24章圆知识点
人教版九年级数学上册第24章第1节《圆》课件
A
A
C
B
B C
O C
O
B A
O
D
D
A
A
C
B
B C
O
O
B A
O
C
D
D
【发现】直径是最长的弦
探究新知
24.1 圆的有关性质/
弧:
圆上任意两点间的部分叫做圆弧,简弧.以A、B为 端点的弧记作 AB,读作“圆弧AB”或“弧AB”.
➢半圆
B ·O
A
C
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
A ·O1 C
探究新知
24.1 圆的有关性质/
【想一想】长度相等的弧是等弧吗? 如图,如果A︵B和C︵D的拉直长度都是10cm,平移并调整
小圆的位置,是否能使这两条弧完全重合?
可见这两条弧不可能完全重合
D
B
A
C
实际上这两条弧弯曲程度不同
A
“等弧”要区别于“长度相等的弧”
D BC
【结论】等弧仅仅存在于同圆或者等圆中.
探究新知 素养考点 1 圆的定义的应用
24.1 圆的有关性质/
例1 矩形ABCD的对角线AC、BD相交于O. 求证:A、B、C、D在以O为圆心的同一圆上.
证明:∵四边形ABCD是矩形,
∴AO=OC,OB=OD.
A
D
O
又∵AC=BD,
B
C
∴OA=OB=OC=OD.
∴A、B、C、D在以O为圆心,以OA为半径的圆上.
B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的 墨线是运用了“直线外一点与直线上各点连接的所有线段中, 垂线段最短”的原理
C.将自行车的车架设计为三角形形状是运用了“三角形的稳 定性”的原理
人教版九年级数学上册第24章《圆》知识小结与复习
A
A.140°B.135°C.130°D.125°
DF
∠BOC=90°+ 1∠A 2
R
E
BM
Q
O
G
P
NC
3、边长分别为3,4,5的三角形的内切圆半径与外 接圆半径的比为( )
A.1∶5 B.2∶5 C.3∶5 D.4∶5
4.已知△ABC,AC=12,BC=5,AB=13。则 △ABC的外接圆半径为 。内切圆半径____ 5. 正三角形的边长为a,它的内切圆和外接圆的半 径分别是______, ____
O1
AM
O
B
如图,在矩形ABCD中,AB=20cm,BC=4cm,点 ⊙p从A开始折线A—B—C—D以4cm/秒的速度 移动,点⊙Q从C开始沿CD边以1cm/秒的速度移 动,如果点⊙P, ⊙Q分别从A,C同时出发,当其中一 点到达D时,另一点也随之停止运动,设运动的时 间t(秒) 如果⊙P和⊙Q的半径都是2cm,那么t 为何值时, ⊙P和⊙Q外切?
(2)若C△ABC= 36, S△ABC=18,则r内=_1____; (3)若BE=3,CE=2, △ABC的周长为18,则AB=_7___;
A
D
8
F
4
o
B
6E
C
1 S △ABC= 2 C △ABC·r内
2.△ABC中, ∠A=70°,⊙O截△ABC三条边所得的
弦长相等.则 ∠BOC=__D__.
3.两圆相切,圆心距为10cm,其中一个圆的半径为 6cm,则另一个圆的半径为_____.
4. 已知圆O1与圆O 2的半径分别为12和2,圆心O1的 坐标为(0,8),圆心O2 的坐标为(-6,0),则两圆的位置 关系是______.
《圆》知识点归纳
第24章《圆》知识点归纳一.圆的定义及有关概念1.圆的定义(1)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.(2).圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.定点为圆心,定长为半径。
(3).确定圆的条件:⑴圆心;⑵半径,其中圆心确定圆的位置,半径长确定圆的大小.2.同圆、同心圆、等圆(1).圆心相同且半径相等的圆叫做同圆;(2).圆心相同,半径不相等的两个圆叫做同心圆;(3).半径相等的圆叫做等圆.3.弦和弧(1).连结圆上任意两点的线段叫做弦.经过圆心的弦叫做直径,并且直径是同一圆中最长的弦,直径等于半径的2倍.(2).圆上任意两点间的部分叫做圆弧,简称弧.以A B、为端点的弧记作»AB,读作弧AB.在同圆或等圆中,能够重合的弧叫做等弧.(3).圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(4).从圆心到弦的距离叫做弦心距.(5).由弦及其所对的弧组成的图形叫做弓形.二.与圆有关的角及相关性质定理1.顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.2.顶点在圆上,并且两边都和圆相交的角叫做圆周角.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.(在同圆中,半弧所对的圆心角等于全弧所对的圆周角)推论3.如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形*3.顶点在圆内,两边与圆相交的角叫圆内角.圆内角定理:圆内角的度数等于圆内角所对的两条弧的度数和的一半.*4.顶点在圆外,两边与圆相交的角叫圆外角.圆外角定理:圆外角的度数等于圆外角所对的长弧的度数与短弧的度数的差的一半.5.圆内接四边形的对角互补,一个外角等于其内对角.6.圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.7.圆的性质:是轴对称图形又是中心对称图形,过圆心任意一条直线都是它的对称轴,圆心是对称中心。
第24章 圆章节知识点及习题及答案
第二十四章圆章节知识点思维导图:一、圆的有关性质(一)与圆有关的概念1、定义:在一个平面内线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、弦:连接圆上任意两点的线段叫做弦,经过圆心的弦,叫做直径。
3、弧:圆上任意两点间的部分(曲线)叫做圆弧,简称弧。
能够互相重合的弧叫等弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧,由弦及其所对的弧组成的圆形叫弓形。
4、圆心角:我们把顶点在圆心的角叫做圆心角。
5、圆周角:顶点在圆上,并且两边都与圆相交的角叫做圆周角。
注意:在圆中,同一条弦所对的圆周角有无数个。
6、弦心距:从圆心到弦的距离叫弦心距。
7、同心圆、等圆:圆心相同,半径不相等的两个圆叫同心圆;能够重合的两个圆叫等圆。
8、点的轨迹:1)圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2)垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3)角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4)到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5)到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
(二)圆的性质1、对称性:圆是轴对称图形,任何一条直径所在直线都是它的对称轴;圆也是以圆点为对称中心的中心对称图形。
2、性质:①垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧;推论1 :平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。
推论2:圆两条平行弦所夹的弧相等。
②圆心角定理(圆心角、弧、弦、弦心距之间的关系):在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,所对的弦心距相等;圆心角的度数与它所对的度数相等。
第24章 圆知识点
第24章圆知识点1、圆的有关性质:(1)圆既是轴对称图形,又是中心对称图形。
(2)垂径定理:如果过圆心的线垂直弦,那么平分弦和平分弦所对的两条弧。
推论:如果过圆心的线平分弦(这里的弦不能是直径),那么线垂直弦,并且平分弦所对的两条弧。
(注意:在求弦长、半径、弦心距的长度时,垂径定理经常要结合勾股定理。
)(3)两条弦相等⇔两条弧相等⇔两个圆心角相等⇔两个圆周角相等(4)圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论:①同弧或等弧所对的圆周角相等。
②半圆或直径所对的圆周角是直角。
③90°的圆周角所对的弦是直径。
④圆内接四边形的对角互补。
(注意:运用圆周角定理及其推论的关键是找到这些角所对的弧)2、点和圆的位置关系:①点在圆内⇔d<r;②点在圆上⇔d=r;③点在圆外⇔d>r。
3、三角形的外心是三条边的垂直平分线的交点;内心是三条角平分线的交点。
4、直线和圆的位置关系:①相交⇔d<r;②相切⇔d=r;③相离⇔d>r。
5、证明一条直线是圆的切线的方法:有两种情况(1)直线和圆有公共点:先连接公共点和圆心,再证明直线垂直半径。
(2)直线和圆没有公共点:先过圆心作直线的垂线,再证明垂线段等于半径。
6、圆的切线的性质:先连接圆心和切点,然后得到切线垂直半径。
7、切线长定理:。
8、与圆有关的计算公式:(1)正多边形的中心角= ;(2)正多边形的每一个内角= ;(3)正多边形的周长= ;(4)正多边形的面积= ;(5)弧长= ;(6)扇形的面积= = ;(7)圆锥的侧面积= (8)圆锥的全面积= ;(9)圆锥的侧面展开图是扇形,此扇形的圆心角= ;(10)圆柱的侧面积= 。
9、圆中常用的辅助线:(1)有弦:一般都作弦心距,再结合垂径定理和勾股定理;(2)遇直径想直角,遇直角想直径;(3)连接圆心和切点。
10、圆中有“三多”:(1)直角多(直径所对的圆周角、切线引出的直角);(2)等腰三角形多(可得等边对等角(即两条半径所对的两个底角相等));(3)相等的角多(同弧或等弧所对的圆心角相等、圆周角相等,等边对等角)。
圆各知识点总结
第24章 圆知识点总结一、 圆的基本性质1.圆的有关概念(1)圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; 拓展:a.垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);b.角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;c.到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;d.到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
(2)圆的外部:可以看作是到定点的距离大于定长的点的集合;圆的内部:可以看作是到定点的距离小于定长的点的集合。
(3)弦:圆上任意两点连成的线段;通过圆心的弦是直径,是圆中最长的弦,也是圆的对称轴。
(4) 弧:圆上任意两点之间的部分;以A 、B 为端点的弧记作B A(5)半圆:圆的任意一条直径的两个端点把圆分为两条弧,每一条弧都叫做半圆。
(半圆是弧,不包括直径的部分,因此求半圆的周长时不要画蛇添足。
)(6)劣弧:在同圆或等圆中,弧长小于该圆半圆的弧叫劣弧。
优弧:弧长大于该圆半圆的弧叫优弧。
(优弧通常用三个字母表示,如C AB。
) (7)同心圆:圆心相同,半径不同的两个圆叫做同心圆(8)等圆:能够重合的两个圆叫等圆,半径相等的两个圆也叫等圆. (9)弦心距:从圆心到弦的距离 2.圆的对称性:(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线。
(2)圆是中心对称图形,对称中心为圆点。
3.垂径定理及其推论:定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分线所对的两条弧。
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①A B 是直径 ②AB C D ⊥ ③C E D E = ④ 弧B C =弧B D ⑤ 弧A C =弧A D 中任意2个条件推出其他3个结论。
第24章圆知识完整归纳
24章圆知识点一:圆的定义1、圆可以看作是的集合。
2、圆的特征(1)圆上各点到定点(圆心O)的距离都等于定长(半径)。
(2)到定点的距离等于定长的点都在同一个圆上。
知识点二:圆的相关概念1. 叫做弦,2. 叫做直径。
3. 的部分叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
的弧(用三个点表示)叫优弧;的弧叫做劣弧.注意:半圆是弧,但弧不一定是半圆。
半圆既不是优弧,也不是劣弧。
3、等圆:叫做等圆周。
4、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
知识点三:圆的对称性圆是轴对称图形,都是圆的对称轴。
知识点四:垂径定理及推论(重点)1、垂径定理:。
注意:(1)这里的垂径可以是直径、半径或过圆心的直线或线段,其本质是“过圆心”。
(2)垂径定理中的“弦”为直径时,结论仍成立。
2、垂径定理的推论:平分弦(不是直径)的垂直于弦,并且平分弦所对的.知识点五:弧、弦、圆心角之间的关系(重点、难点)1、圆心角定理:在同圆或等圆中,所对的弦相等,所对的弧也相等。
2、推论:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的相等,所对的相等。
(2)在同圆或等圆中,如果两条弦相等,那么它们所对的相等所对的相等。
知识点六:圆周角定理及其推论1、圆周角定理:一条弧所对的圆周角等于的一半。
2、圆周角定理的推论:(1)同弧或等弧所对的相等。
(2)半圆(或直径)所对的圆周角是;90°的圆周角所对的弦是 . 知识点七:圆内接多边形圆的内接四边形性质:圆的内接四边形的对角 .知识点八:三角形的外接圆1.经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆。
2.三角形外接圆的圆心是三角形三条边的的交点,叫做这个三角形的外心,(1)三角形的外心到三角形的距离相等,等于外接圆的半径。
(2)一个三角形有且只有个外接圆,而一个圆却有个内接三角形。
(3)三角形外心的位置:锐角三角形的外心在三角形;钝角三角形的外心在三角形;直角三角形的外心是。
九年级人教版24章圆知识点
第二十四章圆1圆:在一个平面内,线段OA绕它固定的一个端点O ,另一个端点A所叫做圆。
其固定的端点O叫做,线段OA叫做。
圆既是图形,又是图形,任何一条都是圆的对称轴。
2.圆弧和弦:连接圆上的线段叫做。
经过圆心的弦叫做。
弦的取值范围:;圆上的部分叫做,简称。
大于半圆的弧称为,小于半圆的弧称为。
以A、B为端点的劣弧记作,读作;等圆:能够的两个圆叫做;同圆或等圆的相等;等弧:在中,能够的弧叫做。
3.垂径定理:垂直于弦的直径,并且;几何语言:如图垂径定理的推论:平分弦()的直径,并且平分两条弧。
几何语言:如图4.圆心角和圆周角:顶点在上的角叫做圆心角。
顶点在,并且两边都与圆的角叫做圆周角。
圆心角定理:在,相等的圆心角相等,也相等。
几何语言:如图推论:①在,如果相等,那么它们,。
几何语言:如图②在,如果相等,那么它们,。
几何语言:如图圆周角定理:一条弧所对的等于它所对的的一半。
∠几何语言如图:∵∴∠=∠=12推论:①同弧或等弧所对的相等。
如图:∵∴∠=∠②半圆()所对的圆周角是,90°的圆周角所对的弦是直径。
几何语言:如图几何语言:如图5.圆内接多边形:如果一个多边形的都在同一个圆上,这个多边形叫做;这个圆叫做这个。
圆内接四边形的一个性质:圆内接四边形的。
几何语言:6.点和圆的位置关系:设圆O的半径为r,点P到圆心的距离OP=d,则有①圆内:点P在圆<=>②圆上:点P在圆<=>③圆外:点P在圆<=>圆的确定:①和;②不在的三个点确定一个圆。
7.反证法:假设命题的不成立,由此经过推理得出矛盾,由矛盾断定所作,从而得到原命题成立,这种方法叫做反证法。
8.三角形外接圆,内切圆经过三角形的三个可以作一个圆,这个圆叫做三角形的,其圆心叫做三角形的。
三角形的外心到三角形的的距离相等。
与三角形各边都的圆叫做这个三角形的,其圆心叫做三角形的。
三角形的内心到三角形的的距离相等。
人教版九年级上册第24章圆的有关性质知识点课件
A. 8
B. 10
C. 4 3
D. 4 5
A
垂径定理
勾股定理
5O
B 4D
C
【巩固】
1. 下列说法不正确的是( C ) A. 圆既是轴对称图形又是中心对称图形 B. 圆有无数条对称轴 C. 圆的每一条直径都是它的对称轴 D. 圆的对称中心是它的圆心
【巩固】 2. 如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5 cm,CD=8 cm,则 AE的长为( A)
劣弧: 小于半圆的弧叫做劣弧.如 BC . 优弧: 大于半圆的弧叫优弧.用三个字母表示,如 ABC . 等圆: 能够重合的两个圆叫做等圆. 容易看出:半径相等的两个圆叫做等圆;
反过来,同圆或等圆的半径相等.
等弧: 在同圆或等圆中,能够互相重合的弧叫做等弧.
【例1】如图,在Rt△ABC中,∠C=90°,AB=10,若以点 C 为圆心、CB 长 为半径的圆恰好经过 AB 的中点 D,则 AC 的长为_____5__3_______.
B
C
A
O
D
【巩固】
1. 如图,在⊙O 中,∠AOB=∠COD,那么AC 和 BD 的大小关系是(C )
A. AC > BD C. AC = BD
B. AC < BD
D. 无法确定
C D
B A
O
【巩固】 2. 如图,C是⊙O上的点,CD⊥OA于点 D,CE⊥OB于点 E,且CD=CE, 则 AC 与 BC 的关系是(A )
直角三角形斜边上的中线的性质
同一个圆中的所有半径都相等, “连半径”是常用的辅助线
C
B
D
A
【巩固】 1. 如图,AB是⊙O的直径,点 C 在圆上,∠ABC=65°,那么∠OCA 的度 数是( A)
九年级上册数学第24章《圆》知识点梳理完整版
【学习目标】九年级数学上册第24 章《圆》知识点梳理1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段 OA 绕着它的一个端点 O 旋转一周,另一个端点 A 所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心1 2n是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2) 轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. ②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. ③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3. 两圆的性质(1) 两个圆是一个轴对称图形,对称轴是两圆连心线.(2) 相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.4. 与圆有关的角(1) 圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角. ④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1. 判定一个点 P 是否在⊙O 上设⊙O 的半径为 ,OP= ,则有点 P 在⊙O 外;点 P 在⊙O 上; 点 P 在⊙O 内.要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2. 判定几个点A 、A 、 A 在同一个圆上的方法 当时, 在⊙O 上.3. 直线和圆的位置关系设⊙O 半径为 R ,点 O 到直线 的距离为 .(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.4.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1) 和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2) 和没有公共点,且的每一个点都在内部内含(3) 和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4) 和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O 表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的 2倍,通常用G 表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1)任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2)解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S 为三角形的面积,P 为三角形的周长,r 为内切圆的半径). (3)三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外三角形三边中垂线的(1)OA=OB=OC ;(2)外心不一接圆的圆心) 交点定在三角形内部内心(三角形内三角形三条角平分线(1)到三角形三边距离相等;切圆的圆心) 的交点(2)OA、OB、OC 分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为 R 的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为 R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R ,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积 S、扇形半径 R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】13 (1 + 1)2 + (0 - 3)2 OE 2 - EF 2 3 3 类型一、圆的基础知识1.如图所示,△ABC 的三个顶点的坐标分别为 A (-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为 .【答案】 ;【解析】由已知得 BC∥x 轴,则 BC 中垂线为 x =-2 + 4 = 12那么,△ABC 外接圆圆心在直线 x=1 上,设外接圆圆心 P(1,a),则由 PA=PB=r 得到:PA 2=PB 2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得 4+a 2-6a+9=9+a 2+4a+4 解得 a=0即△ABC 外接圆圆心为 P(1,0) 则 r = PA = = 【总结升华】 三角形的外心是三边中垂线的交点,由 B 、C 的坐标知:圆心 P (设△ABC 的外心为 P )必在直线x=1 上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到 P (1,0);连接 PA 、PB ,由勾股定理即可求得⊙P 的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O 的直径 AB 和弦 CD 相交于点 E ,已知 AE =1cm ,EB =5cm ,∠DEB=60°, 求 CD 的长.【答案与解析】作 OF⊥CD 于 F ,连接 OD .∵ AE =1,EB =5,∴ AB =6. ∵ OA =AB = 3 ,∴ OE =OA-AE =3-1=2.2在 Rt△OEF 中,∵ ∠DEB=60°,∴ ∠EOF=30°, ∴ EF = 1OE = 1 ,∴ OF = = .2在 Rt△DFO 中,OF = ,OD =OA =3,13OD 2 - OF 2∵ OF⊥CD,∴ DF =CF ,∴ CD =2DF = 2 cm .【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.作 OF⊥CD 于 F ,构造 Rt△OEF,求半径和 OF 的长;连接 OD ,构造 Rt△OFD,求 CD 的长.举一反三:【变式】如图,AB 、AC 都是圆 O 的弦,OM⊥AB,ON⊥AC,垂足分别为 M 、N ,如果 MN =3,那么 BC = .C【答案】由 OM⊥AB,ON⊥AC,得 M 、N 分别为 AB 、AC 的中点(垂径定理),则 MN 是△ABC 的中位线,BC=2MN=6.3.如图,以原点 O 为圆心的圆交 x 轴于点 A 、B 两点,交 y 轴的正半轴于点 C ,D 为第一象限内⊙O 上的一点,若∠DAB = 20°,则∠OCD = .yCDAOBx(第 3 题)【答案】65°.【解析】连结 OD ,则∠DOB = 40°,设圆交 y 轴负半轴于 E ,得∠DOE= 130°,∠OCD =65°. 【总结升华】根据同弧所对圆周角与圆心角的关系可求. 举一反三:【变式】(2015•黑龙江)如图,⊙O 的半径是 2,AB 是⊙O 的弦,点 P 是弦 AB 上的动点,且 1≤OP ≤2,则弦 AB 所对的圆周角的度数是()A .60°B .120°C .60°或 120°D .30°或 150°【答案】C.【解析】作 OD ⊥AB ,如图,N O AMB∴ DF = = 32 - ( 3)2 = 6 (cm).6∵点P 是弦AB 上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB= ∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB 所对的圆周角的度数为60°或120°.故选C.类型三、与圆有关的位置关系4.如图,在矩形 ABCD 中,点O 在对角线 AC 上,以OA 的长为半径的圆 O 与AD、AC 分别交于点 E、F,且∠ACB= ∠DCE.请判断直线 CE 与⊙O 的位置关系,并证明你的结论.【答案与解析】直线 CE 与⊙O相切理由:连接 OE∵OE=OA∴∠OEA=∠OAE∵四边形 ABCD 是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°, ∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线 CE 与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.举一反三:【变式】如图,P 为正比例函数图象上的一个动点,的半径为3,设点P 的坐标为(x、y).(1)求与直线相切时点P 的坐标.(2)请直接写出与直线相交、相离时 x 的取值范围.【答案】(1)过作直线的垂线,垂足为.当点在直线右侧时,,得,(5,7.5).当点在直线左侧时,,得,( ,).当与直线相切时,点的坐标为(5,7.5)或( ,).(2)当时,与直线相交.当或时,与直线相离.类型四、圆中有关的计算5.(2015•丽水)如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 分别与BC,AC 交于点D,E,过点D 作⊙O 的切线DF,交AC 于点F.(1)求证:DF⊥AC;(2)若⊙O 的半径为4,∠CDF=22.5°,求阴影部分的面积.【答案与解析】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF 是⊙O 的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O 的半径为4,∴S 扇形AOE=4π,S△AOE=8 ,∴S 阴影=4π﹣8.【总结升华】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图, AB 所在圆的圆心为 O .车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留 π).【答案与解析】连接 OB ,过点 O 作 OE⊥AB,垂足为 E ,交 AB 于点 F ,如图(2). 由垂径定理,可知 E 是 AB 中点,F 是 AB 的中点,∴ AE= 1AB = 2 2,EF =2.设半径为 R 米,则 OE =(R-2)m .在 Rt△AOE 中,由勾股定理,得 R 2 = (R - 2)2 + (2 3)2 . 解得 R =4.∴ OE =2,OE = 1AO ,∴ ∠AOE=60°,∴ ∠AOB=120°.2∴ AB 的长为120 ⨯ 4π = 8π(m). 180 3 ∴ 帆布的面积为 8π⨯ 60 = 160π(m 2).3【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.求覆盖棚顶的帆布的面积,就是求以 AB 为底面的圆柱的侧面积.根据题意,应先求出 AB 所对的圆心角度数以及所在圆的半径,才能求 AB 的长.举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所 示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽 AB=16cm ,水最深的地方的高度为 4cm ,求这个圆形截面 的半径.【答案】①作法略.如图所示.3②如图所示,过 O 作OC⊥AB于D,交于 C,∵ OC⊥AB,∴.由题意可知,CD=4cm.设半径为x cm,则.在Rt△BOD中,由勾股定理得:∴.∴.即这个圆形截面的半径为 10cm.圆的基本概念和性质【学习目标】1.知识目标:在探索过程中认识圆,理解圆的本质属性;2.能力目标:了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;3.情感目标:通过圆的学习养成学生之间合作的习惯.【要点梳理】要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 随之旋转所形成的图形叫做圆,固定的端点 O 叫做圆心,线段 OA 叫做半径. 以点 O 为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为 O,半径为 r 的圆是平面内到定点 O 的距离等于定长 r 的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB 是⊙O 的直径,CD 是⊙O 中任意一条弦,求证:AB≥CD.证明:连结OC、OD2.弧∵AB=AO+OB=CO+OD≥CD(当且仅当CD 过圆心O 时,取“=”号) ∴直径AB 是⊙O 中最长的弦.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.【典型例题】类型一、圆的定义1.(2014 秋•邳州市校级月考)如图所示,BD,CE 是△ABC 的高,求证:E,B,C,D 四点在同一个圆上.【思路点拨】要证几个点在同一个圆上,就是证明这几个点到同一点的距离都相等即可.【答案与解析】证明:如图所示,取BC 的中点F,连接DF,EF.∵BD,CE 是△ABC 的高,∴△BCD 和△BCE 都是直角三角形.∴DF,EF 分别为Rt△BCD 和Rt△BCE 斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D 四点在以F 点为圆心,BC 为半径的圆上.【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等.举一反三:【变式】下列命题中,正确的个数是()⑴直径是弦,但弦不一定是直径;⑵半圆是弧,但弧不一定是半圆;⑶半径相等且圆心不同的两个圆是等圆;⑷一条弦把圆分成的两段弧中,至少有一段是优弧.A.1 个B.2 个C.3 个D.4 个【答案】⑴、⑵、⑶是正确的,⑷是不正确的.故选 C.类型二、圆及有关概念2.判断题(对的打√,错的打×,并说明理由)①半圆是弧,但弧不一定是半圆;()②弦是直径;()③长度相等的两段弧是等弧;()④直径是圆中最长的弦. ()【答案】①√ ②× ③× ④√.【解析】①因为半圆是弧的一种,弧可分为劣弧、半圆、优弧三种,故正确;②直径是弦,但弦不一定都是直径,只有过圆心的弦才是直径,故错;③只有在同圆或等圆中,长度相等的两段弧才是等弧,故错;④直径是圆中最长的弦,正确.【总结升华】理解弦与直径的关系,等弧的定义.举一反三:【变式】(2014•长宁区一模)下列说法中,结论错误的是()A .直径相等的两个圆是等圆B .长度相等的两条弧是等弧C .圆中最长的弦是直径D .一条弦把圆分成两条弧,这两条弧可能是等弧【答案】B.提示:A 、直径相等的两个圆是等圆,正确,不符合题意;B 、长度相等的两条弧圆周角不一定相等,它们不一定是等弧,原题的说法是错误的,符合题意;C 、圆中最长的弦是直径,正确,不符合题意;D 、一条直径把圆分成两条弧,这两条弧是等弧,正确,不符合题意,故选:B .3.直角三角形的三个顶点在⊙O 上,则圆心 O 在 .......................【答案】斜边的中点.【解析】根据圆的定义知圆心 O 到三角形的三个顶点距离相等,由三角形斜边的中线等于斜边的一半可知,斜边上的中点到各顶点的距离相等.【总结升华】圆心到圆上各点的距离相等. 4.判断正误:有 AB 、C D , AB 的长度为 3cm, C D 的长度为 3cm ,则 AB 与C D 是等弧.【答案】错误.【解析】“能够完全重合的弧叫等弧”.在半径不同的圆中也可以出现弧的长度相等,但它们不会完全重合,因此, 只有在同圆或等圆中,长度相等的弧才是等弧.【总结升华】在同圆或等圆中,长度相等的弧才是等弧.举一反三:【变式】有的同学说:“从优弧和劣弧的定义看,大于半圆的弧叫优弧,小于半圆的弧叫劣弧,所以优弧一定比劣 弧长.”试分析这个观点是否正确.甲同学:此观点正确,因为优弧大于半圆,劣弧小于半圆,所以优弧比劣弧长.乙同学:此观点不正确,如果两弧存在于半径不相等的两个圆中,如图,⊙O 中的优弧 AmB ,中的劣弧C D ,它们的长度大小关系是不确定的,因此不能说优弧一定比劣弧长.请你判断谁的说法正确?【答案】弧的大小的比较只能是在同圆或等圆中进行. 乙的观点正确.类型三、圆的对称性5.已知:如图,两个以 O 为圆心的同心圆中,大圆的弦 AB 交小圆于 C,D.求证:AC=BD.【答案与解析】证明:过 O 点作OM⊥AB于M,交大圆与 E、F 两点.如图,则EF 所在的直线是两圆的对称轴,所以 AM=BM,CM=DM,故AC=BD.【总结升华】作出与AB垂直的圆的对称轴,由圆的对称性可证得结论.垂径定理【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(2)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(3)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;OD 2 + AD 2 42 + 32 (4) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1.如图,AB 是⊙O 的弦,半径 OC⊥AB 于点 D ,且 AB =6 cm ,OD =4 cm ,则 DC 的长为( )A .5 cmB .2.5 cmC .2 cmD .1 cm【思路点拨】欲求 CD 的长,只要求出⊙O 的半径 r 即可,可以连结 OA ,在 Rt△AOD 中,由勾股定理求出 OA.【答案】D ;【解析】连 OA ,由垂径定理知 AD = 1AB = 3cm , 2所以在 Rt△AOD 中, AO = = = 5 (cm ).所以 DC =OC -OD =OA -OD =5-4=1(cm ).【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形。
九年级上数学第24章圆复习课件
做直线与这个圆相切. (3) 相交: 一条直线与一个圆有两个公共点,叫
做直线与这个圆相交.
直线与圆位置关系的识别:
r.
r.
r.
∟
∟ ∟
O d
dO
dO
l
l
l
设圆的半径为r,圆心到直线的距离为d,则:
(1)当直线与圆相离时d>r; (2)当直线与圆相切时d =r; (3)当直线与圆相交时d<r.
1.与圆有一个公共点的直线。 2.圆心到直线的距离等于圆的半
径的直线是圆的切线。 3.经过半径的外端且垂直于这条
半径的直线是圆的切线。
∟
.
O A
∵OA是半径,OA⊥ l l ∴直线l是⊙O的切线.
切线的性质: (1)圆的切线垂直于经过切点的半径. (2)经过圆心垂直于切线的直线必经过切点. (3)经过切点垂直于切线的直线必经过圆心.
.
∵直线l是⊙O的切线,切 点为A
A
B
•
O C
D
1. 在⊙O中,弦AB所对的圆心角∠AOB=100°,则
弦AB所对的圆周角为__5__0_0或___1_3_0_0_.(05年上海)
2.如图,AB是⊙O的直径,BD是
⊙O的弦,延长BD到点C,使
DC=BD,连接AC交⊙O与点F.
(1)AB与AC的大小有什么关
A
系?为什么? (2)按角的大小分类, 请你判断
D
E
∵∠ADB与∠AEB 、∠ACB 是
C 同弧所对的圆周角
O
∴∠ADB=∠AEB =∠ACB
A
B
圆周角的性质:
性质 3:半圆或直径所对的圆周角都 相等,都等于900(直角). 性质4: 900的圆周角所对的弦是圆的直径.
人教版第24章圆的知识点与典型例题
圆知识点总结一.圆的定义1.在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.2.圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.3.确定圆的条件:⑴圆心;⑵半径,其中圆心确定圆的位置,半径长确定圆的大小.二.同圆、同心圆、等圆1.圆心相同且半径相等的圆叫做同圆;2.圆心相同,半径不相等的两个圆叫做同心圆;3.半径相等的圆叫做等圆.三.弦和弧1.连结圆上任意两点的线段叫做弦.经过圆心的弦叫做直径,并且直径是同一圆中最长的弦,直径等于半径的2倍.2.圆上任意两点间的部分叫做圆弧,简称弧.以A B、为端点的弧记作»AB,读作弧AB.在同圆或等圆中,能够重合的弧叫做等弧.3.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.4.从圆心到弦的距离叫做弦心距.5.由弦及其所对的弧组成的图形叫做弓形.四.与圆有关的角及相关定理1.顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.2.顶点在圆上,并且两边都和圆相交的角叫做圆周角.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.(在同圆中,半弧所对的圆心角等于全弧所对的圆周角)3.顶点在圆内,两边与圆相交的角叫圆内角.圆内角定理:圆内角的度数等于圆内角所对的两条弧的度数和的一半.4.顶点在圆外,两边与圆相交的角叫圆外角.圆外角定理:圆外角的度数等于圆外角所对的长弧的度数与短弧的度数的差的一半.5.圆内接四边形的对角互补,一个外角等于其内对角.6.如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.7.圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.五.垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;2.其它正确结论:⑴弦的垂直平分线经过圆心,并且平分弦所对的两条弧;⑵平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.⑶圆的两条平行弦所夹的弧相等.3.知二推三:⑴直径或半径;⑵垂直弦;⑶平分弦;⑷平分劣弧;⑸平分优弧.以上五个条件知二推三.注意:在由⑴⑶推⑵⑷⑸时,要注意平分的弦非直径.4.常见辅助线做法:⑴过圆心,作垂线,连半径,造RT△,用勾股,求长度;⑵有弧中点,连中点和圆心,得垂直平分.相关题目:1.平面内有一点到圆上的最大距离是6,最小距离是2,求该圆的半径2.(08郴州)已知在Or=,AB CD⊙中,半径5,,==AB CD,是两条平行弦,且86则弦AC的长为__________.六.点与圆的位置关系1.点与圆的位置有三种:⑴点在圆外⇔d r>;⑵点在圆上⇔d r=;⑶点在圆内⇔d r<.2.过已知点作圆⑴经过点A的圆:以点A以外的任意一点O为圆心,以OA的长为半径,即可作出过点A的圆,这样的圆有无数个.⑵经过两点A B、的圆:以线段AB中垂线上任意一点O作为圆心,以OA的长为半径,即可作出过点A B、的圆,这样的圆也有无数个.⑶过三点的圆:若这三点A B C、、三点不共、、共线时,过三点的圆不存在;若A B C 线时,圆心是线段AB与BC的中垂线的交点,而这个交点O是唯一存在的,这样的圆有唯一一个.n≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线⑷过n()4三点确定的圆的圆心.3.定理:不在同一直线上的三点确定一个圆.注意:⑴“不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆;⑵“确定”一词的含义是“有且只有”,即“唯一存在”.4.三角形的外接圆⑴经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形. ⑵三角形外心的性质:①三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等;②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.⑶锐角三角形外接圆的圆心在它的内部(如图1);直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半,如图2);钝角三角形外接圆的圆心在 它的外部(如图3).图3图2图1CBCC五.直线和圆的位置关系的定义、性质及判定从另一个角度,直线和圆的位置关系还可以如下表示:四.切线的性质及判定1. 切线的性质:定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心. 2. 切线的判定定义法:和圆只有一个公共点的直线是圆的切线; 距离法:和圆心距离等于半径的直线是圆的切线;定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 3. 切线长和切线长定理:⑴ 在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.⑵ 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.五.三角形内切圆 1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形. 2. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,该多边形叫做圆的外切多边形.六.圆和圆的位置关系的定义、性质及判定 设O O 、⊙⊙的半径分别为R r 、(其中R r >),两圆圆心距为d ,则两圆位置关系如下表:说明:圆和圆的位置关系,又可分为三大类:相离、相切、相交,其中相离两圆没有公共点,它包括外离与内含两种情况;相切两圆只有一个公共点,它包括内切与外切两种情况.七.正多边形与圆1. 正多边形的定义:各条边相等,并且各个内角也都相等的多边形叫做正多边形.2. 正多边形的相关概念:⑴ 正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心. ⑵ 正多边形的半径:正多边形外接圆的半径叫做正多边形的半径.⑶ 正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角. ⑷ 正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距. 3. 正多边形的性质:⑴正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形;⑵正多边形都是轴对称图形,正n 边形共有n 条通过正n 边形中心的对称轴;⑶偶数条边的正多边形既是轴对称图形,也是中心对称图形,其中心就是对称中心.八、圆中计算的相关公式设O ⊙的半径为R ,n ︒圆心角所对弧长为l ,1. 弧长公式:π180n Rl =2. 扇形面积公式:21π3602n S R lR ==扇形3. 圆柱体表面积公式:22π2πS R Rh =+4. 圆锥体表面积公式:2ππS R Rl =+(l 为母线) 常见组合图形的周长、面积的几种常见方法:① 公式法;② 割补法;③ 拼凑法;④ 等积变换法九年级数学第二十四章——圆 (一)—— 圆中的有关概念和性质一、知识点回顾:1.确定一个圆有两要素,一是 ,二是 ,圆心确定 、半径确定 ;2.圆既是 对称图形,又是 对称图形;它的对称中心是 ,对称轴是 ,有 条对称轴。
第24章圆章节知识点及习题及答案
第24章圆章节知识点及习题及答案第⼆⼗四章圆章节知识点思维导图:⼀、圆的有关性质(⼀)与圆有关的概念1、定义:在⼀个平⾯内线段OA绕它固定的⼀个端点O旋转⼀周,另⼀个端点A所形成的图形叫做圆,固定的端点O叫做圆⼼,线段OA叫做半径。
2、弦:连接圆上任意两点的线段叫做弦,经过圆⼼的弦,叫做直径。
3、弧:圆上任意两点间的部分(曲线)叫做圆弧,简称弧。
能够互相重合的弧叫等弧。
圆的任意⼀条直径的两个端点把圆分成两条弧,每⼀条弧都叫做半圆,⼤于半圆的弧叫优弧;⼩于半圆的弧叫劣弧,由弦及其所对的弧组成的圆形叫⼸形。
4、圆⼼⾓:我们把顶点在圆⼼的⾓叫做圆⼼⾓。
5、圆周⾓:顶点在圆上,并且两边都与圆相交的⾓叫做圆周⾓。
注意:在圆中,同⼀条弦所对的圆周⾓有⽆数个。
6、弦⼼距:从圆⼼到弦的距离叫弦⼼距。
7、同⼼圆、等圆:圆⼼相同,半径不相等的两个圆叫同⼼圆;能够重合的两个圆叫等圆。
8、点的轨迹:1)圆:到定点的距离等于定长的点的轨迹就是以定点为圆⼼,定长为半径的圆;2)垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3)⾓的平分线:到⾓两边距离相等的点的轨迹是这个⾓的平分线;4)到直线的距离相等的点的轨迹是:平⾏于这条直线且到这条直线的距离等于定长的两条直线;5)到两条平⾏线距离相等的点的轨迹是:平⾏于这两条平⾏线且到两条直线距离都相等的⼀条直线。
(⼆)圆的性质1、对称性:圆是轴对称图形,任何⼀条直径所在直线都是它的对称轴;圆也是以圆点为对称中⼼的中⼼对称图形。
2、性质:①垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧;推论1 :平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;垂径定理及推论1 可理解为⼀个圆和⼀条直线具备下⾯五个条件中的任意两个,就可推出另外三个:①过圆⼼;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。
推论2:圆两条平⾏弦所夹的弧相等。
九年级数学24章知识点圆
九年级数学24章知识点圆圆是我们学习数学中非常重要的一个几何图形,它具有很多有趣的性质和应用。
本文将为大家介绍九年级数学24章中关于圆的一些重要知识点。
一、圆的定义和性质圆是由平面上到一个固定点的距离恒定的点构成的图形。
圆的性质有很多,其中最基本的有以下几条:1. 圆心和半径:圆心是圆的中心点,半径是从圆心到圆上任意一点的距离。
2. 直径和周长:直径是连接圆上两点,并经过圆心的线段。
周长是圆的边界线上的长度。
3. 弧:圆上的一段弧是两个端点之间的圆弧。
4. 弦:连接圆上两点的线段。
5. 切线和割线:切线是与圆相切的直线,割线是与圆相交但不相切的直线。
二、圆的计算公式对于圆的计算,我们需要掌握一些基本的计算公式:1. 圆的周长:周长等于2π乘以半径。
2. 圆的面积:面积等于π乘以半径的平方。
3. 弧长公式:如果我们知道圆的半径和弧度,可以通过半径乘以弧度来计算弧长。
三、圆的相关定理和证明除了基本的定义和计算公式,九年级的圆也涉及到一些相关的定理和证明。
其中一些重要的内容包括:1. 圆心角和弧度:圆心角是以圆心为顶点的角,它的大小等于所对的弧所对应的弧度。
这一定理可以通过推导证明。
2. 弧长和扇形面积:弧长等于半径乘以圆心角的弧度。
扇形面积等于半径的平方乘以圆心角的弧度,再除以2。
3. 切线和割线定理:切线和半径垂直于切点,而割线和弦的交点相连时,交点角等于弦上夹角的一半。
这一定理可以通过几何推理得到证明。
四、圆的应用圆的应用非常广泛,它不仅出现在我们的日常生活中,还与许多数学和科学领域密切相关。
一些常见的应用包括:1. 圆的绕行问题:当一个物体绕圆行走时,我们可以通过计算圆的周长和速度来求出所需要的时间。
2. 圆的建模问题:在建筑和工程设计中,圆形结构可以提供更稳定和优雅的解决方案。
3. 圆的模型和图形设计:许多艺术和设计作品都使用了圆形的模型和图形,它们可以营造出舒适、和谐和美观的感觉。
五、总结圆作为数学中的一个重要概念,具有广泛的应用和深远的影响。
人教版九年级上册第24章《圆》小结与复习
(2)垂径定理的推论:平分弦(不是直径)的直径垂直于 这条弦,并且平分这条弦所对的两条弧; 平分弧的直径垂直平分这条弧所对的弦.
侵权必究
要点梳理 2.圆周角定理 (1)圆周角定理:圆周角的度数等于它所对弧上的 圆心角度数的一半. (2)推论1:在同圆或等圆中,同弧或等弧所对的 圆周角相等;相等的圆周角所对弧相等. [注意] “同弧”指“在一个圆中的同一段弧”; “等弧”指“在同圆或等圆中相等的弧”;“同弧
A
D
O
侵权必究
BM
C
考点精讲 方法归纳
(1)证切线时添加辅助线的解题方法有两种: ①有公共点,连半径,证垂直; ②无公共点,作 垂直,证半径;有切线时添加辅助线的解题方法 是:见切点,连半径,得垂直; (2)设未知数,通常利用勾股定理建立方程.
侵权必究
考点精讲 已知:如图,PA,PB是⊙O的切线,A、B为切点,
2 的面积等于___3____.
侵权必究
课堂小结
✓ 归纳总结 ✓ 构建脉络
侵权必究
课堂小结
圆的概念
圆是中心对称图形
圆的对称性 圆是轴对称图形,任意一 条直径所在直线都是它的
圆的性质
对称轴 圆心角、圆周角、弧与弦之间的关系
圆
垂径定理
四边形的内接圆、三角形的外接圆
与圆有关的 位置关系
直线与圆的 位置的关系
或等弧”不能改为“同弦或等弦”.
(3)推论2:90°的圆周角所对的弦是直径. (4)推论3:圆的内接四边形的对角互补.
侵权必究
要点梳理 3.与切线相关的定理 (1)判定定理:经过圆的半径的外端且垂直于这 条半径的直线是圆的切线.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
rr A
· r O
C
r
r E
(1)圆上各点到定点(圆心O)的距)到定点的距离都等于定长的点都
在同一个圆上.
(完备性)
战国时的《墨经》就有“圆,一中同长也”的记载。 它的意思是圆上各点到圆心的距离都等于半径
圆中有关概念:
弦 连接圆上任意两点的线段。
的侧面积相关计算
动态:描述性定义
在一个平面内,线段OA绕它固定的一个端点O 旋转一周,另一个端点A所形成的图形叫做圆.
O. r
半径
A 圆心
以点O为圆心的
圆记作:⊙O
读作:圆O
圆心确定圆的位置,半径确定圆的大小 圆是指“圆周”,是曲线,而不是“圆
静态:集合的观点的定义
到定点O的距离等于定长 r的点组成的图形叫做圆。
①直线CD过圆心O
④A⌒D=B⌒D
⌒⌒
⑤AC=BC
以上三个推论可概括为:
一条直线,如果具有: ①经过圆心 ②垂直于弦 ③平分弦
④平分弦所对的劣弧 ⑤平分弦所对的优弧
这五个性质中的任何两个性质,那么这条 直线就具有其余三个性质。(具备性质① ③时,所说的弦不能为直径。
圆的两条平行弦所夹
的弧相等。
A
小于半圆的弧(如图中的 ⌒AC )叫做劣弧;
大于半圆的弧(用三个字母表示,
⌒ 如图中的 ABC )叫做优弧.
B
劣弧 ⌒AC
O·
A
C
弧 半圆 半圆AB
优弧
⌒
ABC
等圆与等弧、同心圆:
同圆:是指在同一个圆中。
一个圆
等圆:能够重合的两个圆是等圆。2个或2个以上
容易看出:半径相等的两个圆是等圆;
反过来,同圆或等圆的半径相等。 同弧:是指同一个圆中的同一条弧。
等弧:在同圆或等圆中,能够互相重合的 弧叫做等弧。可以在同一个圆中,也可以在不同的圆中。
注意:长度相等的弧不一定是等弧
同心圆:在同一平面内,圆心相同半径不同的 圆叫同心圆
①圆的对称性:圆是轴对称图形,对称轴是任 意一条直径所在的直线。它有无数条对称轴。
②旋转不变性:将圆绕圆心
旋转任意角度都能与之重合
aD
在Rt△AOC中,
A 2h B
r ( a )2 d 2 直接求解
2
rC d ·O
(2)已知a、h,求r
在Rt△AOC中,
r 2 ( a )2 (r h)2 解方程求解 2
平分弦(不是直径)
的直径垂直于弦,
并且平分弦所对的
两条弧。
A
C
·O
M
B D
①直线CD过圆心O ③ AM=BM(AB不是直径)
补充:
在同圆或等圆中,两个圆心角、两条弧、 两条弦两条弦的弦心距中有一组量相等, 它们所对应的其余各组量也相等.
几何语言:
1 2 AB AB
A⌒B=A⌒B
AB AB 1 2
⌒⌒
AB=AB
⌒⌒
AB=AB
1 2 AB AB
顶点在圆上,并且两边都和圆 相交的角叫做圆周角.
如果一个多边形的所有顶
点都在同一个圆上,这个多
圆
d<r
的 位
点在圆上
d= r
置 关
点在圆外
d> r
系
等价于
P
d dP
O· r
d
P
问题1:如图,作平面上已知点A的圆, 这样的圆能作出多少个?
A
无数个 这些圆的圆心在A点以外的平面上
问题2:如图,作经过已知点A,B的圆, 能作出多少个?它们的圆心分布有什么特 点?
A
B
无数个
这些圆的圆心在线段AB的垂直平分线上
圆 复习课
知识体系
圆
基本性质
直线与圆的 圆与圆的 正多边形 位置关系 位置关系 和圆
概 对 圆周角与 念 称 圆心角的
性 关系
切切 切切 位 性 判 线线 线线 置 质 定 的的 长的 分
关 系 定
有 关 计
性判 定作 类
理算
质定 理图
垂 圆心角、
径 弧、弦之
定 间的关系
弧长、扇形面积和圆锥
理 定理
直径 经过圆心的弦。
B
注意:
直径
O.
C
凡直径都是弦,是圆中最长 的弦,但弦不一定是直径.
A
弦
圆中有关概念: 圆弧:连接圆上任意两点间的部分叫做圆弧, 简称弧.
以A、C为端点的弧记作 AC , 读作:“圆弧AC”或“弧 AC”。
半圆:圆的任意一条直径的两个端点把 圆分成两条弧,每一条弧叫做半圆.
劣弧与优弧:
②CD⊥AB ④A⌒D=B⌒D
⌒⌒
⑤AC=BC
平分弦所对的一条弧
的直径,垂直平分弦,
并且平分弦所对的另
一条弧。
A
C
·O
M
B D
①直线CD过圆心O
④A⌒D=B⌒D
②CD⊥AB
③ AM=BM ⑤A⌒C=B⌒C
弦的垂直平分线经过
圆心,并且平分弦所 对的两条弧。
A
C
·O
M
B D
②CD⊥AB ③ AM=BM
∵AB∥CD
C
∴A⌒C=B⌒D
B ·O
D
圆心角:我们把顶点在圆心的角叫做圆心角.
A O·
B
①顶点是圆心 ②两条边都与圆周相交
在同圆或等圆中,相等的圆心角所对的弧相 等,所对的弦相等,所对的弦的弦心距相等。
在同圆或等圆中,两个圆心角、两条 弧、两条弦中有一组量相等,它们所 对应的其余各组量也相等.
D
C
E
B
推论4:如果三角形一条边上的中线等 于这条边的一半,那么这个三角形是直 角三角形。
动手操作:
你能设法确定一个圆形纸片的圆心吗?你有多少种方法?
方法三
方法一
O
A
B
C
O
方法二
A D
·
B
方法四
O
D
A
O
E
圆内接四边形的一个 B
C
外角等于它的内对角。
设⊙O半径为r, 点P到圆心O的距离为d
点
与 点在圆内
(故必是中心对称图形,对
●O
称中心是圆心)
③同圆或等圆的半径相等.
垂直于弦的直径平分
弦,并且平分弦所对 的两条弧。
A
C
·O
M
B D
①直线CD过圆心O
②CD⊥AB
③ AM=BM ④A⌒D=B⌒D
⌒⌒
⑤AC=BC
弓形:由弦及其所对的弧组成的图形叫做弓形
弦AB把圆分成两部分,这两部分都是弓形.
弓形
⌒
AB
A
边形叫做圆内接多边形.
D
这个圆叫做这个多边形的 B
C
外接圆.
同弧或等弧所对圆周角等于它所对圆 心角的一半。
推论1:同弧或等弧所对的圆周角相等 ; 在同圆或等圆中,相等的圆周角所对的 弧也相等。
推论2:半圆(或直径)所对的圆周角
是直角,90°的圆周角所对的弦是直径。
C2 C1
C3
A
O
B
推论3:圆内接四边形对角互补。 一个外角等于它的内对角。 A
弓形
⌒
AMB
D
弓形的高:弧的中点到弦的距离, A
也叫弓形高,用小写字母h表示
hB C
三种弓形:
·O
·M
弦心距:圆心到弦的距离叫做弦心距.
如图:OC⊥AB,垂足为C
则线段OC的长度为弦心距 A 弦心距用小写字母d表示
CB
d ·O
弦长a,弦心距d,半径r,以及弓形高h之间的关系
(1)已知a、d,求r.