旋转单元测试卷2

合集下载

五年级上册数学试题 - 第二单元 图形的平移、旋转与对称 测试卷 - 西师大版(含答案)

五年级上册数学试题 - 第二单元 图形的平移、旋转与对称 测试卷 - 西师大版(含答案)

五年级上册数学试题-第二单元图形的平移、旋转与对称测试卷-西师大版(含答案)一.选择题(共6题,共16分)1.下列运动属于旋转现象的是()。

A. B. C.2.下列各组图形,只通过平移或旋转,不能形成长方形的是()。

A. B. C. D.3.如图,可以通过平移变换但不能通过旋转变换得到的图案有();可以通过旋转变换但不能通过平移变换得到的图案有();既可通过平移变换,又可通过旋转变换得到的图案有()。

A. B. C. D.4.下面这幅图中小旗从左上方到右下方是()的结果。

A.旋转B.平移C.对称5.如何将○移动到△的位置,下面方法()是正确的。

A.将○向上移动4格,再向右移动3格。

B.将○向上移动3格,再向右移动3格。

C.将○向右移动4格,再向上移动3格。

6.下图的图案,()既可以通过平移得到,又可以通过旋转得到。

A. B. C.二.判断题(共6题,共12分)1.图形旋转有三个关键要素,一是旋转的中心点,二是旋转的方向,三是旋转的度数。

()2.一个图形距离对称轴3厘米,那么它的轴对称图形距离对称轴也是3厘米。

()3.一棵小树被扶种好,这棵小树一定绕树脚逆时针方向旋转了90度。

()4.拧瓶盖的动作是旋转。

()5.一个平行四边形绕一点逆时针旋转了90°,这个平行四边形的位置发生了改变,形状和大小也发生了改变。

()6.一个图形经过旋转后,它的大小、形状都没有改变,只有方向发生了改变。

()三.填空题(共6题,共19分)1.图A如何变换得到图B?将图A以O点为中心逆时针旋转()°后,向()平移()格得到图B。

2.图形旋转有三个关键要素,一是旋转的________,二是旋转的________,三是旋转的________。

3.如图,△ABC为等边三角形,D为△ABC内一点,△ABD经过旋转后到达△ACP的位置,则,(1)旋转中心是();(2)旋转角度是()(3)△ADP是()三角形。

4.在溜冰时,人的前行是()现象,溜冰鞋底下的轮子运动是()现象。

旋转单元测试卷

旋转单元测试卷

《旋转》单元测试卷(满分:150分,时间:120分钟)一、选择题(本大题,有7小题,每小题3分,共21分)1、在下列图形中,既是轴对称图形,又是中心对称图形的是()A. 直角三角形B. 正五边形C. 正方形D. 等腰梯形2、下列图案中不是中心对称图形的是()A.B.C.D.3、如图1,点D是等边△ABC内一点,如果△ABD绕点A逆时针旋转后能与△ACE重合则∠DAE的度数是()A、45°B、60°C、90°D、120°4、如图,四边形ABCD是正方形,点E、F分别在线段BC、DC上,∠BAE=30°,若线段AE绕点A逆时针旋转后与线段AF重合,则旋转的角度是( )A.30°B.45°C.60°D.90°5、在平面直角坐标系中,将线段OA绕原点O逆时针旋转90°,记点A(-A1,则A1的坐标为()A.B.C.(1)-D.(1,-图2图16、如图,P是正三角形ABC内的一点,且P A=6,PB=8,PC=10.若将△P AC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离和∠APB的大小()A.6,120°B.6,150°C.8,150°D.8,120°P'第6题第7题7、如图,四边形ABCD中,AC,BD是对角线。

△ABC是等边三角形。

∠ADC=30°,AD=3,BD=5,则CD的长为()A.B.4C. D.4.5二、填空题(本大题有10小题,每小题4分,共40分)8、平面直角坐标系内一点P(-2,3)关于原点的对称点的坐标是。

9、如图是一个等腰直角三角形经过若干次旋转而生成的,则每次旋转的角度最小。

第9题第10题10、如图,△ABC是等边三角形,点P是△ABC内一点。

△APC按逆时针方向旋转后与△AP'B重合,则旋转中心是,最小旋转角等于°11、正方形OABC的边长为1,该正方形绕点O逆时针旋转45°后,点B的坐标为。

人教版九年级上册数学《旋转》单元综合测试卷(带答案)

人教版九年级上册数学《旋转》单元综合测试卷(带答案)
故选B.
7.正方形 中的顶点 在平面坐标系中的坐标为 ,若将正方形 绕着原点 按逆时针旋转 .则旋转后的点 坐标为()
A.(-1, 1)B.(1, -1)C.(0, - )D.(- , 0)
【答案】D
【解析】
【分析】
根据旋转中心为原点,旋转方向逆时针,旋转角度135°,作出点A的对称图形A′,求得OA的长度,也就求得了OA′的长度,可得所求点的坐标.
26.如图 , 中, , , , ,将 绕着点 旋转一定的角度,得到 .
(1)若点 为 边上中点,连接 ,则线段 的范围为________.
(2)如图 ,当 直角顶点 在 边上时,延长 ,交 边于点 ,请问线段 、 、 具有怎样的数量关系,请写出探索过程.
参考答案
一、选择题(共10小题,每小题3分,共30分)
【详解】根据题意,易得点(-2,3)与(2,-3)的纵横坐标互为相反数,则这两点关于原点中心对称.
故选A.
【点睛】本题考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,注意掌握关于原点对称的点,横坐标与纵坐标都互为相反数
9.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()
A. B. C. D.
∵∠AOD=90°,
∴∠BOC=90°-38°-38°=14°.
故选B.
【点睛】此题主要考查了旋转的性质,正确得出∠AOC=∠BOD是解题关键.
5.下面关于中心对称图形的描述,正确的是()
A. 中心对称图形与中心对称是同一个概念
B. 中心对称描述的是两个图形的位置关系,中心对称图形是一个图形的性质
C. 一个图形绕着某一点旋转的过程中,只要能与原来的图形重合,那么这个图形就叫做中心对称图形

第23章 旋转单元测试卷(解析卷)

第23章 旋转单元测试卷(解析卷)

中小学教育资源及组卷应用平台○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________第23章 旋转单元测试卷参考答案与试题解析一.选择题(共10小题,每小题3分,满分30分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.解:根据轴对称图形的定义,选项中轴对称图形有A 、C 、D , 根据中心对称图形的定义,选项中的中心对称图形有B 、D , 综上可知,既是轴对称图形又是中心对称图形的是D , 故答案为:D.2.如图,已知点O 是六边形ABCDEF 的中心,图中所有的三角形都是等边三角形,则下列说法正确的是( )A. △ODE 绕点O 顺时针旋转60°得到△OBCB. △ODE 绕点O 逆时针旋转120°得到△OABC. △ODE 绕点F 顺时针旋转60°得到△OABD. △ODE 绕点C 逆时针旋转90°得△OAB 解:A 、因为点O 是六边形ABCDEF 的中心,图中所有的三角形都是等边三角形,所以△ODE 绕点O 顺时针旋转120°得到△OBC ,所以A 不符合题意;B 、因为点O 是六边形ABCDEF 的中心,图中所有的三角形都是等边三角形,所以△ODE 绕点O 顺时针旋转120°得到△OBC ,所以B 不符合题意;C 、因为点O 是六边形ABCDEF 的中心,图中所有的三角形都是等边三角形,所以△ODE 绕点F 顺时针旋转60°时,点O 旋转到点A 得,点E 旋转到点O ,点D 旋转到点B ,所以C 符合题意;D 、因为点O 是六边形ABCDEF 的中心,图中所有的三角形都是等边三角形,所以△ODE 绕点C 顺时针旋转60°得到△OBC ,所以D 不符合题意. 故答案为:C3.若点P 关于x 轴对称点为P 1(2a+b ,3),关于y 轴对称点为P 2(9,b+2),则点P 坐标为( ) A. (9,3) B. (﹣9,3) C. (9,﹣3) D. (﹣9,﹣3) 解:由题意得:解得:a =−2,b =−5,∵P 1(2a +b ,3), ∴P 1(−9,3), ∴P (−9,−3), 故答案为:D4. 如图,将△ABC 绕点C 顺时针旋转90°得到△EDC . 若点A , D , E 在同一条直线上,∠ACB =20°,则∠ADC 的度数是( )A. 55°B. 60°C. 65°D. 70° 解:∵将△ABC 绕点C 顺时针旋转90°得到△EDC . ∴∠ACE =90°,AC =CE , ∴∠E =45°,∵∠ADC 是△CDE 的外角,∴∠ADC =∠E +∠DCE =45°+20°=65°,故答案为:C 。

人教版九年级上学期数学《旋转》单元测试题附答案

人教版九年级上学期数学《旋转》单元测试题附答案

九年级上册数学《旋转》单元测试卷(满分120分,考试用时120分钟)一、单选题1.如图,将△A B C 绕点A 按逆时针方向旋转100°,得到△A B 1C 1,若点B 1在线段B C 的延长线上,则∠B B 1C 1的大小为( )A .70°B .80°C .84°D .86°2.点P(3,5)关于原点对称的点的坐标是()A .(﹣3,5)B .(3,﹣5)C .(5,3)D .(﹣3,﹣5)3.观察下列四个图形.其中两个三角形的组合方式与另外三个不同的是( )A .B .C .D .4.正方形ABCD中的顶点A在平面坐标系中的坐标为()1,1,若将正方形ABCD绕着原点O按逆时针旋转135.则旋转后的点A坐标为( )A .(-1, 1)B .(1, -1)C .(0, -D .(-5.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A .1个B .2个C .3个D .4个6.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-7.下列不是图形的旋转、平移、轴对称的共同特征的是( )A .对应线段与对应角不变B .图形的大小不变C .图形的形状不变D .对应线段平行8.根据指令[],(0,0360)s A s A ≥≤<机器人在平面上能完成如下动作:先在原地顺时针旋转角度A ,再朝其面对的方向沿直线行走距离s .现在机器人在平面直角坐标系的原点,且面对y 轴的负方向,为使其移动到点()3,0-,应下的指令是( ) A . 3,90?⎡⎤⎣⎦ B . 90,3⎡⎤⎣⎦ C . 3,90⎡⎤-⎣⎦ D . 3,270⎡⎤⎣⎦9.下列关于等腰三角形的叙述错误的是( )A .等腰三角形两底角相等B .等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合C .等腰三角形的三边相等D .等腰三角形是轴对称图形但不是中心对称图形10.如图,Rt △A B C 中,∠A C B =90°,A C =4,将斜边A B 绕点A 逆时针旋转90°至A B ′.连接B 'C ,则△A B 'C 的面积为( )A .4B .6C .8D .1011.如图,点E 是正方形A B C D 的边D C 上一点,把△A D E 绕点A 顺时针旋转90°到△A B F 的位置,若四边形A EC F 的面积为25,D E=3,则A E 的长为( )A B .5 C .8 D .412.如图,Rt ABC 中,C 90∠=,A 60∠=,AC 6=,以斜边AB 的中点D 为旋转中心,把这个三角形按逆时针方向旋转90得到Rt A'B'C',则旋转后两个直角三角形重叠部分的面积为( )A .6B .9C .D .二、填空题 13.如图,把一个直角三角尺A C B 绕着30°角的顶点B 顺时针旋转,使得点A 与C B 的延长线上的点E重合连接C D ,则∠B D C 的度数为_____度.14.在平面直角坐标系中,O为坐标原点,点A 的坐标为,1),将OA 绕原点逆时针方向旋转90°得OB ,则点B 的坐标为_____.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子A ,O,B 的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子P,使A ,O,B ,P 四颗棋子成为一个中心对称图形,请写出棋子P 的位置坐标_____(写出1 个即可).16.如图,在△B D E中,∠B D E=90°,,点D 的坐标是(5,0),∠B D O=15°,将△B D E旋转到△A B C 的位置,点C 在B D 上,则旋转中心的坐标为_______ .三、解答题17.如图,P是正ABC内的一点,若将PAC绕点A逆时针旋转到P'AB,(1)求PAP'∠的度数.(2)若AP 3=,BP 4=,PC 5=,求PAB ∠的度数.18.如图,ABC 的顶点坐标分别为()A 2,2-,()B 4,4,()C 1,2.将ABC 绕坐标原点O 逆时针旋转90,得到A B C '''(A '、B '、C '分别为A 、B 、C 的对应点),在坐标系中画出A B C ''',并写出A '、B '、C '三点的坐标.19.如图1,ABC 中,C 90∠=,BC 3=,AC 4=,AB 5=,将ABC 绕着点B 旋转一定的角度,得到DEB .(1)若点F 为AB 边上中点,连接EF ,则线段EF 的范围为________.(2)如图2,当DEB 直角顶点E 在AB 边上时,延长DE ,交AC 边于点G ,请问线段DE 、EG 、AG 具有怎样的数量关系,请写出探索过程.20.如图,四边形A B C D 是正方形,△A D F 绕着点A 顺时旋转90°得到△A B E ,若A F =4,A B =7.(1)求D E 的长度;(2)指出B E 与D F 的关系如何?并说明由.21.如图,已知点A ,B 的坐标分别为(4,0),(3,2).(1)画出△A OB 关于原点O对称的图形△C OD ;(2)将△A OB 绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;(3)点D 的坐标是,点F的坐标是,此图中线段B F和D F的关系是.22.如图①,在Rt ABC 中,90C ∠=.将ABC 绕点C 逆时针旋转得到''A B C ,旋转角为α,且0180α<<.在旋转过程中,点'B 可以恰好落在AB 的中点处,如图②.()1求A ∠的度数;()2当点C 到'AA 的距离等于AC 的一半时,求α的度数.23.在Rt △A B C 中,∠A C B =90°,,点D 是斜边A B 上一动点(点D 与点A 、B 不重合),连接C D ,将C D 绕点C 顺时针旋转90°得到C E ,连接A E ,D E .(1)求△A D E 的周长的最小值;(2)若C D =4,求A E 的长度.24.两块等腰直角三角形纸片AOB 和COD 按图1所示放置,直角顶点重合在点O 处,25AB =,17CD =.保持纸片AOB 不动,将纸片COD 绕点O 逆时针旋转(090)αα<<角度,如图2所示. ()1利用图2证明AC BD =且AC BD ⊥;()2当BD 与CD 在同一直线上(如图3)时,求AC 的长和α的正弦值.参考答案一、单选题1.如图,将△A B C 绕点A 按逆时针方向旋转100°,得到△A B 1C 1,若点B 1在线段B C 的延长线上,则∠B B 1C 1的大小为( )A .70°B .80°C .84°D .86°[答案]B[解析][分析]由旋转的性质可知∠B =∠A B 1C 1,A B =A B 1,由等腰三角形的性质和三角形的内角和定理可求得∠B =∠B B 1A =∠A B 1C 1=40°,从而可求得∠B B 1C 1=80°.[详解]由旋转的性质可知:∠B =∠A B 1C 1,A B =A B 1,∠B A B 1=100°.∵A B =A B 1,∠B A B 1=100°,∴∠B =∠B B 1A =40°.∴∠A B 1C 1=40°.∴∠B B 1C 1=∠B B 1A +∠A B 1C 1=40°+40°=80°.故选:B .[点评]本题主要考查的是旋转的性质,由旋转的性质得到△A B B 1为等腰三角形是解题的关键.2.点P(3,5)关于原点对称的点的坐标是()A .(﹣3,5)B .(3,﹣5)C .(5,3)D .(﹣3,﹣5)[答案]D[解析][分析]根据关于原点对称的点的坐标特点:两个点关于原点对称时,横纵坐标的坐标符号均相反,根据这一特征求出对称点坐标.[详解]解:点P(3,5)关于原点对称的点的坐标是(-3,-5),故选D .[点评]本题主要考查了关于原点对称的点的坐标特点,关键是掌握点的变化规律.3.观察下列四个图形.其中两个三角形的组合方式与另外三个不同的是( )A .B .C .D .[答案]C[解析][分析]根据两三角形的位置关系确定几何变换类型,继而得出答案.[详解]A 、图形通过旋转得到;B 、图形通过旋转得到;C 、图形通过平移得到;D 、图形通过旋转得到;故选:C .[点评]本题考查了几何变换的类型,属于基础题,关键是掌握几种几何变换的特点.4.正方形中的顶点在平面坐标系中的坐标为,若将正方形绕着原点按逆时针旋转.则旋转后的点坐标为( )A .(-1, 1)B .(1, -1)C .(0, -)D .(-, 0)[答案]D[解析][分析]根据旋转中心为原点,旋转方向逆时针,旋转角度135°,作出点A 的对称图形A ′,求得OA 的长度,也就求得了OA ′的长度,可得所求点的坐标.[详解]如图:∵∴OA ′=O,∴A′0).故选:D .[点评]本题考查了由图形旋转得到相应坐标,根据旋转中心,旋转方向及角度得到相应图形是解决本题的关键.ABCD A ()1,1ABCD O 135A5.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有( )A .1个B .2个C .3个D .4个[答案]B[解析][分析] 根据轴对称图形与中心对称图形的概念对各图形分析判断即可求解.[详解]解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B .[点评]此题考查中心对称图形,轴对称图形,解题关键在于对概念的掌握6.如图,正方形的两边、分别在轴、轴上,点在边上,以为中心,把旋转,则旋转后点的对应点的坐标是( )A .B .C .或D .或OABC OA OC x y ()5,3D AB C CDB △90︒D 'D ()2,10()2,0-()2,10()2,0-()10, 2()2,0-[答案]C[解析][分析]先根据正方形的性质求出B D 、B C 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.[详解]四边形OA B C 是正方形,由题意,分以下两种情况:(1)如图,把逆时针旋转,此时旋转后点B 的对应点落在y 轴上,旋转后点D 的对应点落在第一象限由旋转的性质得:点的坐标为(2)如图,把顺时针旋转,此时旋转后点B 的对应点与原点O 重合,旋转后点D 的对应点落在x 轴负半轴上由旋转的性质得:点的坐标为综上,旋转后点D 的对应点的坐标为或故选:C .(5,3)D 5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒CDB △90︒B 'D 2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴D (2,10)CDB △90︒B ''D ''2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴D ''(2,0)-D (2,10)(2,0)-[点评]本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键. 7.下列不是图形的旋转、平移、轴对称的共同特征的是( )A .对应线段与对应角不变B .图形的大小不变C .图形的形状不变D .对应线段平行 [答案]D[解析][分析]根据三种变换得到的图形都与原图形全等,进行分析.[详解]解:根据平移、旋转和轴对称的基本性质,知A . B . C 都是正确的;D . 在旋转中,对应线段不一定平行,故错误.故选D .[点评]本题主要考查几何变换的类型,熟悉掌握是关键.8.根据指令机器人在平面上能完成如下动作:先在原地顺时针旋转角度,再朝其面对的方向沿直线行走距离.现在机器人在平面直角坐标系的原点,且面对轴的负方向,为使其移动到点,应下的指令是( ) [],(0,0360)s A s A ≥≤<A s y ()3,0-A .B .C .D .[答案]A[解析][分析] 若顺时针旋转90°,则机器人面对x 轴负方向,根据向x 轴负半轴走3个单位可得相应坐标.[详解]解:根据点(0,0)到点(−3,0),即可知机器人先顺时针转动,再向左平移3个单位,于是应下指令为[3,].故选A .[点评]本题主要考查坐标与图形变化-旋转,熟悉掌握是关键.9.下列关于等腰三角形的叙述错误的是( )A .等腰三角形两底角相等B .等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合C .等腰三角形的三边相等D .等腰三角形是轴对称图形但不是中心对称图形[答案]C[解析][分析]直接利用等腰三角形的性质分别分析得出答案.[详解]A 、等腰三角形两底角相等,正确,不合题意;B 、等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合,正确,不合题意;3,90?⎡⎤⎣⎦ 90,3⎡⎤⎣⎦ 3,90⎡⎤-⎣⎦ 3,270⎡⎤⎣⎦9090C 、等腰三角形的三边相等,错误,符合题意;D 、等腰三角形是轴对称图形但不是中心对称图形,正确,不合题意;故选:C .[点评]此题主要考查了等腰三角形的性质,正确掌握等腰三角形的性质是解题关键.10.如图,Rt△A B C 中,∠A C B =90°,A C =4,将斜边A B 绕点A 逆时针旋转90°至A B ′.连接B 'C ,则△A B 'C 的面积为()A .4B .6C .8D .10[答案]C[解析][分析]过点B '作B 'E⊥A C 于点E,由题意可证△A B C ≌△B 'A E,可得A C =B 'E=4,即可求△A B 'C 的面积.[详解]如图:过点B '作B 'E⊥A C 于点E∵旋转∴A B =A B ',∠B A B '=90°∴∠B A C +∠B 'A C =90°,且∠B 'A C +∠A B 'E =90°∴∠B A C =∠A B 'E ,且∠A EB '=∠A C B =90°,A B =A B '∴△A B C ≌△B 'A E (A A S )∴A C =B 'E =4∴S △A B 'C =×A C ×B 'E =×4×4=8 故选C .[点评]本题考查了旋转的性质,全等三角形的判定和性质,熟练运用旋转的性质是解决本题的关键. 11.如图,点E 是正方形A B C D 的边D C 上一点,把△A D E 绕点A 顺时针旋转90°到△A B F 的位置,若四边形A EC F 的面积为25,D E=3,则A E 的长为( )AB .5C .8D .4[答案]A[解析][分析] 利用旋转的性质得出四边形A EC F 的面积等于正方形A B C D 的面积,进而可求出正方形的边长,再利用勾股定理得出答案.[详解]把顺时针旋转的位置,1212ADE ABF四边形A EC F 的面积等于正方形A B C D 的面积等于25,,,中,故选A .[点评]此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键. 12.如图,中,,,,以斜边的中点为旋转中心,把这个三角形按逆时针方向旋转得到,则旋转后两个直角三角形重叠部分的面积为( )A .B .C .D .[答案]B[解析][分析] 如图,先计算出A B =2A C =12,根据中点定义则可得B D =6,根据旋转的性质可得 D =B D =6,在Rt △BD M 中,可求得D M 、B M 的长,从而可求得B ′M 的长,然后在Rt △B ′MN 中求出MN 的长,继而求得B N 的长,在Rt △B NG 中求出B N 的长,然后利用S 阴影=S △B NG -S △B MD 进行计算即可得.[详解]如图,∵∠C =90°,∠A =60°,A C =6,∴A B =2A C =12,∠B =30°,∵点D 为A B 的中点,∴AD DC 5∴==DE 3=Rt ADE ∴AE ==Rt ABC C 90∠=A 60∠=AC 6=AB D 90Rt A'B'C'69B'∴B D =6,∵△A B C 绕点D 按逆时针方向旋转得到, ∴ D =B D =6,在Rt △B D M 中,∠B =30°,∠B D M=90°, ∴B M=2D M ,B D 2+D M 2=B M 2,∴D M=∴B ′M=B ′D -D M=6-在Rt △B ′MN中,∠B ′=30°,∴MN= B ′M=3∴,在Rt△B NG 中,B G=2NG ,B G2=NG 2+B N 2, ∴∴S 阴影=S △B NG -S △B MD ==9, 故选B .[点评]本题考查了旋转的性质、含30度角的直角三角形的性质、勾股定理、三角形的面积等,熟练掌握旋90Rt A'B'C'B'12((1133622⨯+⨯+-⨯转的性质是解题的关键.二、填空题13.如图,把一个直角三角尺A C B 绕着30°角的顶点B 顺时针旋转,使得点A 与C B 的延长线上的点E 重合连接C D ,则∠B D C 的度数为_____度.[答案]15[解析][分析]根据△EB D 由△A B C 旋转而成,得到△A B C ≌△EB D ,则B C =B D ,∠EB D =∠A B C =30°,则有∠B D C =∠B C D ,∠D B C =180﹣30°=150°,化简计算即可得出.[详解]解:∵△EB D 由△A B C 旋转而成,∴△A B C ≌△EB D ,∴B C =B D ,∠EB D =∠A B C =30°,∴∠B D C =∠B C D ,∠D B C =180﹣30°=150°,∴; 故答案为:15.[点评]此题考查旋转的性质,即图形旋转后与原图形全等.14.在平面直角坐标系中,O 为坐标原点,点A 的坐标为1),将OA 绕原点逆时针方向旋转90°得OB ,则点B 的坐标为_____. 15BDC ∠=︒()1180150152BDC BCD ∠=∠=︒-︒=︒[答案](﹣1[解析][分析]根据旋转的性质可知△OC A ≌△OD B ,进而得即可解题.[详解]解:如下图,由旋转的性质可知,△OC A ≌△OD B , ∵A 的坐标为1),∴∴∴B 的坐标为(﹣1)[点评]本题考查了图形的旋转,属于简单题,熟悉概念是解题关键.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子 A ,O ,B 的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子 P ,使 A ,O ,B ,P 四颗棋子成为一个中心对称图形,请写出棋子 P 的位置坐标_____(写出 1 个即可).[答案](0,1).[解析][分析]直接利用中心对称图形的性质得出答案.[详解]如图所示:点P(0,1)答案不唯一.故答案为:(0,1).[点评]此题主要考查了中心对称图形的性质,正确把握定义是解题关键.16.如图,在△B D E 中,∠B D E=90°,,点D 的坐标是(5,0),∠B D O=15°,将△B D E 旋转到△A B C 的位置,点C 在B D 上,则旋转中心的坐标为_______ .[答案](3,[解析][分析]根据旋转的性质,A B 与B D 的垂直平分线的交点即为旋转中心P ,连接PD,过P 作PF ⊥x轴于F ,再根据点C 在B D 上确定出∠PD B =45°并求出PD 的长,然后求出∠PD O=60°,根据直角三角形两锐角互余求出∠D PF=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得D F=PD ,利用勾股定理列式求出PF ,再求出OF ,即可得到点P ,即旋转中心的坐标.[详解]如图,A B 与B D 的垂直平分线的交点即为旋转中心P ,连接PD ,过P 作PF ⊥x 轴于F ,∵点C 在B D 上,∴点P 到A B 、B D 的距离相等,都是 B D ,即× ∴∠PD B =45°,121212=4,∵∠B D O=15°,∴∠PD O=45°+15°=60°,∴∠D PF=30°,∴D F=PD =×4=2, ∵点D 的坐标是(5,0),∴OF=OD -D F=5-2=3,由勾股定理得,∴旋转中心的坐标为(3,. 故答案为:(3,.[点评]本题考查了坐标与图形变化-旋转,熟练掌握旋转的性质确定出旋转中心的位置并得到含有30°角的直角三角形是解题的关键.三、解答题17.如图,是正内的一点,若将绕点逆时针旋转到,(1)求的度数.(2)若,,,求的度数.[答案](1);(2).1212P ABC PAC A P'AB PAP'∠AP 3=BP 4=PC 5=PAB ∠PAP'60∠=APB 150∠=[解析][分析](1)根据旋转的性质,找出∠PA P′=∠B A C ,根据等边三角形的性质,即可解答;(2)连接PP′,根据旋转的性质及已知可得到△A PP′是等边三角形,△B PP′是直角三角形,从而求得答案.[详解]如图,根据旋转的性质得,,∵是等边三角形,∴,∴;如图,连接,由旋转可知:,所以,,又∵,∴,()1PAP'BAC ∠∠=ABC BAC 60∠=PAP'60∠=()2PP 'P AB PAC ≅'CAP BAP ∠∠'=AP AP 3='=CP BP 5='=CAP PAB 60∠∠+=P AP BAP BAP 60∠∠∠=+=''∴是等边三角形,∴,∴,∵,∴,∴是直角三角形,∴∴.[点评]本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.18.如图,的顶点坐标分别为,,.将绕坐标原点逆时针旋转,得到(、、分别为、、的对应点),在坐标系中画出,并写出、、三点的坐标.[答案],,,画图见解析.[解析][分析]根据点的坐标的特点可知,点A 在第四象限的平分线上,所以绕点O 逆时针旋转90°在第一象限的平分线上,点B 在第一象限的平分线上,所以绕点O 逆时针旋转90°后在第二象限的平分线上,分别求出点A ′,B ′的坐标,然后再找出点C 旋转后的点C ′,顺次连接即可.P AP 'AP AP PP 3=='='APP 60∠'=222345+=222P P PB P B '='+P PB 'P PB 90∠'=APB P PB APP 150∠∠∠=+=''ABC ()A 2,2-()B 4,4()C 1,2ABC O 90A B C '''A 'B 'C 'A B C A B C '''A 'B 'C'()A 2,2'()B 4,4'-()C 2,1'-[详解]∵,,,∴,,.画图[点评]本题考查旋转变换作图,做这类题的关键是按要求旋转后找对应点,然后顺次连接.19.如图,中,,,,,将绕着点旋转一定的角度,得到 .(1)若点为边上中点,连接,则线段的范围为________.(2)如图,当直角顶点在边上时,延长,交边于点,请问线段、、具有怎样的数量关系,请写出探索过程.[答案](1);(2)A G+EG=D E ,理由见解析.[解析][分析](1)图1中,利用旋转的性质得B E=B C =3,再根据三角形三边的关系得B E-B F≤EF≤B E+B F(当且仅当B 、()A 2,2-()B 4,4()C 1,2()A 2,2'()B 4,4'-()C 2,1'-1ABC C 90∠=BC 3=AC 4=AB 5=ABC B DEB F AB EF EF 2DEB E AB DE AC G DE EGAG 0.5EF 5.5≤≤E 、F 共线时取等号),从而得到线段EF 的范围;(2)图2中,利用旋转的性质得B E=B C =3,B D =B A =5,D E=A C =4,∠A =∠D ,再判断△A GE ∽△D EB ,然后利用相似比计算出A G 、EG ,从而可得到线段D E 、EG 、A G 的数量关系.[详解](1)∵点F 为A B 边上中点,∴B F=2.5,∵△A B C 绕着点B 旋转一定的角度得到△D EB ,∴B E=B C =3,∵B E-B F≤EF≤B E+B F(当且仅当B 、E 、F 共线时取等号),∴0.5≤EF≤5.5,故答案为0.5≤EF≤5.5;(2).理由如下:∵绕着点旋转一定的角度得到,∴,,,,∴,∵,,∴,∴,即, ∴,,∴,AG EG DE +=ABC B DE BE BC 3==BD BA 5==DE AC 4==A D ∠∠=AE AB BE 2=-=A D ∠∠=AEG BED ∠∠=AGE DEB ∽AG EG AE BD BE DE ==AG EG 2534==AG 2.5=EG 1.5=AG EG 4+=∴.[点评]本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.20.如图,四边形A B C D 是正方形,△A D F 绕着点A 顺时旋转90°得到△A B E ,若A F =4,A B =7.(1)求D E 的长度;(2)指出B E 与D F 的关系如何?并说明由.[答案](1)3;(2)B E =D F ,B E ⊥D F .[解析][分析](1)根据旋转的性质可得A E =A F ,A D =A B ,然后根据D E =A D ﹣A E 计算即可得解;(2)根据旋转可得△A B E 和△A D F 全等,根据全等三角形对应边相等可得B E =D F ,全等三角形对应角相等可得∠A B E =∠A D F ,然后求出∠A B E +∠F =90°,判断出B E ⊥D F .[详解]解:(1)∵△A D F 按顺时针方向旋转一定角度后得到△A B E ,∴A E =A F =4,A D =A B =7,∴D E =A D ﹣A E =7﹣4=3;(2)B E 、D F 的关系为:B E =D F ,B E ⊥D F .理由如下:∵△A D F 按顺时针方向旋转一定角度后得到△A B E ,∴△A B E ≌△A D F , AG EG DE +=∴B E=D F,∠A B E=∠A D F,∵∠A D F+∠F=180°﹣90°=90°,∴∠A B E+∠F=90°,∴B E⊥D F,∴B E、D F的关系为:B E=D F,B E⊥D F.[点评]考查了旋转的性质,正方形的性质,是基础题,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.21.如图,已知点A ,B 的坐标分别为(4,0),(3,2).(1)画出△A OB 关于原点O对称的图形△C OD ;(2)将△A OB 绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;(3)点D 的坐标是,点F的坐标是,此图中线段B F和D F的关系是.[答案](1)见解析;(2)见解析;(3)D (﹣3,﹣2),F(﹣2,3),垂直且相等[解析][分析](1)分别延长B O,A O到占D ,C ,使D O=B O,C O=A O,再顺次连接成△C OD 即可;(2)将A ,B 绕点O按逆时针方向旋转90°得到对应点E,F,再顺次连接即可得出△EOF;(3)利用图象即可得出点的坐标,以及线段B F和D F的关系.[详解](1)如图所示:(2)如图所示:(3)结合图象即可得出:D (﹣3,﹣2),F (﹣2,3),线段B F 和D F 的关系是:垂直且相等.[点评]此题考查了图形的旋转变换以及图形旋转的性质,难度不大,注意掌握解答此类题目的关键步骤. 22.如图①,在中,.将绕点逆时针旋转得到,旋转角为,且.在旋转过程中,点可以恰好落在的中点处,如图②.求的度数;当点到的距离等于的一半时,求的度数.[答案](1);(2).[解析][分析]Rt ABC 90C ∠=ABC C ''A B C α0180α<<'BAB ()1A ∠()2C 'AA AC α 30A ∠= 120α=(1)利用旋转的性质结合直角三角形的性质得出△C B B ′是等边三角形,进而得出答案;(2)利用锐角三角函数关系得出sin ∠C A D =,即可得出∠C A D =30°,进而得出α的度数. [详解] 将绕点逆时针旋转得到,旋转角为,∴∵点可以恰好落在的中点处,∴点是的中点.∵,∴, ∴,即是等边三角形.∴.∵,∴;如图,过点作于点,点到的距离等于的一半,即. 在中,,, ∴,∵,12CD AC =()1ABC C ''A B C α'CB CB ='B AB 'B AB 90ACB ∠=1''2CB AB BB ==''CB CB BB =='CBB 60B ∠=90ACB ∠=30A ∠=()2C 'CD AA ⊥D C 'AA AC 12CD AC =Rt ADC 90ADC ∠=1sin 2CD CAD AC ∠==30CAD ∠='CA CA =∴.∴,即.[点评]考查旋转的性质以及等边三角形的判定等知识,解题关键是正确掌握直角三角形的性质. 23.在Rt △A B C 中,∠A C B =90°,,点D 是斜边A B 上一动点(点D 与点A 、B不重合),连接C D ,将C D 绕点C 顺时针旋转90°得到C E ,连接A E ,DE .(1)求△A D E 的周长的最小值;(2)若C D =4,求A E 的长度.[答案](1)6+或[解析][分析](1)根据勾股定理得到 A C =6,根据全等三角形的性质得到A E=B D ,当D E 最小时,△A D E 的周长最小,过点C 作C F ⊥A B 于点F ,于是得到结论;(2)当点D 在C F 的右侧,当点D 在C F 的左侧,根据勾股定理即可得到结论[详解]解:(1)∵在Rt △A B C 中,∠A C B =90°,'30A CAD ∠=∠='120ACA ∠=120α=∴A C =6,∵∠EC D =∠A C B =90°,∴∠A C E=∠B C D ,在△A C E 与△BC D中, ,∴△A C E ≌△B C D (SA S),∴A E=B D ,∴△A D E 的周长=A E+A D +D E=AB +D E ,∴当D E 最小时,△A D E 的周长最小,过点C 作C F ⊥A B 于点F ,当C D ⊥A B 时,C D 最短,等于3,此时∴△A D E 的周长的最小值是;(2)当点D 在C F 的右侧,∵C F= A B =3,C D =4, ∴∴A E=B D =B F ﹣D F=3;当点D 在C F 的左侧,同理可得=AC BC ACE BCD CE CE =⎧⎪∠∠⎨⎪=⎩12综上所述:A E 的长度为3或.[点评]本题考查旋转的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.24.两块等腰直角三角形纸片和按图所示放置,直角顶点重合在点处,,.保持纸片不动,将纸片绕点逆时针旋转角度,如图所示. 利用图证明且;当与在同一直线上(如图)时,求的长和的正弦值.[答案](1)详见解析;(2)7,. [解析][分析] (1)图形经过旋转以后明确没有变化的边长,证明,得出A C =B D ,延长B D 交A C 于E ,证明∠A EB =90,从而得到.(2) 如图3中,设A C =x ,在Rt △A B C 中,利用勾股定理求出x ,再根据sinα=sin ∠A B C =即可解决问题[详解] 证明:如图中,延长交于,交于.AOB COD 1O 25AB =17CD =AOB COD O (090)αα<<2()12AC BD =AC BD ⊥()2BD CD 3AC α725AOC BOD ≅︒BD AC ⊥AC AB()12BD OA G AC E∵,∴,在和中,,∴,∴,,∵,∵,∴,∴,∴.解:如图中,设,∵、在同一直线上,,∴是直角三角形,90AOB COD ∠=∠=AOC DOB ∠=∠AOC BOD OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩AOC BOD ≅AC BD =CAO DBO ∠=∠90DBO GOB ∠+∠=OGB AGE ∠=∠90CAO AGE ∠+∠=90AEG ∠=BD AC ⊥()23AC x=BD CD BD AC ⊥ABC∴,∴,解得,∵,,∴,∴. [点评]本题考查旋转的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,第二个问题的关键是利用(1)的结论解决问题,属于中考常考题型. 222AC BC AB +=222(17)25x x ++=7x =45ODC DBO α∠=∠+∠=45ABC DBO ∠+∠=ABC α∠=∠7sin sin 25AC ABC AB α=∠==。

《第23章 旋转》单元测试卷

《第23章 旋转》单元测试卷

《第23章 旋转》单元测试卷一、选择题:(本大题10个小题,每小题4分,共40分)每小题只有一个答案是正确的,请将正确答案的代号填入题后的括号内. 1.(4分)下面四个图案中,不能由基本图案旋转得到的是( ) A .B .C .D .2.(4分)△ABC 绕点A 按顺时针方向旋转了60°得△AEF ,则下列结论错误的是( ) A . ∠BAE=60° B . A C=AF C . E F=BC D . ∠BAF=60° 3.(4分)下列五个结论,其中属于旋转、平移和轴对称三种变换的共同性质的有( ) ①对应点连线平行; ②对应点连线相交于一点; ③对应线段相等; ④变换前后的图形是全等形,形状和大小都没有改变; ⑤位置发生了改变.A . 2个B . 3个C . 4个D . 5个 4.(4分)如图,△ABC 与△A′B′C′是成中心对称,下列说法不正确的是( )A . S △ABC =S △A′B′C′B .AB=A′B′,AC=A′C′,BC=B′C′C . A B ∥A′B′,AC ∥A′C′,BC ∥B′C′D . S △ACO =S △A′B′O5.(4分)(2013•天水)下列图形中,中心对称图形有( )A . 1个B . 2个C . 3个D . 4个6.(4分)你玩过扑克牌吗?你仔细观察过每张扑克牌的图案吗?下列扑克牌的图案中,是中心对称的一组是()A.红挑6与红挑4 B.方块6与方块4 C.梅花6与梅花4 D.黑挑6与黑挑47.(4分)(2010•沈阳)如图,在方格纸上建立的平面直角坐标系中,Rt△ABC绕点C按顺时针方向旋转90°,得到Rt△FEC,则点A的对应点F的坐标是()A.(﹣1,1)B.(﹣1,2)C.(1,2)D.(2,1)8.(4分)经过矩形对称中心的任意一条直线,把这个矩形分成两部分,设这两部分的面积分别为S1和S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.不能确定9.(4分)点P(2a+1,4)与P′(1,3b﹣1)关于原点对称,则2a+b=()A.﹣3 B.﹣2 C.3D.210.(4分)(2007•白银)4张扑克牌阵图(1)所示放在桌面上,小敏把其中一张旋转180°后得到如图(2)所示,那么她所旋转的牌从左到右数起是()A.第一张B.第二张C.第三张D.第四张二、填空题:(本大题6个小题,每小题4分,共24分)请将答案直接填写在题后的横线上.11.(4分)一条线段绕它的一个端点旋转90°后与原来线段的位置关系是_________;把一个平行四边形绕对角线交点旋转_________度第一次与自身重合.12.(4分)如图,△ABC绕点A旋转30°后成△ADE,已知∠CAB=100°,则∠EAD=_________,∠BAD=_________.13.(4分)如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的,如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为_________.14.(4分)(2010•聊城)如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=6,Rt△AB′C′可以看作是由Rt△ABC绕点A逆时针方向旋转60°得到的,则线段B′C的长为_________.15.(4分)(2007•江苏)用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为_________度.16.(4分)(2007•梅州)如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,∠BAC≠90度.将此三角形纸片沿AD剪开,得到两个三角形,若把这两个三角形拼成一个平行四边形,则能拼出平行四边形_________个.三、解答题:(本大题4个小题,每小题6分,共24分)下列各题解答时必须给出必要的演算过程或推理步骤.17.(6分)(2005•长沙)如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合.(1)三角尺旋转了多少度_________度;(2)连接CD,试判断△CBD的形状;_________.(3)求∠BDC的度数._________度.18.(6分)△ABC是等边三角形,D是BC上一点,△ABD经旋转后到达△ACE的位置.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若M是AB的中点,那么经过上述旋转后,点M转到了什么位置?19.(6分)已知:如图,△ABD≌△FEC,D与C的对应顶点.(1)△FEC可以看作是由△ABD通过怎样的旋转变换得到的?(2)BD与EC的位置关系是什么,为什么?20.(6分)(2010•新疆)(北师大版)用四块如图①所示的正方形瓷砖拼成一个新的正方形,使拼成的图案是一个轴对称图形.请你在图②、图③、图④中各画一种拼法(要求三种拼法各不相同,且其中至少一个既是轴对称图形,又是中心对称图形).四、解答题:(本大题4个小题,每小题10分,共40分)下列各题解答时必须给出必要的演算过程或推理步骤.21.(10分)如图所示的正方形网格中,每小格均为边长是1的正方形,△ABC的顶点均在格点上,请在所给直角坐标系中解答下列问题:(1)分别写出点A、B的坐标;(2)将△ABC向下平移3个单位长度;作出平移后的△A1B1C1;(3)作出△ABC关于坐标原点成中心对称的△A2B2C2;(4)△A1B1C1与△A2B2C2构成对称图形吗?若是,请在图上画出对称轴或对称中心.22.(10分)(2010•庆阳)图①、图②均为7×6的正方形网格,点A、B、C在格点上.(1)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形.(画一个即可)(2)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形.(画一个即可)23.(10分)(2013•大丰市一模)请认真观察图(1)的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征:特征1:_________;特征2:_________.(2)请在图(2)中设计出你心中最美的图案,使它也具备你所写出的上述特征(用阴影表示).24.(10分)如图,已知∠BAC=90°,△ABC绕点A逆时针旋转得到△ADE,恰好D在BC 上,连接CE.(1)∠BAE与∠DAC有何关系?并说明理由;(2)线段BC与CE在位置上有何关系?为什么?五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.(10分)已知:如图,E点是正方形ABCD的边AB上一点,AB=4,DE=6,△DAE逆时针旋转后能够与△DCF重合.(1)旋转中心是_________.旋转角为_________度.(2)请你判断△DFE的形状,并说明理由.(3)求四边形DEBF的周长和面积.26.(12分)(2012•东台市一模)如图,等腰直角△ABC中,∠ABC=90°,点D在AC上,将△ABD绕顶点B沿顺时针方向旋转90°后得到△CBE.(1)求∠DCE的度数;(2)当AB=4,AD:DC=1:3时,求DE的长.《第23章旋转》2012年单元测试卷(涪陵二中)参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)每小题只有一个答案是正确的,请将正确答案的代号填入题后的括号内.1.(4分)下面四个图案中,不能由基本图案旋转得到的是()A.B.C.D.考点:利用旋转设计图案.分析:寻找基本图形,旋转中心,旋转角,旋转次数,逐一判断.解答:解:A、可由一个基本“花瓣”绕其中心经过7次旋转,每次旋转45°得到;B、可由一个基本“菱形”绕其中心经过5次旋转,每次旋转60°得到;C、可由一个基本图形绕其中心旋转180°得到;D、不能由基本图案旋转得到.故选D.点评:本题考查了旋转的基本知识,培养学生分析和判断问题的能力.2.(4分)△ABC绕点A按顺时针方向旋转了60°得△AEF,则下列结论错误的是()A.∠BAE=60°B.A C=AF C.E F=BC D.∠BAF=60°考点:旋转的性质.分析:作出图形,然后根据旋转变换只改变图形的位置不改变图形的形状与大小,对应边的夹角等于旋转角对各选项分析判断后利用排除法求解.解答:解:A、∵旋转了60°,∴∠BAE=60°,正确,故本选项错误;B、∵AC、AF是对应边,∴AC=AF正确,故本选项错误;C、∵EF、BC是对应边,∴EF=BC正确,故本选项错误;D、∠BAF=60°﹣∠BAC≠60°,故本选项正确.故选D.点评:本题考查了旋转的性质,熟练掌握旋转的性质是解题的关键,作出图形更形象直观.3.(4分)下列五个结论,其中属于旋转、平移和轴对称三种变换的共同性质的有()①对应点连线平行;②对应点连线相交于一点;③对应线段相等;④变换前后的图形是全等形,形状和大小都没有改变;⑤位置发生了改变.A.2个B.3个C.4个D.5个考点:几何变换的类型.分析:根据旋转、平移和轴对称三种变换的性质对各小题进行判断即可得解.解答:解:①对应点连线平行旋转变换不具有;②对应点连线相交于一点只有旋转变换具有;③对应线段相等三种变换都具有;④变换前后的图形是全等形,形状和大小都没有改变,三种变换都具有;⑤位置发生了改变轴对称变换位置不一定改变,例如轴对称图形关于对称轴变换;综上所述,三种变换都具有的性质有③④共2个.故选A.点评:本题考查了几何变换的类型,熟练掌握旋转、平移和轴对称三种变换的性质是解题的关键,需熟记.4.(4分)如图,△ABC与△A′B′C′是成中心对称,下列说法不正确的是()A.S△ABC=S△A′B′C′B.A B=A′B′,AC=A′C′,BC=B′C′D.S△ACO=S△A′B′OC.A B∥A′B′,AC∥A′C′,BC∥B′C′考点:中心对称.分析:根据中心对称图形的性质,即可作出判断.解答:解:A、根据中心对称的两个图形全等,即可得到,故正确;B、中心对称图形中,对称点到对称中心的距离相等,故正确;C、根对称点到对称中心的距离相等,即可证得对应线段平行,故正确;D、不正确.故选D.点评:本题主要考查了中心对称图形的性质,中心对称图形全等,且对称点到对称中心的距离相等.5.(4分)(2013•天水)下列图形中,中心对称图形有()A.1个B.2个C.3个D.4个考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:第一个图形是中心对称图形;第二个图形是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共3个中心对称图形.故选C.点评:掌握好中心对称图形的概念.中心对称图形关键是要寻找对称中心,旋转180度后两部分重合.6.(4分)你玩过扑克牌吗?你仔细观察过每张扑克牌的图案吗?下列扑克牌的图案中,是中心对称的一组是()A.红挑6与红挑4 B.方块6与方块4 C.梅花6与梅花4 D.黑挑6与黑挑4考点:中心对称.分析:中心对称图形就是把一个图形绕着一个点,旋转180°以后能够与原来的图形重合,这样的图形就是中心对称图形,依据定义即可作出判断.解答:解:A、C、D中,旋转180度后,新图形中间的桃心和原图形桃心一个向上,一个向下,所以不是中心对称图形.故选B.点评:本题考查了中心对称,解答此题要熟悉扑克牌的花色,根据中心对称图形的定义将扑克牌旋转,能与原图重合的即为中心对称图形.7.(4分)(2010•沈阳)如图,在方格纸上建立的平面直角坐标系中,Rt△ABC绕点C按顺时针方向旋转90°,得到Rt△FEC,则点A的对应点F的坐标是()A.(﹣1,1)B.(﹣1,2)C.(1,2)D.(2,1)考点:坐标与图形变化-旋转.分析:如图,Rt△ABC绕点C按顺时针方向旋转90°得到Rt△FEC,根据旋转的性质知道CA=CF,∠ACF=90°,而根据图形容易得到A的坐标,也可以得到点A的对应点F的坐标.解答:解:如图,将Rt△ABC绕点C按顺时针方向旋转90°得到Rt△FEC,∴根据旋转的性质得CA=CF,∠ACF=90°,而A(﹣2,1),∴点A的对应点F的坐标为(﹣1,2).故选B.点评:本题涉及图形体现了新课标的精神,抓住旋转的三要素:旋转中心C,旋转方向顺时针,旋转角度90°,通过画图即可得F点的坐标.8.(4分)经过矩形对称中心的任意一条直线,把这个矩形分成两部分,设这两部分的面积分别为S1和S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.不能确定考点:中心对称.分析:根据矩形对角线相等且平分的性质,易证△OEC≌△OFA,△DEO≌△BFO,△AOD≌△BOC,即可证明S1=S2,即可解题.解答:解:矩形ABCD中,AD=BC,AO=BO=CO=DO,∴△AOD≌△BOC(SSS),∵∠ECO=∠FAO,OA=OC,∠EOC=∠FOA,∴△OEC≌△OFA,同理可证,△DEO≌△BFO,∴S1=S2.故选C.点评:本题考查了矩形对角线相等且互相平分的性质,全等三角形的证明,全等三角形面积相等的性质,本题中求证△OEC≌△OFA是解题的关键.9.(4分)点P(2a+1,4)与P′(1,3b﹣1)关于原点对称,则2a+b=()A.﹣3 B.﹣2 C.3D.2考点:关于原点对称的点的坐标.分析:根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y)可得到a,b的值,再代入2a+b中可得到答案.解答:解:∵点P(2a+1,4)与P′(1,3b﹣1)关于原点对称,∴2a+1=﹣1,3b﹣1=﹣4,∴a=﹣1,b=﹣1,∴2a+b=2×(﹣1)+(﹣1)=﹣3.故选A.点评:此题主要考查了坐标系中的点关于原点对称的坐标特点.注意:关于原点对称的点,横纵坐标分别互为相反数.10.(4分)(2007•白银)4张扑克牌阵图(1)所示放在桌面上,小敏把其中一张旋转180°后得到如图(2)所示,那么她所旋转的牌从左到右数起是()A.第一张B.第二张C.第三张D.第四张考点:中心对称图形.专题:操作型.分析:根据旋转的性质,旋转前后图形的大小和形状没有改变,必须是图形中心对称图形;找4个图形中的中心对称图形可得答案.解答:解:根据旋转的性质,旋转前后图形的大小和形状没有改变,其必须是中心对称图形.分析可得只有第一张是中心对称图形;而第(2)(3)(4)张均不符合.故选A.点评:根据旋转的性质,旋转前后图形的大小和形状没有改变且与原图重合.二、填空题:(本大题6个小题,每小题4分,共24分)请将答案直接填写在题后的横线上.11.(4分)一条线段绕它的一个端点旋转90°后与原来线段的位置关系是垂直;把一个平行四边形绕对角线交点旋转180度第一次与自身重合.考点:旋转的性质.分析:根据垂直的定义和平行四边形的中心对称性解答.解答:解:一条线段绕它的一个端点旋转90°后与原来线段的位置关系是垂直;把一个平行四边形绕对角线交点旋转180度第一次与自身重合.故答案为:垂直;180.点评:本题考查了旋转的性质,平行四边形是中心对称图形,是基础题.12.(4分)如图,△ABC绕点A旋转30°后成△ADE,已知∠CAB=100°,则∠EAD=100°,∠BAD=30°.考点:旋转的性质.分析:根据旋转的性质,旋转变换只改变图形的位置不改变图形的形状与大小可得∠EAD=∠CAB,对应边AB、AD的夹角等于旋转角解答即可.解答:解:∵△ABC绕点A旋转30°后成△ADE,∴∠EAD=∠CAB=100°,∠BAD=30°.故答案为:100°;30°.点评:本题考查了旋转的性质,是基础题,熟记性质是解题的关键.13.(4分)如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的,如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为(5,2).考点:坐标与图形变化-旋转.分析:利用对应点连线AD、BE、CF中任意两条中垂线的交点就是对称中心,进而得出P点坐标即可.解答:解:如图所示:作出对应点连线AD、BE、CF中任意两条中垂线的交点P,就是对称中心,∵(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,∴点P的位置为:(5,2).故答案为:(5,2).点评:此题主要考查了图形的旋转变换以及坐标确定位置,根据已知得出P点位置是解题关键.14.(4分)(2010•聊城)如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=6,Rt△AB′C′可以看作是由Rt△ABC绕点A逆时针方向旋转60°得到的,则线段B′C的长为.考点:旋转的性质.专题:压轴题.分析:作B′E⊥AC交CA的延长线于E,由直角三角形的性质求得AC、AE,BC的值,根据旋转再求出对应角和对应线段的长,再在直角△B′EC中根据勾股定理求出B′C的长度.解答:解:如图,作B′E⊥AC交CA的延长线于E.∵∠ACB=90°,∠BAC=60°,AB=6,∴∠ABC=30°,∴AC=AB=3,∵Rt△AB′C′可以看作是由Rt△ABC绕点A逆时针方向旋转60°得到的,∴AB=AB′=6,∠B′AC′=60°,∴∠EAB′=180°∠BAC=60°.∵B′E⊥EC,∴∠AB′E=30°,∴AE=3,∴根据勾股定理得出:B′E==3,∴EC=AE+AC=6,∴B′C===3.点评:本题把旋转的性质和直角三角形的性质结合求解,考查了学生综合运用数学知识的能力.15.(4分)(2007•江苏)用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为22度.考点:旋转的性质;等腰直角三角形;专题:计算题.分析:由平移的性质知,AO∥SM,再由平行线的性质可得∠WMS=∠OWM,即可得答案.解答:解:由平移的性质知,AO∥SM,故∠WMS=∠OWM=22°;故答案为:22.点评:本题利用了两直线平行,内错角相等,及平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.16.(4分)(2007•梅州)如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,∠BAC≠90度.将此三角形纸片沿AD剪开,得到两个三角形,若把这两个三角形拼成一个平行四边形,则能拼出平行四边形3个.考点:平行四边形的判定;等腰三角形的性质.专题:压轴题;操作型.分析:分别以小直角三角形的三边为对角线,并令对应边重合,即可拼出图形,然后根据平行四边形的判定条件作答.解答:解:若要拼成平行四边形,即是分别让它们的一组对应边重合,另外两组对应边分别平行.故能拼出3个.故答案为:3.点评:本题灵活考查了平行四边形的判定,熟练掌握判定定理是解题的关键,题意新颖,是道好题.三、解答题:(本大题4个小题,每小题6分,共24分)下列各题解答时必须给出必要的演算过程或推理步骤.17.(6分)(2005•长沙)如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合.(1)三角尺旋转了多少度150度;(2)连接CD,试判断△CBD的形状;等腰三角形.(3)求∠BDC的度数.15度.考点:旋转的性质;等腰三角形的性质.专题:综合题.分析:根据等腰三角形的定义判断.根据30°的直角三角形的性质及∠CBE=180°,通过角的和差关系进行计算.解答:解:(1)∵三角尺旋转的度数即为一条边旋转后与原边组成的角,∴三角尺的斜边AB旋转到EB后AB与BE所组成的角∠ABE=180°﹣∠ABC=180°﹣30°=150°.(2)∵图形旋转前后两图形全等,∴CB=DB,故△CBD为等腰三角形.(3)∵三角形CBD中∠DBE为∠CBA旋转以后的角,∴∠DBE=∠CBA=30°,故∠DBC=180°﹣∠DBE=180°﹣30°=150°,又∵BC=BD,∴∠BDC=∠BCD==15°.点评:此题根据等腰三角形的性质,即图形旋转后与原图形全等解答.18.(6分)△ABC是等边三角形,D是BC上一点,△ABD经旋转后到达△ACE的位置.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若M是AB的中点,那么经过上述旋转后,点M转到了什么位置?考点:旋转的性质.专题:几何图形问题.分析:(1)观察图形,由于△ABC是等边三角形,D是BC上一点,△ABD经旋转后到达△ACE的位置,可得出旋转中心;(2)观察图形,线段AB旋转后,对应边是AC,∠BAC就是旋转角,可得出旋转角;(3)因为旋转前后AB、AC是对应边,故AB的中点M,旋转后就是AC的中点了.解答:解:(1)∵△ABD经旋转后到达△ACE,它们的公共顶点为A,∴旋转中心是点A;(2)线段AB旋转后,对应边是AC,∠BAC就是旋转角,也是等边三角形的内角,是60°,∴旋转了60°;(3)∵旋转前后AB,AC是对应边,故AB的中点M,旋转后就是AC的中点了,∴点M转到了AC的中点.点评:本题考查了图形的旋转变化,学生要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易错.19.(6分)已知:如图,△ABD≌△FEC,D与C的对应顶点.(1)△FEC可以看作是由△ABD通过怎样的旋转变换得到的?(2)BD与EC的位置关系是什么,为什么?考点:旋转的性质;平行线的判定.专题:探究型.分析:(1)△ABD旋转得到△FEC,首先确定对应点,即可确定旋转中心,以及旋转角;(2)根据旋转的性质,即可得到BD与EC的位置关系.解答:解:(1)△FEC可以看作是由△ABD绕CD的中点旋转180°得到;(2)BD∥EC.根据中心对称中,对应点的连线被对称中心平分,则对应线段一定平行或在一条直线上.点评:正确确定旋转的方式,首先要确定旋转前后两图的对应顶点.20.(6分)(2010•新疆)(北师大版)用四块如图①所示的正方形瓷砖拼成一个新的正方形,使拼成的图案是一个轴对称图形.请你在图②、图③、图④中各画一种拼法(要求三种拼法各不相同,且其中至少一个既是轴对称图形,又是中心对称图形).考点:利用旋转设计图案;利用轴对称设计图案.专题:作图题.分析:根据图中画出的折痕分别作出轴对称和中心对称图形.要注意:轴对称图形关于某一直线对称,中心对称图形绕某一点旋转180度与原图重合.解答:解:点评:此题主要考查学生的动手实践能力和逻辑思维能力.趣味性强,便于操作,是一道好题.四、解答题:(本大题4个小题,每小题10分,共40分)下列各题解答时必须给出必要的演算过程或推理步骤.21.(10分)如图所示的正方形网格中,每小格均为边长是1的正方形,△ABC的顶点均在格点上,请在所给直角坐标系中解答下列问题:(1)分别写出点A、B的坐标;(2)将△ABC向下平移3个单位长度;作出平移后的△A1B1C1;(3)作出△ABC关于坐标原点成中心对称的△A2B2C2;(4)△A1B1C1与△A2B2C2构成对称图形吗?若是,请在图上画出对称轴或对称中心.考点:作图-轴对称变换.专题:网格型.分析:(1)根据A、B在坐标系中的位置写出坐标;(2)将△ABC向下平移3个单位长度即可;(3)分别作A、B、C三点关于原点的对应点,再顺次连接;(4)画图后易得△A1B1C1与△A2B2C2构成中心对称图形,连接A1A2、C1C2交于一点,就是对称中心.解答:解:(1)点A的坐标为(﹣2,3),点B的坐标为(﹣3,2),(2分)(2)如图所示(4分)(3)如图所示(6分)(4)△A1B1C1与△A2B2C2构成中心对称图形,连接A1A2、C1C2交于点P(在y轴上),点P就是它们的对称中心.(8分)点评:此题综合考查点的坐标、图形的平移、中心对称图形的画法以及对称点的确定.22.(10分)(2010•庆阳)图①、图②均为7×6的正方形网格,点A、B、C在格点上.(1)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形.(画一个即可)(2)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形.(画一个即可)考点:利用轴对称设计图案;作图-轴对称变换.专题:作图题;网格型;开放型.分析:先要找出什么样的图形是轴对称图形,什么样的图形是中心对称图形.解答:解:(1)有以下答案供参考:.(2)有以下答案供参考:.点评:此题主要考查了利用轴对称设计图案,考查中心对称、轴对称的概念与画图的综合能力.23.(10分)(2013•大丰市一模)请认真观察图(1)的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征:特征1:是轴对称图形;特征2:是中心对称图形.(2)请在图(2)中设计出你心中最美的图案,使它也具备你所写出的上述特征(用阴影表示).考点:利用旋转设计图案;利用轴对称设计图案.分析:(1)应从对称方面,阴影部分的面积等方面入手思考;(2)应画出既是中心对称图形,又是轴对称图形,且面积为4的图形.解答:解:(1)特征1:是轴对称图形,特征2:是中心对称图形;(2).点评:图形的特点应从对称性和面积等方面进行考虑.24.(10分)如图,已知∠BAC=90°,△ABC绕点A逆时针旋转得到△ADE,恰好D在BC 上,连接CE.(1)∠BAE与∠DAC有何关系?并说明理由;(2)线段BC与CE在位置上有何关系?为什么?考点:旋转的性质.分析:(1)根据旋转的性质可得∠BAC=∠DAE=90°,然后表示出∠CAE,再根据∠BAE=∠BAC+∠CAE列式整理即可得解;(2)根据旋转的性质可得AB=AD,AC=AE,再利用等腰三角形两底角相等表示出∠B、∠ACE,然后求出∠BCE=90°,根据垂直的定义即可得解.解答:解:(1)∠BAE与∠DAC互补.理由如下:由旋转的性质知:∠BAC=∠DAE=90°,∴∠CAE=∠DAE﹣∠DAC=90°﹣∠DAC,∵∠BAE=∠BAC+∠CAE=90°+(90°﹣∠DAC)=180°﹣∠DAC,∴∠BAE+∠DAC=180°,因此∠BAE与∠DAC互补;(2)线段BC⊥CE.理由如下:由旋转知:∠BAD=∠CAE,BA=DA,CA=EA,∴∠B=∠ADB=(180°﹣∠BAD),∠ACE=∠AEC=(180°﹣∠CAE),∴∠ACE=∠B,∴∠B+∠BCA=180°﹣90°=90°,∴∠BCE=∠BCA+∠ACE=∠BCA+∠B=90°,∴BC⊥CE.点评:本题考查了旋转的性质,等腰三角形两底角相等的性质,垂直的定义,熟练掌握旋转的性质是解题的关键.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.(10分)已知:如图,E点是正方形ABCD的边AB上一点,AB=4,DE=6,△DAE逆时针旋转后能够与△DCF重合.(1)旋转中心是D.旋转角为90度.(2)请你判断△DFE的形状,并说明理由.(3)求四边形DEBF的周长和面积.考点:旋转的性质.分析:(1)确定旋转中心及旋转的角度,首先确定哪是对应点,即可确定旋转中心以及旋转角;(2)根据旋转的性质,可以得到旋转前后的两个图形全等,以及旋转角的定义即可作出判断;(3)根据△DAE≌△DCF,可以得到:AE=CF,DE=DF,则四边形DEBF的周长就是正方形的三边的和与DE的和.解答:解:(1)旋转中心是点D.旋转角为90度.(2)根据旋转的性质可得:△DAE≌△DCF,则DE=DF,∠EDF=∠ADC=90°,则△DFE的形状是等腰直角三角形.(3)四边形DEBF的周长是BE+BC+CF+DF+DE=AB+BC+DE+DF=20;面积等于正方形ABCD的面积=16.点评:本题主要考查了旋转的性质,旋转不改变图形的形状与大小,只改变图形的位置,旋转前后两个图形全等.26.(12分)(2012•东台市一模)如图,等腰直角△ABC中,∠ABC=90°,点D在AC上,将△ABD绕顶点B沿顺时针方向旋转90°后得到△CBE.(1)求∠DCE的度数;(2)当AB=4,AD:DC=1:3时,求DE的长.考点:旋转的性质;等腰直角三角形.专题:计算题;压轴题.分析:(1)由题意我们知道∠A+∠C=90°,那么我们只要通过全等三角形来得出∠BCE=∠A,就能得出∠DCE=90°的结论,那么关键就是证明三角形ADB和CBE全等,根据题意我们知三角形CBE是由三角形ABD旋转得来,根据旋转的性质我们可得出两三角形全等.(2)由(1)可得出三角形DEC是个直角三角形,要求DE的长,就必须求出CD和CE,由(1)可知AD=CE,那么就必须求出AD和DC的长,有AD,CD的比。

数学九年级上学期《旋转》单元测试(含答案)

数学九年级上学期《旋转》单元测试(含答案)

九年级上册数学《旋转》单元测试卷(满分120分,考试用时120分钟)一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2020·扬州市梅岭中学初二期末)下列图形是中心对称图形的是( )A .B .C .D .2.(2020·江西省初三其他)小明有一个俯视图为等腰三角形的积木盒,现在积木盒中只剩下如图所示的九个空格,下面列有积木的四种搭配方式,其中恰好能放人盒中空格的有( )A .1种B .2种C .3种D .4种3.(2020·湖北省中考真题)在平面直角坐标系中,点G 的坐标是()2,1-,连接OG ,将线段OG 绕原点O 旋转180︒,得到对应线段OG ',则点G '的坐标为( )A .()2,1-B .()2,1C .()1,2-D .()2,1--4.(2019·山东省初三期末)如图,B A =B C ,∠A B C =80°,将△B D C 绕点B 逆时针旋转至△B EA 处,点E ,A 分别是点D ,C 旋转后的对应点,连接D E ,则∠B ED 为( )A .50°B .55°C .60°D .65°5.(2020·辽宁省初二期末)如图,Rt ABC 中,∠B =30°,∠C =90°,将Rt ABC 绕点A 按顺时针方向旋转到11AB C △的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于( )A .60°B .90°C .120°D .150°6.(2020·山东省初二期中)如图,在平面直角坐标系中,点A ,C 在x 轴上,点C 的坐标为(﹣1,0),A C =2.将Rt △ABC 先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(2,2)B .(1,2)C .(﹣1,2)D .(2,﹣1)7.(2020·河北省中考真题)如图,将ABC ∆绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的CDA ∆与ABC ∆构成平行四边形,并推理如下:点A ,C 分别转到了点C ,A 处,而点B 转到了点D 处.∵CB AD =,∴四边形ABCD 是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中”∵CB AD =,”和”∴四边形……”之间作补充.下列正确的是( )A .嘉淇推理严谨,不必补充B .应补充:且AB CD =,C .应补充:且//AB CD D .应补充:且OA OC =,8.(2020·海南省中考真题)如图,在Rt ABC 中, 90,30,1,C ABC AC cm ∠=︒∠=︒=将Rt ABC 绕点A 逆时针旋转得到Rt AB C ''△,使点C '落在AB 边上,连接BB ',则BB '的长度是( )A .1cmB .2cmCD .9.(2020·哈尔滨市萧红中学初三月考)如图,点D 是等边ABC ∆内一点,将BDC ∆以点C 为中心顺时针旋转60︒,得到ACE ∆,连接BE ,若45AEB ∠=︒,则DBE ∠的度数为( )A .25B .30C .20D .1510.(2020·辽宁省初二期中)如图,△A B C 绕点A 顺时针旋转45°得到△A B ′C ′,若∠B A C =90°,A B=A C ,则图中阴影部分的面积等于( )A .2B .1CD ﹣l11.(2020·无锡市凤翔实验学校初三月考)如图,平面直角坐标系中,矩形OA B C 的顶点A (﹣6,0),C (0,.将矩形OA B C 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为( )A .(-B .(4)-C .(-D .(-12.(2020·河南省初二期末)如图,在平面直角坐标系中有一边长为1的正方形OABC ,边OA ,OC 分别在 x 轴、y 轴上,如果以对角线OB 为边作第二个正方形11OBB C ,再以对角线1OB 为边作第三个正方形122OB B C ,照此规律作下去,则点2020B 的坐标为( )A .10101010(22)-,B .20202020(22)-,C .20202020(22)--,D .10101010(22)--,13.(2020·河南省初三学业考试)如图,在Rt ABC 中,90A ∠=,3AB =,4AC =,D 为A C 中点,P 为A B 上的动点,将P 绕点D 逆时针旋转90得到'P ,连'CP ,线段'CP 最小值为( )A .1.6B .2.4C .2D .14.(2020·黑龙江省初三月考)如图,已知正方形ABCD ,4=AD ,E 是CD 中点,AF 平分BAE ∠交BC 于点F ,将ADE ∆绕点A 顺时针旋转90︒得ABG ∆,则下列结论中:①ΔΔABG AED ≅;②ΔΔAEF ABF ≅;③AF 平分GAD ∠;④1GF =;⑤6CF =- )A .①③B .①③⑤C .①②④⑤D .①③④二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2020·湖南省初一期末)如图,将等边三角形OA B 绕O 点按顺时针方向旋转160°,得到三角形OA ′B ′(点A ′,B ′分别是点A ,B 的对应点),则∠1=_________度;16.(2019·湖南省初三学业考试)如图,P 是等边△A B C 内一点,△B MC 是由△B PA 绕点B 逆时针旋转所得,若MC //B P ,则∠B MC =_______°.17.(2020·江苏省初三三模)如图,在平面直角坐标系中,A (2,0),B (0,1),A C 由A B 绕点A 顺时针旋转90°而得,则A C 所在直线的解析式是____.18.(2020·河北省初三二模)在锐角ABC 中,4AB =,5BC =,45ACB ∠=︒ ,将ABC 绕点B 按逆时针方向旋转,得到111A B C △.(1)如图1,当点1C 在线段CA 的延长线上时,则11CC A ∠的度数为______________度;(2)如图2,点E 为线段AB 中点,点P 是线段AC 上的动点,在ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点1P ,则线段1EP 长度最小值是_____________.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2020·湖南省初一期末)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△A B C 的顶点均在格点上,O 、M 也在格点上.(1)画出ABC 关于直线OM 对称的111A B C △;(2)画出ABC 绕点O 按顺时针方向旋转90°后所得的222A B C △;(3) 计算:111A B C △的面积为 ;(4)2CC A S 22CC B S (填”>“,”=“或”<“)20.(2020·南通市八一中学初一月考)如图①, 已知△A B C 中, ∠B A C =90°, A B ="A C ," A E 是过A 的一条直线, 且B 、C 在A E 的异侧, B D ⊥A E 于D , C E ⊥A E 于E.(1)求证: B D =D E+C E.(2)若直线A E 绕A 点旋转到图②位置时(B D <C E), 其余条件不变, 问B D 与D E 、C E 的数量关系如何? 请给予证明;(3)若直线A E 绕A 点旋转到图③位置时(B D >C E), 其余条件不变, 问B D 与D E 、C E 的数量关系如何? 请直接写出结果, 不需证明.(4)根据以上的讨论,请用简洁的语言表达B D 与D E,C E 的数量关系.21.(2020·湖北省中考真题)在58⨯的网格中建立如图的平面直角坐标系,四边形OABC 的顶点坐标分别为(0,0)O ,(3,4)A ,(8,4)B ,(5,0)C .仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB 绕点C 逆时针旋转90︒,画出对应线段CD ;(2)在线段AB 上画点E ,使45BCE ︒∠=(保留画图过程的痕迹);(3)连接AC ,画点E 关于直线AC 的对称点F ,并简要说明画法.22.(2020·四川省内江市第六中学初三三模)如图,已知△A B C 中,A B =A C ,把△A B C 绕A 点沿顺时针方向旋转得到△A D E,连接B D ,C E 交于点F.(1)求证:AEC ADB ∆≅∆;(2)若A B =2,45BAC ︒∠=,当四边形A D FC 是菱形时,求B F 的长.23.(2020·辽宁省初二期末)如图,正方形A B C D 的边长为4,E 是边B C 上的一点,把ABE △平移到DCF ,再把ABE △逆时针旋转到ADG 的位置.(1)把ABE △平移到DCF ,则平移的距离为_______;(2)四边形A EFD 是_______四边形;(3)把ABE △逆时针旋转到ADG 的位置,旋转中心是______点;(4)若连接EG ,求证:AEG △是等腰直角三角形.24.(2020·北京育英中学初三三模)已知40AOB ∠=︒,M 为射线OB 上一定点,1OM =,P 为射线OA 上一动点(不与点O 重合),1OP <,连接PM ,以点P 为中心,将线段PM 顺时针旋转40︒,得到线段PN ,连接MN .(1)依题意补全图1;(2)求证:APN OMP ∠=∠;(3)H 为射线OA 上一点,连接NH .写出一个OH 的值,使得对于任意的点P 总有OHN ∠为定值,并求出此定值.25.(2020·山东省诸城市树一中学初三二模)如图1,点O 是正方形A B C D 两对角线的交点. 分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连接A G ,D E .(1)求证:D E ⊥A G ;(2)正方形A B C D 固定,将正方形OEFG 绕点O 逆时针旋转α角(0°< α<360°)得到正方形OE′F′G′,如图2. ①在旋转过程中,当∠OAG′是直角时,求α的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形A B C D 的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.26.(2020·长春市新朝阳实验学校初三月考)(教材呈现)下图是华师版八年级下册数学教材第112页的部分内容.例2如图,已知菱形ABCD 的边长为2cm ,120BAD ∠=︒,对角线AC 、BD 相交于点O .试求这个菱形的两条对角线AC 与BD 的长.(结果保留根号)结合图①,写出求解过程.(应用)(1)如图②,过图①中的点A 分别作AE AD ⊥,AF AB ⊥,连结CE 、CF ,则四边形AECF 的面积为_________.(2)如图③,在菱形ABCD 中,120BAD ∠=︒,对角线AC 、BD 相交于点O .将其绕着点O 顺时针旋转90°得到菱形A B C D ''''.若1AB =,则旋转前后两个菱形重叠部分图形的周长为_________.参考答案一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2020·扬州市梅岭中学初二期末)下列图形是中心对称图形的是( )A .B .C .D .[答案]B[解析]解:A 、不是中心对称图形,不符合题意,故选项A 错误;B 、是中心对称图形,符合题意,故选项B 正确;C 、不是中心对称图形,不符合题意,故选项C 错误;D 、不是中心对称图形,符合题意,故选项D 错误;故选:B .2.(2020·江西省初三其他)小明有一个俯视图为等腰三角形的积木盒,现在积木盒中只剩下如图所示的九个空格,下面列有积木的四种搭配方式,其中恰好能放人盒中空格的有( )A .1种B .2种C .3种D .4种[答案]D [解析]解:∵将搭配①②③④组合在一起,正好能组合成九个空格的形状,∴恰好能放入的有①②③④.故选:D .3.(2020·湖北省中考真题)在平面直角坐标系中,点G 的坐标是,连接,将线段绕原点O 旋转,得到对应线段,则点的坐标为( )()2,1-OG OG 180︒OG 'G 'A .B .C .D .[答案]A [解析]根据题意可得,与G 关于原点对称,∵点G 的坐标是,∴点的坐标为.故选A .4.(2019·山东省初三期末)如图,B A =B C ,∠A B C =80°,将△B D C 绕点B 逆时针旋转至△B EA 处,点E ,A 分别是点D ,C 旋转后的对应点,连接D E ,则∠B ED 为( )A .50°B .55°C .60°D .65°[答案]A [解析]∵△B D C 绕点B 逆时针旋转至△B EA 处,点E ,A 分别是点D ,C 旋转后的对应点, ∴∠C B D =∠A B E ,B D =B E ,∵∠A B C =∠C B D +∠A B D ,∠EB D =∠A B E +∠A B D ,∠A B C =80°,∴∠EB D =∠A B C =80°,∵B D =B E ,∴∠B ED =∠B D E=(180°-∠EB D )=(180°-80°)=50°, 故选:A .5.(2020·辽宁省初二期末)如图,中,∠B =30°,∠C =90°,将绕点A 按顺时针方向旋转到的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于( )A .60°B .90°C .120°D .150°()2,1-()2,1()1,2-()2,1--G '()2,1-G '()2,1-1212Rt ABC Rt ABC 11AB C△[答案]C[解析]在中,由旋转的性质得:为旋转角,点C 、A 、在同一条直线上即旋转角等于故选:C .6.(2020·山东省初二期中)如图,在平面直角坐标系中,点A ,C 在x 轴上,点C 的坐标为(﹣1,0),A C =2.将Rt △ABC 先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(2,2)B .(1,2)C .(﹣1,2)D .(2,﹣1)[答案]A [解析]∵点C 的坐标为(﹣1,0),A C =2,∴点A 的坐标为(﹣3,0),如图所示,将Rt △A B C 先绕点C 顺时针旋转90°,Rt ABC 30,90B C ∠=︒∠=︒9060BAC B ∴∠=︒-∠=︒1CAC ∠1160B AC BAC ∠=∠=︒1B 11118018060120CAC B AC ∠=︒-∠=︒-︒=∴︒120︒则点A ′的坐标为(﹣1,2),再向右平移3个单位长度,则变换后点A ′的对应点坐标为(2,2),故选:A .7.(2020·河北省中考真题)如图,将绕边的中点顺时针旋转180°.嘉淇发现,旋转后的与构成平行四边形,并推理如下:点,分别转到了点,处,而点转到了点处.∵,∴四边形是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中”∵,”和”∴四边形……”之间作补充.下列正确的是( )A .嘉淇推理严谨,不必补充B .应补充:且,C .应补充:且D .应补充:且, [答案]B[解析]根据旋转的性质得: C B =A D ,A B =C D ,∴四边形A B D C 是平行四边形;故应补充”A B =C D ”,故选:B .8.(2020·海南省中考真题)如图,在中,将绕点逆时针旋转得到,使点落在边上,连接,则的长度是( )ABC ∆AC O CDA ∆ABC ∆A C C A B D CB AD =ABCD CB AD =AB CD =//AB CD OA OC =Rt ABC 90,30,1,C ABC AC cm ∠=︒∠=︒=Rt ABC A Rt AB C ''△C 'AB BB 'BB 'A .B . CD .[答案]B [解析]解:∵由直角三角形中,30°角所对的直角边等于斜边的一半可知,∴ C m ,又∠C A B =90°-∠A B C =90°-30°=60°,由旋转的性质可知:,且,∴为等边三角形,∴.故选:B .9.(2020·哈尔滨市萧红中学初三月考)如图,点是等边内一点,将以点为中心顺时针旋转,得到,连接,若,则的度数为( )A .B .C .D .[答案]D [解析]∵,且任意三角形内角和都为180°∴∵为等边三角形∴°∵°1cm 2cm 90,30,1,C ABC AC cm ∠=︒∠=︒==2=2AB AC '=60∠∠=CAB BAB '=AB AB '∆BAB '==2BB AB D ABC ∆BDC ∆C 60︒ACE ∆BE 45AEB ∠=︒DBE ∠25302015AFE BFC ∠=∠1AEB FBC ACB ∠+∠=∠+∠ABC 60ACB ∠=45AEB ∠=∴∴∵以点C 为中心顺时针旋转60°得到∴∴故选:D10.(2020·辽宁省初二期中)如图,△A B C 绕点A 顺时针旋转45°得到△A B ′C ′,若∠B A C =90°,A B =A C,则图中阴影部分的面积等于( )A .2B .1 CD ﹣l[答案]D [解析]∵△A B C 绕点A 顺时针旋转45°得到△A ′B′C ′,∠B A C =90°,,∴B C =2,∠C =∠B =∠C A C ′=∠C ′=45°,A C ′=,∴A D ⊥B C ,B ′C ′⊥A B ,∴A D = B C =1,A F=FC ′= A C ′=1, ∴D C ′=A C ′-1,14560FBC ︒︒∠+=∠+115FBC ︒∠-∠=BDC ACE △1DBC ∠=∠115DBE DBC FBC FBC ︒∠=∠-∠=∠-∠=122∴图中阴影部分的面积等于:S△A FC ′-S△D EC ′=×1×1-×-1)2-1,故选D .11.(2020·无锡市凤翔实验学校初三月考)如图,平面直角坐标系中,矩形OA B C 的顶点A(﹣6,0),C (0,.将矩形OA B C 绕点O顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为()A .B .C . D.[答案]D[解析]解:连接OB 1,作B 1H⊥OA 于H,由题意,得OA =6,则tA n∠B OA =,∴∠B OA =30°,∴∠OB A =60°,由旋转的性质可知∠B 1OB =∠B OA =30°,1212(-(4)-(-(-3ABAO=∴∠B 1OH=60°,在△A OB 和△HB 1O , ∴△A OB ≌△HB 1O ,∴B 1H=OA =6,∴点B 1的坐标为(6),故选:D .12.(2020·河南省初二期末)如图,在平面直角坐标系中有一边长为的正方形,边,分别在轴、轴上,如果以对角线为边作第二个正方形,再以对角线为边作第三个正方形,照此规律作下去,则点的坐标为( )A .B .C .D . [答案]D [解析]解:∵正方形OA B C 边长为1,∴,∵正方形OB B1C 1是正方形OA B C 的对角线OB 为边,∴OB 1=2,∴B 1点坐标为(0,2),同理可知OB 2,∴B 2点坐标为(-2,2),同理可知OB 3=4,B 3点坐标为(-4,0),B 4点坐标为(-4,-4),B 5点坐标为(0,-8),111B HO BAO B OH ABO OB OB ∠∠⎧⎪∠∠⎨⎪⎩=,=,=,1OABC OA OC x y OB 11OBB C 1OB 122OB B C 2020B 10101010(22)-,20202020(22)-,20202020(22)--,10101010(22)--,B 6(8,-8),B 7(16,0),B 8(16,16),B 9(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来倍,∵2020÷8=252…4,∴B 2020的横纵坐标符号与点B 4相同,横纵坐标互为相反数,且都在第三象限,∴ B 2020的坐标为(-21010,-21010).故选:D .13.(2020·河南省初三学业考试)如图,在中,,,,D 为A C 中点,P 为A B 上的动点,将P 绕点D 逆时针旋转得到,连,线段最小值为A .B .C .2D .[答案]C [解析]如图所示,过P'作P'E ⊥A C 于E ,则∠A =∠P'ED =90°,由旋转可得,D P=P'D ,∠PD P'=90°,∴∠A D P=∠EP'D ,在△D A P 和△P'ED 中,∴△D A P ≌△P'ED (A A S ),Rt ABC 90A ∠=3AB =4AC =90'P 'CP 'CP ()1.6 2.4ADP EP D A P EDDP P D ∠∠'⎧⎪∠∠'⎨⎪'⎩===∴P'E=A D =2,∴当A P=D E=2时,D E=D C ,即点E 与点C 重合,此时C P'=EP'=2,∴线段C P′的最小值为2,故选C .14.(2020·黑龙江省初三月考)如图,已知正方形,,是中点,平分交于点,将绕点顺时针旋转得,则下列结论中:①;②;③平分;④;⑤()A .①③B .①③⑤C .①②④⑤D .①③④[答案]B[解析]过点F 作FM ⊥A D 于M ,FN ⊥A G 于N ,如图,∵四边形A B C D 是正方形,,是中点,∴∠D =∠C =∠A B C =90º,B C =A D =C D =A B =4,D E=C E=2,∴四边形C FMD 是矩形,且∴FM=C D =4,∵将绕点顺时针旋转得,∴,故①正确;且A G=A E= B G=D E=2,∠D A E=∠B A G ,∠D =∠B A G=90º,∴点G 在C B 的延长线上,∵平分交于点,∴∠EA F=∠B A F ,∴∠D A E+∠EA F=∠B A G+∠B A F 即∠D A F=∠GA F ,∴平分,故③正确;∴FN=FM=4, ABCD 4=AD E CD AF BAE ∠BC F ADE ∆A 90︒ABG ∆ΔΔABG AED ≅ΔΔAEF ABF ≅AF GAD ∠1GF =+6CF =-4=AD E CD AE =ADE ∆A 90︒ABG ∆ΔΔABG AED ≅AF BAE ∠BC F AF GAD ∠∵, ∴∴B F=,C F=B C +B G-B F=,故⑤正确;又A E≠A B ≠B F,,∴不成立,故②错误,∴正确的序号为①③⑤,故选:B .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2020·湖南省初一期末)如图,将等边三角形OA B 绕O 点按顺时针方向旋转160°,得到三角形OA ′B ′(点A ′,B ′分别是点A ,B 的对应点),则∠1=_________度;[答案]100[解析]解:∵将等边三角形OA B 绕O 点按顺时针方向旋转160°,得到三角形OA 'B ',∴,,∴,故答案为:100.16.(2019·湖南省初三学业考试)如图,P 是等边△A B C 内一点,△B MC 是由△B PA 绕点B 逆时针旋转所得,若MC //B P ,则∠B MC =_______°.1122AGF S GF AB AG FN ===16-ΔΔAEF ABF ≅'160BOB ∠=︒60AOB ∠=︒1'100BOB AOB ∠=∠-∠=︒[答案]120[解析]∵△B MC 是由△B PA 绕点B 逆时针旋转所得,∴,∴,又∵△A B C 是等边三角形,∴,又∵MC //B P ,∴,∴,∴.故答案为.17.(2020·江苏省初三三模)如图,在平面直角坐标系中,A (2,0),B(0,1),A C 由A B 绕点A 顺时针旋转90°而得,则A C 所在直线的解析式是____.[答案][解析]∵A (2,0),B (0,1),∴OA =2,OB =1,过点C 作C D ⊥x 轴于点D△△PBA MBC ≅PBA MBC ∠=∠60PBM MBC PBC ∠=∠+∠=︒MCB PBC ∠=∠+60MBC MCB ∠∠=︒18060120BMC ∠=︒-︒=︒120︒24y x =-则易知△A C D ≌△B A O (A A S ),∴A D =OB =1,C D =OA =2∴C (3,2),设直线A C 的解析式为,将点A 、点C 坐标代入得, ∴, ∴直线A C 的解析式为.故答案为:.18.(2020·河北省初三二模)在锐角中,,, ,将绕点按逆时针方向旋转,得到.(1)如图1,当点在线段的延长线上时,则的度数为______________度;(2)如图2,点为线段中点,点是线段上的动点,在绕点按逆时针方向旋转过程中,点的对应点是点,则线段长度最小值是_____________.[答案]90 [解析]解:(1)由旋转的性质可得:,,,y kx b =+0223k b k b =+⎧⎨=+⎩24k b =⎧⎨=-⎩24y x =-24y x =-ABC 4AB =5BC =45ACB ∠=︒ABC B 111A B C △1C CA 11CC A ∠E AB P AC ABC B P 1P 1EP 21145A C B ACB ∠=∠=︒1BC BC =1145CC B C CB;(2)如图1,过点作,为垂足,为锐角三角形,点在线段上,在中,, 当在上运动,与垂直的时候,绕点旋转,使点的对应点在线段上时,最小,最小值为:; 三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2020·湖南省初一期末)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△A B C 的顶点均在格点上,O 、M 也在格点上.(1)画出关于直线OM 对称的; (2)画出绕点O 按顺时针方向旋转90°后所得的; (3) 计算:的面积为;(4) (填”>“,”=“或”<“)[答案](1)答案见解析;(2)答案见解析;(3)1.5;(4)>.[解析](1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,△A 2B 2C 2即为所求;11111454590CC A CC B AC B B BD AC ⊥D ABC ∆∴D AC Rt BCD ∆52sin 452BD BC P AC BP AC ABC ∆B P 1P AB 1EP 112EP BP BE BD BE =-=-=ABC 111A B C △ABC 222A B C △111A B C △2CC A S 22CC B S(3)△A 1B 1C 1的面积为:2×2-×1×2-×1×2-×1×1=; 故答案为:;(4)如图所示,, , ∴;故答案为:>.20.(2020·南通市八一中学初一月考)如图①, 已知△A B C 中, ∠B A C =90°, A B ="A C ," A E 是过A 的一条直线, 且B 、C 在A E 的异侧, B D ⊥A E 于D , C E ⊥A E 于E.(1)求证: B D =D E+C E.(2)若直线A E 绕A 点旋转到图②位置时(B D <C E), 其余条件不变, 问B D 与D E 、C E 的数量关系如何? 请给予证明;1212121.51.5213232CC A S =⨯⨯=2211124241311111222CC B S =⨯-⨯⨯-⨯⨯-⨯⨯-⨯=222CC A CC B S S>(3)若直线A E 绕A 点旋转到图③位置时(B D >C E), 其余条件不变, 问B D 与D E 、C E 的数量关系如何? 请直接写出结果, 不需证明.(4)根据以上的讨论,请用简洁的语言表达B D 与D E,C E 的数量关系.[答案](1)、证明过程见解析;(2)、B D =D E –C E ;证明过程见解析;(3)、B D =D E –C E ;(4)、当B ,C 在A E 的同侧时,B D =D E –C E ;当B ,C 在A E 的异侧时,B D =D E+C E.[解析](1)∵B D ⊥A E ,C E ⊥A E∴∠A D B =∠C EA =90°∴∠A B D +∠B A D =90°又∵∠B A C =90°∴∠EA C +∠B A D =90°∴∠A B D =∠C A E在△A B D 与△A C E∴△A B D ≌△A C E∴B D =A E,A D =EC∴B D =D E+C E(2)、∵B D ⊥A E ,C E ⊥A E∴∠A D B =∠C EA =90°∴∠A B D +∠B A D =90°又∵∠B A C =90°∴∠EA C +∠B A D =90°∴∠A B D =∠C A E在△A B D 与△A C E∴△A B D ≌△A C E∴B D =A E,A D =EC∴B D =D E –C E(3)、同理:B D =D E –C EADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩(4)、归纳:由(1)(2)(3)可知:当B ,C 在A E 的同侧时,B D =D E –C E ;当B ,C 在A E 的异侧时,∴B D =D E+C E21.(2020·湖北省中考真题)在的网格中建立如图的平面直角坐标系,四边形的顶点坐标分别为,,,.仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段绕点逆时针旋转,画出对应线段;(2)在线段上画点,使(保留画图过程的痕迹);(3)连接,画点关于直线的对称点,并简要说明画法.[答案](1)见解析;(2)见解析;(3)见解析[解析]解:(1)如图示,线段是将线段绕点逆时针旋转得到的;(2)∠B C E 为所求的角,点E 为所求的点.(3)连接(5,0)和(0,5)点,与A C 的交点为F,且F 为所求.58⨯OABC (0,0)O (3,4)A (8,4)B (5,0)C CB C 90︒CD ABE 45BCE ︒∠=AC E ACF CD CB C 90︒22.(2020·四川省内江市第六中学初三三模)如图,已知△A B C 中,A B =A C ,把△A B C 绕A 点沿顺时针方向旋转得到△A D E,连接B D ,C E 交于点F.(1)求证:;(2)若A B =2,,当四边形A D FC 是菱形时,求B F 的长.[答案](1)证明过程见解析;(2)-2[解析](1)∵△A B C ≌△A D E 且A B =A C∴A E=A D ,A B =A C∠B A C +∠B A E=∠D A E+∠B A E∴∠C A E=∠D A B∴△A EC ≌△A D B(3)∵四边形A D FC 是菱形且∠B A C =45°∴∠D B A =∠B A C =45°由(1)得A B =A D∴∠D B A =∠B D A =45°∴△A B D 是直角边长为2的等腰直角三角形∴又∵四边形A D FC 是菱形AEC ADB ∆≅∆45BAC ︒∠=∴A D =D F=FC =A C =A B =2∴-223.(2020·辽宁省初二期末)如图,正方形A B C D 的边长为4,E是边B C 上的一点,把平移到,再把逆时针旋转到的位置.(1)把平移到,则平移的距离为_______;(2)四边形A EFD 是_______四边形;(3)把逆时针旋转到的位置,旋转中心是______点;(4)若连接EG,求证:是等腰直角三角形.[答案](1)4;(2)平行;(3)A ;(4)证明见解析.[解析](1)四边形A B C D 是边长为4的正方形由平移的性质可知,平移的距离为故答案为:4;(2)由平移的性质可知,平移距离为,且点在一条直线上又四边形A EFD 是平行四边形故答案为:平行;(3)由旋转的定义得:把逆时针旋转到的位置,旋转中心是A 点故答案为:A ;(4)由旋转的性质得:是等腰三角形,即ABE △DCF ABE△ADGABE△DCFABE△ADGAEG△4,//,90BC AD AD BC BAD∴==∠=︒4BC=4EF BC==,,,B EC F4EF AD∴==//AD BC//AD EF∴∴ABE△ADG,AG AE DAG BAE=∠=∠∴AEG90BAD∠=︒90BAE DAE∠+∠=︒,即是等腰直角三角形.24.(2020·北京育英中学初三三模)已知,M 为射线上一定点,,P 为射线上一动点(不与点O 重合),,连接,以点P 为中心,将线段顺时针旋转,得到线段,连接.(1)依题意补全图1;(2)求证:;(3)H 为射线上一点,连接.写出一个的值,使得对于任意的点P 总有为定值,并求出此定值.[答案](1)见解析;(2)见解析;(3)的值为1,110°[解析](1)补全图形,如图所示.;(2)证明:根据题意可知,,∵,∴;(3)解:的值为1.在射线上取一点G ,使得,连接,根据题意可知,,在和中 90DAG DAE ∴∠+∠=︒90EAG ∠=︒∴AEG 40AOB ∠=︒OB 1OM =OA 1OP <PM PM 40︒PNMN APN OMP ∠=∠OA NH OH OHN ∠OH 40MPN AOB ∠=∠=︒MPA AOB OMP MPN APN ∠=∠+∠=∠+∠APN OMP ∠=∠OH PA PG OM =GN MP NP =OMP ∆GPN ∆∵,∴,∴,∵,∴,∴,∴,∴.25.(2020·山东省诸城市树一中学初三二模)如图1,点O 是正方形A B C D 两对角线的交点. 分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连接A G ,D E .(1)求证:D E ⊥A G ;(2)正方形A B C D 固定,将正方形OEFG 绕点O 逆时针旋转α角(0°< α<360°)得到正方形OE′F′G′,如图2. ①在旋转过程中,当∠OAG′是直角时,求α的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形A B C D 的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.OM PG OMP GPN MP NP =⎧⎪∠=∠⎨⎪=⎩OMP GPN ∆∆≌,40OP GN AOB NGP =∠=∠=︒PG OH =OP HG =NG HG =70NHG ∠=︒110OHN ∠=︒[答案](1)D E⊥A G (2)①当∠OAG′为直角时,α=30°或150°.②315°[解析]解:(1)如图1,延长ED 交A G于点H,∵点O是正方形A B C D 两对角线的交点,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,{OA=OD∠AOG=∠DOE=90∘OG=OE,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90∘,∴∠GAO+∠DEO=90∘,∴∠AHE=90∘,即DE⊥AG;(2)①如图2,在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0∘增大到90∘过程中,当∠OAG′=90∘时,∵OA=OD=12OG=12OG′,∴在Rt△OAG′中,sin∠A GO=OAOG′=12,∴∠AG′O=30∘,∵OA ⊥OD ,OA ⊥AG′,∴OD//AG′,∴∠DOG′=∠AG′O =30∘,即α=30∘;(Ⅱ)α由90∘增大到180∘过程中,当∠OAG′=90∘时,同理可求∠BOG′=30∘,∴α=180∘−30∘=150∘.综上所述,当∠OAG′=90∘时,α=30∘或150∘.②如图3,当旋转到A 、O 、F′在一条直线上时,AF′的长最大,∵正方形A B C D 的边长为1,∴OA =OD =OC =OB =√22, ∵OG =2OD ,∴OG′=OG =√2,∴OF′=2,∴AF′=AO +OF′=√22+2,∵∠COE′=45∘,∴此时α=315∘.26.(2020·长春市新朝阳实验学校初三月考)(教材呈现)下图是华师版八年级下册数学教材第112页的部分内容.例2如图,已知菱形的边长为,,对角线、相交于点.试求这个菱形的两条对角线与的长.(结果保留根号)ABCD 2cm 120BAD ∠=︒AC BD O AC BD结合图①,写出求解过程.(应用)(1)如图②,过图①中的点分别作,,连结、,则四边形的面积为_________.(2)如图③,在菱形中,,对角线、相交于点.将其绕着点顺时针旋转90°得到菱形.若,则旋转前后两个菱形重叠部分图形的周长为_________.[答案][教材呈现],A C =2C m ;[应用](1) C m 2;(2).[解析]教材呈现:∵四边形是菱形, A AE AD ⊥AF AB ⊥CE CF AECF ABCD 120BAD ∠=︒AC BD O O A B C D ''''1AB =BD =34-ABCD∴,.∴.∴.∴是等边三角形.∴ C m .∵,∴是直角三角形.∴. ∴ C m .应用:(1)由[教材呈现]知:是等边三角形 ∵四边形是菱形∴° ∵∴,,° ∵A B =2C m∴同理可得: C m ,° ∴为等边三角形∴C m ∴S 四边形A EC F = A C ∙EF=×22. (2)设与交于点E//AD BC AB BC =180BAD ABC ∠+∠=︒18060ABC BAD ∠=︒-∠=︒ABC ∆2AC AB ==AC BD ⊥AOB BO =2BD BO ==ABC ABCD 1302ABO ABC ∠=∠=AF AB ⊥2BF AF =AB =60AFE ∠=AE =60AEF ∠=AEF 1212AB B C ''由菱形A B C D 性质可知:°∵∴∴∴∴∴∴ ∵菱形A B C D 与菱形的重叠部分是正八边形 ∴其周长为:=. 故答案为:.30EBC BEC AEB EB A ''''∠=∠=∠=∠=,OB OB OA OC ''==AB C B ''=C EB AEB ''≅△△AE EC BC ''==BE=1AB AE BE AE =+==12AE =A B C D ''''182⨯44。

九年级上学期数学《旋转》单元检测题附答案

九年级上学期数学《旋转》单元检测题附答案
[解析]
试题分析:根据中心对称图形与轴对称图形的概念依次分析即可.
①②③是只是中心对称图形,④只是轴对称图形,
故选C.
考点:本题考查的是中心对称图形与轴对称图形
点评:解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
九年级上册数学《旋转》单元测试卷
(满分120分,考试用时120分钟)
一、选择题(每小题4分,共40分)
1.在平面内将一个图形绕一个定点沿某个方向转动一个角度这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是( )
A. B. C. D.
2.下列图形中,为中心对称图形的是( )
A. B. C. D.
3.下列图形中是轴对称图形,但不是中心对称图形的是()
A. B. C. D.
[答案]B
[解析]
[分析]
根据轴对称图形与中心对称图形的概念求解.
[详解]A、是中心对称图形,不是轴对称图形,不符合题意;
B、是轴对称图形,不是中心对称图形,符合题意;
C、是轴对称图形,也是中心对称图形,不符合题意;
D、是轴对称图形,也是中心对称图形,不符合题意.
2.下列图形中,为中心对称图形的是( )
A. B. C. D.
[答案]B
[解析]
[分析]
根据中心对称图形的定义,结合所给图形即可作出判断.
[详解] 、不是中心对称图形,故选项错误;
、是中心对称图形,故选项正确;
、不是中心对称图形,故选项错误;
、不是中心对称图形,故选项错误.

人教新版九年级上册《第23章 旋转》2021年单元测试卷(广东省潮州市饶平县英才实验中学)(2)

人教新版九年级上册《第23章 旋转》2021年单元测试卷(广东省潮州市饶平县英才实验中学)(2)

人教新版九年级上册《第23章旋转》2021年单元测试卷(广东省潮州市饶平县英才实验中学)(2)试题数:21,总分:01.(单选题,0分)下列运动属于旋转的是()A.火箭升空的运动B.足球在草地上滚动C.大风车运动的过程D.传输带运输的东西的运动2.(单选题,0分)如图所示的图形绕某点旋转180°后,不能与原来图形重合的是()A.B.C.D.3.(单选题,0分)如图,若△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,则∠AB1B=()A.50°B.55°C.60°D.65°4.(单选题,0分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为24,DE=2,则AE的长为()A.4B.2 √5C.2 √6D.2 √75.(单选题,0分)将△ABC绕点B按逆时针方向旋转32°到△EBD的位置,斜边AC和DE相交于点F,则∠DFC的度数等于()A.28°B.30°C.32°D.30°6.(单选题,0分)如图,已知△ABC和△A'B'C'关于点O成中心对称,则下列结论错误的是()A.∠ABC=∠A'B'C'B.∠AOB=∠A'OB'C.AB=A'B'D.OA=OB'7.(单选题,0分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.8.(单选题,0分)在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,-3)B.(-4,3)C.(0,-3)D.(0,3)9.(单选题,0分)如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED,若BC=8,BD=7,则△AED的周长是()A.15B.14C.13D.1210.(单选题,0分)如图,O是边长为a的正方形ABCD的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O点处,并将纸板绕圆心O旋转,那么阴影部分的面积为()A. 1a23a B. 14C. 1a22a2D. 1411.(填空题,0分)在等腰直角三角形、等边三角形、平行四边形、矩形、菱形、正方形中,既是轴对称图形,又是中心对称图形的有___ 个.12.(填空题,0分)已知点A(2,a)、点B(b,-3)关于原点对称,则a+b的值为___ .13.(填空题,0分)如图,风车图案围绕着旋转中心至少旋转___ 度,会和原图案重合.14.(填空题,0分)如图,已知AB=3,AC=1,∠D=90°,△DEC与△ABC关于点C成中心对称,则AE的长是___ .15.(填空题,0分)如图,△ABC为等边三角形,△AO′B绕点A逆时针旋转后能与△AOC重合,则∠OAO′=___ 度.16.(填空题,0分)如图,在△ABC中,∠C=90°,AC=BC=4cm,若以AC的中点O为旋转中心,将这个三角形旋转180°后,点B落在B'处,则BB'为___ .17.(填空题,0分)在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为___ .18.(问答题,0分)已知点A(-1,3a-1)与点B(2b+1,-2)关于x轴对称,点C(a+2,b)与点D关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次连接点A、D、B、C,求所得图形的面积.19.(问答题,0分)如图所示,把△ABC绕点A旋转至△ADE位置,延长BC交AD于F,交DE于G,若∠CAD=10°,∠D=25°,∠EAB=120°,求∠DFB的度数.20.(问答题,0分)在正方形网格中建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,A的坐标是(4,4),请回答下列问题:(1)将△ABC向下平移六个单位长度,画出平移后的△A1B1C1,并写出点A的对应点A1的坐标;(2)画出△ABC关于原点O对称的△A2B2C2,并写出点A2的坐标;(3)判断△A1B1C1与△A2B2C2是否关于某点成中心对称;若是,请画出对称中心M,并写出点M的坐标21.(问答题,0分)如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.人教新版九年级上册《第23章旋转》2021年单元测试卷(广东省潮州市饶平县英才实验中学)(2)参考答案与试题解析试题数:21,总分:01.(单选题,0分)下列运动属于旋转的是()A.火箭升空的运动B.足球在草地上滚动C.大风车运动的过程D.传输带运输的东西的运动【正确答案】:C【解析】:根据旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转进行分析即可.【解答】:解:A、火箭升空的运动,是平移,故此选项不符合题意;B、足球在草地上滚动,不是绕着某一个固定的点转动,不是旋转,故此选项不符合题意;C、大风车运动的过程,是旋转,故此选项符合题意;D、传输带运输的东西的运动,是平移,故此选项不符合题意;故选:C.【点评】:此题主要考查了生活中的旋转,解题的关键是掌握旋转的定义.2.(单选题,0分)如图所示的图形绕某点旋转180°后,不能与原来图形重合的是()A.B.C.D.【正确答案】:B【解析】:根据中心对称图形的概念求解.【解答】:解:A、是中心对称图形,能与原来图形重合,故错误;B、不是中心对称图形,不能与原来图形重合,故正确;C、是中心对称图形,能与原来图形重合,故错误;D、是中心对称图形,能与原来图形重合,故错误.故选:B.【点评】:本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(单选题,0分)如图,若△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,则∠AB1B=()A.50°B.55°C.60°D.65°【正确答案】:D【解析】:根据旋转的性质知AB=AB1,∠BAB1=50°,然后利用三角形内角和定理进行求解.【解答】:解:∵△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,∴AB=AB1,∠BAB1=50°,(180°-50°)=65°.∴∠AB1B= 12故选:D.【点评】:本题考查了旋转的性质,三角形内角和定理,熟知旋转角的定义与旋转后对应边相等是解题的关键.4.(单选题,0分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为24,DE=2,则AE的长为()A.4B.2 √5C.2 √6D.2 √7【正确答案】:D【解析】:由旋转的性质可得S△ADE=S△ABF,可得AD2=24,由勾股定理可求解.【解答】:解:∵把△ADE绕点A顺时针旋转90°到△ABF的位置,∴△ADE≌△ABF,∴S△ADE=S△ABF,∴四边形AECF的面积=正方形ABCD的面积,∴AD2=24,∵AE2=AD2+DE2=24+4=28,∴AE=2 √7,故选:D.【点评】:本题考查了旋转的性质,全等三角形的性质,正方形的性质,掌握旋转的性质是本题的关键.5.(单选题,0分)将△ABC绕点B按逆时针方向旋转32°到△EBD的位置,斜边AC和DE相交于点F,则∠DFC的度数等于()A.28°B.30°C.32°D.30°【正确答案】:C【解析】:设DE与BC相交于H,根据旋转的性质和三角形的内角和定理即可得到结论.【解答】:解:设DE与BC相交于H,∵将△ABC绕点B按逆时针方向旋转32°到△EBD,∴∠D=∠C,∠DBC=32°,∵∠BHD=∠CHE,∴∠DFC=∠DBC=32°,故选:C.【点评】:本题考查了旋转的性质,三角形的内角和定理,熟练正确旋转的性质是解题的关键.6.(单选题,0分)如图,已知△ABC和△A'B'C'关于点O成中心对称,则下列结论错误的是()A.∠ABC=∠A'B'C'B.∠AOB=∠A'OB'C.AB=A'B'D.OA=OB'【正确答案】:D【解析】:利用中心对称图形的性质解决问题即可.【解答】:解:∵△ABC和△A′B′C′关于点O成中心对称,∴△ABC≌△A′B′C′,∴AB=A′B′,OA=OA′,∠ABC=∠A′B′C′,可得∠AOB=∠A′OB′,故A,B,C正确,只有D选项错误.故选:D.【点评】:本题考查中心对称、全等三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.7.(单选题,0分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【正确答案】:C【解析】:根据中心对称图形和轴对称图形对各选项分析判断即可得解.【解答】:解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图,不是轴对称图形,故本选项错误;C、既是中心对称图又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.【点评】:本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.(单选题,0分)在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,-3)B.(-4,3)C.(0,-3)D.(0,3)【正确答案】:C【解析】:根据关于原点的点的横坐标互为相反数,纵坐标互为相反数,可得关于原点的对称点,根据点的坐标向左平移减,可得答案.【解答】:解:在直角坐标系中,将点(-2,3)关于原点的对称点是(2,-3),再向左平移2个单位长度得到的点的坐标是(0,-3),故选:C.【点评】:本题考查了点的坐标,关于原点的点的横坐标互为相反数,纵坐标互为相反数;点的坐标向左平移减,向右平移加,向上平移加,向下平移减.9.(单选题,0分)如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED,若BC=8,BD=7,则△AED的周长是()A.15B.14C.13D.12【正确答案】:A【解析】:由旋转的性质可得BD=BE,∠DBE=60°,CD=AE,可证△DBE是等边三角形,可得BD=DE=5,即可求解.【解答】:解:∵将△BCD绕点B逆时针旋转60°得到△BAE,∴BD=BE,∠DBE=60°,CD=AE,∴△DBE是等边三角形,∴BD=DE=7,∴△AED的周长=AE+AD+DE=CD+AD+DE=8+7=15,故选:A.【点评】:本题考查了旋转的性质,等边三角形的判定和性质,掌握旋转的性质是本题的关键.10.(单选题,0分)如图,O是边长为a的正方形ABCD的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O点处,并将纸板绕圆心O旋转,那么阴影部分的面积为()A. 13a2B. 14a C. 12a2D. 14a2【正确答案】:D【解析】:如图,过O作OE⊥AD于E,OF⊥CD于F,由于O是边长为a的正方形ABCD的中心,由此得到OE=OF,∠EOF=90°,而扇形的圆心角为直角,由此可以得到△OME逆时针旋转90°和△ONF重合,这样就可以得到阴影部分的面积就是小正方形OEDF的面积,这样就可以求出阴影部分的面积.【解答】:解:如图,过O作OE⊥AD于E,OF⊥CD于F,∵O是边长为a的正方形ABCD的中心,∴OE=OF,∠EOF=90°,∴四边形OEDF是正方形,而扇形的圆心角为直角,∴把△OME逆时针旋转90°会和△ONF重合,∴所求阴影部分的面积就是小正方形OEDF的面积,而S正方形OEDF= 14 S正方形ABCD= 14a2.故选:D.【点评】:本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.11.(填空题,0分)在等腰直角三角形、等边三角形、平行四边形、矩形、菱形、正方形中,既是轴对称图形,又是中心对称图形的有___ 个.【正确答案】:[1]3【解析】:根据轴对称图形与中心对称图形的概念求解.【解答】:解:由题可得,既是轴对称图形,又是中心对称图形的有3个:矩形、菱形、正方形,故答案为:3.【点评】:此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.(填空题,0分)已知点A(2,a)、点B(b,-3)关于原点对称,则a+b的值为___ .【正确答案】:[1]1【解析】:直接利用关于原点对称点的性质得出a,b的值进而得出答案.【解答】:解:∵点A(2,a)、点B(b,-3)关于原点对称,∴b=-2,a=3,则a+b的值为:1.故答案为:1.【点评】:此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号关系是解题关键.13.(填空题,0分)如图,风车图案围绕着旋转中心至少旋转___ 度,会和原图案重合.【正确答案】:[1]60【解析】:根据旋转角及旋转对称图形的定义结合图形特点作答.【解答】:解:∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.故答案为:60.【点评】:本题考查了旋转角的定义及求法,对应点与旋转中心所连线段的夹角叫做旋转角.14.(填空题,0分)如图,已知AB=3,AC=1,∠D=90°,△DEC与△ABC关于点C成中心对称,则AE的长是___ .【正确答案】:[1] √13【解析】:直接利用中心对称的性质得出DC,DE的长,进而利用勾股定理得出答案.【解答】:解:∵△DEC 与△ABC关于点C成中心对称,∴DC=AC=1,DE=AB=3,∴在Rt△EDA中,AE的长是:√22+32 = √13.故答案为:√13.【点评】:此题主要考查了中心对称以及勾股定理,正确得出DC,DE的长是解题关键.15.(填空题,0分)如图,△ABC为等边三角形,△AO′B绕点A逆时针旋转后能与△AOC重合,则∠OAO′=___ 度.【正确答案】:[1]60【解析】:根据旋转不变性即可解决问题;【解答】:解:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC,∵△ABO′是由△ACO旋转所得,∴∠OAO′=∠CAB=60°,故答案为60.【点评】:本题考查旋转变换、等边三角形的性质等知识,解题的关键是熟练掌握旋转不变性解决问题.16.(填空题,0分)如图,在△ABC中,∠C=90°,AC=BC=4cm,若以AC的中点O为旋转中心,将这个三角形旋转180°后,点B落在B'处,则BB'为___ .【正确答案】:[1]4 √5 cm【解析】:根据旋转的性质,即可得OB=OB′,即BB′=2OB,又由在等腰△ABC中,∠C=90°,BC=4cm,O是AC的中点,利用勾股定理即可求得OB的长,继而求得答案.【解答】:解:根据旋转的性质,可得:OB=OB′,∵在等腰△ABC中,∠C=90°,BC=4cm,∴AC=BC=4cm,∵O是AC的中点,∴OC= 1AC=2cm,2∴在Rt△BOC中,OB= √BC2+OC2 =2 √5(cm),∴BB′=2OB=4 √5 cm.故答案为:4 √5 cm.【点评】:此题考查了旋转的性质、等腰直角三角形的性质以及勾股定理识.此题比较难度不大,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.17.(填空题,0分)在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为___ .【正确答案】:[1](2,1)【解析】:根据中心对称的性质,知道点P(1,1),N(2,0),并细心观察坐标轴就可以得到答案.【解答】:解:∵点P(1,1),N(2,0),∴由图形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),∵关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,∴对称中心的坐标为(2,1),故答案为:(2,1).【点评】:本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.以及中心对称的性质:① 关于中心对称的两个图形能够完全重合;② 关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.18.(问答题,0分)已知点A(-1,3a-1)与点B(2b+1,-2)关于x轴对称,点C(a+2,b)与点D关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次连接点A、D、B、C,求所得图形的面积.【正确答案】:【解析】:(1)根据关于x轴对称的点的坐标规律:横坐标相同,纵坐标互为相反数,分别求出a,b的值,进而求出点A、B、C的坐标,再根据关于原点的对称点,横纵坐标都变成相反数求出点D的坐标;(2)把这些点按A-D-B-C-A顺次连接起来,再根据三角形的面积公式计算其面积即可.【解答】:解:(1)∵点A(-1,3a-1)与点B(2b+1,-2)关于x轴对称,∴2b+1=-1,3a-1=2,解得a=1,b=-1,∴点A(-1,2),B(-1,-2),C(3,-1),∵点C(a+2,b)与点D关于原点对称,∴点D(-3,1);(2)如图所示:四边形ADBC的面积为:12×4×2+12×4×4=12.【点评】:本题考查的是作图-轴对称变换,熟知关于x、y轴对称的点的坐标特点是解答此题的关键.19.(问答题,0分)如图所示,把△ABC绕点A旋转至△ADE位置,延长BC交AD于F,交DE于G,若∠CAD=10°,∠D=25°,∠EAB=120°,求∠DFB的度数.【正确答案】:【解析】:由旋转的性质可得△ABC≌△ADE,可得∠B=∠D=25°,∠EAD=∠CAB,由角的数量关系可求∠FAB=∠CAB+∠CAD=55°+10°=65°,由外角性质可求解.【解答】:解:由旋转可知:△ABC≌△ADE,∵∠D=25°,∴∠B=∠D=25°,∠EAD=∠CAB,∵∠EAB=∠EAD+∠CAD+∠CAB=120°,∠CAD=10°,∴∠CAB=(120°-10°)÷2=55°,∴∠FAB=∠CAB+∠CAD=55°+10°=65°,∵∠DFB是△ABF的外角,∴∠DFB=∠B+∠FAB,∴∠DFB=25°+65°=90°.【点评】:本题考查了旋转的性质,全等三角形的性质,掌握旋转的性质是本题的关键.20.(问答题,0分)在正方形网格中建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,A的坐标是(4,4),请回答下列问题:(1)将△ABC向下平移六个单位长度,画出平移后的△A1B1C1,并写出点A的对应点A1的坐标;(2)画出△ABC关于原点O对称的△A2B2C2,并写出点A2的坐标;(3)判断△A1B1C1与△A2B2C2是否关于某点成中心对称;若是,请画出对称中心M,并写出点M的坐标【正确答案】:【解析】:(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出A,B,C的对应点A2,B2,C2即可.(3)根据中心对称的定义判断即可.【解答】:解:(1)如图,△A1B1C1即为所求,点A的对应点A1的坐标;(4,-2).(2)如图,△A2B2C2即为所求,点A2的坐标(-4,-4).(3)△A1B1C1与△A2B2C2关于点M成中心对称,M(0,-3).【点评】:本题考查作图-旋转变换,作图-平移变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.(问答题,0分)如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.【正确答案】:【解析】:(1)直接利用旋转的性质得出△AQE≌△AFE(SAS),进而得出∠AEQ=∠AEF,即可得出答案;(2)利用(1)中所求,再结合勾股定理得出答案.【解答】:证明:(1)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴QB=DF,AQ=AF,∠BAQ=∠DAF,∵∠EAF=45°,∴∠DAF+∠BAE=45°,∴∠QAE=45°,∴∠QAE=∠FAE,在△AQE和△AFE中{AQ=AF∠QAE=∠FAE AE=AE,∴△AQE≌△AFE(SAS),∴∠AEQ=∠AEF,∴EA是∠QED的平分线;(2)由(1)得△AQE≌△AFE,∴QE=EF,由旋转的性质,得∠ABQ=∠ADF,∠ADF+∠ABD=90°,则∠QBE=∠ABQ+∠ABD=90°,在Rt△QBE中,QB2+BE2=QE2,又∵QB=DF,∴EF2=BE2+DF2.【点评】:此题主要考查了旋转的性质以及全等三角形的判定与性质和勾股定理等知识,正确得出△AQE≌△AFE(SAS)是解题关键.。

九年级数学上册 第二十三章 旋转 单元测试卷(人教版 2024年秋)

九年级数学上册 第二十三章 旋转 单元测试卷(人教版 2024年秋)

九年级数学上册第二十三章旋转单元测试卷(人教版2024年秋)一、选择题(本题有10小题,每小题3分,共30分)1.中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是()2.下列说法中正确的有()(1)如果把一个图形绕着一定点旋转后和另一个图形重合,那么这两个图形成中心对称;(2)如果两个图形关于一点成中心对称,那么其对应点之间的距离相等;(3)如果一个旋转对称图形有一个旋转角为120°,那么它不是中心对称图形;(4)如果一个旋转对称图形有一个旋转角为180°,那么它是中心对称图形.A.0个B.1个C.2个D.3个3.(2024重庆期末)如图,在△ABC中,∠BAC=135°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论不正确的是()A.△ABC≌△DEC B.∠ADC=45°C.AD=2AC D.AE=AB+CD(第3题)(第4题)(第5题)(第7题) 4.如图,将△ABC绕点A逆时针旋转55°得到△ADE,若∠E=75°且AD⊥BC于点F,则∠BAC的度数为()A.65°B.70°C.75°D.80°5.如图,在平面直角坐标系xOy中,若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,其中点C的对应点是F,点A的对应点是D,点B的对应点是E,则旋转中心的坐标是()A.(0,0)B.(1,0)C.(1,-1)D.(2.5,0.5) 6.在平面直角坐标系中,已知点A(2a,a-b+2),B(b,a+2)关于原点对称,则a,b的值是()A.a=-1,b=2B.a=1,b=2C.a=-1,b=-2D.a=1,b=-27.如图,以正六边形ABCDEF的顶点C为旋转中心,按顺时针方向旋转,使得新正六边形A′B′CD′E′F′的顶点E′落在直线BC上,则正六边形ABCDEF至少旋转的度数为()A.60°B.90°C.100°D.30°8.如图,点A-1,52,将OA绕点O顺时针旋转90°得到OA′,则点A′的坐标为()A.-1,-52 B.1,52 C.52,1 D.1,-52(第8题)(第9题)(第10题)(第11题)9.如图,已知在正方形ABCD内有一点P,连接AP,DP,BP,将△APD顺时针旋转90°得到△AEB,连接DE,点P恰好在线段DE上,AP=2,BP=10,则DP的长度为()A.2 B.6C.22 D.1010.如图,在平面直角坐标系中,四边形OABC的顶点O在原点上,OA边在x 轴的正半轴上,AB⊥x轴,AB=CB=2,OA=OC,∠AOC=60°.将四边形OABC绕点O逆时针旋转,每次旋转90°,则第2025次旋转结束时,点C 的坐标为()A.(3,3)B.(3,-3)C.(-3,1)D.(1,-3)二、填空题(本题有6小题,每小题4分,共24分)11.镇江是一座底蕴深厚、人文荟萃的历史文化古城,如图是镇江的一个古建筑的装饰物(里面是一个个小等边三角形),该图形绕旋转中心(点O)至少旋转________度后可以和自身完全重合.12.在平面直角坐标系xOy中,将点A(1,2)绕着旋转中心旋转180°,得到点B(-3,2),则旋转中心的坐标为__________.13.如图,D是△ABC的边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)△ADC和________成中心对称;(2)已知△ADC的面积为4,则△ABE的面积是________.(第13题)(第14题)(第15题)(第16题)14.(2023郴州期末)如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(6,0),顶点C的坐标为(2,2),若直线y=mx+2平分平行四边形OABC的面积,则m的值为________.15.(2024杭州期中)如图,在平面直角坐标系中,Rt△OAB的顶点A(-2,4)在抛物线y=ax2上,直角顶点B在x轴上.将Rt△OAB绕点O顺时针旋转90°得到△OCD,边CD与该抛物线交于点P,则CP的长为________.16.如图,在Rt△ACB中,∠ACB=90°,∠ABC=25°.O为AB的中点,将OA 绕着点O逆时针旋转θ(0°<θ<180°)至OP.(1)当θ=30°时,∠CBP=________;(2)当△BCP恰为等腰三角形时,θ的度数为____________.三、解答题(本题有7小题,共66分,各小题都必须写出解答过程)17.(8分)(2023丰台模拟)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点C逆时针旋转得到△DEC,使点A的对应点D落在BC边上,点B的对应点为E,求线段BD,DE的长.18.(8分)已知平面直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.19.(8分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,求∠ADC的度数.20.(10分)如图,在Rt△ABC中,∠C=90°.(1)将△ABC绕点B顺时针旋转90°,画出旋转后的△A′BC′;(2)连接AA′,若AC-BC=1,AA′=10,求BC边的长.21.(10分)在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,图①、图②、图③均为顶点在格点上的三角形(每个小方格的顶点叫格点).(1)在图中,图①经过________变换可以得到图②(填“平移”“旋转”或“轴对称”);(2)在图中画出图①绕点A逆时针旋转90°后得到的图形;(3)在图中,图③与图②关于某点中心对称,则其对称中心是点________(填“A”“B”或“C”).22.(10分)(2023北京)在△ABC中,∠B=∠C=α(0°<α<45°),AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图①,当点E在线段AC上时,求证:D是MC的中点;(2)如图②,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AF,AE,EF,请写出∠AEF的大小,并证明.23.(12分)某数学兴趣小组在一次综合与实践活动中探究这样一个问题:将足够大的直角三角尺PEF(∠EPF=90°,∠F=30°)的顶点P放在等腰直角三角形ABC的斜边AC的中点O处,S△ABC=4.(1)尝试探究如图①,三角尺PEF的两条直角边分别与△ABC的边AB,BC交于点M,N,当PE⊥AB时,①PM________PN(填“>”“<”或“=”);②三角尺PEF与△ABC重叠部分的面积为________.(2)操作发现如图②,将三角尺PEF绕点O旋转,在旋转过程中,三角尺PEF的两条直角边分别与△ABC的边AB,BC交于点M,N(点M不与点A,B重合),PM 与PN相等吗?请说明理由.(3)类比应用在(2)的条件下,三角尺PEF与△ABC重叠部分的面积变化吗?若变化,请说明理由;若不变,请求出重叠部分的面积.答案一、1.C 2.B 3.D 4.B 5.C 6.A 7.B 8.C 9.B10.A 点拨:连接OB ,过点C 作CP ⊥OA ,垂足为P ,如图所示.∵AB =CB ,OA =OC ,OB =OB ,∴△AOB ≌△COB (SSS ).∴∠AOB =∠COB =12∠AOC =30°.在Rt △AOB 中,AB =2,∠AOB =30°,∴OB =2AB =4.∴OA =OB 2-AB 2=2 3.∴OC =2 3.在Rt △COP 中,∠POC =60°,∴∠OCP =30°.∴OP =12OC =3.∴CP =OC 2-OP 2=3.∴点C 的坐标为(3,3).∵每次旋转90°,360°÷90°=4,∴每旋转4次为一个循环.∵2025÷4=506……1,∴第2025次旋转结束时点C 的位置和最开始时点C 的位置相同.∴第2025次旋转结束时,点C 的坐标为(3,3).故选A.二、11.6012.(-1,2)13.(1)△EDB(2)814.-1415.4-216.(1)40°(2)50°或65°或80°点拨:(1)由题意结合旋转的性质可得OA =OB =OP ,进而得∠OBP =∠OPB ,然后根据三角形外角的性质得到∠OBP=12∠AOP=15°,进而求解.(2)连接AP,易得∠APB=90°.如图①,当BC=BP时,易证△ABC≌△ABP,∴∠ABP=∠ABC=25°,∴∠AOP=2∠ABP=50°;如图②,当BC=PC时,连接CO并延长交PB于H,根据线段垂直平分线的判定得到CH垂直平分PB,求得∠CHB=90°,再根据等腰三角形的性质及三角形外角的性质易得θ=80°;如图③,当PB=PC时,连接OC,易得OB=OC,延长PO交BC于G,易得PG垂直平分BC,得到∠BGO=90°,再根据三角形的内角和得到∠BOG =65°,∴θ=65°.综上,θ的度数为50°或65°或80°.三、17.解:根据题意,得△ABC≌△DEC,∴AB=DE,AC=DC.∵AC=3,∴DC=3.∵BC=4,∴BD=1.在Rt△ABC中,根据勾股定理,得AB=AC2+BC2=5,∴DE=5. 18.解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2(不符合题意,舍去).∴x+2y=-1+2×(-3)=-7.19.解:∵将△ABC绕点C顺时针旋转90°得到△EDC,∴∠DCE=∠ACB=20°,∠ACE=90°,AC=CE.∴∠E=∠EAC=45°.∴∠ADC=∠E+∠DCE=45+20°=65°.20.解:(1)如图,△A′BC′即为所求.(2)如图,设BC=x,则AC=BC+1=x+1.在Rt△ABC中,AB2=BC2+AC2=x2+(x+1)2.由旋转的性质得A′B=AB,∠ABA′=90°.在Rt△AA′B中,A′A2=A′B2+AB2=2AB2.因为AA′=10,所以(10)2=2[x2+(x+1)2].整理得x2+x-2=0.解得x1=1,x2=-2(舍去).所以BC=1.21.解:(1)平移(2)图①绕点A逆时针旋转90°后得到的图形如图①所示.①(3)C点拨:如图②,连接DE,发现DE和FG相交于点C,所以对称中心是点C.②22.(1)证明:由旋转的性质,得DM=DE,∠MDE=2α.∵∠C=α,∴∠DEC=∠MDE-∠C=α.∴∠C=∠DEC.∴DE=DC.∴DM=DC.∴D是MC的中点.(2)解:∠AEF=90°.证明:如图,延长FE到H,使EH=FE,连接CH,AH.∵DF=DC,∴DE是△FCH的中位线.∴DE∥CH,CH=2DE.∴∠FCH=∠FDE.∵∠MDE=2α,∴∠FCH=2α.∵∠B=∠ACB=α,∴∠ACH=α,AB=AC.∴∠B=∠ACH.设DM=DE=m,CD=n,则CH=2m,CM=m+n,DF=n,∴FM=DF-DM=n-m.∵AM⊥BC,AB=AC,∴BM=CM=m+n.∴BF=BM-FM=m+n-(n-m)=2m.∴BF=CH.在△ABF和△ACH =AC,B=∠ACH,=CH,∴△ABF≌△ACH(SAS).∴AF=AH.又∵FE=EH,∴AE⊥FH.∴∠AEF=90°. 23.解:(1)①=②2(2)PM=PN.理由如下:连接BP.∵△ABC是等腰直角三角形,∴∠ABC=90°,∠C=45°,AB=BC.又∵O是AC的中点,P在O处,∴BP⊥AC,BP=PC且∠ABP=∠CBP=45°.11∴∠CPN +∠NPB =90°,∠ABP =∠C .∵MP ⊥PN ,∴∠BPM +∠NPB =90°.∴∠BPM =∠CPN .在△MPB 和△NPCBPM =∠CPN ,=CP ,MBP =∠C ,∴△MPB ≌△NPC (ASA ).∴PM =PN .(3)不变.∵S △ABC =4,O 是AC 的中点,P 在O 处,∴S △BCP =12S △ABC =2.由(2)知△MPB ≌△NPC ,∴三角尺PEF 与△ABC 重叠部分的面积=△MPB 的面积+△BON 的面积=△NPC 的面积+△BON 的面积=△BCP 的面积=2.。

2022年五年级上册数学试题 第二单元 图形的平移、旋转与对称 测试卷 西师大版(含答案) (2)

2022年五年级上册数学试题 第二单元 图形的平移、旋转与对称 测试卷 西师大版(含答案) (2)

五年级上册数学试题-第二单元图形的平移、旋转与对称测试卷-西师大版〔含答案〕一.选择题(共6题,共12分)1.如何将○移动到△的位置,下面方法〔〕是正确的。

A.将○向上移动4格,再向右移动3格。

B.将○向上移动3格,再向右移动3格。

C.将○向右移动4格,再向上移动3格。

2.下面图形中,〔〕能绕着中心点旋转60°后与原图重合。

A. B. C.3.以下属于旋转现象的是〔〕。

A.汽车方向盘的运动B.拉开抽屉C.电梯的运动4.以下各图形面积计算公式的推导过程中,没有用到平移或旋转的是〔〕。

A.三角形B.长方形C.圆D.平行四边形5.想一想,以下哪一组都是旋转现象?〔〕A.拉抽屉,电风扇转动B.转动转盘,风车转动C.时针转动,电梯升降6.下面不是旋转现象的是〔〕。

A. B. C.二.判断题(共6题,共12分)1.教室门的翻开和关上,门的运动是既平移又旋转。

〔〕2.将等边三角形绕着中心点旋转120°后,不能与原来的图形重合。

〔〕3.图形旋转时,对应的旋转角度相等,图形的形状和大小都没有发生变化。

〔〕4.线段AB长3厘米,绕着它的端点A旋转180度后,这条线段变成了6厘米。

〔〕5.时针,分针旋转的方向是顺时针方向,相反的就是逆时针方向。

〔〕6.一个平行四边形绕一点逆时针旋转了90°,这个平行四边形的位置发生了改变,形状和大小也发生了改变。

〔〕三.填空题(共6题,共27分)1.旋转时先确定相应的〔〕或〔〕的位置,再旋转。

2.钟面上,时针从指向6转到指向〔〕是顺时针旋转了90°,分针从4:00走到〔〕:〔〕是顺时针旋转了90°。

3.如图,指针从A开始,逆时针旋转了90°到〔〕点,逆时针旋转了180°到〔〕点;要从A旋转到D,可以按〔〕时针方向旋转〔〕°,也可以按〔〕时针方向旋转〔〕°4.你能通过卡片的平移和旋转将图2“复原〞为图1吗?图形A先向〔〕移动〔〕格,再向〔〕移动〔〕格;图形B先绕点O 〔〕时针旋转〔〕,再向〔〕平移〔〕格,最后向〔〕平移〔〕格。

九年级上册数学《旋转》单元测试卷(含答案)

九年级上册数学《旋转》单元测试卷(含答案)

人教版数学九年级上学期《旋转》单元测试(满分120分,考试用时120分钟)一、选择题(每小题3分,共36分)1.下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是A .B .C .D . 2.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为 A .30° B . 90° C .120° D .180°3.如图,直角三角板ABC 的斜边AB =12 cm ,∠A =30°,将三角板ABC 绕点C 顺时针旋转90°至三角板A′B′C′的位置后,再沿CB 方向向左平移,使点B′落在原三角板ABC 的斜边AB 上,则三角板A′B′C′平移的距离为( )A. 6 cmB. 4 cmC. (6-23)cmD. (43-6)cm4.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( ) A .点M B .格点N C .格点P D .格点Q5.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45 后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,那么点2019A 的坐标是( )A.22,22⎛⎫-⎪⎪⎝⎭B.(1,0)C.22,22⎛⎫--⎪⎪⎝⎭D.(0,1)-6.将一副三角板顶点重合,三角板ABC绕点A顺时针转动的过程中,∠EAB度数符合下列条件时,三角尺不存在一组边平行的是(三角板边AB=AE)( )A.∠EAB=30°B.∠EAB=45°C.∠EAB=60°D.∠EAB=75°7.如图,边长相等的两个正方形ABCD和OEFG,若将正方形OEFG绕点O按逆时针方向旋转150°,两个正方形的重叠部分四边形OMCN的面积( )A.不变B.先增大再减小C.先减小再增大D.不断增大8.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2019次,点B的落点依次为B1,B2,B3,…,则B2 019的坐标为( )A.(1010,0) B.(1310.5,32) C.(1345,32) D.(1346,0)9.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A 、B 、C 的距离分别为3、4、5,则PAB △的面积为( )A .10B .8C .6D .310.如图,正方形ABCD 的边长为2,点E ,F 分别在边AD ,CD 上,若∠EBF =45°,则△EDF 的周长等于( )A .22B .3C .4D .4211.如图,将一个三角板ABC ∆,绕点A 按顺时针方向旋转60︒,得到ADE ∆,连接BE ,且2AC BC ==,90ACB ∠=︒,则线段BE =( )A .62-B .6C .2D .112.如图,△ABC 中,∠A=30°,∠ACB=90°,BC=2,D 是AB 上的动点,将线段CD 绕点C 逆时针旋转90°,得到线段CE ,连接BE ,则BE 的最小值是( )A.3-1 B.32C.3D.2二、填空题(每小题3分,共18分)13.一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为__________.14.将边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)15.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是.16.如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B 按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是.17.已知两个完全相同的直角三角形纸片△ABC 、△DEF ,如图1放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G .∠C=∠EFB=90°,∠E=∠ABC=30°,现将图1中的△ABC 绕点F 按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC 恰有一边与DE 平行的时间为__________s18.如图,正方形ABCD 的对角线AC 与BD 相交于点E ,正方形EFGH 绕点E 旋转,直线FB 与直线CH 相交于点P ,若2,75AB DBP ︒=∠=,则2DP 的值是____.三、解答题(共46分)19.(6分)△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)作△ABC 绕点O 逆时针旋转90°后的△A 1B 1C 1.(2)将△ABC 向右平移3个单位,作出平移后的△A 2B 2C 2.(3)若点M 是平面直角坐标系中直线AB 上的一个动点,点N 是x 轴上的一个动点,且以O 、A 2、M 、N 为顶点的四边形是平行四边形,请直接写出点N 的坐标.20.(8分)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是________;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:________(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形,其中真命题的个数有()个;A.0 B.1 C.2 D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.21、(8分)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.22.(8分)如图1,点B在线段CE上,Rt△ABC≌Rt△BAC∠=︒,1∠=∠=︒,30ABC CEFCEF,90BC=.(1)点F到直线CA的距离是_________;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;=时,求OF的长.②如图2,在旋转过程中,线段CF与AB交于点O,当OE OB23.(8分)如图,正方形ABCD中,点P从点A出发沿AD边向点D运动,到达点D停止.作射线CP,将CP绕着点C逆时针旋转45°,与AB边交于点Q,连接PQ(1)画图,完善图形.(2)三条线段DP,PQ,BQ之间有无确定的数量关系?请说明理由.⊥于H.若线段CP的最大值为4,求点H运动的路径长.(3)过点C作CH PQ24.(8分)在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(6,0)A ,点(0,8)B .以A 点为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点,,O B C 的对应点分别为,,D E F ,记旋转角为(090)αα︒︒<<.(1)如图①,当30α︒=时,求点D 的坐标;(2)如图②,当点E 落在AC 的延长线上时,求点D 的坐标;(3)当点D 落在线段OC 上时,求点E 的坐标(直接写出结果即可).参考答案一、选择题(每小题3分,共36分)1.下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是A.B.C.D.【答案】C【解析】A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选C.【点睛】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后两部分重合.2.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30°B.90°C.120°D.180°【答案】C【解析】∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C.【点睛】本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键.3.如图,直角三角板ABC的斜边AB=12 cm,∠A=30°,将三角板ABC绕点C顺时针旋转90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使点B′落在原三角板ABC的斜边AB上,则三角板A′B′C′平移的距离为()A. 6 cmB. 4 cmC. (6-23)cmD. (43-6)cm【答案】C【分析】根据直角三角形30°角所对的直角边等于斜边的一半求出BC,再利用勾股定理列式求出AC,然后求出AB′,过点B′作B′D⊥AC交AB于D,然后解直角三角形求出B′D即可.【解析】∵AB=12cm,∠A=30°,∴BC=12AB=12×12=6cm,由勾股定理得,AC=22AB BC-=22126-=63cm, ∵三角板ABC绕点C顺时针旋转90°得到三角板A′B′C′, ∴B′C′=BC=6cm,∴AB′=AC-B′C′=63-6,过点B′作B′D⊥AC交AB于D,则B′D=33AB′=33×(63-6)=(6-23)cm.故选C.【点睛】本题考查了平移的性质,旋转变换的性质,解直角三角形,熟练掌握各性质是解题的关键,作出图形更形象直观.4.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是() A.点M B.格点N C.格点P D.格点Q【答案】B【分析】此题可根据旋转前后对应点到旋转中心的距离相等来判断所求的旋转中心.【解析】如图,连接N和两个三角形的对应点;发现两个三角形的对应点到点N的距离相等,因此格点N就是所求的旋转中心;故选B.【点睛】熟练掌握旋转的性质是确定旋转中心的关键所在.5.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,那么点2019A 的坐标是( )A .2222⎛- ⎝⎭B .(1,0)C .22,22⎛-- ⎝⎭ D .(0,1)-【答案】A【分析】根据旋转的性质分别求出点A 1、A 2、A 3、…的坐标,继而发现8次为一个循环,用2019除以8,看余数即可求得答案. 【解析】四边形OABC 是正方形,且OA 1=,()A 0,1∴,将正方形OABC 绕点O 逆时针旋转45︒后得到正方形111OA B C ,∴由勾股定理得:点A 1的横坐标为22,点A 1的纵坐标为22,122A ∴⎝⎭, 继续旋转则()2A 1,0,322A ⎝⎭,A 4(0,-1),A 522⎛ ⎝⎭,A 6(-1,0),A 72222⎛⎫- ⎪ ⎪⎝⎭,A 8(0,1),A 92222⎛ ⎝⎭,......,发现是8次一循环,所以20198252÷= (3)∴点2019A 的坐标为22,22⎛⎫- ⎪ ⎪⎝⎭,故选A .【点睛】本题考查了旋转的性质,规律题——点的坐标的变化规律,通过分析正确得出坐标的变化规律是解题的关键.6.将一副三角板顶点重合,三角板ABC绕点A顺时针转动的过程中,∠EAB度数符合下列条件时,三角尺不存在一组边平行的是(三角板边AB=AE)( )A.∠EAB=30°B.∠EAB=45°C.∠EAB=60°D.∠EAB=75°【答案】C【分析】由旋转的性质和平行线的判定依次判断,可求解.【解析】当∠EAB=30°时.∵∠CAB=90°,∴∠CAE=60°=∠E,∴AC∥DE,故A不合题意;当∠EAB=45°,∴∠BAD=45°=∠B,∴BC∥AD,故B不合题意;当∠EAB=60°时,三角尺不存在一组边平行.当∠EAB=75°时,如图,延长AB交DE于点M,∴∠BAD=15°,∴∠EMA=∠D+∠MAB=45°=∠ABC,∴BC∥DE.故选C.【点睛】本题考查了旋转的性质,平行线的判定,熟练运用旋转的性质是本题的关键.7.如图,边长相等的两个正方形ABCD和OEFG,若将正方形OEFG绕点O按逆时针方向旋转150°,两个正方形的重叠部分四边形OMCN的面积( )A.不变B.先增大再减小C.先减小再增大D.不断增大【答案】A【分析】根据正方形性质得出∠BOC=∠EOG=90°,∠OBC=∠OCD=45°,OB=OC,求出∠BOM=∠CON,根据ASA证△BOM≌△CON,推出两个正方形的重叠部分四边形OMCN的面积等于S△BOC=14S正方形ABCD,即可得出选项.【解析】∵四边形ABCD、四边形OEFG是两个边长相等正方形,∴∠BOC=∠EOG=90°,∠OBC=∠OCD=45°,OB=OC,∴∠BOC-∠COM=∠EOG-∠COM,即∠BOM=∠CON,∵在△BOM和△CON中BOM CONOB OCOBM OCN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOM≌△CON,∴两个正方形的重叠部分四边形OMCN的面积是S△COM+S△CNO=S△COM+S△BOM=S△BOC=14S正方形ABCD,即不论旋转多少度,阴影部分的面积都等于14S正方形ABCD,故选A.【点睛】本题考查了正方形性质和全等三角形的性质和判定的应用,关键是求出△BOM≌△CON,即△BOM得面积等于△CON的面积.8.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2019次,点B的落点依次为B1,B2,B3,…,则B2 019的坐标为( )A.(1010,0) B.(1310.5,3C.(1345,3D.(1346,0)【答案】D【分析】连接AC ,根据条件可以求出AC ,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2019=336×6+3,因此点3B 向右平移1344(即3364 )即可到达点2019B ,根据点3B 的坐标就可求出点2019B 的坐标.【解析】连接AC ,如图所示.∵四边形OABC 是菱形,∴OA =AB =BC =OC .∵∠ABC =60°,∴△ABC 是等边三角形.∴AC =AB .∴AC =OA .∵OA =1,∴AC =1.由图可知:每翻转6次,图形向右平移4.∵2019=336×6+3,∴点B 3向右平移1344(即336×4)到点B 2019.∵B 3的坐标为(2,0),∴B 2019的坐标为(1346,0),故选:D【点睛】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.9.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A 、B 、C 的距离分别为3、4、5,则PAB △的面积为( )A .10B .8C .6D .3【答案】D【分析】将△BPC 绕点B 逆时针旋转60°得△BEA ,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE 为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP 中,AE=5,延长BP ,作AF ⊥BP 于点FAP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF的长,根据三角形的面积公式即可得到结论.【解析】∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=12AP=32,∴△PAB的面积=12PB•AF=12×4×32=3,故选:D.【点睛】本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.10.如图,正方形ABCD的边长为2,点E,F分别在边AD,CD上,若∠EBF=45°,则△EDF的周长等于( )A.22B.3 C.4 D.42【答案】C【分析】根据正方形的性质得AB=BC,∠BAE=∠C=90°,根据旋转的定义,把把△ABE绕点B顺时针旋转90°可得到△BCG,根据旋转的性质得BG=BE,CG=AE,∠GBE=90°,∠BAE=∠C=90°,∠EBG=∠ABC=90°,于是可判断点G在CB的延长线上,接着利用“SAS”证明△FBG≌△EBF,得到EF=CF+AE,然后利用三角形周长的定义得到答案.【解析】∵四边形ABCD为正方形,∴AB=BC,∠BAE=∠C=90°,∴把△ABE 绕点B 顺时针旋转90°可得到△BCG ,如图,∴BG =BE ,CG =AE ,∠GBE =90°,∠BAE =∠C =90°,∴点G 在DC 的延长线上,∵∠EBF =45°,∴∠FBG =∠EBG ﹣∠EBF =45°,∴∠FBG =∠FBE ,在△FBG 和△EBF 中,BF =BF ,∠FBG =∠FBE ,BG =BE∴△FBG ≌△FBE (SAS ),∴FG =EF ,而FG =FC +CG =CF +AE ,∴EF =CF +AE ,∴△DEF 的周长=DF +DE +CF +AE =CD +AD =2+2=4,故选:C .【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质和正方形的性质. 11.如图,将一个三角板ABC ∆,绕点A 按顺时针方向旋转60︒,得到ADE ∆,连接BE ,且2AC BC ==,90ACB ∠=︒,则线段BE =( )A .62-B .6C .2D .1【答案】A【分析】连接BD ,延长BE 交AD 于点F ,根据旋转性质可知AB=AD ,∠DAB=60°,∠AED=90°,AE=DE=AC=BC=2,由此得出△ABD 为等边三角形,然后进一步通过证明△BAE ≅△BDE 得出∠ABE=∠DBE ,根据等腰三角形“三线合一”可知BF ⊥AD ,且AF=DF ,由此利用勾股定理分别计算出AB 、BF 的长,最后通过BE=BF −EF 进一步计算即可得出答案.【解析】如图,连接BD ,延长BE 交AD 于点F ,由旋转可知,AB=AD ,∠DAB=60°,∠AED=90°,AE=DE=AC=BC=2,∴△ABD为等边三角形,∴AB=BD,在△BAE与△BDE中,∵AE=DE,BA=BD,BE=BE,∴△BAE≅△BDE(SSS),∴∠ABE=∠DBE,根据等腰三角形“三线合一”可得BF⊥AD,且AF=DF,∵AC=BC=2,∠ACB=90°,∴AB=222222+=,∴AB=BD=AD=22,∴AF=2,∴BF=226AB AF-=,∵∠AED=90°,AE=DE,∴∠FAE=45°,∵BF⊥AD,∴∠FEA=45°,∴EF=AF=2,∴BE=BF−EF=62-,故选:A.【点睛】本题主要考查了旋转的性质、全等三角形性质及判定和勾股定理与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.12.如图,△ABC中,∠A=30°,∠ACB=90°,BC=2,D是AB上的动点,将线段CD绕点C逆时针旋转90°,得到线段CE,连接BE,则BE的最小值是()A.3-1 B.32C.3D.2【答案】A【分析】过点C作CK⊥AB于点K,将线段CK绕点C逆时针旋转90°得到CH,连接HE,延长HE交AB 的延长线于点J;通过证明△CKD≌△CHE (ASA),进而证明所构建的四边形CKJH是正方形,所以当点E 与点J重合时,BE的值最小,再通过在Rt△CBK中已知的边角条件,即可求出答案.【解析】如图,过点C作CK⊥AB于点K,将线段CK绕点C逆时针旋转90°得到CH,连接HE,延长HE交AB 的延长线于点J ;∵将线段CD 绕点C 逆时针旋转90° ,得到线段CE ∴∠DCE=∠KCH = 90°∵∠ECH=∠KCH - ∠KCE ,∠DCK =∠DCE-∠KCE ∴∠ECH =∠DCK又∵CD= CE ,CK = CH ∴在△CKD 和△CHE 中90ECH DCK CK CHDKC EHC ∠=∠=⎧∠=∠=︒⎪⎨⎪⎩∴△CKD ≌△CHE (ASA) ∴∠CKD=∠H=90°,CH=CK ∴∠CKJ =∠KCH =∠H=90°∴四边形CKJH 是正方形 ∴CH=HJ=KJ=C'K∴点E 在直线HJ 上运动,当点E 与点J 重合时,BE 的值最小∵∠A= 30° ∴∠ABC=60°在Rt △CBK 中, BC= 2, ∴勾股定理得:CK =3,BK= = 1∴KJ = CK =3,所以BJ = KJ-BK=31-;BE 的最小值为31-.故选A.【点睛】本题主要考查了以线段旋转为载体的求线段最短问题,正方形的构建是快速解答本题的关键.二、填空题(每小题3分,共18分)13.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转α(0°<α<90°),使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为__________.【答案】15°或45°.【解析】分情况讨论:①当DE⊥BC时,∠BAD=75°,∴α=90°﹣∠BAD=15°;②当AD⊥BC时,∠BAD=45°,即α=45°.故答案为:15°或45°.【点睛】本题主要考查了垂直的定义,旋转的定义以及一副三角板的各个角的度数,理清定义是解答本题的关键.14.将边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)【答案】2﹣1.【解析】∵四边形ABCD为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D落在对角线CF上,∴CF=,∠CFDE=45°,∴△DFH为等腰直角三角形,∴DH=DF=CF﹣CD=﹣1.故答案为﹣1.【考点】本题主要考查了以正方形旋转为载体的求线段长度.15.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是.【答案】(﹣2,﹣2).【解析】作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故答案为(﹣2,﹣2).【考点】本题主要考查了以等边三角形和坐标系旋转为载体的求点的坐标.16.如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B 按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是.【答案】y=x﹣1.【解析】∵一次函数y=2x﹣1的图象分别交x、y轴于点A、B,∴令x=0,得y=﹣2,令y=0,则x=1,∴A(,0),B(0,﹣1),∴OA=,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO+∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△AFE(AAS),∴AE=OB=1,EF=OA=,∴F(,﹣),设直线BC的函数表达式为:y=kx+b,∴,∴,∴直线BC的函数表达式为:y=x﹣1,故答案为:y=x﹣1.【考点】本题主要考查了以线段旋转和一次函数为载体的求解析式.17.已知两个完全相同的直角三角形纸片△ABC、△DEF,如图1放置,点B、D重合,点F在BC上,AB 与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,现将图1中的△ABC绕点F按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC恰有一边与DE平行的时间为___________s【答案】3秒或12秒或15秒【解析】①如图(2),当AC∥DE时,∵AC∥DE,∴∠ACB=∠CHD=90°.∵∠E=30°,∴∠D=60°,∴∠HFD=90°-60°=30°,∴t=30°÷10°=3.②如图3,当BC∥DE时,∵BC∥ED,∴∠BFE=∠E=30°,∴∠BFD=30°+90°=120°,∴t=120°÷10=12.③如图4,当BA ∥ED 时,延长DF 交DA 于G .∵∠E=30°,∴∠D=60°,∵BA ∥ED ,∴∠BGD=180°-∠D=120°,∴∠BFD=∠B+∠BGF=30°+120°=150°,∴t=150°÷10°=15. 故答案为3秒或12秒或15秒【点睛】本题主要考查平行线的性质.分三种不同的情况讨论,解题的关键是画出三种情况的图形.18.如图,正方形ABCD 的对角线AC 与BD 相交于点E ,正方形EFGH 绕点E 旋转,直线FB 与直线CH 相交于点P ,若2,75AB DBP ︒=∠=,则2DP 的值是____. 【答案】53+【分析】如图,设EF 交AB 于M ,EH 交BC 于N ,PF 交EH 于O ,作PT ⊥AD 于T 交BC 于R .首先证明∠CPB =90°,求出DT ,PT 即可解决问题.【解析】如图,设EF 交AB 于M ,EH 交BC 于N ,PF 交EH 于O ,作PT ⊥AD 于T 交BC 于R .∵四边形ABCD 是正方形,∴AC ⊥BD ,AE =EB ,∠EAM =∠EBN =45°,∵四边形EFGH 是正方形,∴∠MEN =∠AEB =90°,∴∠AEM =∠BEN ,∴△AEM ≌△BEN (ASA ),∴AM =BN ,EM =EN ,∠AME =∠BNE ,∵AB =BC ,EF =EH ,∴FM =NH ,BM =CN ,∵∠FMB =∠AME ,∠CNH =∠BNE ,∴∠FMB =∠CNH ,∴△FMB ≌△HNC (SAS ),∴∠MFB =∠NHC ,∵∠EFO +∠EOF =90°,∠EOF =∠POH ,∴∠POH +∠PHO =90°,∴∠OPH =∠BPC =90°, ∵∠DBP =75°,∠DBC =45°,∴∠CBP =30°,∵BC =AB =2,∴由勾股定理:PB 3PR =12PB 3RC =12, ∵∠RTD =∠TDC =∠DCR =90°,∴四边形TDCR 是矩形,∴TD =CR =12,TR =CD =AB =2, 在Rt △PDT 中,PD 2=DT 2+PT 2=2213()(25232++=+故答案为53+【点睛】本题考查全等三角形的判定和性质,旋转变换,正方形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于常考题型.三、解答题(共46分)19.(6分)△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)作△ABC 绕点O 逆时针旋转90°后的△A 1B 1C 1.(2)将△ABC 向右平移3个单位,作出平移后的△A 2B 2C 2.(3)若点M 是平面直角坐标系中直线AB 上的一个动点,点N 是x 轴上的一个动点,且以O 、A 2、M 、N 为顶点的四边形是平行四边形,请直接写出点N 的坐标.【答案】(1)、(2)答案见解析;(3)当OA2为平行四边形的边时,N点坐标为(﹣3,0)或(2,0),当OA2为平行四边形的对角线时,N点坐标为(3,0).【分析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点A1、B1、C1,从而得到△A1B1C1.(2)利用网格特点和平移的性质画出点A、B、C的对应点A2、B2、C2,从而得到△A2B2C2.(3)讨论:当OA2为平行四边形的边时,利用平行四边形的判定和点平移的坐标特征确定N点坐标;当OA2为平行四边形的对角线时,利用平行四边形的性质和点平移的坐标特征确定N点坐标.【解析】(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)当OA2为平行四边形的边时,N点坐标为(﹣3,0)或(2,0),当OA2为平行四边形的对角线时,N点坐标为(3,0).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质和平行四边形的判定.20.(8分)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是________;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:________(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形,其中真命题的个数有()个;A.0 B.1 C.2 D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.【答案】(1)B;(2)(1)(3)(5);(3)C;(4)见解析【分析】(1)根据旋转对称图形的定义进行判断;(2)先分别求每一个图形中的旋转角,然后再进行判断;(3)根据旋转对称图形的定义进行判断;(4)利用旋转对称图形的定义进行设计.【解析】解:(1)矩形、正五边形、菱形、正六边形都是旋转对称图形,但正五边形不是中心对称图形,故选:B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为:(1)(3)(5).(3)①中心对称图形,旋转180°一定会和本身重合,是旋转对称图形;故命题①正确;②等腰三角形绕一个定点旋转一定的角度α(0°<α≤180°)后,不一定能与自身重合,只有等边三角形是旋转对称图形,故②不正确;③圆具有旋转不变性,绕圆心旋转任意角度一定能与自身重合,是旋转对称图形;故命题③正确;即命题中①③正确,故选:C.(4)图形如图所示:【点睛】本题考查旋转对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21、(8分)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.【答案】(1)证明见试题解析;(2)①证明见试题解析;②△DEP为等腰直角三角形.【分析】:(1)由旋转的性质得到∠BCP=∠DCQ,即可证明△BCP≌△DCQ;(2)①由全等的性质和对顶角相等即可得到答案;②由等边三角形的性质和旋转的性质求出∠EPD=45°,∠EDP=45°,即可判断△DEP的形状.【解析】(1)∵∠BCD=90°,∠PCQ=90°,∴∠BCP=∠DCQ,在△BCP和△DCQ中,∵BC=CD,∠BCP=∠DCQ,PC=QC,∴△BCP≌△DCQ;(2)①如图b, ∵△BCF≌DCQ, ∴∠CBF=∠EDF, 又∠BFC=∠DFE,∴∠DEF=∠BCF=90°,∴BE⊥DQ②∵△BCP为等边三角形,∠BCP=60°,∴∠PCD=30°,又CP=CD,∠CPD=∠CDP=75° ,又∠BPC=-60° ,∠CDQ=60°,∴∠EPD=45°,∠EDP=45°,∴△DEP为等腰直角三角形.【考点】1.四边形综合题;2.正方形的性质;3.旋转的性质;4.全等三角形的判定与性质;5.综合题.22.(8分)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF ,90ABC CEF ∠=∠=︒,30BAC ∠=︒,1BC =.(1)点F 到直线CA 的距离是_________;(2)固定△ABC ,将△CEF 绕点C 按顺时针方向旋转30°,使得CF 与CA 重合,并停止旋转. ①请你在图1中用直尺和圆规画出线段EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;②如图2,在旋转过程中,线段CF 与AB 交于点O ,当OE OB =时,求OF 的长.【答案】(1)1;(2)12π;(3)23OF = 【分析】(1)根据直角三角形的性质和全等三角形的性质可得∠ACF =∠ECF =30°,即CF 是∠ACB 的平分线,然后根据角平分线的性质可得点F 到直线CA 的距离即为EF 的长,于是可得答案;(2)①易知E 点和F 点的运动轨迹是分别以CF 和CE 为半径、圆心角为30°的圆弧,据此即可画出旋转后的平面图形;在图3中,先解Rt △CEF 求出CF 和CE 的长,然后根据S 阴影=(S △CEF +S 扇形ACF )-(S △ACG +S 扇形CEG )即可求出阴影面积;②作EH ⊥CF 于点H ,如图4,先解Rt △EFH 求出FH 和EH 的长,进而可得CH 的长,设OH=x ,则CO 和OE 2都可以用含x 的代数式表示,然后在Rt △BOC 中根据勾股定理即可得出关于x 的方程,解方程即可求出x 的值,进一步即可求出结果.【解析】(1)∵30BAC ∠=︒,90ABC ∠=︒,∴∠ACB =60°,∵Rt △ABC ≌Rt △CEF ,∴∠ECF =∠BAC =30°,EF =BC =1,∴∠ACF =30°,∴∠ACF =∠ECF =30°,∴CF 是∠ACB 的平分线,∴点F 到直线CA 的距离=EF =1;故答案为:1;(2)①线段EF 经旋转运动所形成的平面图形如图3中的阴影所示:在Rt △CEF 中,∵∠ECF =30°,EF =1,∴CF =2,CE 3由旋转的性质可得:CF=CA =2,CE=CG 3,∠ACG =∠ECF =30°,∴S 阴影=(S △CEF +S 扇形ACF )-(S △ACG +S 扇形CEG )=S 扇形ACF -S 扇形CEG =2230330236036012πππ⨯⨯-=; 故答案为:12π;②作EH ⊥CF 于点H ,如图4,在Rt △EFH 中,∵∠F =60°,EF =1, ∴13,2FH EH ==∴CH =13222-=, 设OH=x ,则32OC x =-,222222334OE EH OH x x =+=+=+⎝⎭, ∵OB=OE ,∴2234OB x =+, 在Rt △BOC 中,∵222OB BC OC +=,∴2233142x x ⎛⎫++=- ⎪⎝⎭, 解得:16x =,∴112263OF =+=. 【点睛】本题考查了旋转的性质和旋转作图、全等三角形的性质、角平分线的性质、扇形面积公式、勾股定理和解直角三角形等知识,涉及的知识点多,综合性较强,熟练掌握上述知识、灵活应用整体思想和方程思想是解题的关键.23.(8分)如图,正方形ABCD 中,点P 从点A 出发沿AD 边向点D 运动,到达点D 停止.作射线CP ,将CP 绕着点C 逆时针旋转45°,与AB 边交于点Q ,连接PQ(1)画图,完善图形.(2)三条线段DP ,PQ ,BQ 之间有无确定的数量关系?请说明理由.(3)过点C 作CH PQ ⊥于H .若线段CP 的最大值为4,求点H 运动的路径长.【解析】(1)画图,如图1.(2)DP ,PQ ,BQ 之间有确定的数量关系,PQ DP BQ =+.理由如下:如图1,∵ABCD 是正方形,∴可将DCP ∆绕点C 逆时针旋转90°到BCM ∆. ∴DCP BCM ∆∆≌,90PCM ∠=︒.∴DP BM =,CP CM =,190D ∠=∠=︒.∴Q ,B ,M 在同一条直线上.∵45PCQ ∠=︒,∴45MCQ ∠=︒.∴PCQ MCQ ∠=∠.∵CQ CQ =,∴()SAS PCQ MCQ ∆∆≌.∴PQ MQ =. ∴PQ DP BQ =+.(3)如图2,由(2),2M ∠=∠.∵3190∠=∠=︒,∴(AAS)PCH MCB ∆∆≌.∴CH CB =.当点P 还在点A 处时,CP 是正方形的对角线,此时最长.即正方形的对角线为4. ∴正方形的边长22CB =∴22CH =当点P 从A 到点D 时,点H 从点B 沿圆弧到点D ,圆心角90BCD ∠=︒.∴点H 运动的路径长为1224CB ππ⨯⋅=.。

《旋转》单元测试卷

《旋转》单元测试卷

《旋转》单元测试卷一、精心选一选,相信你一定能选对。

(每小题3分,共36分) 1.下列现象中属于旋转的有( )个①地下水位逐年下降 ②传送带的移动 ③方向盘的转动 ④水龙头开关的转动 ⑤钟摆的运动 ⑥荡秋千运动 A .5B .4C .3D .22.下列四张图不能通过旋转得到的是( )3.下列图形中,既是中心对称图形,又是轴对称图形的是( ) A .等边三角形 B .平行四边形 C .等腰梯形 D .圆4.如图可以看作是一个等腰直角三角形旋转若干次而形成的,则每次旋转的度数可以是( )A .90°B .60°C .45°D .30° 5.如图所示的图案绕旋转中心旋转一定角度后能够与自身重合,那么它的旋转角可能是( ) A .70°B .60°C .90°D .50°6.下列说法中正确的个数是( )①两个全等的图形一定可以看作其中一个是另一个经过旋转得的;②经过旋转,任意一对对应点与旋转中心所连线段的夹角相等;③正六边形是中心对称图形; ④关于中心对称的两个图形是全等图形; ⑤关于中心对称的两个图形,对称点所连线段被对称中心平分. A .2B .3C .4D .57. …依次观察左边的三个图形,并判断此规律从左向右第四个图形是( )A .B .C .D .8.已知点P 与点P 1关于原点对称,点P 1的坐标为(3,4-),则点P 关于y 轴对称的点P 2的坐标为( ) A .(3,4)B .(4,3--)C .(3-,4)D .(4-,3)9.如图,图①中的梯形可以经过旋转和翻折形成图②,图①应符合的条件是( )A .一般梯形B .等腰梯形C .底角为60°的等腰梯形D .底角为60°且上底与两腰相等的等腰梯形 10.如图,△ABC 是等边三角形,D 是BC 的中点,以D 为旋转中心,把△ABC 顺时针旋转60°后,所成的图形是( )11.如图,已知△ABC 与△CDA 关于O 对称,过O 任作一直线EF 分别交AD 、BC 于点E 、F ,下列说法中:①点E 和点F ,点B 和点D 是关于中心O 的对称点;②直线BD 过点O ;③四边形ABCD 是中心对称图形;④四边形DEOC 与四边形BFOA 的面积必相等;⑤△AOE 与△COF 成中心对称,其中正确的个数为( ) A .1B .2C .3D .512.怎样将下图中的甲图案通过变形使之与乙图案重合( )A .先将甲旋转扶直,再平移B .先将甲旋转扶直,再作它的轴对称图案C .先将甲平移,再扶直D .先作轴对称图案,再平移二、细心填一填,相信你填得又快又准。

九年级上学期数学《旋转》单元综合测试卷(含答案)

九年级上学期数学《旋转》单元综合测试卷(含答案)
根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.
A、不是中心对称图形,故本选项错误;
B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误.
故选B.
考点:中心对称图形.
[详解]
请在此输入详解!
2.观察下列图案,能通过左图顺时针旋转90°得到的()
C. 黑(3,3),白(3,1)D. 黑(3,1),白(3,3)
7.有两个完全重合 矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②……则第10次旋转后得到的图形与图①~④中相同的是().
A 图①B.图②C.图③D.图④
③先绕着点 旋转 ,再向右平移一个单位;④绕着 的中点旋转 即可.
15.已知坐标平面上的机器人接受指令“(A,A)”﹙A≥0,0°<A<180°﹚后的行动结果为:在原地顺时针旋转A后,再向面对方向沿直线行走A.若机器人的位置在原点,面对方向为y轴的负半轴,则它完成一次指令(2,60°)后,所在位置的坐标为____________.
A. 图①B. 图②C. 图③D. 图④
[答案]B
[解析]
试题分析:依题意,旋转10次共旋转了10×45°=450°,
因为450°-360°=90°,
所以,第10次旋转后得到的图形与图②相同,
故选B.
点睛:根据图中给出的旋转规律,得知变化为周期性变化,结合周角的定义即可解答本题.
8. 如图,△A B C中,A B=4,B C=6,∠B=60°,将△A B C沿射线B C的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()

九年级上学期数学《旋转》单元检测卷(含答案)

九年级上学期数学《旋转》单元检测卷(含答案)

九年级上册数学《旋转》单元测试卷(满分120分,考试用时120分钟)一.选择题(共10小题)1.如图,将该图按顺时针方向旋转90°后的图形是( )A .B .C .D .2.如图,将△A B C 绕点A 逆时针旋转100°,得到△A D E.若点D 在线段B C 的延长线上,则∠B 的大小为( )A . 30°B . 40°C . 50°D . 60°3.如图,香港特别行政区区徽中的紫荆花图案,该图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为( )A . 45°B . 60°C . 72°D . 108°4.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△A B C 经过平移后得到△A 1B 1C 1,若A C 上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为( )A . (2.8,3.6)B . (﹣2.8,﹣3.6)C . (3.8,2.6)D . (﹣3.8,﹣2.6)5.如图,△A B C 与△A ′B ′C ′关于点O成中心对称,则下列结论不成立的是( )A . 点A 与点A ′是对称点B . B O=B ′OC . A B ∥A ′B ′D . ∠A C B =∠C ′A ′B ′6.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .7.点P(3,5)关于原点对称的点的坐标是( )A . (﹣3,5)B . (3,﹣5)C . (5,3)D . (﹣3,﹣5)8.如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为( )A . 重合B . 关于x轴对称C . 关于y轴对称D . 宽度不变,高度变为原来的一半9.下方的“月亮”图案可以由如图所示的图案平移得到的是( )A .B .C .D .10.如图,在4×4正方形网格中,将图中的2个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么符合条件的小正方形共有( )A . 7个B . 8个C . 9个D . 10个二.填空题(共8小题)11.如图,已知钝角三角形A B C ,将△A B C 绕点A 按逆时针方向旋转110°得到△A B ′C ′,连接B B ′,若A C ′∥B B ′,则∠C A B ′的度数为_____.12.如图,在四边形A B C D 中,A B =6,B C =4,若A C =A D ,且∠A C D =60°,则对角线B D 的长的最大值为_____.13.等边三角形A B C 内有一点P,连接A P、B P、C P,若∠B PC =150°,B P=3,A P=5,则C P=_____.14.若点A (1,2)与点B (m,﹣2)关于原点对称,则m=_____.15.如图,△A 1B 1C 1是△A B C 关于点O成中心对称的图形,点A 的对称点是点A 1,已知A O=4C m,那么AA 1=_____C m.16.线段是中心对称图形,对称中心是它的_____点.17.对于下列图形:①等边三角形;②矩形;③平行四边形;④菱形;⑤正八边形;⑥圆.其中既是轴对称图形,又是中心对称图形的是_____.(填写图形的相应编号)18.如图,已知等边三角形OA B 的顶点O(0,0),A (0,3),将该三角形绕点O顺时针旋转,每次旋转60°,则旋转2018次后,顶点B 的坐标为_____.三.解答题(共7小题)19.如图,将△A B C 绕顶点C 逆时针旋转得到△A ′B ′C ,且点B 刚好落在A ′B ′上,若∠A =25°,∠BC A ′=45°,求∠A ′B A 的度数.20.如图所示:已知∠A B C =120°,作等边△A C D ,将△A C D 旋转60°,得到△C D E,A B =3,B C =2,求B D 和∠A B D .21.有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.22.如图,在平面直角坐标系中,△A B C 的三个顶点坐标为A (﹣3,4),B (﹣4,2),C (﹣2,1),△A B C 绕原点逆时针旋转90°,得到△A 1B 1C 1,将△A 1B 1C 1向右平移6个单位,再向上平移2个单位得到△A 2B 2C 2.(1)画出△A 1B 1C 1和△A 2B 2C 2;(2)△A B C 经旋转、平移后点A 的对应点分别为A 1、A 2,请写出点A 1、A 2的坐标;(3)P(A ,B )是△A B C 的边A C 上一点,△A B C 经旋转、平移后点P的对应点分别为P1,P2,请写出点P1、P2的坐标.23.如图,四边形A B C D 是正方形,△A D F绕着点A 顺时旋转90°得到△A B E,若A F=4,A B =7.(1)求D E的长度;(2)指出B E与D F的关系如何?并说明由.24.如图,△A B C 中,∠A B C =45°,A B =,B C =12,以A C 为直角边,点A 为直角顶点作等腰直角△A C D ,求B D 的长.25.将两块三角板按图1摆放,固定三角板A B C ,将三角板C D E绕点C 按顺时针方向旋转,其中∠A =45°,∠D =30°,设旋转角为α,(0°<A <80°)(1)当D E∥A C 时(如图2),求α的值;(2)当D E∥A B 时(如图3).A B 与C E相交于点F,求α的值;(3)当0°<α<90°时,连结A E(如图4),直线A B 与D E相交于点F,试探究∠1+∠2+∠3的大小是否改变?若不改变,请求出此定值,若改变,请说明理由.参考答案一.选择题(共10小题)1.如图,将该图按顺时针方向旋转90°后的图形是( )A .B .C .D .[答案]B[解析][分析]根据旋转的性质,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变;图片按顺时针方向旋转90°,分析可得答案.[详解]根据旋转的意义,图片按顺时针方向旋转90°,可得B 符合.故选:B .[点睛]本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易错.2.如图,将△A B C 绕点A 逆时针旋转100°,得到△A D E.若点D 在线段B C 的延长线上,则∠B 的大小为( )A . 30°B . 40°C . 50°D . 60°[答案]B[解析]∵△A D E是由△A B C 绕点A 旋转100°得到的,∴∠B A D =100°,A D =A B ,∵点D 在B C 的延长线上,∴∠B =∠A D B =.故选B .点睛:本题主要考察了旋转的性质和等腰三角形的性质,解题中只要抓住旋转角∠B A D =100°,对应边A B =A D 及点D 在B C 的延长线上这些条件,就可利用等腰三角形中:两底角相等求得∠B 的度数了.3.如图,香港特别行政区区徽中的紫荆花图案,该图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为( )A . 45°B . 60°C . 72°D . 108°[答案]C[解析]由题意得360º÷5=72º.故选C .4.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△A B C 经过平移后得到△A 1B 1C 1,若A C 上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为( )A . (2.8,3.6)B . (﹣2.8,﹣3.6)C . (3.8,2.6)D . (﹣3.8,﹣2.6)[答案]A[解析][分析]根据平移的性质得出,△A B C 的平移方向以及平移距离,即可得出P1坐标,进而利用中心对称图形的性质得出P2点的坐标.[详解]∵A 点坐标为:(1,1),A 1(-3,-4),∴△A B C 向左平移了4个单位,向下平移了5个单位,∴点P(1.2,1.4)平移后的对应点P1为:(-2.8,-3.6),∵点P1绕点O逆时针旋转180°,得到对应点P2,∴P2点的坐标为:(2.8,3.6).故选A .[点睛]此题主要考查了旋转的性质以及平移的性质,根据已知得出平移的方式是解题关键.关于原点对称的两个点横纵坐标均为互为相反数的关系.5.如图,△A B C 与△A ′B ′C ′关于点O成中心对称,则下列结论不成立的是( )A . 点A 与点A ′是对称点B . B O=B ′OC . A B ∥A ′B ′D . ∠A C B =∠C ′A ′B ′[答案]D[解析][分析]根据中心对称的性质对各选项分析判断后利用排除法求解.[详解]观察图形可知,A 、点A 与点A ′是对称点,故本选项正确;B 、B O=B ′O,故本选项正确;C 、A B ∥A ′B ′,故本选项正确;D 、∠A C B =∠A ′C ′B ′,故本选项错误.故选:D .[点睛]本题考查了中心对称,熟悉中心对称的性质是解题的关键.6.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .[答案]A[解析][分析]根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.[详解]A 、既是轴对称图形又是中心对称图形,故本选项正确;B 、是轴对称图形,不是中心对称图形,故本选项错误;C 、不是轴对称图形,是中心对称图形,故本选项错误;D 、是轴对称图形,不是中心对称图形,故本选项错误.故选A .[点睛]本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.点P(3,5)关于原点对称的点的坐标是( )A . (﹣3,5)B . (3,﹣5)C . (5,3)D . (﹣3,﹣5)[答案]D[解析][分析]根据关于原点对称的点的坐标特点:两个点关于原点对称时,横纵坐标的坐标符号均相反,根据这一特征求出对称点坐标.[详解]解:点P(3,5)关于原点对称的点的坐标是(-3,-5),故选:D .[点睛]本题主要考查了关于原点对称的点的坐标特点,关键是掌握点的变化规律.8.如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为( )A . 重合B . 关于x轴对称C . 关于y轴对称D . 宽度不变,高度变为原来的一半[答案]C[解析][分析]根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.[详解]解:图案的每个“顶点”的纵坐标保持不变,横坐标分别乘-1,则对应点的横坐标互为相反数,纵坐标相同,所以,所得图案与原图案关于y轴对称.故选:C .[点睛]本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.9.下方的“月亮”图案可以由如图所示的图案平移得到的是( )A .B .C .D .[答案]C[解析][分析]根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.[详解]通过图案平移得到必须与图案完全相同,角度也必须相同,观察图形可知C 可以通过图案①平移得到.故选:C .[点睛]本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.10.如图,在4×4正方形网格中,将图中的2个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么符合条件的小正方形共有( )A . 7个B . 8个C . 9个D . 10个[答案]D[解析][分析]根据轴对称的性质画出图形即可.[详解]如图,共有10种符合条件的添法,故选:D .[点睛]本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.二.填空题(共8小题)11.如图,已知钝角三角形A B C ,将△A B C 绕点A 按逆时针方向旋转110°得到△A B ′C ′,连接B B ′,若A C ′∥B B ′,则∠C A B ′的度数为_____.[答案]75°[解析][分析]先根据旋转的性质得到∠B A B ′=∠C A C ′=110°,A B =A B ′,根据等腰三角形的性质易得∠A B ′B =35°,再根据平行线的性质得出∠C ′A B ′=∠A B ′B =35°,然后利用∠C A B ′=∠C A C ′﹣∠C ′A B ′进行计算即可得出答案.[详解]∵将△A B C 绕点A 按逆时针方向旋转l10°得到△A B ′C ′,∴∠B A B ′=∠C A C ′=110°,A B =A B ′,∴∠A B ′B =(180°﹣110°)=35°,∵A C ′∥B B ′,∴∠C ′A B ′=∠A B ′B =35°,∴∠C A B ′=∠C A C ′﹣∠C ′A B ′=110°﹣35°=75°.故答案为:75°.[点睛]此题考查了旋转的性质:掌握旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角是本题的关键.12.如图,在四边形A B C D 中,A B =6,B C =4,若A C =A D ,且∠A C D =60°,则对角线B D 的长的最大值为_____.[解析][分析]在A B 的左侧作等边三角形△A B K,连接D K.由△D A K≌△C A B ,推出D K=B C =4,因为D K+KB ≥B D ,D K=4,KB =A B =6,所以当D 、K、B 共线时,B D 的值最大,最大值为D K+KB =10.[详解]如图,在A B 的左侧作等边三角形△A B K,连接D K,则A K=A B =B K=6,∠KA B =60°,∴∠D A C =∠KA B ,∴∠D A K=∠C A B ,在△D A K和△C A B 中,,∴△D A K≌△C A B (SA S)∴D K=B C =4,∵D K+KB ≥B D ,D K=4,KB =A B =6∴当D 、K、B 共线时,B D 的值最大,最大值为D K+KB =10.故答案为:10[点睛]本题考查等边三角形的性质、全等三角形的判定和性质,三角形的三边关系定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.13.等边三角形A B C 内有一点P,连接A P、B P、C P,若∠B PC =150°,B P=3,A P=5,则C P=_____.[解析][分析]将△B C P绕点C 顺时针旋转60°得到△A C P′,根据旋转的性质可得B P=A P′,∠A P′C =∠B PC ,△PC P′是等边三角形,根据等边三角形的性质可得∠PP′C =60°,然后求出∠A P′P=90°,利用勾股定理列式求出PP′,再根据等边三角形的三边都相等可得C P=PP′.[详解]如图,将△B C P绕点C 顺时针旋转60°得到△A C P′,由旋转的性质得,B P=A P′=3,∠A P′C =∠B PC =150°,△PC P′是等边三角形,所以,∠PP′C =60°,所以,∠A P′P=∠A P′C ﹣∠PP′C =150°﹣60°=90°,在Rt△A PP′中,根据勾股定理得,PP′==4,∵△PC P′是等边三角形,∴C P=PP′=4.故答案为:4.[点睛]本题考查了旋转的性质,等边三角形的性质,勾股定理,作辅助线构造出等边三角形和直角三角形是解题的关键,也是本题的难点.14.若点A (1,2)与点B (m,﹣2)关于原点对称,则m=_____.[答案]-1[解析][分析]根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.[详解]根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.[解答]∵点A (1,2)与点B (m,-2)关于原点对称,∴m=-1.故答案为:-1.[点睛]本题考查的是关于原点对称,熟练掌握关于原点对称的点的坐标是解题的关键.15.如图,△A 1B 1C 1是△A B C 关于点O成中心对称的图形,点A 的对称点是点A 1,已知A O=4C m,那么AA 1=_____C m.[答案]8.[解析][分析]根据中心对称图形的性质即可得到结论.[详解]∵△A 1B 1C 1是△A B C 关于点O成中心对称的图形,点A 的对称点是点A 1,A O=4C m,∴OA 1=OA =4C m,∴A A 1=OA +OA 1=8C m,故答案为:8.[点睛]本题考查了中心对称的图形的性质,注意弄清对应点、对应角、对应线段.16.线段是中心对称图形,对称中心是它的_____点.[答案]中[解析][分析]直接利用中心对称图形的性质结合线段的性质得出答案.[详解]线段是中心对称图形,对称中心是它的中点.故答案为:中.[点睛]此题主要考查了中心对称图形,正确把握线段的性质是解题关键.17.对于下列图形:①等边三角形;②矩形;③平行四边形;④菱形;⑤正八边形;⑥圆.其中既是轴对称图形,又是中心对称图形的是_____.(填写图形的相应编号)[答案]②④⑤⑥.[解析]解:①是轴对称图形,不是中心对称图形,不符合题意;②是轴对称图形,也是中心对称图形,符合题意;③是中心对称图形,不是轴对称图形,不符合题意;④是轴对称图形,也是中心对称图形,符合题意;⑤是轴对称图形,也是中心对称图形,符合题意.⑥是轴对称图形,也是中心对称图形,符合题意;故答案为:②④⑤⑥.18.如图,已知等边三角形OA B 的顶点O(0,0),A (0,3),将该三角形绕点O顺时针旋转,每次旋转60°,则旋转2018次后,顶点B 的坐标为_____.[答案](0,﹣3).[解析]解:由题意知点B 旋转=6次后与点B 重合,即点B 的旋转周期为6.∵2018÷6=336…2,∴点B 旋转2018次后的坐标与旋转2次后的坐标相同,如图:∵∠A OB =60°,∴∠B OC =120°,则两次旋转都点B 落在y轴的负半轴,且OB =3,所以点B 的坐标为(0,﹣3).故答案为:(0,﹣3).点睛:本题主要考查坐标与图形的变化﹣旋转,根据题意得出点B 的旋转周期为6及旋转的性质是解题的关键.三.解答题(共7小题)19.如图,将△A B C 绕顶点C 逆时针旋转得到△A ′B ′C ,且点B 刚好落在A ′B ′上,若∠A =25°,∠BC A ′=45°,求∠A ′B A 的度数.[答案]40°[解析][分析]先利用旋转的性质得∠A ′=∠A =25°,∠A B C =∠B ′,C B =C B ′,再利用等腰三角形的性质得∠B ′=∠C B B ′,则根据三角形外角性质得∠C B B ′=70°,所以∠B ′=∠A B C =70°,然后利用平角定义计算∠A ′B A 的度数.[详解]∵△A B C 绕顶点C 逆时针旋转得到△A ′B ′C ,且点B 刚好落在A ′B ′上,∴∠A ′=∠A =25°,∠A B C =∠B ′,C B =C B ′,∴∠B ′=∠C B B ′,∵∠C B B ′=∠A ′+∠B C A ′=25°+45°=70°,∴∠B ′=70°,∴∠A B C =70°,∴∠A ′B A =180°﹣70°﹣70°=40°.[点睛]本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.20.如图所示:已知∠A B C =120°,作等边△A C D ,将△A C D 旋转60°,得到△C D E,A B =3,B C =2,求B D 和∠A B D .[答案]B D =5.∠B A D =60°[解析]先根据等边三角形的性质得∠A D C =∠A C D =60°,由于∠A B C =120°,根据四边形内角和得到∠B A D +∠B C D =180°,则∠B A D +∠B C A =120°,再根据旋转的性质得∠B A D =∠EC D ,D B =D E,∠B D E=60°,A B =C E,于是有∠B C A +∠EC D +∠A C D =180°,得到B 、C 、E在同一条直线上,接着证明△B D E为等边三角形得到∠D B E=60°,所以∠B A D =∠A B C ﹣∠D B E=60°,B D =B E=B C +C E=B C +A B =5.[详解]∵△A C D 是等边三角形,∴∠A D C =∠A C D =60°,∵∠A B C =120°,∴∠B A D +∠B C D =180°,∴∠B A D +∠B C A =120°,∵△A B D 绕点D 按顺时针方向旋转60°后到△EC D 的位置,∴∠B A D =∠EC D ,D B =D E,∠B D E=60°,A B =C E,∴∠B C A +∠EC D =120°,∴∠B C A +∠EC D +∠A C D =180°,∴B 、C 、E在同一条直线上.∵D B =D E,∠B D E=60°,∴△B D E为等边三角形,∴∠D B E=60°,∴∠B A D =∠A B C ﹣∠D B E=60°,∴B D =B E=B C +C E=B C +A B =3+2=5.[点睛]本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质.21.有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.[答案]答案见解析[分析]思路1:先将图形分割成两个矩形,找出各自的对称中心,过两个对称中心做直线即可;思路2:先将图形补充成一个大矩形,分别找出图中两个矩形各自的对称中心,过两个对称中心做直线即可.[详解]如图所示,有三种思路:[点睛]本题需利用矩形的中心对称性解决问题.22.如图,在平面直角坐标系中,△A B C 的三个顶点坐标为A (﹣3,4),B (﹣4,2),C (﹣2,1),△A B C 绕原点逆时针旋转90°,得到△A 1B 1C 1,将△A 1B 1C 1向右平移6个单位,再向上平移2个单位得到△A 2B 2C 2.(1)画出△A 1B 1C 1和△A 2B 2C 2;(2)△A B C 经旋转、平移后点A 的对应点分别为A 1、A 2,请写出点A 1、A 2的坐标;(3)P(A ,B )是△A B C 的边A C 上一点,△A B C 经旋转、平移后点P的对应点分别为P1,P2,请写出点P1、P2的坐标.[答案](1)画图见解析;(2)A 1(﹣4,﹣3),A 2(2,﹣1);(3)P1(﹣B ,A );P2(﹣B +6,A +2)[解析][分析](1)利用网格特点、旋转的性质和平移的性质画图;(2)利用所画图形写出点A 1、A 2的坐标;(3)利用(2)的结论和旋转的性质写出P1的坐标,利用平移的坐标规律写出P2的坐标.[详解](1)如图,△A 1B 1C 1和△A 2B 2C 2为所作;(2)A 1(﹣4,﹣3),A 2(2,﹣1);(3)P1(﹣B ,A );P2(﹣B +6,A +2).[点睛]本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.23.如图,四边形A B C D 是正方形,△A D F绕着点A 顺时旋转90°得到△A B E,若A F=4,A B =7.(1)求D E的长度;(2)指出B E与D F的关系如何?并说明由.[答案](1)3;(2)B E=D F,B E⊥D F.[解析][分析](1)根据旋转的性质可得A E=A F,A D =A B ,然后根据D E=A D ﹣A E计算即可得解;(2)根据旋转可得△A B E和△A D F全等,根据全等三角形对应边相等可得B E=D F,全等三角形对应角相等可得∠A B E=∠A D F,然后求出∠A B E+∠F=90°,判断出B E⊥D F.[详解]解:(1)∵△A D F按顺时针方向旋转一定角度后得到△A B E,∴A E=A F=4,A D =A B =7,∴D E=A D ﹣A E=7﹣4=3;(2)B E、D F的关系为:B E=D F,B E⊥D F.理由如下:∵△A D F按顺时针方向旋转一定角度后得到△A B E,∴△A B E≌△A D F,∴B E=D F,∠A B E=∠A D F,∵∠A D F+∠F=180°﹣90°=90°,∴∠A B E+∠F=90°,∴B E⊥D F,∴B E、D F的关系为:B E=D F,B E⊥D F.[点睛]考查了旋转的性质,正方形的性质,是基础题,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.24.如图,△A B C 中,∠A B C =45°,A B =,B C =12,以A C 为直角边,点A 为直角顶点作等腰直角△A C D ,求B D 的长.[答案]13[解析][分析]将△A B D 绕着点A 顺时针旋转90°得到△A C E,连接B E,根据旋转的性质得到A E=A B =,∠B A E=∠D A C =90°,C E=B D ,推出△A B E是等腰直角三角形,根据勾股定理即可得到结论.[详解]将△A B D 绕着点A 顺时针旋转90°得到△A C E,连接B E,则A E=A B =,∠B A E=∠D A C =90°,C E=B D ,∴△A B E是等腰直角三角形,∴∠A B E=45°,B E= A B =5,∵∠A B C =45°,∴∠C B E=90°,∴C E==13,∴B D =C E=13.[点睛]本题考查了旋转的性质,等腰直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键.25.将两块三角板按图1摆放,固定三角板A B C ,将三角板C D E绕点C 按顺时针方向旋转,其中∠A =45°,∠D =30°,设旋转角为α,(0°<A <80°)(1)当D E∥A C 时(如图2),求α的值;(2)当D E∥A B 时(如图3).A B 与C E相交于点F,求α的值;(3)当0°<α<90°时,连结A E(如图4),直线A B 与D E相交于点F,试探究∠1+∠2+∠3的大小是否改变?若不改变,请求出此定值,若改变,请说明理由.[答案](1)60°;(2)105°;(3)不变,其值为105°.[解析][分析](1)由D E∥A C 可得∠D C A =∠D =30°,则可求∠α=∠D C B =60°;(2)由D E∥A B 可得∠E=∠A FC =60°,根据三角形内角和可求∠FC A =75°即可求∠A C D=15°,则可求∠α;(3)根据三角形内角和和外角等于不相邻的两个内角和,列出∠1,∠2,∠3关系式可求∠1+∠2+∠3的值.[详解](1)∵D E∥A C ,∴∠D =∠A C D =30°,又∵∠B C A =90°,∴∠B C D =∠B C A ﹣∠A C D =60°,即α=60°;(2)∵D E∥A B ,∴∠E=∠C FA =60°,又∵∠C FA =∠B +∠B C E,∴∠B C E=15°,∴∠B C D =∠EC D +∠B C E=105°,即α=105°;(3)大小不变,其值为105°,∵∠A C D +∠C A B =∠D +∠A FD ,∠C A B =45°,∠D =30°,∴∠A FD ﹣∠A C D =15°,又∵∠1+∠2=∠A FD ,∠3=90°﹣∠A C D ,∴∠1+∠2+∠3=∠A FD +90°﹣∠A C D =90°+15°=105°.[点睛]本题考查了旋转的性质,平行线的性质,关键是灵活运用这些性质解决问题.。

人教版九年级第23章《旋转》单元测试卷

人教版九年级第23章《旋转》单元测试卷

九年级上学期数学第23章旋转单元测试卷(人教版)一、选择题 (本大题共10小题,每小题3分,满分30分)1.下面图形中,既是轴对称图形又是中心对称图形的是( )2.下列图形中,是中心对称图形的有()A .4个B .3个C .2个D .1个 3.在平面直角坐标系中,已知点,若将绕原点逆时针旋转得到,则点在平面直角坐标系中的位置是在 ( )A.第一象限B.第二象限C.第三象限D.第四象限4.已知0a <,则点(2,1a a --+)关于原点的对称点 在( )A .第四象限B .第三象限C . 第二象限D .第一象限5.已知点、点关于原点对称,则的值为( ) A.1 B.3 C.-1 D.-36.下列命题中是真命题的是 ( )A.全等的两个图形是中心对称图形B.关于中心对称的两个图形全等C.中心对称图形都是轴对称图形D.轴对称图形都是中心对称图形7.四边形ABCD 的对角线相交于O ,且AO BO CO DO ===,则这个四边形( ) A.仅是轴对称图形 B.既是轴对称图形又是中心对称图形C.仅是中心对称图形 D.既不是轴对称图形,又不是中心对称图形 8.如图所示,A 、B 、C 三点在正方形网格线的交点处.若将△绕着点A逆时针旋转到如图位置,得到△,使三点共线,则的值为( )A. 1B.223 C.310D. 29.如图所示,在正方形中,,点在上,且,点是上一动点,连接,将线段绕点逆时针旋转90°得到线段.要使点恰好落在 上, 则的长是( )A .1B .2C .3D .4 10.如图,在正方形网格中,将△绕点旋转后得到△,则下列旋转方式中,符合题意的是( ) A.逆时针旋转90° B.顺时针旋转90° C.顺时针旋转45° D.逆时针旋转45°二. 填空题(本大题共8小题,每小题3分,满分24分)11.如图所示,把一个直角三角尺绕着角的顶点顺时针旋转,使得点落在的延长线上的点处,则∠的度数为_____ .12.正方形是中心对称图形,它绕它的中心旋转一周和原来的图形重合________次. 13.如图所示,ABC △与DEF △关于O 点成中心对称.则AB _______DE ,∥______,AC ________.14.边长为的正方形绕它的顶点旋转,顶点所经过的路线长为______.15.等边三角形绕着它的三边中线的交点旋转至少______度,能够与本身重合. 16. 点(34)P -,关于原点对称的点的坐标为________. 17.已知点与点关于原点对称,则的值是_______.18.直线3y x =+上有一点,则点 关于原点的对称点为________.三.解答题(本题共6小题,满分46分)19.(8分)如图所示,在△中,90OAB ∠=︒,6OA AB ==,将OAB ∆ 绕点O 沿逆时针方向旋转90︒得到11OA B ∆.(1)线段1OA 的长是 ,1AOB ∠的度数是 ; (2)连接1AA ,求证:四边形11OAA B 是平行四边形.20.(8分)找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.21.(8分)如图所示,网格中有一个四边形和两个三角形. (1)请你画出三个图形关于点的中心对称图形; (2)将(1)中画出的图形与原图形看成一个整体图形,请你写出这个整体图形对称轴的条数; 这个整体图形至少旋转多少度与自身重合?22.(6分)如图所示,已知是△的中线,画出以点为对称中心,与△•成中心对称的三角形.23.(8分)图①②均为76 的正方形网格,点A B C 、、 在格点上. (1)在图①中确定格点D ,并画出以 为顶点的四边形,使其为轴对称图形.(画出一个即可)(2)在图②中确定格点E ,并画出以为顶点的四边形,使其为中心对称图形.(画出一个即可)24.(8分)如图所示,将正方形中的△绕对称中心旋转至△的位置,,交于.请猜想与有怎样的数量关系?并证明你的结论.第24题图九年级上学期数学第23章旋转单元测试卷(人教版)一、选择题1.C 解析:选项A 、B 是中心对称图形但不是轴对称图形,选项C 既是中心对称图形又是 轴对称图形,选项D 是轴对称图形但不是中心对称图形.2.B 解析:第一、二、三个图形都是中心对称图形,第四个图形不是中心对称图形.3.C 解析:已知点在第一象限,旋转后,则点应在第三象限.4.A 解析:∵ 当时,点在第二象限,∴ 点关于原点的对称点在第四象限. 5.D 解析:由点、点关于原点对称知,所以6.B 解析:由中心对称图形和轴对称图形的定义知,选项B 正确.7.B 解析:因为AO BO CO DO ===,所以四边形ABCD 是矩形.8.D 解析:过B 点作BD ⊥于点,由图可知,即=2. 9.C 解析:由题意知,,又由,知△≌△,所以.10.A 解析:根据图形可知:将△绕点逆时针旋转90°可得到△.故选A .二、填空题 11.解析:由题意得∠, ,所以∠.12.4 解析:正方形的两条对角线的夹角为,且对角线分正方形所成的4个小三角形都全等.13.=,EF ,DF14.4π 解析:∵∴ 顶点绕顶点旋转所经过的路径是个半圆弧,所以顶点所经过的路线长为4π15.12016.(34)-, 解析:两个点关于原点对称时,它们的坐标符号相反,所以点的坐标为(34)-,. 17.2 解析:∵ 点与点关于原点对称,∴ 3,1b a ==-,∴ 2a b +=.18.(,) 解析:将点代入3y x =+,得6n =,∴ 对称点为().三、解答题19.(1)6,135°;(2)证明:11190AOA OA B ∠=∠=︒ ,∴11//OA A B . 又11OA AB A B ==,∴四边形11OAA B 是平行四边形. 20.解:图中的旋转中心就是该图的几何中心,即点O.该图绕旋转中心O旋转90180270360,,,,都能与原来的图形重合,因此,它是一个中心对称图形.21.解:(1)如图所示.(2)2条对称轴,这个整体图形至少旋转.22.解:(1)延长,且使,点关于的对称点为,点关于的对称点为;(2)连接.则△为所求作的三角形(如图所示).23.解:(1)如图①所示;(2)如图②所示.24.解:.证明如下:在正方形中,为对角线,为对称中心, ∴.∵△为△绕点旋转所得,∴,∴.在△和△中,∴△≌△,∴.。

五年级上册数学单元测试卷-第二单元 图形的平移、旋转与对称-西师大版(含答案)

五年级上册数学单元测试卷-第二单元 图形的平移、旋转与对称-西师大版(含答案)

五年级上册数学单元测试卷-第二单元图形的平移、旋转与对称-西师大版(含答案)一、选择题(共5题,共计20分)1、下面的图形中,是轴对称图形的有()个。

A.3B.4C.52、把一个图形绕某点顺时针旋转90°后,得到的图形与原来的图形相比较,()。

A.变大了B.大小不变C.变小了3、从2∶00到3∶00,时针旋转了()。

A.30°B.60°C.90°4、下面物体的运动是旋转的是()A.把电视机搬到桌子上B.推箱子C.拧螺丝D.升降国旗5、下面物体的运动是()A.平移B.旋转二、填空题(共8题,共计24分)6、风扇扇叶的转动是________现象;推箱子是________现象。

7、风扇转动是________现象,推拉抽屉是________现象。

(填“平移”或“旋转”)8、填上“平移”或“旋转”。

________9、下图中小船A通过________的转换得到红船,通过________的转换得到绿船。

10、转动方向盘时方向盘的运动是________ ;电梯的上下运动是________ 。

(填“平移”或“旋转”)11、升国旗时国旗上升属于________现象,风车运动属于________现象。

12、想一想下面的运动,是平移的打“√”,是旋转的画“○”。

小明向前走了3米________13、等腰三角形的两边________,它是________图形,有________对称轴。

三、判断题(共4题,共计8分)14、长方形,正方形和圆都是轴对称图形。

()15、把一张纸对折,,画出轮廓,用剪刀沿着线剪下来,展开得到的图形是。

()16、平行四边形不是轴对称图形。

()17、小朋友们玩跷跷板是平移现象。

()四、计算题(共2题,共计8分)18、用“平移”或“旋转”填空。

汽车在笔直的轨道上行驶是________运动,它的方向盘运动是________运动。

19、用“平移”或“旋转”填空。

汽车在笔直的轨道上行驶是________运动,它的方向盘运动是________运动。

人教版数学九年级上册第23章《旋转》单元检测试卷及答案解析

人教版数学九年级上册第23章《旋转》单元检测试卷及答案解析

第23章《旋转》单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形的是()2.以下图的右边缘所在直线为轴将该图案向右翻折后,再绕中心旋转180°,所得到的图形是()3.用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是()A.平移和旋转B.对称和旋转 C.对称和平移 D.旋转和平移4.已知点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,则a+b 的值为()A.1 B.5 C.6 D.45.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是()A.60°B.72°C.90°D.144°7.如图,将△OAB 绕点O 逆时针旋转80°,得到△OCD ,若∠A=2∠D=100°,则∠α的度数是( )A .50°B .60°C .40°D .30°8.在平面直角坐标系xOy 中,A 点坐标为(3,4),将OA 绕原点O 顺时针旋转180°得到OA′,则点A′的坐标是( )A .(﹣4,3)B .(﹣3,﹣4)C .(﹣4,﹣3)D .(﹣3,4)9.如图,将Rt △ABC (其中∠B=30°,∠C=90°)绕点A 按顺时针方向旋转到△AB1C1的位置,使得点B 、A 、B1在同一条直线上,那么旋转角等于( )B 1C 1C BAA .30°B .60°C .90°D .180° 10.如图,在△ABC 中,∠AB=90°,将△ABC 绕点A 顺时针旋转90°,得到△ADE ,连接BD ,若AC=3,DE=1,则线段BD 的长为( )E DCB AA .5B .3C .4D .10二、填空题(共6小题,每小题3分,共18分)11.如图,△ABC 中,∠C =30°,将△ABC 绕点A 顺时针旋转60°得△ADE ,AE 与BC 交于F ,则∠AFB =_______°.12如图,把Rt △ABC 绕点A 逆时针旋转44°,得到Rt △AB′C′,点C′恰好落在边AB 上,连接BB′,则∠BB′C′=图11B'C'CBA图1213.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2016的坐标为.14.如图,直线y=﹣33x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是.15.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是.16.在等腰三角形ABC中,∠C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为.三、解答题(共8题,共72分)17.(本题8分)如图,说出这个图形的旋转中心,它绕旋转中心至少旋转多大角度才能与原来图形重合?18.(本题8分)将下图所示的图形面积分成相等的两部分.(图中圆圈为挖去部分)19.(本题8分)19.(8分)直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.20.(本题8分)如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C;(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?21.(本题8分)如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴,垂足为A.(1)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标;(2)△O′A′B′与△OAB关于原点对称,写出点B′、A′的坐标.22.(本题10分)当m为何值时(1)点A(2,3m)关于原点的对称点在第三象限;(2)点B(3m﹣1,0.5m+2)到x轴的距离等于它到y轴距离的一半?23.(本题10分)直角坐标系中,已知点P(﹣2,﹣1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点P′的坐标;(2)当t取何值时,△P′TO是等腰三角形?24.(本题12分)等边△OAB在平面直角坐标系中,已知点A(2,0),将△OAB 绕点O顺时针方向旋转a°(0<a<360)得△OA1B1.(1)求出点B的坐标;(2)当A1与B1的纵坐标相同时,求出a的值;(3)在(2)的条件下直接写出点B1的坐标.第23章《旋转》单元测试卷解析一、选择题1.【答案】A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误;故选:C2.【答案】以图的右边缘所在的直线为轴将该图形向右翻转180°后,黑圆在右上角,再按顺时针方向旋转180°,黑圆在左下角.故选:A.3.【答案】根据对称和旋转定义可知:“当窗理云鬓,对镜贴花黄”是对称;“坐地日行八万里”是旋转.故选B.4.【答案】∵点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,∴a=2014,b=﹣2013,则a+b的值为:2014﹣2013=1.故选:A.5.【答案】根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=2且m﹣n=﹣3,∴m=2,n=5,∴点M(m,n)在第一象限,故选A.6.【答案】如图,设O的是五角星的中心,∵五角星是正五角星,∴∠AOB=∠BOC=∠COD=∠DOE=∠AOE,∵它们都是旋转角,而它们的和为360°,∴至少将它绕中心顺时针旋转360÷5=72°,才能使正五角星旋转后与自身重合.故选:B.7.【答案】∵将△OAB绕点O逆时针旋转80°,∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α,∠D=100°∵∠A=2∠D=100°,∴∠D=50°∵∠C+∠D+∠DOC=180°,∴100°+50°+80°﹣α=180°解得α=50°,故选A8.【答案】根据题意得,点A关于原点的对称点是点A′,∵A点坐标为(3,4),∴点A′的坐标(﹣3,﹣4).故选B.9.【答案】∵B、A、B1在同一条直线上,∴∠BAB1=180°,∴旋转角等于180°.故选D.10.【答案】由旋转的性质可知:BC=DE=1,AB=AD,∵在RT△ABC中,AC=3,BC=1,∠ACB=90°,∴由勾股定理得:10又旋转角为90°,∴∠BAD=90°,∴在RT △ADB 中,即:BD 的长为故:选A二、填空题11.【答案】90º12.【答案】∵Rt △ABC 绕点A 逆时针旋转40°得到Rt △AB′C′,∴AB=AB′,∠BAB′=44°,在△ABB′中,∠ABB′=12(180°﹣∠BAB′)=12(180°﹣44°)=68°, ∵∠AC′B′=∠C=90°,∴B′C′⊥AB ,∴∠BB′C′=90°﹣∠ABB′=90°﹣68°=22°.故答案为:22°.13.【答案】∵AO=32,BO=2,∴AB=52,∴OA+AB1+B1C2=6,∴B2的横坐标为:6,且B2C2=2,∴B4的横坐标为:2×6=12,∴点B2016的横坐标为:2016÷2×6=6048.∴点B2016的纵坐标为:2. ∴点B2016的坐标为:(6048,2).故答案为:(6048,2).14.【答案】令y=0x+2=0,解得令x=0,则y=2,∴点A (0),B (0,2),∴OB=2,∴∠BAO=30°,∴AB=2OB=2×2=4,∵△AOB 绕点A 顺时针旋转60°后得到△AO′B′,∴∠BAB′=60°,∴∠OAB′=30°+60°=90°,∴AB′⊥x 轴,∴点B′(4).故答案为:(4).15.【答案】∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×3=90°.故答案为:90°.16.【答案】如图所示:在直角△OBC 中,OC=12AC=12BC=1cm ,则(cm ),则(cm ).故答案为:cm .三、解答题17.【答案】这个图形的旋转中心为圆心;∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.18.【答案】如图:19.【答案】解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0,∴x=-1,∴x+2y=-720.【答案】(1)证明:在△AEB与△ADC中,AB=AC,∠A=∠A,AE=AD;∴△AEB≌△ADC,∴∠B=∠C.(2)解:先将△ADC绕点A逆时针旋转50°,再将△ADC沿直线AE对折,即可得△ADC与△AEB重合.或先将△ADC绕点A顺时针旋转50°,再将△ADC沿直线AB对折,即可得△ADC与△AEB重合.21.【答案】(1)如图,点C的坐标为(﹣2,4);(2)点B′、A′的坐标分别为(﹣4,﹣2)、(﹣4,0).22.【答案】(1)∵点A(2,3m),∴关于原点的对称点坐标为(﹣2,﹣3m),∵在第三象限,∴﹣3m<0,∴m>0;(2)由题意得:①0.5m +2=12(3m ﹣1),解得:m=52;②0.5m +2=﹣12(3m ﹣1),解得:m=﹣34.23.【答案】(1)点P 关于原点的对称点P'的坐标为(2,1); (2)OP '=(a )动点T 在原点左侧,当1TO OP '=时,△P'TO 是等腰三角形,∴点1T,0),(b )动点T 在原点右侧,①当T2O=T2P'时,△P'TO 是等腰三角形,得:2T (54,0),②当T3O=P'O 时,△P'TO 是等腰三角形,得:3T,0),③当T4P'=P'O 时,△P'TO 是等腰三角形,得:点T4(4,0).综上所述,符合条件的t 的值为,54,4.24.【答案】(1)如图1所示过点B 作BC ⊥OA ,垂足为C .图1∵△OAB 为等边三角形,∴∠BOC=60°,OB=BA .∵OB=AB ,BC ⊥OA ,∴OC=CA=1.在Rt △OBC中,BCOC =,∴∴点B 的坐标为(1.(2)如图2所示:(A 1)图2yx O B 1CB A∵点B1与点A1的纵坐标相同,∴A1B1∥OA .①如图2所示:当a=300°时,点A1与点B1纵坐标相同.如图3所示:A 1图3yxO B 1CBA当a=120°时,点A1与点B1纵坐标相同.∴当a=120°或a=300°时,点A1与点B1纵坐标相同.(3)如图2所示:由旋转的性质可知A1B1=AB=2,点B 的坐标为(1,2), ∴点B1的坐标为(﹣1.如图3所示:由旋转的性质可知:点B1的坐标为(1.∴点B1的坐标为(﹣11.【素材积累】司马迁写《史记》汉朝司马迁继承父业,立志著述史书。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋转单元测试卷2一、选择题(每题3分,共24分)1.《北京市生活垃圾管理条例》对生活垃圾分类提出更高要求,于2020年5月1日起施行,施行的目的在于加强生活垃圾管理,改善城乡环境,保障人体健康.下列垃圾分类标志,既是轴对称图形又是中心对称图形的是()A.B.C.D.2. 时钟钟面上的分针从12时开始绕中心旋转120°,则下列说法正确的是()A.此时分针指向的数字为3B.此时分针指向的数字为6C.此时分针指向的数字为4D.分针转动3,但时针却未改变3.如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A.M或O或N B.E或O或C C.E或O或N D.M或O或C4.如图,菱形OABC的一边OA在x轴上,将菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,若OB=,∠C=120°,则点B′的坐标为()A.(3,)B.(3,)C.(,)D.(,)5.如图,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A.30,2B.60,2 C.60,D.60,6.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部B.外部C.边上D.以上都有可能7.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是()A.30°B.45°C.60°D.90°8.在平面直角坐标系中,将点A1(6,1)向左平移4个单位到达点A2的位置,再向上平移3个单位到达点A3的位置,△A1A2A3绕点A2逆时针方向旋转900,则旋转后A3的坐标为( )A.(-2,1)B.(1,1)C.(-1,1)D.(5,1)二. 填空题(每题3分,共24分)9. 如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=.10. 如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm.如果正方形AEFG绕点A旋转,那么C、F两点之间的最小距离为_________cm.11.已知点A(2a﹣3b,﹣1)与点A′(﹣2,3a+2b)关于坐标原点对称,则5a﹣b=.12. 如图所示,在Rt△ABC中,∠A=90°,AB=AC=4cm,以斜边BC上距离B点cm的H为中心,把这个三角形按逆时针方向旋转90°至△DEF,则旋转前后两个直角三角形重叠部分的面积是___cm2.13.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至ED,连接AE、DE,△ADE的面积为3,则BC的长为_________.14. 如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合,如果AP=3,那么线段PP′的长等于________.15.如图,在直角坐标系中,已知点P0的坐标为(1,0),进行如下操作:将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2,如此重复操作下去,得到线段OP3,OP4,…,则:(1)点P5的坐标为__________;(2)落在x轴正半轴上的点P n坐标是_________,其中n满足的条件是________.16.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是__________.三综合题(17,18,19题每题12分,20题16分)17. 如图,已知,点P是正方ABCD内一点,且AP∶BP∶CP=1∶2∶3.求证:∠APB=135°.18.如图,已知点D是△ABC的BC边的中点,E、F分别是AB、AC上的点,且DE⊥DF.求证:BE + CF>EF.19.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP 逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是.(结果可以不化简)20.如图14―1,14―2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.⑴如图14―1,当点E在AB边的中点位置时:①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是;③请证明你的上述两猜想.⑵如图14―2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE与EF有怎样的数量关系.一、选择题1.【答案】C.2.【答案】C.【解析】分针每5分钟转动30.3.【答案】A.【解析】因为以M或O或N为旋转中心两个图形能够完全重合.4.【答案】D.【解析】因为是菱形,所以可得为等腰直角三角形.5.【答案】C.【解析】△BDC为正三角形,所以△FDC为直角三角形,∠DCF=30°,DF=1,FC=,即求得.6.【答案】C.【解析】∵AC=BD=10,又∵∠ABC=∠DEB=90°,∠A=45°,∠D=30°,∴BE=5,AB=BC=5,由三角板DEB绕点B逆时针旋转45°得到△D′E′B,设△D′E′B与直线AB交于G,可知:∠EBE′=45°,∠E′=∠DEB=90°,∴△GE′B是等腰直角三角形,且BE′=BE=5,∴BG==5,∴BG=AB,∴点A在△D′E′B的边上,故选C.7.【答案】D.【解析】232,1),A (2,4),A (即旋转90°后3A 坐标为(-1,1). 二、填空题9.【答案】5.【解析】作FG ⊥AC ,根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,∵点F 是DE 的中点,∴FG ∥CD∴GF=CD=AC=3EG=EC=BC=2∵AC=6,EC=BC=4∴AE=2∴AG=4根据勾股定理,AF=5.10.【答案】32;【解析】当点F 在正方形ABCD 的对角线AC 上时,CF=AC ﹣AF ,当点F 不在正方形的对角线上时由三角形的三边关系可知AC ﹣AF <CF <AC+AF ,∴当点F 在正方形ABCD 的对角线AC 上时,C 、F 两点之间的距离最小,∴CF=AC ﹣AF=4﹣=32cm .故答案为:32.11.【答案】. 【解析】由点A (2a ﹣3b ,﹣1)与点A′(﹣2,3a+2b )关于坐标原点对称,得,解得,5a ﹣b=5×﹣=,【解析】证明△FHC 和△FHG 是等腰直角三角形,且腰长为,即得. 13.【答案】5.【解析】做DF ⊥BC,EG ⊥AD,交AD 的延长线于点G ,则AD=BF,可证得△DEG ≌△DCF,即EG=FC,又因为3ADE s △,所以EG=3, 即BC=BF+FC=AD+EG=5.14.【答案】32.【解析】由旋转可知△APP′是等腰直角三角形,所以PP′=32.15.【答案】(1) ,(2)落在x 轴正半轴上的点P n 坐标是,其中n 满足的条件是n=8k (k=0,1,2,…) 16.【答案】(-1,).【解析】首先求得12,P P 的坐标,即可求得3P 坐标.三.解答题17.【解析】证明:将△APB 绕点B 沿顺时针方向旋转90°至△CP′B 位置(如图),则有△APB ≌△CP′B .∴BP′= BP ,CP′=AP , ∠PBP′= 90°,∠APB=∠CP′B .设CP′= AP= k ,则BP′= BP=2k ,CP= 3k ,在Rt △BP′P 中,BP′= BP= 2k ,∴∠BP′P=45°.=(3k)2= CP2,∴∠CP′P=90°,∴∠CP′B=∠CP′P+∠BP′P=90°+45°=135°,即∠APB=135°.18.【解析】证明:将△BDE 绕点D 沿顺时针方向旋转180°至△CDG 位置,则有△BDE≌△CDG .∴BE=CG,ED=DG.∵DE⊥DF,即DF⊥EG.∴EF=FG,在△FCG中CG+CF>FG,即BE+CF>EF.19.【解析】解:(1)如图2,∵△ABP逆时针旋转60°得到△A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;故答案是:6.(2)如图3,∵Rt△ABC是等腰三角形,∴AB=BC.以B为中心,将△APB逆时针旋转60°得到△A'P'B.则A'B=AB=BC=4,PA=P′A′,PB=P′B,∴PA+PB+PC=P′A′+P'B+PC.∵当A'、P'、P、C四点共线时,(P'A+P'B+PC)最短,即线段A'C最短,∴A'C=PA+PB+PC,∴A'C长度即为所求.过A'作A'D⊥CB延长线于D.∵∠A'BA=60°(由旋转可知),∴∠1=30°.∵A'B=4,∴A'D=2,BD=2,∴CD=4+2.在Rt△A'DC中A'C====2+2;∴AP+BP+CP的最小值是:2+2(或不化简为).故答案是:2+2(或不化简为).让更多的孩子得到更好的教育20.【解析】⑴①DE=EF;②NE=BF.③证明:∵四边形ABCD是正方形,N,E分别为AD,AB的中点,∴DN=EB∵BF平分∠CBM,AN=AE,∴∠DNE=∠EBF=90°+45°=135°∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,∴∠NDE=∠BEF∴△DNE≌△EBF∴DE=EF,NE=BF⑵在DA边上截取DN=EB(或截取AN=AE),连结NE,点N就使得NE=BF成立(图略)此时,DE=EF.。

相关文档
最新文档