行计算,得x−y=3m+10,比较3m+10与0的大小,即可得到答案.解:∵x−y=m+15−(5−2m)=3m+10,∵m>−3,∴3m>−9.∴3m+10>1>0.∴x>y.故选:B.小提示:本题考查了有理数的比较大小,以及代数式的变形和不等式的解法,难度适中.解题的关键是熟练掌握作差法比较大小.8、答案:D解析:关键描述语是:特里得分的两倍与纳什得分的差大于10,纳什得分的两倍比特里得分的三倍还多.不等关系为:特里得分×2−纳什得分>10;纳什得分×2>特里得分×3.根据这两个不等关系就可以列出不等式组,从而求解.解:设本场比赛特里得了x分,则纳什得了(x+12)分,根据题意,得{2x−(x+12)>102(x+12)>3x.解得22<x<24.因为x为整数,故x=23,23+12=35.23>20.答:小牛队赢了,特里得了23分,纳什得了35分.D小提示:解决本题的关键是读懂题意,找到符合题意的不等式组.并且要注意未知数的取值是正整数.9、答案:16解析:解不等式组得-3≤x≤4,根据两点间的距离的公式知当-1≤x≤1时,S=|x-1|+|x+1|取得最小值;当x=4时,S=|x-1|+|x+1|取得最大值,继而可得答案.解不等式5(x+1)≥3x﹣1,得:x≥﹣3,解不等式12x−1≤7−32x,得:x≤4,则﹣3≤x≤4,当﹣1≤x≤1时,S=|x﹣1|+|x+1|取得最小值,最小值n=2,当x=4时,S=|x﹣1|+|x+1|取得最大值,最大值m=8,∴mn=2×8=16,所以答案是:16.小提示:本题主要考查解一元一次不等式组,解题的关键是掌握熟练掌握解不等式组的能力和数轴上两点间的距离公式.10、答案:3<a≤4−3≤a<−2解析:(1)根据不等式的解集中最大的整数是3,可得答案.(2)根据不等式的解集中最小整数为-2,可得答案.解:(1)∵x<a的解集中的最大整数为3,∴3<a≤4,所以答案是:3<a≤4.(2)∵x>a的解集中最小整数为-2,∴−3≤a<−2,所以答案是:−3≤a<−2.小提示:本题考查了不等式的解集,熟练掌握不等式的解集是解题关键.11、答案:x<−115解析:根据不等式的性质求出不等式的解集即可.∵−5x>11,两边同除以-5,不等式方向改变,得x<−11.5.故填:x<−115小提示:本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.12、答案:1,2,3解析:首先确定不等式组的解集,然后再找出不等式的特殊解.移项得:4x≤16﹣4,合并同类项得:4x≤12,系数化为1得:x≤3,所以不等式4(x+1)≤16的正整数解为1,2,3.所以答案是:1,2,3.小提示:本题考查不等式的整数解问题,关键是先求出不等式的解,再找满足条件的解,掌握解不等式要点.13、答案:0,1,2解析:首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.解:移项得:4x-7x≥-12+6,合并同类项得:-3x≥-6;化系数为1得: x≤2;因而不等式的非负整数解是:0,1,2.小提示:正确解不等式,求出解集是解决本题的关键.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.14、答案:(1){x=3y=1;(2)x≥11解析:(1)利用加减消元法求解即可;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项可得答案.解:(1){x −y =2①x −y =y +1②, ①﹣②得:0=2−(y +1),解得y =1,把y =1代入①可得:x =3,所以方程组的解为{x =3y =1; (2)去分母,得:2(x −2)≥x +1+6,去括号,得:2x −4≥x +7,移项、合并同类项,得:x ≥11.小提示:本题考查解二元一次方程组和一元一次不等式,解题的关键是熟练掌握解解二元一次方程组和一元一次不等式的方法步骤.15、答案:15x +18(12-x)>8解析:根据题意,可得不等关系为以15 km/h 的速度行驶xh 的路程+以18 km/h 的速度行驶(12-x) h 的路程>8 km . 小明上午8∶30出发, 在9∶00前赶到了书店,路途共用了不到12h, 由题意得15x +18(12-x)>8.所以答案是:15x +18(12-x)>8.小提示:此题主要考查列一元一次不等式,找到实际问题的不等关系是解题的关键.。

人教版七年级数学下册知识点总结(第九章-不等式与不等式组)

人教版七年级数学下册知识点总结(第九章-不等式与不等式组)

第九章 不等式与不等式组一、知识网络结构二、知识要点1、用不等号表示不等关系的式子叫不等式,不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。

2、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。

不等式的解集可以在数轴上表示出来。

求不等式的解集的过程叫解不等式。

含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。

3、不等式的性质:①性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。

用字母表示为: 如果b a >,那么c b c a ±>±; 如果b a <,那么c b c a ±<± ;如果b a ≥,那么c b c a ±≥±; 如果b a ≤,那么c b c a ±≤± 。

②性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。

用字母表示为:如果0,>>c b a ,那么bc ac >(或cb c a >);如果0,><c b a ,那么⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(321bc ac <(或cb c a <); 如果0,>≥c b a ,那么bc ac ≥(或c b c a ≥);如果0,>≤c b a ,那么bc ac ≤(或c b c a ≤); ③性质3:不等式的两边同时乘以(或除以)同一个 负数 ,不等号的方向 改变 。

用字母表示为:如果0,<>c b a ,那么bc ac <(或c b c a <);如果0,<<c b a ,那么bc ac >(或c b c a >); 如果0,<≥c b a ,那么bc ac ≤(或c b c a ≤);如果0,<≤c b a ,那么bc ac ≥(或c b c a ≥); 4、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1 。

人教版七年级数学下第9章不等式与不等式组9

人教版七年级数学下第9章不等式与不等式组9

名师点拨
预习反馈
基础训练
能力训练
综合拓展
七年级 数学 下册 人教版
知识点 1:一元一次不等式的简单应用
1.小明准备用 22 元钱买笔和笔记本,已知每支笔 3 元,每本笔记本 2
元,他买了 3 本笔记本后,用剩余的钱来买笔,那么他最多可以买( C )
A.3 支笔
B.4 支笔
C.5 支笔
D.6 支笔
名师点拨
名师点拨
预习反馈
基础训练
能力训练
综合拓展
七年级 数学 下册 人教版
10.(益阳中考)某职业高中机电班共有学生 42 人,其中男生人数比女生 人数的 2 倍少 3 人. (1)该班男生和女生各有多少人? (2)某工厂决定到该班招录 30 名学生,经测试,该班男、女生每天能加 工的零件数分别为 50 个和 45 个,为保证他们每天加工的零件总数不少 于 1 460 个,那么至少要招录多少名男学生?
名师点拨
预习反馈
基础训练
能力训练
综合拓展
七年级 数学 下册 人教版
解:设 A 酒店本月对这种水果的需求量为 x kg, 由题意得 10x-6(2 600-x)≥22 000,解得 x≥2 350. 答:当 A 酒店本月对这种水果的需求量至少为 2 350 kg 时,该水果店销 售这批水果所获的利润不少于 22 000 元.
(2)所列的不等式解完后,应根据题意,把实际问题的解取出来.
名师点拨
预习反馈
基础训练
能力训练
综合拓展
七年级 数学 下册 人教版
2.用一元一次不等式解决实际问题的关键是:找出题中各量之间的 不等关系,列出正确的不等式.
名师点拨
预习反馈

人教版七年级数学下册不等式与不等式组知识点及习题

人教版七年级数学下册不等式与不等式组知识点及习题

三 不等式与不等式组1. 不等式的概念不等式:用不等号表示不等关系的式子,叫做不等式。

不等式的解集:1)对于一个含有未知数的不等式,任何一个适合这个不等式的未知数 的值,都叫做这个不等式的解。

2)对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式 的解的集合,简称这个不等式的解集。

3)求不等式的解集的过程,叫做解不等式。

用数轴表示不等式的方法,2.不等式基本性质1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

3. {4. 一元一次不等式➢ 一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

➢ 解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x 项的系数化为14. 一元一次不等式组➢ 一元一次不等式组:1)几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2)几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不 等式组的解集。

[如果a >b, 那么a ±c >b ±c < 如果a >b, c >0,那么ac >bc (或b >a ) 如果a >b, c <0,那么ac <bc (或cb c <a )3)求不等式组的解集的过程,叫做解不等式组。

当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

➢一元一次不等式组的解法:1)分别求出不等式组中各个不等式的解集2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

四不等式与不等式组1.全面调查:考察全体对象的调查方式叫做全面调查。

—2.抽样调查:一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。

人教版初中数学不等式与不等式组基础知识点归纳总结

人教版初中数学不等式与不等式组基础知识点归纳总结

人教版初中数学不等式与不等式组基础知识点归纳总结单选题1、不等式组{3(x −1)>x −72x +2⩾3x的解集是( ) A .﹣2<x≤2B .x <﹣2C .x≥2D .无解答案:A解析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解不等式3(x ﹣1)>x ﹣7,得:x >﹣2,解不等式2x+2≥3x ,得:x≤2,则不等式组的解集为﹣2<x≤2,故选:A .小提示:本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2、下列说法中错误的是( )A .不等式x +2≤3的整数解有无数个B .不等式x +4<5的解集是x <1C .不等式x <3的正整数解有限个D .0是不等式2x <−1的解答案:D解析:逐一对选项进行分析即可.A. 不等式x +2≤3的解集为x ≤1 ,所以整数解有无数个,故正确;B. 不等式x +4<5的解集是x <1,故正确;C. 不等式x <3的正整数解为1,2,是有限个,故正确;D. 0不是不等式2x <−1的解,故错误;故选:D .小提示:本题主要考查不等式的解集及解的个数,会解不等式是解题的关键.3、“x 的2倍与3的和是非负数”列成不等式为( )A .2x +3≥0B .2x +3>0C .2x +3≤0D .2x +3<0答案:A解析:非负数就是大于或等于零的数,再根据x 的2倍与3的和是非负数列出不等式即可.解:“x 的2倍与3的和是非负数”列成不等式为:2x +3≥0,故选:A.小提示:本题考查的是列不等式,掌握“非负数是正数或零,用不等式表示就是大于或等于零”是解题的关键.4、关于x 的方程4x-2m+1=5x-8的解是负数,则m 的取值范围是( )A .m>92B .m<0C .m<92D .m>0 答案:A解析:解:方程4x -2m +1=5x -8的解为x =9-2m .由题意得:9-2m <0,则m >92.故选A .5、下列式子:①3>0;②4x +5>0;③x <3;④x 2+x ;⑤x ≠﹣4;⑥x +2>x +1,其中不等式有( )个A .3B .4C .5D .6答案:C解析:根据不等式定义可得答案.①3>0;②4x +5>0;③x <3;⑤x ≠﹣4;⑥x +2>x +1是不等式,共5个,故选C .小提示:本题考查不等式的定义,熟练掌握不等式的定义是解题的关键.6、关于x 的一元一次方程4x-m+1=3x-1的解是负数,则m 的取值范围是( ).A .m=2B .m >2C .m <2D .m≤2答案:C解析:∵方程x ﹣m +2=0的解是负数,∴x =m ﹣2<0,解得:m <2,故选C .7、下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )A .{x −1<3x +1<3B .{x −1<3x +1>3C .{x −1>3x +1>3D .{x −1>3x +1<3答案:B分析:先根据在数轴上表示不等式解集的方法得出该不等式组的解集,再找出符合条件的不等式组即可.详解:A、此不等式组的解集为x<2,不符合题意;B、此不等式组的解集为2<x<4,符合题意;C、此不等式组的解集为x>4,不符合题意;D、此不等式组的无解,不符合题意;故选B.点睛:本题考查的是在数轴上表示不等式的解集,解答此类题目时一定要注意实心与空心圆点的区别,即一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.8、不等式3x−1>x+1的解集在数轴上表示为( )A.B.C.D.答案:C解析:试题解析:由3x﹣1>x+1,可得2x>2,解得x>1,所以一元一次不等式3x﹣1>x+1的解在数轴上表示为:故选C.点睛:首先根据解一元一次不等式的方法,求出不等式3x﹣1>x+1的解集,然后根据在数轴上表示不等式的解集的方法,把不等式3x﹣1>x+1的解集在数轴上表示出来即可.9、用不等式表示:x 减去2的差的绝对值不大于32_________________. 答案:|x −2|≤32解析:根据题意以及不等式的定义列不等式.解:x 减2的绝对值不大于32,列式:|x −2|≤32.故答案是:|x −2|≤32. 小提示:本题考查列不等式,解题的关键是根据不等式的定义,找到题目中的不等关系进行列式.10、一次测验共出5道题,做对一题得一分,已知26人的平均分不少于4.8分,最低的得3分,至少有3人得4分,则得5分的有______ 人.答案:22解析:解:设得5分的人数为x 人,得3分的人数为y 人.则可得{x +y +3=265x +3y +12>26×4.8,解得:x >21.9. ∵一共26人,最低的得3分,至少有3人得4分,∴得5分最多22人,即x ≤22.∴21.9<x ≤22且x 为整数,所以x =22.故得5分的人数应为22人.故答案为22.点睛:此题考查不等式组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.解题过程中一定要符合题目的意思,以事实为依据.11、已知不等式组{x >1x <a −1无解,则a 的取值范围为__.答案:a⩽2解析:求出不等式组中每个不等式的解集,根据已知即可得出关于a的不等式,即可得出答案.解:∵不等式组{x>1x<a−1无解,∴a−1⩽1,解得:a⩽2,所以答案是:a⩽2.小提示:本题考查了一元一次不等式组的应用,解此题的关键是能得出关于a的不等式,题目比较好,难度适中.12、不等式组{2x−1<3−12x−1≤0的整数解的和为________.答案:-2解析:先根据一元一次不等式组解出x的取值,根据x是整数解得出x的可能取值,再相加.解:{2x−1<3①−12x−1≤0②,解不等式①得,x<2;解不等式②得,x≥-2,∴不等式组的解集是:-2≤x<2,∴不等式组的整数解是:-2,-1,0,1,∴整数解的和为-2-1+0+1=-2,所以答案是:-2.小提示:本题考查了解一元一次不等式组,不等式组的整数解的应用,解题的关键是能根据不等式的解集求出不等式组的解集.13、已知关于x的不等式3x-5k>-7的解集是x>1,则k的值为________.答案:2解析:试题分析:不等式可变形为:3x>5k-7,x>5k−7,3∵关于x的不等式3x-5k>-7的解集是x>1,∴5k−7=1,3解得:k=2.故答案为2.点睛:本题考查了不等式的解集,利用不等式的解集得出关于k的方程是解题关键.解答题14、在平面直角坐标系中,若P、Q两点的坐标分别为P(x1,y1)和Q(x2,y2),则定|x1−x2|和|y1−y2|中较小的一个(若它们相等,则任取其中一个)为P、Q两点的“直角距离小分量”,记为d min(P,Q).例如:P(−2,3),Q(0,2),因为x1=−2,x2=0,|x1−x2|=|−2−0|=2;y1=3,y2=2,|y1−y2|=|3−2|=1,而|3−2|<|−2−0|,所以d min(P,Q)=|3−2|=1.(1)请直接写出A(3,−2)和B(−1,1)的直角距离小分量d min(A,B)=_________;(2)点D是坐标轴上的一点,它与点C(3,−1)的直角距离小分量d min(C,D)=2,求出点D的坐标;(3)若点M(m+1,2m−2)满足以下条件:a)点M在第一象限;b)点M与点N(5,0)的直角距离小分量d min(M,N)<2c)∠MON>45°,O为坐标原点.请写出满足条件的整点(横纵坐标都为整数的点)M的坐标_______.答案:(1)3;(2)D(0,1)或D(0,−3);(3)M(5,6)或(6,8)解析:(1)根据新概念求得即可;(2)分两种情况,根据“直角距离小分量”的定义得出即可;(3)根据题意得出{m+1>02m−2>0,解出m的取值范围,再由∠MON>45°可推导出K OM =2m−2m+1>1,解出m的取值范围,根据横纵坐标都为整数的点取m的值即可.解:(1)∵A(3,−2),B(−1,1),∴|3+1|=4>|−2−1|=3,∴d min(A,B)=3;故答案为3;(2)∵点D是坐标轴上的一点,若D在x轴上,设D(a,0),由于|0+1|=1<2与题意矛盾,故点D是在y轴上的一点,设D(0,b),|0−3|=3>2,∴|b+1|=2,解得:b=1或−3,∴D(0,1)或D(0,−3);(3)由题意得:{m+1>02m−2>0,解得m>1,|m+1−5|=|m−4|,|2m−2−0|=2|m−1|,∴(m−4)2−[2(m−1)]2=−3m2+12,当1<m<2时,d min(M,N)=2|m−1|<2,解得:0<m<2,当m≥2时,d min(M,N)=|m−4|<2,解得:2<m<6,∴m的取值范围是:0<m<2或2<m<6,∵∠MON>45°恰好为l OM的倾斜角,∴K OM>1,K OM=2m−2m+1>1,解得:m<−1或m>3综上:m的取值范围是:3<m<6,∵横纵坐标都为整数,∴m=4和5,∴M(5,6)或(6,8),所以答案是:M(5,6)或(6,8).小提示:本题考查了坐标与图形的性质,解一元一次不等式组,解题的关键是根据新概念列出不等式组.15、求不等式2x+13≤3x−25+1的非负整数解.答案:不等式的非负整数解为0、1、2、3、4.解析:去分母,去括号,移项,合并同类项,即可得出不等式的解集.去分母得:5(2x +1)≤3(3x -2)+15,去括号得:10x +5≤9x -6+15,移项得:10x -9x ≤-5-6+15,合并同类项得x ≤4,∴不等式的非负整数解为0、1、2、3、4.小提示:考查了不等式的性质和解一元一次不等式,主要考查学生运用不等式的性质解一元一次不等式的能力.。

不等式-七年级数学下册同步考点知识清单+例题讲解+课后练习(人教版)(原卷版)

不等式-七年级数学下册同步考点知识清单+例题讲解+课后练习(人教版)(原卷版)

第1课时—不等式知识点一:不等式:1. 不等式的定义:用 连接的式子叫做不等式。

2. 常见的不等号:大于( );小于( );大于等于( );小于等于( );不等于( )。

判断一个式子是不是不等式,首先判断是否用不等号连接,其次判断是否满足不等关系。

二者必须同时满足。

【类型一:判断不等式】1.下列数学表达式中:①﹣3<0.②2x +3y ≥0,③x =1,④x 2﹣2xy +y 2,⑤x ≠2,⑥x +1>3中,不等式有( )A .3个B .4个C .5个D .6个2.以下数学表达式:①4x +3y >0;②x =3;③x 2+xy +y 2;④x ≠5.其中不等式有( )A .4个B .3个C .2个D .1个3.在下列数学表达式:①﹣2<0,②2y ﹣5>1,③m =1,④x 2﹣x ,⑤x ≠﹣2,⑥x +1<2x ﹣1中,是不等式的有( )A .2个B .3个C .4个D .5个【类型二:列简单的不等式】4.“x 与y 的2倍的和是正数”用不等式可表示为 .5.x 是不大于2021的正数,则下列表示正确的是( )A .0<x <2021B .0<x ≤2021C .0≤x ≤2021D .x ≤20216.用适当的符号表示下列关系:(1)x 的31与x 的2倍的和是非正数; (2)一枚炮弹的杀伤半径不小于300米;(3)三件上衣与四条长裤的总价钱不高于268元;(4)明天下雨的可能性不小于70%;(5)小明的身体不比小刚轻.知识点二:不等式的解与解集:1. 不等式的解:使不等关系 的未知数的值是不等式的一个解。

2. 不等式的解集:不等式的解有 个,这些解全部组合起来形成了不等式的解集。

3. 在数轴上表示不等式的解集:具体方法:①确定不等式解集的边界。

②确定边界处使用实心圆还是空心圈。

包含等于用 ,不包含等于使用 。

③确定方向:大于向 ;小于向 。

【类型一:判断不等式的解】7.下列各数中,是不等式x >2解的是( )A .3B .2C .0D .﹣18.下列哪个数是不等式2(x ﹣1)+3<0的一个解( )A .2B .31C .﹣21D .﹣39.在4,3,2,1,0,﹣23,﹣310中,能使不等式3x ﹣2>2x 成立的数有( ) A .1个 B .2个C .3个D .4个 【类型二:在数轴上表示不等式的解集】10.不等式x <1解集在数轴上表示正确的是( )A .B .C .D .11.在数轴上表示不等式x ≥﹣2的解集正确的是( )A .B .C .D .12.不等式x >﹣4在数轴上表示正确的是( )A .B .C .D .13.在数轴上表示不等式﹣1≤x <2,其中正确的是( )A .B .C .D .14.在数轴上表示不等式组⎩⎨⎧≤-31x x >的解集,正确的是( )A .B .C .D . 15.不等式组⎩⎨⎧≥52<x x 的解集在数轴上可以表示为( )A .B .C .D .【类型三:确定数轴上表示的解集】16.解集在数轴上表示为如图所示的不等式的是( )A .x <2B .x ≤2C .x >2D .x ≥217.如图,数轴上表示不等式的解集是( )A .x >4B .x ≥4C .x <4D .x ≤418.如图,数轴上表示的解集为( )A .x >﹣3B .x ≤2C .﹣3<x ≤2D .﹣3≤x <2知识点三:不等式的性质1. 不等式的性质1:不等式的左右两边 加上(减去) ,不等号的方向 。

不等式的基础知识点与习题(含答案)

不等式的基础知识点与习题(含答案)

不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表示不等关系;不等式的主要性质:(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>,(3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>,(同向可加)(4)乘法法则:bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(同向同正可乘)(5)倒数法则:ba ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且(7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式(二)解不等式1、一元二次不等式的解法一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:2、简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿偶不穿;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。

()()()如:x x x +--<1120233、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。

人教版七年级数学下册期末必考知识点总结和例题:不等式与不等式组

人教版七年级数学下册期末必考知识点总结和例题:不等式与不等式组

人教版七年级数学下册期末必考知识点总结:不等式与不等式组考点一 一元一次不等式的解法 【例1】解不等式213x --512x +≤1,并把它的解集在数轴上表示出来.【分析】解不等式一般会涉及去括号和去分母,去括号时应注意去括号法则的正确使用,去分母时应注意每一项都要乘最简公分母. 【解答】去分母,得2(2x-1)-3(5x+1)≤6.去括号,得4x-2-15x-3≤6. 移项,合并同类项得-11x ≤11. 系数化为1,得x ≥-1.这个不等式的解集在数轴上表示为:【方法归纳】直接按一元一次不等式的解法步骤先解出其解集,然后将解集在数轴上表示出来.同时,要注意在数轴上表示不等式的解集时区分实心点与空心圆圈.1.在数轴上表示不等式x+5≥1的解集,正确的是()2.解不等式1-23x -≥12x +,并把它的解集在数轴上表示出来.考点二 一元一次不等式组的解法【例2】求不等式组:133,251(2243)xx x x +--⎪-≤-⎧⎨⎪⎩>①②的整数解. 【分析】先分别解不等式组里的每一个不等式,再取各解集的公共部分,然后取整数解.【解答】解不等式①,得x <5.解不等式②,得x ≥-2.原不等式组的解集为-2≤x<5.因此,原不等式组的整数解为:-2,-1,0,1,2,3,4.【方法归纳】不等式(组)的特殊解在某些范围内是有限的,如整数解、非负整数解等,要求这些特殊解,要先确定不等式(组)的解集.3.解不等式组()324,2113x xxx-≥-+⎪-⎧⎨⎪⎩①>,②并写出它的所有的整数解.考点三由不等式(组)解的情况,求不等式(组)中字母的取值范围【例3】(1)若不等式组1,21x mx m<+>-⎧⎨⎩无解,则m的取值范围是__________.(2)已知关于x的不等式组320x ax->->⎧⎨⎩的整数解共有6个,则a的取值范围是__________.【分析】(1)由不等式组的解集,来确定字母m的取值范围.因为原不等式组无解,所以可得到:m+1≤2m-1,解这个关于m的不等式即可;(2)由已知结论探求字母的取值范围,要先求出不等式组的解集,再来确定字母a的取值范围.不等式组的解集为a<x<32,则6个整数解为:1,0,-1,-2,-3,-4,故-5≤a<-4.【解答】(1)m≥2;(2)-5≤a<-4.【方法归纳】解决这类问题的思路一般是逆用不等式(组)的解集,借助不等式(组)解集的特点,构造出不等式(组)来求出字母的取值范围.4.若关于x的不等式组()32224x xa xx--<+>⎧⎪⎨⎪⎩,有解,则实数a的取值范围是__________.5.已知关于x的不等式组521x ax-≥->⎧⎨⎩,只有四个整数解,则实数a的取值范围是__________.考点四不等式的实际应用【例4】小宏准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买多少瓶甲饮料?【分析】先设小宏买了x瓶甲饮料,则买了(10-x)瓶乙饮料,由买甲饮料的总费用+买乙饮料的总费用小于或等于50元列不等式求解,x取最大整数即满足题意.【解答】设小宏买了x瓶甲饮料,则买了(10-x)瓶乙饮料,根据题意,得7x+4(10-x)≤50.解得x≤10 3.由于饮料的瓶数必须为整数,所以x的最大值为3.答:小宏最多能买3瓶甲饮料.【方法归纳】列不等式解决实际问题时,解法与列一元一次方程解决实际问题的步骤相同,在列不等式解决实际问题时,设未知数时不能出现“至多、最少、最低”等表示不等关系的词语,但在问题的答中要出现这些表示不等关系的词语.6.天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10 000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1 000元,则这个小区的住户至少有多少户?复习测试一、选择题(每小题3分,共30分)1.如果不等式ax<b的解集是x<ba,那么a的取值范围是( )A.a≥0B.a≤0C.a>0D.a<02.若0<a<1,则下列四个不等式中正确的是( )A.a<1<1aB.a<1a<1 C.1a<a<1 D.1<1a<a3.(2013·吉林)不等式2x-1>3的解集是( )A.x>1B.x<1C.x>2D.x<24.(2013·广州)不等式组()317243x xx x--≤+>⎧⎨⎩,的解集是( )A.-2<x<4B.x<4或x≥-2C.-2≤x<4D.-2<x≤45.不等式组10420xx->-≥⎧⎨⎩的解集在数轴上表示为()6.已知点M(3a-9,1-a)在第三象限,且它的坐标都是整数,则a=( )A.1B.2C.3D.47.已知x=3是关于x的不等式3x-22ax+>23x的解,则a的取值范围( )A.a<4B.a<2C.a>-2D.a>-48.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.娜娜得分要超过90分,设她答对了x道题,则根据题意可列不等式为( )A.10x-5(20-x)≥90B.10x-5(20-x)>90C.10x-(20-x)≥90D.10x-(20-x)>909.适合不等式组51342133x xx->--≥-⎧⎪⎨⎪⎩,的全部整数解的和是( )A.-1B.0C.1D.210.若不等式组10a xx->+>⎧⎨⎩,无解,则a的取值范围是( )A.a≤-1B.a≥-1C.a<-1D.a>-1二、填空题(每小题4分,共20分)11.请你写出满足不等式3x+1≥-8的负整数x的值:__________.12.一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为__________克.13.不等式组2133125xx+>-->⎧⎪⎨⎪⎩的解集是__________.14.若不等式组2,20x ab x->->⎧⎨⎩的解集是-1<x<1,则(a+b)2 015=__________.15.某班级从文化用品市场购买签字笔和圆珠笔共15支,所付金额不超过27元.已知签字笔每支2元,圆珠笔每支1.5元,则最多购买签字笔__________支.三、解答题(共50分)16.(10分)解下列不等式,并把解集在数轴上表示出来.(1)2x-3<13x+; (2)513x--2x>3.17.(8分)解不等式组()()()3212,102131,xx x--≥--+-<-⎧⎪⎨⎪⎩①②并把解集在数轴上表示出来.18.(8分)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?19.(12分)当m在什么范围内取值时,关于x的方程(m-2)x+2=1-m(4-x):(1)有正数解;(2)有负数解;(3)有不大于2的解.20.(12分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息:(说明:①每户产生的污水量等于该户用水量;②水费=自来水费用+污水处理费)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9 200元,则小王家6月份最多能用水多少吨?参考答案变式练习1.B2.去分母,得6-2(x-2)≥3(x+1).去括号,得6-2x+4≥3x+3.移项,得-2x-3x≥3-6-4.合并同类项,得-5x≥-7.化系数为1,得x≤7 5 .这个不等式的解集在数轴上表示为:3.解不等式①,得x≥1.解不等式②,得x<4.∴原不等式组的解集是1≤x<4.∴原不等式组的所有的整数解是1,2,3.4.a>45.-3<a≤-26.设这个小区的住户数为x户,由题意,得1 000x>10 000+500x.解得x>20.由于住户数必须是整数,所以x的最小值为21. 答:这个小区的住户数至少有21户.复习测试1.C2.A3.C4.C5.D6.B7.A8.B9.B 10.A 11.-1,-2,-3 12.2 13.-5<x<-2 14.-1 15.9 16.(1)去分母,得3(2x-3)<x+1.去括号,得6x-9<x+1.移项,合并同类项,得5x<10.系数化为1,得x<2.其解集在数轴上表示为:(2)去分母,得5x-1-6x>9.移项,合并同类项,得-x>10.系数化为1,得x<-10.其解集在数轴表示为:17.解不等式①,得x ≤3.解不等式②,得x>-1.所以不等式组的解集为-1<x ≤3. 将解集在数轴上表示出来为18.设某游客一年中进入该公园x 次,依题意得不等式组 10100502100x x +⎧⎨⎩>①>②,∴不等式组的解集是x >25.答:某游客一年中进入该公园至少要超过25次时,购买A 类年票最合算.19.解方程,得x=412m +. (1)方程有正数解,则412m +>0.解得m>-14.(2)方程有负数解,则412m +<0.解得m<-14.(3)方程有不大于2的解,则412m +≤2.解得m ≤34.20.(1)由题意,得()()()()170.830.866,170.880.891.a b a b +++=+++=⎧⎪⎨⎪⎩解得 2.2,4.2.a b ==⎧⎨⎩ 答:a 的值为2.2,b 的值为4.2.(2)当用水量为30吨时,水费为:17×3+13×5=116(元).∵9 200×2%=184(元),116<184,∴小王家6月份的用水量可以超过30吨. 设小王家6月份用水量为x 吨,由题意,得 17×3+13×5+6.8(x-30)≤184.解得x ≤40. 答:小王家6月份最多能用水40吨.。

人教版七年级数学下册第九章不等式与不等式组知识点及题型总结讲义

人教版七年级数学下册第九章不等式与不等式组知识点及题型总结讲义

一元一次不等式与一元一次不等式组一、不等式考点一、不等式的概念不等式:用不等号表示不等关系的式子,叫做不等式。

不等号包括.题型一会判断不等式下列代数式属于不等式的有 .22①-X > 5 ② 2x-y V 0 ③2 5 3 ④-3 V 0 ⑤ x=3 ⑥ x xy y⑦x工5⑧ x2-3x 2>0 ⑨ x y 0题型二会列不等式根据下列要求列出不等式①.a是非负数可表示为 .―②.m的5倍不大于3可表示为③.x与17的和比它的2倍小可表示为.④.x和y的差是正数可表示为3⑤.x的-与12的差最少是6可表示为.5考点二、不等式基本性质1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向不变,则这个数是正数基本训练:若a>b, ac>be,则c 0.3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向改变,则这个数是负数。

基本训练:若a>b, ae V be,贝U e 0.4、如果不等式两边同乘以0,那么不等号变成等号,不等式变成等式。

练习:1、指出下列各题中不等式的变形依据①.由3a>2得a> 3理由: _________________________________ _______________________________a>-7 理由:5③ .由-5a<1得a>④ .由4a>3a+1得a>1理由:-) C. x+3 > y+3 D.-3x > -3y))))()式的解。

练习:1、判断下列说法正确的是( )A. x=2是不等式x+3v 2的解B.x =3是不等式3x v 7的解。

C.不等式3x v 7的解是x v 2D.x=3是不等式3x> 9的解2.下列说法错误的是( )A.不等式x v 2的正整数解只有一个B. -2是不等式2x-1 v 0的一个解C.不等式-3x > 9的解集是x >-3D.不等式x v 10的整数解有无数个不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

人教版初中数学不等式与不等式组重点题型及知识点

人教版初中数学不等式与不等式组重点题型及知识点

人教版初中数学不等式与不等式组重点题型及知识点单选题1、若a <b ,则下列不等式变形正确的是( )A .ac 2<bc 2B .a b >1C .-ca >-cbD .3a -c <3b -c 答案:D解析:根据不等式的基本性质逐一分析即可.A .当c =0时,ac 2=bc 2,故该项变形不正确;B .当b <0时,a b >1;当b >0时,a b <1,故该项变形不正确;C .当c =0时,−ca =−cb ,故该项变形不正确;D .若a <b ,则3a −c <3b −c ,故该项变形正确;故选:D .小提示:本题考查不等式的基本性质,正确把握不等式基本性质是解题关键.2、若方程3m(x +1)+1=m(3−x)−5x 的解是负数,则m 的取值范围是( )A .m >−54B .m <−54C .m >54D .m <54答案:A解析:先求解关于x 的方程,根据题意列出关于m 的一元一次不等式,解不等式即可求解.3m(x +1)+1=m(3−x)−5x去括号得3mx +3m +1=3m −mx −5x移项,合并同类项得(4m+5)x=−1解得x=−14m+5∵方程3m(x+1)+1=m(3−x)−5x的解是负数,∴4m+5>0.解得m>−54故选A.小提示:本题考查了解一元一次方程,解一元一次不等式,理解题意求得x的值是解题的关键.3、“x的2倍与3的和是非负数”列成不等式为()A.2x+3≥0B.2x+3>0C.2x+3≤0D.2x+3<0答案:A解析:非负数就是大于或等于零的数,再根据x的2倍与3的和是非负数列出不等式即可.解:“x的2倍与3的和是非负数”列成不等式为:2x+3≥0,故选:A.小提示:本题考查的是列不等式,掌握“非负数是正数或零,用不等式表示就是大于或等于零”是解题的关键.4、某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,问张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均听课时长为x分钟,以下所列不等式正确的是()A.90×3+2x⩾480B.90×3+2x⩽480C.90×3+2x<480D.90×3+2x>480答案:A解析:根据前3天听课的总时间+后2天听课的总时间≥480可得不等式.解:设张飞后2天平均听课时长为x分钟,根据题意,得:3×90+2x⩾480,故选:A.小提示:本题主要考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号,因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含着不同的不等关系.5、不等式3x+6≤0的解集是()D.x≥−2A.x≤−2B.x≤2C.x≥12答案:A解析:利用不等式的性质即可得到不等式的解集.解:3x+6≤03x≤-6x≤-2故选:A.小提示:本题考查了解一元一次不等式:根据不等式的性质先去分母,有括号的再去括号,然后移项、合并,最后得到不等式的解集.6、已知关于x的不等式2x+a≤1与−2x≥2的解集相同,则a的值为()A.3B.2C.1D.无法确定答案:A解析:求出不等式−2x≥2的解集,对应2x+a≤1即可得出答案.解:2x+a≤1,解得x≤1−a2,−2x≥2,解得x≤−1,∴1−a2=−1,∴a=3,故选:A.小提示:本题考查了解一元一次不等式以及解一元一次方程,解题的关键是根据两不等式解集相同得出关于a的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,能够熟练的运用解不等式的知识解出不等式是关键.7、不等式组{2−3x≥−1x−1≥−2(x+2)的解集为()A.无解B.x≤1C.x≥−1D.−1≤x≤1答案:D解析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x+2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D.小提示:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8、若关于x的不等式3-x>a的解集为x<4,则关于m的不等式2m+3a<1的解集为()A.m<2B.m>1C.m>-2D.m<-1答案:A解析:试题解析:解不等式3−x>a,得x<3−a,又∵此不等式的解集是x<4,∴3−a=4,∴a=−1,∴关于m的不等式为2m−3<1,解得m<2.故选A.填空题9、若不等式(m−6)x>m−6,两边同除以(m−6),得x<1,则m的取值范围为__.答案:m<6解析:由不等式的基本性质知m-6<0,据此可得答案.解:若不等式(m−6)x>m−6,两边同除以(m−6),得x<1,则m−6<0,解得m<6,所以答案是:m<6.小提示:本题考查了解一元一次不等式,解题的关键是掌握不等式的基本性质.10、定义:[x]表示不大于x的最大整数,例如:[2.3]=2,[1]=1.有以下结论:①[﹣1.2]=﹣2;②[a﹣1]=[a]﹣1;③[2a]<[2a]+1;④存在唯一非零实数a,使得a2=2[a].其中正确的是_____.(写出所有正确结论的序号)答案:①②③.解析:根据题意可以分别判断各个小的结论是否正确,从而可以解答本题.①[﹣1.2]=﹣2,故①正确;②[a﹣1]=[a]﹣1,故②正确;③[2a]<[2a]+1,故③正确;④当a=0时,a2=2[a]=0;当a=√2时,a2=2[a]=2;原题说法是错误的.故答案为①②③.本题考查新定义,解答本题的关键是明确题目中的新定义,可以判断出各个小题中的结论是否正确.11、已知“x 的3倍大于5,且x 的一半与1的差不大于2”,则x 的取值范围是________________.答案:53<x≤6解析:解:依题意有{3x >512x −1≤2 ,解得53<x≤6. 故x 的取值范围是:53<x≤6.所以答案是:53<x≤6.12、已知实数x 满足{5(x +1)≥3x −112x −1≤7−32x ,若S =|x ﹣1|+|x+1|的最大值为m ,最小值为n ,则mn =_____. 答案:16解析:解不等式组得-3≤x≤4,根据两点间的距离的公式知当-1≤x≤1时,S=|x-1|+|x+1|取得最小值;当x=4时,S=|x-1|+|x+1|取得最大值,继而可得答案.解不等式5(x+1)≥3x ﹣1,得:x≥﹣3,解不等式12x −1≤7−32x ,得:x≤4,则﹣3≤x≤4,当﹣1≤x≤1时,S =|x ﹣1|+|x+1|取得最小值,最小值n =2,当x =4时,S =|x ﹣1|+|x+1|取得最大值,最大值m =8,∴mn =2×8=16,所以答案是:16.本题主要考查解一元一次不等式组,解题的关键是掌握熟练掌握解不等式组的能力和数轴上两点间的距离公式.13、x 的 13 与 2 的差不小于 5,用不等式表示为________________.答案:13x −2≥5解析:直接利用“x 的13”即13x ,再利用差不小于5,即大于等于5,进而得出答案.解:由题意可得:13x −2≥5.所以答案是:13x −2≥5.小提示:本题考查了由实际问题抽象出一元一次不等式,正确理解题意是解题的关键.解答题14、解不等式2x −1>3x−12.解:去分母,得2(2x −1)>3x −1.……(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A”或“B”)A .不等式两边都乘(或除以)同一个正数,不等号的方向不变;B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.答案:(1)余下步骤见解析;(2)A .解析:(1)按照去括号、移项、合并同类项的步骤进行补充即可;(2)根据不等式的性质即可得.(1)2x−1>3x−12去分母,得2(2x−1)>3x−1去括号,得4x−2>3x−1移项,得4x−3x>−1+2合并同类项,得x>1;(2)不等式的性质:不等式两边都乘(或除以)同一个正数,不等号的方向不变2x−1>3x−12两边同乘以正数2,不等号的方向不变,即可得到2(2x−1)>3x−1故选:A.小提示:本题考查了解一元一次不等式、不等式的性质,熟练掌握一元一次不等式的解法是解题关键.15、已知不等式:1−x3≥4−3x7,(1)解此不等式并把解集在数轴上表示出来;(2)试判断x=√2是否为此不等式的解.答案:(1)x≥2.5数轴表示见解析;(2)x=√2不是这个不等式的解.解析:(1)解一元一次不等式的一般步骤有:去分母、去括号、移项、合并同类项、化系数为1等,注意负号的作用;在数轴上表示解集时,注意找准点,找准方向,区别实心点与空心点;(2)估算√2的值,再与2.5比较大小,即可解题.(1)解:去分母:7(1−x)≥3(4−3x)去括号:7−7x≥12−9x移项:−7x+9x≥12−7合并同类项:2x≥5化系数为1:x≥2.5∴原不等式的解集为:x≥2.5表示在数轴上为:(2)x=√2不是此不等式的解,理由如下:∵√2≈1.414,1.414<2.5不等式的解集为x≥2.5∴x=√2不是此不等式的解.小提示:本题考查解一元一次不等式、在数轴上表示不等式的解集、不等式的解、估算无理数的大小等知识,是重要考点,难度较易,掌握相关知识是解题关键.。

人教版七年级数学下册 第九章 不等式与不等式组 知识点总结及典型例题 (25张PPT)

人教版七年级数学下册 第九章  不等式与不等式组  知识点总结及典型例题 (25张PPT)

字母表示:(1)如果a>b,那么a+c>b+c; (2)如果a<b,那么a+c<b+c.
注:不等式的性质1是对不等式的两边同时进行加减,所加或所减的数 (或式子)要相同,不等号的方向不变.
例:填空: (1)已知a>b,则a+1___b+1,根据:________________; (2)已知a<b,则a-3___b-3,根据:________________; (3)已知a>b,则2a___a+b,根据:________________;
故x=3是不等式的解,同理可知,x=π也是不等式的解;把X=0代入不等
知识点 2 不等式的解、解集与解不等式
式的左边,得3x-1=-1<2,所以不等式不成立,故x=0不是不等式的解。 同理可知,x=-2,x= 1 也不是不等式的解。
2
(2)根据不等关系,易知不等式的解集为x>3,在数轴上表示时,要 注意表示3的点上画空心圆圈。 答案:(1)A (2)x>3 如图:
“公共部分”是指解集中同时满足不等式组中每一个不等式的 那部分解集.若组成不等式组的各个不等式的解集没有公共部 分,则这个不等式组无解.
2.特别提醒:数轴是确定一元一次不等式组解集的有效工具,要注意“两定”: (1)定边界点:一般在数轴上只标出原点和边界点即可.定边界点时要注意点
是实心圆点还是空心圆圈,若边界点含于解集则为实心圆点;若边界点 不
第九章 不等式与不等式组 知识点梳理
知识点 1 不等式的概念
1.不等式:用符号“>”“<”(或“≠”)表示大小(或不等)关系的式子.
2.注意:
(1)“>”是大于号,读作“大于”;“<”是小于号,读作“小于”.

人教版数学七年级下册知识重点与单元测-第九章9-4一元一次不等式组(能力提升)

人教版数学七年级下册知识重点与单元测-第九章9-4一元一次不等式组(能力提升)

第九章不等式与不等式(组)9.4 一元一次不等式组(能力提升)【要点梳理】知识点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念例1.解不等式组3(2)4 121.3x xxx--≤-⎧⎪+⎨>-⎪⎩【思路点拨】按照解不等式组的基本步骤进行求解就可以了.【答案与解析】解:解不等式①,得x≥1解不等式②,得x<4所以,不等式组的解集是1≤x<4.【总结升华】求出不等式①、②的解集后,应取其公共部分作为不等式组的解集.举一反三:【变式】解不等式组3(2)423x xa xx--<⎧⎪+⎨≥⎪⎩无解.则a的取值范围是 ( )A.a<1 B.a≤l C.a>1 D.a≥1 【答案】B例2. 不等式组3(2)5(4) 2 (1)562(2)1, (2)32211 (3)23x xxxx x⎧⎪++-<⎪+⎪+≥+⎨⎪++⎪-≤⎪⎩是否存在整数解?如果存在请求出它的解;如果不存在要说明理由.【思路点拨】解这类问题的第一步是分别求出各个不等式的解集;第二步借助数轴以确定不等式组的公共解集;最后看公共解集中是否存在整数解.【答案与解析】解:解不等式(1),得:x<2;解不等式(2),得:x≥-3;解不等式(3),得:x≥-2;在数轴上分别表示不等式(1)、(2)、(3)的解集:∴原不等式组的解集为:-2≤x<2.∴原不等式组的整数解为:-2、-1、0、1.【总结升华】求不等式组的解集就是求不等式组中所有不等式解集的公共部分.对于三个以上的不等式有时不容易得到公共解集,于是常常借助数轴的直观性,这样较容易确定其解集.在数轴上表示点的位置,要注意空心圈与实心圆点的不同用法.举一反三:【变式】解不等式组,并写出它的所有非负整数解.【答案】解:,由①得:x≥﹣2;由②得:x <,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.例3.试确定实数a的取值范围.使不等式组123544(1)33x xax x a+⎧+>⎪⎪⎨+⎪+>++⎪⎩恰好有两个整数解.【思路点拨】先确定其解集,再判断出整数解,最后利用数轴确定a的范围.【答案与解析】解:由不等式123x x++>,去分母得3x+2(x+1)>0,去括号,合并同类项,系数化为1后得x>25 -.由不等式544(1)33ax x a++>++去分母得3x+5a+4>4x+4+3a,可解得x<2a.所以原不等式组的解集为225x a-<<,因为该不等式组恰有两个整数解:0和l,故有:1<2a≤2,所以:12a<≤1.【总结升华】此题考查的是一元一次不等式组的解法,得出x的整数解,再根据x的取值范围求出a的值即可.举一反三:【变式】.已知a是自然数,关于x的不等式组≥⎧⎨⎩3x-4a,x-2>0的解集是x>2,求a的值.【答案】解:解第一个不等式,得解集43ax+≥,解第二个不等式,得解集2x>,∵不等式组的解集为x>2,∴423a+≤,即2a≤,又a为自然数,∴0a=或1或2.类型二、解特殊的一元一次不等式组例4.求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣3)(x+1)<0的解集.(2)求不等式≥0的解集.【答案与解析】解:(1)根据“异号两数相乘,积为负”可得①或②,解①得不等式组无解;解②得,﹣1<x<;(2)根据“同号两数相乘,积为正”可得①,②,解①得,x≥3,解②得,x<﹣2,故不等式组的解集为:x≥3或x<﹣2.【总结升华】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.类型三、一元一次不等式组的应用例5.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】本题的关键语句是:“若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人”.理解这句话,有两层不等关系.(1)租用36座客车x辆的座位数小于租用42座客车(x-1)辆的座位数.(2)租用36座客车x辆的座位数大于租用42座客车(x-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车x辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79 xx>⎧⎨<⎩.由题意x应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.【总结升华】本例不等关系相对隐蔽,需要在审题过程中加以挖掘.举一反三:【变式1】“向阳”中学某班计划用勤工俭学收入的66元,同时购买单价分别为3元、2元、1元的甲乙丙三种纪念品,奖励参加校“艺术节”活动的同学.已知购买的乙种纪念品比购买的甲种纪念品多2件,而购买的甲种纪念品不少于10件,且购买甲种纪念品费用不超过总费用的一半,若购买的甲、乙、丙三种纪念品恰好用了66元钱,问可有几种购买方案,每种方案中购买甲乙丙三种纪念品各多少件?【答案】解:设购买的甲、乙、丙三种纪念品件数分别为x 、y 、z ,由题意得:⎩⎨⎧+==++26623x y z y x 且⎪⎩⎪⎨⎧≤≥266310x x 由方程组得:⎩⎨⎧-=+=xz x y 5622解不等式组得:10≤x ≤11∵x 为整数,∴x =10或x =11当x =10时,y =12,z =12当x =11时,y =13,z =7∴可有两种方案购买.【变式2】5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作. 拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车x 辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.【答案】 解:(1)设租用甲种汽车x 辆,则租用乙种汽车(8)x -,则:42(8)3038(8)20x x x x +-≥⎧⎨+-≥⎩,解得:4 785x≤≤,∵x应为整数,∴7x=或8,∴有两种租车方案,分别为:方案1:租甲种汽车7辆,乙种汽车1辆;方案2:租甲种汽车8辆,乙种汽车0辆.(2)租车费用分别为:方案1: 8000×7+6000×1=62000(元);方案2:8000×:8=64000(元).∴方案1花费最低,所以选择方案1.【巩固练习】一、选择题1.关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥32.若不等式组530xx m-≥⎧⎨-≥⎩有实数解.则实数m的取值范围是 ( )A.53m≤ B.53m< C.53m> D.53m≥3.若关于x的不等式组3(2)432x xx a x--<⎧⎨-<⎩无解,则a的取值范围是 ( )A.a<1 B.a≤l C.1 D.a≥14.关于x的不等式721x mx-<⎧⎨-≤⎩的整数解共有4个,则m的取值范围是 ( )A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤75.某班有学生48人,每人都会下象棋或者围棋,且会下象棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的人有()A.20人 B.19人 C.11人或13人 D.20人或19人6.某城市的一种出租车起步价是7元(即在3km以内的都付7元车费),超过3km后,每增加1km加价1.2元(不足1km按1km计算),现某人付了14.2元车费,求这人乘的最大路程是()A.10km B.9 km C.8km D.7 km二、填空题7.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围是________.8.如果不等式组无解,则a 的取值范围是 .9.如果不等式组2223x a x b ⎧+≥⎪⎨⎪-<⎩的解集是0≤x <1,那么a+b 的值为_______.10.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.11.对于整数a 、b 、c 、d ,规定符号a b ac bd d c =-.已知,则b+d 的值是________.12. 在△ABC 中,三边为a 、b 、c ,(1)如果3a x =,4b x =,28c =,那么x 的取值范围是 ;(2)已知△ABC 的周长是12,若b 是最大边,则b 的取值范围是 ;(3)=--++-----++c a b b a c a c b c b a .三、解答题13.解下列不等式组.(1) 231313(1)6x x x x-⎧+<-⎪⎨⎪-+≥-⎩(2)2121x >-(3)210 310 320xxx-≥⎧⎪+>⎨⎪-<⎩(4)2153x-+≤14.已知:关于x,y的方程组27243x y ax y a+=+⎧⎨-=-⎩的解是正数,且x的值小于y的值.(1)求a的范围;(2)化简|8a+11|-|10a+1|.15.某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.(1)每个气排球和每个篮球的价格各是多少元?(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元?答案与解析一、选择题1. 【答案】D;【解析】解:不等式组变形得:,由不等式组的解集为x<3,得到m的范围为m≥3,故选D.2. 【答案】A;【解析】原不等式组可化为53xx m⎧≤⎪⎨⎪≥⎩而不等式组有解,根据不等式组解集的确定方法“大小小大中间找”可知m≤53.3. 【答案】B;【解析】原不等式组可化为1,.xx a>⎧⎨<⎩根据不等式组解集的确定方法“大大小小没解了”可知a≤1.4. 【答案】D;【解析】解得原不等式组的解集为:3≤x<m,表示在数轴上如下图,由图可得:6<m≤7.5. 【答案】D;6. 【答案】B;【解析】设这人乘的路程为xkm,则13<7+1.2(x-3)≤14.2,解得8<x≤9.二、填空题7. 【答案】12<k<1;【解析】解出方程组,得到x,y 分别与k的关系,然后再代入不等式求解即可.8. 【答案】a≤1;【解析】解:解不等式x﹣1>0,得x>1,解不等式x﹣a<0,x<a.∵不等式组无解,∴a≤1.9.【答案】1;【解析】由不等式22x a +≥解得x ≥4—2a .由不等式2x-b <3,解得32b x +<. ∵ 0≤x <1,∴ 4-2a =0,且312b +=,∴ a =2,b =-1.∴ a+b =1. 10.【答案】7, 37;【解析】设有x 个儿童,则有0<(4x+9)-6(x-1)<3.11.【答案】3或-3 ;【解析】根据新规定的运算可知bd =2,所以b 、d 的值有四种情况:①b =2,d =1;②b =1,d =2;③b =-2,d =-1;④b =-1,d =-2.所以b+d 的值是3或-3.12.【答案】(1) 4<x <28 (2)4<b <6 (3)2a ;【解析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边.三、解答题13.【解析】解:(1)解不等式组231313(1)6x x x x -⎧+<-⎪⎨⎪-+≥-⎩①②解不等式①,得x >5,解不等式②,得x ≤-4.因此,原不等式组无解.(2)把不等式121x x >-进行整理,得1021x x ->-,即1021x x ->-, 则有①10210x x ->⎧⎨->⎩或②10210x x -<⎧⎨-<⎩解不等式组①得112x <<;解不等式组②知其无解, 故原不等式的解集为112x <<. (3)解不等式组210310320x x x -≥⎧⎪+>⎨⎪-<⎩①②③ 解①得:12x ≥, 解②得:13x >-, 解③得:23x <,将三个解集表示在数轴上可得公共部分为:12≤x <23 所以不等式组的解集为:12≤x <23 (4) 原不等式等价于不等式组:21532153x x -+⎧≤⎪⎪⎨-+⎪≥-⎪⎩①② 解①得:7x ≥-,解②得:8x ≤,所以不等式组的解集为:78x -≤≤14.【解析】解:(1)解方程组27243x y a x y a +=+⎧⎨-=-⎩,得81131023a x a y +⎧=⎪⎪⎨-⎪=⎪⎩根据题意,得811031020381110233a a a a +⎧>⎪⎪-⎪>⎨⎪+-⎪<⎪⎩①②③ 解不等式①得118a >-.解不等式②得a <5,解不等式③得110a <-,①②③的解集在数轴上表示如图.∴ 上面的不等式组的解集是111810a -<<-. (2)∵ 111810a -<<-. ∴ 8a +11>0,10a +1<0. ∴ |8a +11|-|10a +1|=8a +11-[-(10a +1)]=8a +11+10a +1=18a +12.15.【解析】解:(1)设每个气排球的价格是x 元,每个篮球的价格是y 元.根据题意得:解得:所以每个气排球的价格是50元,每个篮球的价格是80元.(2)设购买气排球x个,则购买篮球(50﹣x)个.根据题意得:50x+80(50﹣x)≤3200解得x≥26,又∵排球的个数小于30个,∴排球的个数可以为27,28,29,∵排球比较便宜,则购买排球越多,总费用越低,∴当购买排球29个,篮球21个时,费用最低.29×50+21×80=1450+1680=3130元.。

新人教版七年级数学下册不等式与不等式组知识点归纳总结

新人教版七年级数学下册不等式与不等式组知识点归纳总结

不等式与不等式组1不等式及其解集1、用“<”或“>”号表示大小关系的式子叫做不等式。

(有些含有未知数,不含未知数。

)2、不等式的符号统称不等号,有“>” “<” “≠”. 其中“≤” “≥”,也是不等号.其中,“≤”表示,不大于、不超过,“≥”表示不小于、不低于。

3、使不等式成立的未知数的值叫做不等式的解。

4、一个含有未知数的不等式的所有的解,组成这个不等式的解集。

5、解与解集的关系:不等式的解集包括不等式全体的解;解集中的任何一个数都是不等式的解。

6、用数轴表示解集:在数轴上标出某一区间,其中的点对应的数值都是不等式的解。

①方向线向左表示小于,方向线向右表示大于;②空心圆圈表示不包括;③实心圆圈表示包括。

7、用数轴表示解集的步骤:①画数轴;②找点;③定向;④画线。

8、求不等式的解集的过程叫做解不等式。

9、含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

2不等式的性质1、不等式的性质1 不等式两边同时加(或减)同一个数(或式子),不等号的方向不变。

如果a >b ,那么a ±c >b ±c 。

不等式的性质2 不等式两边同乘(或除以)同一个正数,不等号的方向不变。

如果a >b,c >0,那么ac >bc (或c a >c b )。

不等式的性质3 不等式两边同乘(或除以)同一个负数,不等号的方向改。

如果a >b,c <0,那么ac<bc (或c a <c b )。

2、解未知数为x 的不等式,就是要使不等式逐步化为x >a 或x <a 的形式。

3、解不等式时也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向。

4、解不等式时要注意未知数系数的正负,以决定是否改变不等号的方向。

5、解一元一次方程,要根据等式的性质,将方程逐步化为x =a 的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x <a (或x >a )的形式。

3一元一次不等式组1、把几个不等式合起来,就组成了一个一元一次不等式组。

人教版七年级不等式知识点总结

人教版七年级不等式知识点总结

第九章不等式与不等式组知识总结一、不等式的概念1.不等式:用不等号表示不等关系的式子,叫做不等式。

2.不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

3.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

4.解不等式:求不等式的解集的过程,叫做解不等式。

5.用数轴表示不等式的解集。

二、不等式的基本性质1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。

三、一元一次不等式1.一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2.解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为 1四、一元一次不等式组1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3、求不等式组的解集的过程,叫做解不等式组。

4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

常见题型一、选择题1、在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为( )A.-1<m<3 B.m>3 C.m<-1 D.m>-12、已知关于的一元二次方程有两个不相等的实数根,则实数的取值范围是()A. B.C. D.3、四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图3所示,则他们的体重大小关系是()A、 B、 C、D、4、把不等式组的解集表示在数轴上正确的是()5、不等式的解集是()A.B.C.D.6、若不等式组有实数解,则实数的取值范围是()A.B.C.D.7、若,则的大小关系为()A.B.C. D.不能确定8、不等式—x—5≤0的解集在数轴上表示正确的是()9、不等式<的正整数解有( )(A)1个(B)2个(C)3个(D)4个10、把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A.B.C.D.11、不等式组,的解集是()A.B.C. D.无解12、不等式组的解集在数轴上可表示为()A B C D13、实数在数轴上对应的点如图所示,则,,的大小关系正确的是()A.B.C. D.14、如图,a、b、c分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是()A.a>c>b B.b>a>c C.a>b>c D.c>a>b15、不等式组的解集在数轴上表示正确的是()/16、把不等式组的解集表示在数轴上,正确的为图3中的()A. B. C. D.17、用表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么这三种物体按质量从大到小的顺序排列应为()18、不等式组的解集在数轴上可表示为()19、在数轴上表示不等式组的解集,正确的是()二、填空题1已知3x+4≤6+2(x-2),则的最小值等于________.2如图,已知函数和的图象交点为,则不等式的解集为.3不等式组的解集为.4不等式组的整数解的个数为.5.已知关于的不等式组的整数解共有3个,则的取值范围是.6.不等式组的解集是.7.直线与直线在同一平面直角坐标系中的图象如图所示,则关于的不等式的解集为.8.已知不等式组的解集为-1<x<2,则(m+n)2008=__________.三、简答题1解不等式组2解不等式组并写出该不等式组的最大整数解. 3若不等式组的整数解是关于x的方程的根,求a的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学七年级知识点总结09不等式与不等式组【编者按】本章内容要求学生经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识。

一.知识框架二、知识概念1.用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。

2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

6.不等式:用不等号将两个解析式连结起来所成的式子。

在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式.例如2x+2y≥2xy,sinx≤1,ex>0 ,2x <3,5x≠5等。

不等式分为严格不等式与非严格不等式。

一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)≥”“≤”连接的不等式称为非严格不等式,或称广义不等式。

7.解不等式可遵循的一些同解原理主要的有:①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。

②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。

③如果不等式F(x)<G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H( x )G(x)同解;如果H(x)<0,那么不等式F(x)<G(x)与不等式H (x)F(x)>H(x)G(x)同解。

④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解8.定理与性质不等式的性质:①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)②如果x>y,y>z;那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法则)⑤如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z<y÷z。

⑥如果x>y,m>n,那么x+m>y+n(充分不必要条件)⑦如果x>y>0,m>n>0,那么xm>yn⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数)xx DC B A 3③□▲○○○一、 选择题(本大题共12小题,每小题2分,共24分)1.下列不等式是一元一次不等式的是( )A. x 2-9x ≥x 2+7x -6B. x + <0C. x +y >0D. x 2+x +9≥02.x 的2倍减3的差不大于1,列出不等式是( )A. 2x -3≤1B. 2x -3≥1C. 2x -3<1D. 2x -3>13.根据下列数量关系,列出相应的不等式,其中错误的是( )A. a 的与2的和大于1:a +2>1B. a 与3的差不小于2:a -3>2C. b 与1的和的5倍是一个负数:5(b +1)<0D. b 的2倍与3的差是非负数:2b -3≥04.如图,在数轴上表示-1≤x <3正确的是( )5.若a 为有理数,则下列结论正确的是( )A. a >0B. -a ≤0C. a 2>0D. a 2+1>06.下列四个命题中,正确的有( )①若a <b ,则a +1<b +1;②若a <b ,则a -1<b -1;③若a <b ,则-2a >-2b ; ④若a <b ,则2a >2b.A. 1个B. 2个C. 3个D. 4个7.设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从大到小的顺序排列为( )A.○□△B.○△□C.□○△D.△□○8.若不等式ax >b 的解集是x > ,则a 的取值范围是( )A. a ≥0B. a ≤0C. a >0D. a <09.若a >b ,且c 是有理数,则下列各式正确的是( )① ac >bc ②ac <bc ③ac 2>bc 2 ④ac 2≥bc 2 ⑤ >A. 1个B. 2个C. 3个D. 4个10.3x -7≥4(x -1)的解集是( )A. x ≥3B. x ≤3C. x ≥-3D. x ≤-311.若不等式组 的解集为x >a ,则a 的取值范围是( )A. a <3B. a =3C. a >3D. a ≥312.已知不等式①、②、③的解集在数轴上表示如图所示,则它们公共部分的解集是( )A.-1≤x<3B. 1≤x<3C. -1≤x<1D. 无解二、填空题(本大题共8小题,每小题3分,共24分)13.不等式1-2x<6的负整数解为.14.若mx>my,且x>y成立,则m 0.15.下列结论:①若a>b,则ac2>bc2;②若ac>bc,则a>b;③若a>b,且c=d,则ac>bd;④若ac2>bc2,则a>b.其中正确的有(填序号).16.三角形三边长分别为4,a,7,则a的取值范围是.17.不等式5x-9≤3(x+1)的解集是.18.不等式1≤3x-7<5的整数解是.19.一次数学基础知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,某同学获得优秀(90分或90分以上),则这位同学至少答对了道题.20.如果一元一次不等式组的解集为x>3,则a的取值范围是.三、解答题(本大题共52分)21.(本小题5分)x是什么值时,代数式5x+15的值不小于代数式4x-1的值?22.(每小题3分,计12分)解下列不等式,并把它们的解集在数轴上表示出来:⑴3(2x+5)>2(4x+3)⑵10-4(x-4)≤2(x-1)26.(本小题5分)星期天,小华和7名同学共8人去郊游,途中,他用20元钱去买饮料,商店只有可乐和奶茶,已知可乐2元一杯,奶茶3元一杯,如果20元钱刚好用完.有几种购买方式?每种方式可乐和奶茶各多少杯?27.(本小题4分)先阅读,再练习.⑴①如果a-b<0,那么a<b;②如果a-b=0,那么a=b;③如果a-b>0,那么a>b.⑵由⑴中的结论你能归纳比较a,b大小的方法吗?请你用文字语言叙述出来.⑶试用⑴中的方法比较3x2-2x+7与4x2-2x+7的大小.1、不等式组12xx<⎧⎨>-⎩的解集是2、将下列数轴上的x的范围用不等式表示出来3、34125x +-<≤的非正整数解为 4、a>b,则-2a -2b.5、3X ≤12的自然数解有 个.6、不等式12x >-3的解集是 。

7、用代数式表示,比x 的5倍大1的数不小于x 的21与4的差 。

8、若(m-3)x<3-m 解集为x>-1,则m .9、三角形三边长分别为4,a ,7,则a 的取值范围是 10、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。

在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛二、选择题 11、在数轴上表示不等式x ≥-2的解集,正确的是( )A B C D12、下列叙述不正确的是( )A 、若x<0,则x 2>xB 、如果a<-1,则a>-aC 、若43-<-a a ,则a>0D 、如果b>a>0,则ba 11-<- 13、设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从大到小....的顺序排列为( )A 、 ○□△B 、 ○△□C 、 □○△D 、 △□○14、天平右盘中的每个砝码的质量都是1g ,则物体A的质量m(g)的取值范围,在数轴上可表示为( )15、代数式1-m 的值大于-1,又不大于3,则m 的取值范围是( ).13.31.22.22A m B m C m D m -<≤-≤<-≤<-<≤16、不等式45111x -<的正整数解为( ) A.1个 B.3个 C.4个 D.5个 0 0 1 2 B 0 A A 0 1 2 A 2 1 C 1 D17、不等式组2.01x x x >-⎧⎪>⎨⎪<⎩的解集是( ).1.0.01.21A x B x C x D x >-><<-<<18、如果关于x 、y 的方程组322x y x y a +=⎧⎨-=-⎩的解是负数,则a 的取值范围是( )A.-4<a<5B.a>5C.a<-4D.无解19、若关于x 的不等式组()202114x a x x ->⎧⎪⎨+>-⎪⎩的解集是x>2a,则a 的取值范围是( )A. a>4B. a>2C. a=2D.a≥220、若方程组2123x y m x y +=+⎧⎨+=⎩中,若未知数x 、y 满足x+y>0,则m 的取值范围是( ).4.4.4.4A m B m C m D m >-≥-<-≤-三、解答题1、解下列不等式(或不等式组),并在数轴上表示解集。

(1)2x -3<6x +13; (2)2(5x -9)≤x+3(4-2x ).(3) ⎩⎨⎧>-+->-01243273x x x (4)()43321311522x x x x -<+⎧⎪⎨->-⎪⎩2、在下列解题过程中有错,请在出错之处打个叉,并给予纠正。

x x 416)1(3+>+--解: x x 4163+>+-- 6314-+>--x x25->-x52<x 3、某城市一种出租汽车起步价是10元行驶路程在5km 以内都需10元车费),达到或超过5km 后,每增加1km ,1.2元(不足1km ,加价1.2元;不足1km 部分按1km 计)。

相关文档
最新文档