全等三角形专题练习(word版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、八年级数学全等三角形解答题压轴题(难)

1.如图,在ABC 中,45ABC ∠=,AD ,BE 分别为BC ,AC 边上的高,连接DE ,过点D 作DF DE ⊥与点F ,G 为BE 中点,连接AF ,DG .

(1)如图1,若点F 与点G 重合,求证:AF DF ⊥;

(2)如图2,请写出AF 与DG 之间的关系并证明.

【答案】(1)详见解析;(2)AF=2DG,且AF ⊥DG,证明详见解析.

【解析】

【分析】

(1) 利用条件先△DAE ≌△DBF,从而得出△FDE 是等腰直角三角形,再证明△AEF 是等腰直角三角形,即可.

(2) 延长DG 至点M,使GM=DG,交AF 于点H,连接BM, 先证明△BGM ≌△EGD,再证明△BDM ≌△DAF 即可推出.

【详解】

解:(1)证明:设BE 与AD 交于点H..如图,

∵AD,BE 分别为BC,AC 边上的高,

∴∠BEA=∠ADB=90°.

∵∠ABC=45°,

∴△ABD 是等腰直角三角形.

∴AD=BD.

∵∠AHE=∠BHD,

∴∠DAC=∠DBH.

∵∠ADB=∠FDE=90°,

∴∠ADE=∠BDF.

∴△DAE ≌△DBF.

∴BF=AE,DF=DE.

∴△FDE是等腰直角三角形.

∴∠DFE=45°.

∵G为BE中点,

∴BF=EF.

∴AE=EF.

∴△AEF是等腰直角三角形.

∴∠AFE=45°.

∴∠AFD=90°,即AF⊥DF.

(2)AF=2DG,且AF⊥DG.理由:延长DG至点M,使GM=DG,交AF于点H,连接BM,

∵点G为BE的中点,BG=GE.

∵∠BGM∠EGD,

∴△BGM≌△EGD.

∴∠MBE=∠FED=45°,BM=DE.

∴∠MBE=∠EFD,BM=DF.

∵∠DAC=∠DBE,

∴∠MBD=∠MBE+∠DBE=45°+∠DBE.

∵∠EFD=45°=∠DBE+∠BDF,

∴∠BDF=45°-∠DBE.

∵∠ADE=∠BDF,

∴∠ADF=90°-∠BDF=45°+∠DBE=∠MBD.

∵BD=AD,

∴△BDM≌△DAF.

∴DM=AF=2DG,∠FAD=∠BDM.

∵∠BDM+∠MDA=90°,

∴∠MDA+∠FAD=90°.

∴∠AHD=90°.

∴AF⊥DG.

∴AF=2DG,且AF⊥DG

【点睛】

本题考查三角形全等的判定和性质,关键在于灵活运用性质.

2.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角

两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明.

(1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程;

(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明).

【答案】(1)过程见解析;(2)MN= NC﹣BM.

【解析】

【分析】

(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN

=60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到

MN=BM+NC.

(2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论.

【详解】

解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.

∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=DC,且∠BDC=120°,

∴∠DBC=∠DCB=30°

∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°,

在△MBD与△ECD中,

∵BD CD

MBD ECD BM CE

∴△MBD≌△ECD(SAS),

∴MD=DE,∠BDM=∠CDE

∵∠MDN =60°,∠BDC=120°,

∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°,即:∠MDN =∠NDE=60°,

在△DMN与△DEN中,

∵MD DE

MDN EDN DN DN

∴△DMN≌△DEN(SAS),

∴MN=NE=CE+NC=BM+NC.

(2)如图②中,结论:MN=NC﹣BM.

理由:在CA上截取CE=BM.

∵△ABC是正三角形,

∴∠ACB=∠ABC=60°,

又∵BD=CD,∠BDC=120°,

∴∠BCD=∠CBD=30°,

∴∠MBD=∠DCE=90°,

在△BMD和△CED中

∵BM CE

MBD ECD BD

CD ,

∴△BMD ≌△CED (SAS ),

∴DM= DE ,∠BDM=∠CDE

∵∠MDN =60°,∠BDC=120°,

∴∠NDE=∠BDC-(∠BDN+∠CDE )=∠BDC-(∠BDN+∠BDM )=∠BDC-

∠MDN=120°-60°=60°,

即:∠MDN =∠NDE=60°,

在△MDN 和△EDN 中

∵ND ND

EDN MDN ND

ND ,

∴△MDN ≌△EDN (SAS ),

∴MN =NE=NC ﹣CE=NC ﹣BM .

【点睛】

此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.

3.在ABC ∆中,90,BAC AB AC ∠=︒=,点D 为直线BC 上一动点(点D 不与点,B C 重合),以AD 为腰作等腰直角DAF ∆,使90DAF ∠=︒,连接CF .

(1)观察猜想

如图1,当点D 在线段BC 上时,

①BC 与CF 的位置关系为__________;

②CF DC BC 、、之间的数量关系为___________(提示:可证DAB FAC ∆≅∆)

(2)数学思考

如图2,当点D 在线段CB 的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;

(3)拓展延伸

如图3,当点D 在线段BC 的延长线时,将DAF ∆沿线段DF 翻折,使点A 与点E 重合,连接CE CF 、,若4,22CD BC AC ==CE 的长.(提示:做

相关文档
最新文档