磁场中的高斯定理和安培环路定律.

合集下载

2、磁场的高斯定理和安培环路定理

2、磁场的高斯定理和安培环路定理

L
B dl o I i
L

S
B dS 0 j dS

S
B 0 j
安培环路定理的物理意义 磁场是有旋场(或磁场是非保守场,磁感应线 是闭合曲线)。
三、安培环路定理的应用
O
R
r
例3、求长直螺线管内的磁场。设螺线管的长度为 L,共有N匝线圈,单位长度上有 n = N/L匝线圈, 通过每匝线圈电流为I。管内中间部分的磁场是均 匀的,方向与管的轴线平行,在管的外侧磁场很 弱,可以忽略不计。
B
a
b
c d [解]: 若螺线管很长,则边缘效应可以忽略,螺 线管可看成是无限长,由对称性可知管内磁场是 均匀的,方向与管的轴线平行,并由右手螺旋定 则确定。在管的外侧磁场很弱,可以忽略不计。
B dl B 2πr μ0 I ,
j I / R2
且 I j s jπr 2 (r <R)
B
1 B μ0 jr 2
μ0 Ir B 2π R 2
0 I B 2R
μ0 I r = R处 B 2π R
B
0 Ir 1 0 jr, ( r R) 2 2 R 2 0 I 1 R2 0 j , r R ) ( 2 r 2 r
例2、求均匀载流无限长圆柱导体内外的磁场分布。
[解]:当r R时 B dl B 2r 0 I
L
I
R
μ0 I B 2π r
I 由 j πR 2
1 R2 B μ0 j 2 r
(r >R)
I jπR2
r
L
L

第25讲 磁场的高斯定理和安培环路定理

第25讲 磁场的高斯定理和安培环路定理

第25 讲磁场的高斯定理安培环路定理的应用一、通过磁场中任一曲面S 的磁通量为二、磁场的高斯定理三、安培环路定理d SB SΦ=⋅⎰0d =⋅⎰SS B四、利用安培环路定理求解的典型电流的磁场(1) 电流均匀分布的无限长金属柱面02πI B rμ=)(R r >0=B (2) 电流均匀分布的无限长金属柱体02πI B rμ=022πIrB Rμ=()r R <)(R r >()r R <(3) 无限大平面电流20jB μ=(4) 载流无限长均匀密绕直螺线管0=B (管内)(管外)(5) 载流螺绕环=B (管内)(管外)0B nI μ=02πNIB rμ=Olxyz解:(1)立方体阴影面积2222(015m)22510mS l ..-===⨯[Q7.25.1]一边长为l =0.15m 的正立方体如图所示,有一均匀磁场通过立方体所在区域,求(1)通过立方体阴影面积的磁通量;(2)通过立方体六个面的总磁通量。

()6315T B i j .k =++O lxyz阴影面积的法线方向单位矢量通过阴影面积的磁通量为(2)根据磁场的高斯定理,通过立方体六个面的总磁通量n e i =ΦB S=⋅()()226315T 22510m 0135Wbi j .k .i .-=++⋅⨯=dI1r2r3rIld[Q7.25.2]如图所示,两平行长直导线相距d=40cm,每根导线载有电流I=20A。

求(1)两导线所在平面内与两导线等距离的一点处的磁感应强度;(2)通过图中阴影面积的磁通量。

(r1=r3=10cm,l=25cm)I1r 2r 3r Ild解:(1)两导线所在平面内与两导线等距离处的磁感应强度大小为⊗022π2μIB d /=722(4π10N/A )(20A)π(04m).-⨯⨯⨯=⨯54010T-.=⨯I1r 2r 3r IldOr(2)通过图中阴影面积的磁通量为2d ΦB S=⋅⎰121001212d ln 2ππr r r μI μIl r r l r r r ++==⎰72(025m)(4π10N/A )(20A)010m 020mlnπ010m ....-⨯⨯⨯+=62210Wb-.=⨯[Q7.25.3]一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I 。

高斯定理和安培环路定理

高斯定理和安培环路定理

r R 时在圆柱面内做一圆周
B cos dl B dl B 2r 0
L L
dI ' dI
P
B0
例 无限大平面电流的磁场.有一无限大的导体平面,均匀地 流着自下而上的面电流.设其电流线密度(垂直于电流线的单 位长度上的电流)为a,求距平面为d的任一点的磁感应强度B.
2、任意两条磁力线在空间不相交。 3、磁力线与电流方向之间可以用右手定则表示。
二.磁通量
磁场的高斯定理
静电场: e E dS qi / 0 S 磁 场: B dS ?
B dN dS

d B dS BS cos
m
通过面元的磁力线条数 —— 通过该面元的磁通量
(1)设闭合曲线L在垂直于无限长载流导线的平面内,电流I穿 过L. 设闭合回路 L为圆形回路( L 与 I 成右螺旋)
载流长直导线的磁感强 度为 0I B 2π R 0I l B d l 2 π R d l 0I l B d l 2 π R l d l
即在真空的稳恒磁场中,磁感应强度 B 沿任
讨论 (1) 积分回路方向与电流方向呈右手螺旋关系 满足右螺旋关系时 I i 0 反之 I i 0
(2) 安培环路定理只适用于闭合的载流导线,对于任意设想 的一段载流导线不成立
例如 图中载流直导线, 设 θ 1 θ 2 / 4 则 L 的环流为:
B dl
L
I
2
L 4a cos1 cos 2 dl
2 2 2a
0 I
a

0 I
4a
2
0 2I
2
L
0 I

磁场的高斯定理和安培环路定理课件

磁场的高斯定理和安培环路定理课件

03
安培环路定理的介绍与推导
安培环路定理的基本概念
总结词
安培环路定理是描述磁场散布的重要定理之一,它指出磁场线总是闭合的,且穿过任意一个封闭曲面的磁通量为 零。
详细描述
安培环路定理是电磁学中的基本定理之一,它描述了磁场线的性质和散布规律。根据安培环路定理,磁场线总是 闭合的,即磁场线不会中断或消失,而是形成一个完整的闭合曲线。此外,安培环路定理还指出,穿过任意一个 封闭曲面的磁通量为零,即磁场线不会从一个区域穿入另一个区域。
磁力线
磁感应强度
描述磁场强弱的物理量,单位是特斯 拉或高斯。
描述磁场散布的几何图形,磁力线闭 合且不相交,磁力线的疏密程度表示 磁场强弱。
高斯定理的背景与定义
高斯定理的背景
磁场在空间中的散布具有闭合性 ,即穿过某一封闭曲面S的磁通量 等于零或无穷大。
高斯定理的定义
穿过任意封闭曲面S的磁通量等于 该封闭曲面所包围的净磁荷量。
04
高斯定理与安培环路定理的比较与联系
两者之间的类似之处
闭合曲面的磁场通量
高斯定理和安培环路定理都涉及到闭合曲面的磁场通量。在高斯定理中,磁场 通量是通过闭合曲面进入或离开某一区域的量,而在安培环路定理中,磁场通 量与电流和闭合曲面的关系是关键。
无源磁场
高斯定理适用于无源磁场,即没有电流源的磁场。同样地,安培环路定理也适 用于无源磁场的情况。
高斯定理的应用场景
01
02
03
磁场散布分析
通过高斯定理可以分析磁 场在空间中的散布情况, 确定磁力线的走向和强弱 。
磁荷检测
高斯定理可以用于检测磁 场中的磁荷散布,例如磁 铁、发电机和电动机中的 磁荷散布。
磁场屏蔽

磁场中的高斯定理和安培环路定理

磁场中的高斯定理和安培环路定理

规定:
与L 绕向成右旋关系 与L 绕向成左旋关系
Ii 0 Ii 0
例如:
Ii I1 2I2
(穿 过L )
注意:

L
B dl
0 Ii
(穿 过L)
B:
与空间所有电流有关

B 的环流:只与穿过环路的电流代数和有关


穿过 L的电流:对 B 和 B dl 均有贡献 L
2
r1
2
d r1 r2
2.26 106 wb
二、安培环路定理(Ampere’s circulation theorem)
1.导出: 可由毕 — 沙定律出发严格推证
采用: 以无限长直电流的磁场为例验证
推广到任意稳恒电流磁场(从特殊到一般)
1)选在垂直于长直载流导线的平面内,以导线与 平面交点o为圆心,半径为 r 的圆周路径 L,其指向 与电流成右旋关系。
B 0I 2r
练习:同 求轴B的的两分筒布状。导线通有等值反向的电流I,
(1) r R2 , B 0
R2
R1
(2)
R1

r

R2 ,
B

0I 2r
I
rI
(3) r R1, B 0
2.长直载流螺线管的磁场分布
已知:I、n(单位长度导线匝数) 分析对称性 管内磁力线平行于管轴 管外靠近管壁处磁场为零

dl


0I


0
d

0I
对任意形状的回路
B dl
0I
rd

0I
d
2π r

8-4 磁场高斯定理和安培环路定理

8-4 磁场高斯定理和安培环路定理

µ0 NI ≈ µ 0 nI B= 2π r
例3 无限大平面电流的磁场分布 r j -面电流密度矢量
Bz
By = 0
Bx = 0
Bx=0
By=0
l B
j
安培环流定理:2lB = µ 0 jl 安培环流定理:
B=
µ0 j
2
j
无限大均匀平面电流两侧的磁场是均匀磁 大小相等,方向相反。 场,大小相等,方向相反。

L
ab
bc
cd
da
= B内 ab
N = µ0 ab I l
由安培环路定理
r ⊗ ⊗ ⊗ ⊗⊗ ⊗ ⊗ ⊗⊗ ⊗
N n= l
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
c d
均匀场
b
B内
a
B = µ 0 nI
环形螺线管
. . . . .
. . . .. . .. . . . .
R
.
r . . .
..
. . . . .
.. . . . ...
.
I
∫ l B . dl µ I =∫ 2π r
o
=
∫l B r dϕ
∫0
2 π
ϕ =µ o I rd 2π
d ϕ =µ o I
结束
返回
3. 若改变积分绕行方向
∫ l B . dl = ∫l B cosα dl
=
µoI B= 2 r π l I O B r dϕ dl
∫l B cos(π θ )dl θ = ∫ l B cos dl
r r B⋅ dS = 0 ∫
S
高斯定理的积 分形式
穿过任意闭合曲面S的总磁通必然为零, 穿过任意闭合曲面 的总磁通必然为零,这就 的总磁通必然为零 高斯定理。 是稳恒磁场的高斯定理 是稳恒磁场的高斯定理。

07磁场的高斯定理和安培环路定理

07磁场的高斯定理和安培环路定理

I
r L
B
7
安培环路定理为我们提供了求磁感应强度的另一种 方法。但利用安培环路定理求磁感应强度要求磁场具有 方法。但利用安培环路定理求磁感应强度要求磁场具有 高度的对称性 。 利用安培环路定理求磁感应强度的关健: 利用安培环路定理求磁感应强度的关健:根据磁 场分布的对称性,选取合适的闭合环路。 场分布的对称性,选取合适的闭合环路。 3、选取环路原则 (1)环路要经过所研究的场点。 环路要经过所研究的场点。 环路要经过所研究的场点 (2)环路的长度便于计算; 环路的长度便于计算; 环路的长度便于计算 r r (3)要求环路上各点 B 大小相等,B 的方向与环路 大小相等, 要求环路上各点 方向一致, 方向一致, r r µ0 ∑ I I 写成 B = 目的是将: B ⋅ dl = µ0 目的是将
3
2、磁通量
dΦm
r B
磁通量: 通过任一曲面的磁力线的条数。 磁通量 通过任一曲面的磁力线的条数。 1)穿过一面元的磁通量dΦ m )
r r d Φ m = B ⋅ dS 单位:韦伯,Wb 单位:韦伯,
2)穿过某一曲面的磁通量 )
dS
S
Φm = ∫
S
r r d Φ m = ∫ B ⋅ dS = ∫ BdScosθ
a
b
r B
d
c
r B外 = 0
r cr r d r r ar r r r b r B ⋅ dl = ∫a B ⋅ dl + ∫b B ⋅ dl + ∫c B ⋅ dl + ∫d B ⋅ dl ∫ r r r c r a r r Q B ⊥ d l , cosθ = 0 ∫b B ⋅ dl = ∫d B ⋅ dl = 0, r d r r B = µ0nI B 螺线管外: 螺线管外: 外 = 0, ∫ B ⋅ dl = 0

磁场的高斯定理和 安培环路定理.ppt

磁场的高斯定理和 安培环路定理.ppt

B d S B d S
S1
磁通量仅由 的共同边界线所决定

S2
能否找到一个矢量A,它沿L作 线积分等于通过S的通量?

A dl B dS (a)
L
S
数学上可以证明,这样的矢量A的确存在,对
于磁感应强度B,A叫做磁矢势,A在空间的
分布也构成矢量场,简称矢势。
2π R
oR r

解 0 r R, B d l 0 l r R, l B d l 0I
B0 B 0I
2π r
§3 §4 磁场的高斯定理和安培环路定理
第二章 恒磁场
例5 无限长圆柱电缆的磁场(两空心圆筒)

解 0 r R1, B d l 0 B 0
第二章 恒磁场
例3 无限长载流圆柱体的磁场
I
解 1)对称性分析 2) 选取回路
RR
rR
Bdl l
0I
L
2π rB 0I
B 0I
2π r
r B
0 r R
l
B
d
l

0
π π
r2 R2
I
2π rB 0r2 I
R2
B

0Ir
2π R2

I . dB
ABLCDLA
B dl
AB B dl,
BLC
B dl

CD
DLA
B dl, B dl

B dl
AB

CD
BLC

CLB
DLA

L
B dl B dl 0,即 B dl B dl

133磁场的基本特征 高斯定理和安培环路定理

133磁场的基本特征 高斯定理和安培环路定理

S 恒定电流磁场是散度为零的场 B = 0
B d S = 0
1
1.磁感线
切线方向—— B 的方向; 疏密程度—— B 的大小.
I I I
2
I S N S I N
3
直线电流的磁感应线
I I B
4
圆电流的磁感应线
I
5
通电螺线管的磁感应线
I
I
6
各种典型的磁感应线的分布:
围绕单根载流导线的任一回路 L
L2
对L每个线元 d l 以过垂直导线平面作参考分解 为分量 dl// 和垂直于该平面的分量 d l d l B 0 B d l B d l B d l //
L
B d l B d l I 证明步骤同上 // 0 L L //
直线电流的磁感线
圆形电流的磁感线
7
直螺线管电流的磁感线
环形螺线管电流的磁感线
8
1.磁力线的特征 无头无尾 与电流套连 与电流成右手螺旋关系 闭合曲线
I
2. 磁通量
B d s 单位:韦伯(Wb) m S
9
2. 磁通量 磁场的高斯定理
S B
ΔN B ΔS
磁场中某点处垂直 B 矢量的单位面积上 通过的磁感线数目等于该点 B 的数值.
讨论
S 0 1)Bd
S
磁场的基本性质方程
2)关于磁单极:
将电场和磁场对比: 由电场的高斯定理
d Sq 0 D
S
可把磁场的高斯定理写成 与电场类似的形式
BdS qm
S
q0 -自由电荷
qm - 磁荷

磁场的高斯定理和安培环路定律

磁场的高斯定理和安培环路定律

0I
是否成立???
设任意回路L在垂直于导线的平面内,与电流
成右手螺旋。
l B dl Bdl cos
0I
2πr
dlc
os
d
B
I
dl
r
0I
2πr
rd
0I

d
l
B dl
l
0I
dl cos rd
闭合回路不环绕电流时
B1
0I
2 π r1
B2
0I
2 π r2
B1
B2
d
I
dl1
r1
dl2
I
I
解:取垂直纸面向里为法
B
线方向,以导线1所在位
置为坐标原点,建立如图 所示的坐标轴。
x
l
取细长条面元,面元内为
均匀磁场
a aa
B
0I 2x
2
0I
3a
x
o
x
窄条形面元的元磁通为
dm B dS BdS Bldx I
通过矩形面积内的磁通量
m
dm
2a
Bldx
a1
2a
a
0I 2x
2
0I
o
B 0I
2π x
B // S
x
方向垂直于纸面向里
dΦ BdS 0I ldx I
2π x
B
Φ
S
B dS
0Il

d2
d1
dx x
l
Φ 0Il ln d2
2π d1
d1 d2
o
x
例2 两平行的无限长直导线通有电流 I , 相距3a,
矩形线框宽为a,高为l与直导线共面,求通过线框的

磁场的高斯定理和安培环路定理.

磁场的高斯定理和安培环路定理.

第二4节 、磁场的安培环路定理
第八章
1、真空中
根据闭合电流产生的磁场公式,即安
培 — 拉普拉氏定律,可证明真空中磁场 B
沿闭合回路 L
∮L B ·dl =μoΣI 此式称为真空中磁场的安培环流定理,式
中ΣI 是闭合回路 L 所包围的所有闭合电流
I 的代数和。
物理意义:磁场 B 是有旋场,非保守场
第4节
第八章
电流正负符号按右手螺旋定则:
电流方向与 L 的绕行方向符合右手螺
旋关系时,此电流为正,否则为负。
举例说明:
+I I
+ I1 + I2
- I3
L
第24、节 有磁介质
第八章
∮L B ·dl =μoΣI = μoΣIo +μoΣI’
式中ΣIo 和ΣI’ 分别是穿过安培环路 L 的自 由电流和束缚电流的总和。
其中 n = N/2R 为螺绕环单位长度的匝数。
2、环管外:ΣIo = 0,H// = 0,B// = 0 此式说明密绕螺绕环外部无磁场。
第特4节 例:当
R


第八章
时,即为无限长螺线管。
因此,长直螺线管内磁感应强度公式为:
B = o n I 此式表明,理想长直螺线管内部的磁感应强
注意:螺绕环和螺线管的外部磁场为零的结 论是在假定它们由许多不相连的圆环密集排 列组成的模型下得出的。实际上圆环以螺旋 线形式相连形成螺绕环和螺线管,沿螺绕环 和螺线管有一电流分量通过,即等效一圆电 流和长直载流导线,因此它们的外部磁场不 为零。但相比内部磁场而言,则相对很小。
2π R
μ 0I
2π R
第八章
I R
r

6-2磁场的高斯定理和安培环路定理

6-2磁场的高斯定理和安培环路定理

例6-3 如图所示,载流长直导线上的电流强度为 I , 它与边长分别为 a 和 b 矩形共面,边与长直导线平 行,两者之间的距离 d .求载流长直导线的磁场穿过 该平面的磁通量. 0 I 解 B 2π x B C B I
dΦ BdS
0
I
b
A dx D
2π x
bdx
o
x
d
a
0 Ib d a dx Φ 2 π d x 0 Ib d a ln 2π d
I2 I 3
l
B B1 B2 B3 B d l 0 ( I 2 I 3 )
l
L
I1
B d l 0 (I1 I1 I1 I 2 )
L
0 I1 I2) (
第六章 恒定磁场
11
6-2
磁场的高斯定理和安培环路定理
即在真空的稳恒磁场中,磁感应强度 B 沿任
0 乘以该闭合路径
I
电流 I 正负的规定 :I 与 为正;反之为负.
L 成右螺旋时,
第六章 恒定磁场
9
6-2
磁场的高斯定理和安培环路定理
注意
(1)环路定理中的磁感强度 B
为闭合路径 L 上的 磁感强度,它是由空间所有电流产生的。 (2)磁感强度沿闭合路径的环流,仅与闭合路径所包
6-2
磁场的高斯定理和安培环路定理
一、磁 感 线 规定:曲线上每一点的切线方向就是该点的磁感 强度 B 的方向,曲线的疏密程度表示该点的磁感强度 B 的大小.
I I I
第六章 恒定磁场
1
6-2
磁场的高斯定理和安培环路定理
I S S N I
N

磁场的高斯定理和安培环路定理

磁场的高斯定理和安培环路定理

L
I
dϕ v
dB
v v B ⋅ dl = Brdϕ v v µ0I ∫L B⋅ dl = ∫L rdϕ = µ0I
2 r π
在围绕单根载流导线的 垂直平面内的任一回路。 垂直平面内的任一回路。
v v I B ⋅ dl = Brdϕ v v µ0I ∫L B⋅ dl = ∫L rdϕ = µ0I
2 r π
6
3. 安培环路定理的应用 例1:求无限长载流圆柱体磁场分布。 :求无限长载流圆柱体磁场分布。 圆柱体轴对称, 解:圆柱体轴对称,以轴上一点为 I 圆心取垂直轴的平面内半径为 r 的 圆为安培环路
v v Q∫ B⋅ dl = 2πrB = µ0 ∑I
L
v dB
dl'
2πr v r Ir 2 ∴ ∫ B ⋅ dl = µ0 2 r R
为均匀磁场,并且大小相等,但方向相反。 为均匀磁场,并且大小相等,但方向相反。
o dl ' ' a
b
结果: 结果:在无限大均匀平面电流的两侧的磁场都
13
ab bc cd da
无垂直于轴的磁场分量,管外部磁场趋于零, 无垂直于轴的磁场分量,管外部磁场趋于零, 因此管内为均匀磁场,任一点的磁感应强度为: 因此管内为均匀磁场,任一点的磁感应强度为:
r r ∫ B ⋅ dl = Bab ⇒ Bab = µ 0nab I
∴B = µ0nI
9
其方向与电流满足右手螺旋法则。 其方向与电流满足右手螺旋法则。
v v 表达式 ∫ B⋅ dl = µ0 ∑Ii
L i
符号规定: 符号规定:穿过回路 L 的电 流方向与 L 的环绕方向服从右 手关系的, 为正,否则为负。 手关系的,I 为正,否则为负。

11-4磁场的高斯定理和安培环路定理

11-4磁场的高斯定理和安培环路定理

单根导线产生的磁场

所有电流 的总场
L

L
Bn dl 0 I n
B1 dl 0 I1
L Bn1 dl 0 Bnk dl 0
L
任意回路
L
B dl 0 I i
i
穿过回路 的电流
7
在理解这个定理时,应注意以下几个问题 (1) 定理中的B是安培环路L上任意一点的磁感 应强度,它是由空间所有电流共同产生的。定理中 的 Ii则是安培环路L所包围的电流的代数和。 (2)矢量B的环路积分不恒等于零,说明稳恒磁 场不是保守力场,而是有旋场,所以在磁场中不 能引入势能(标量势)的概念。 (3)定理只适用于稳恒电流的磁场。由于稳恒电 流是闭合的,所以对于不闭合的有限长的载流导线, 安培环路定理不适用;
dl ' o dl ' ' 做 PO 垂线,取对称的长直 电流元,其合磁场方向平行于电流平面。无数对 称元在 P点的总磁场方向平行于电流平面。
电流平面无限大,故与电流平面等距离的各点
B 的大小相等。在该平面两侧的磁场方向相反。 16
作一安培回路如图: bc和 da两边被电流平面 等分。ab和cd 与电流平
B dl 0
根据安培环路定理,该安培环路一定包围电流。 由此可得结论:磁感应线总是与产生它的电流回 10 路套连在一起的。
3. 安培环路定理的应用 例1:求无限长载流圆柱体磁场分布。 解:圆柱体轴对称,以轴上一点为 I
圆心取垂直轴的平面内半径为 r 的 圆为安培环路
B dl 2πrB 0 I
8
边长为2a的正方形闭合回路 CDEFC,所通电流为I。现仅讨 论CD段,取中心处于其中点且 与其垂直的半径为r的圆为安培 环路,CD段所激发的磁场在圆 上各点的磁感应强度为 0 Ia BCD 2r (a 2 r 2 )1/ 2 BCD的方向与圆周相切,与电流的方向成右螺旋 关系。沿此圆周的环路积分为 0 Ia BCD dl 2 2 1/2 0I

磁场的高斯定理和安培环路定理

磁场的高斯定理和安培环路定理
磁场是无源场 磁场是 无源场 比较 静电场 稳恒 磁场 磁感应线闭合成环,无头无尾 不存在磁单极。 磁感应线闭合成环,或两端伸向 不存在磁单极(?) 高斯定理 环路定理

3. 磁场的高斯定理
1 E dS
S
0
q
有源场 无源场
E dl 0
L
保守场
B dS 0
三.安培环路定理的应用
—— 求解具有某些对称性的磁场分布
LB dl 0 I i
( 穿过L )
适用条件:稳恒电流的磁场 求解条件:电流分布(磁场分布)具有某些对称性,
以便可以找到恰当的安培环路L,使 LB dl 能积
出,从而方便地求解 B 。
[例一] 无限长均匀载流圆柱体 I , R 内外磁场.
无限长直螺线管内为均匀磁场
思考: 如果要计管外磁场(非线密绕)对以上结果有无影响?
I

n
B内 0nI


B
I //

0 //
I B 2r
练习: 半径 R 无限长均匀带电圆筒绕轴线匀速旋转
.R. 求: 内部 B ?
已知:
解:


R
等效于长直螺线管 B 0 nI 单位长度上电流 nI ?
I
i
I1 I 2 I 3
(穿过L )
I
i
注意:
LB dl 0 I i
( 穿过L )
B 的环流:只与穿过环路的电流代数和有关 穿过 L 的电流:对 B 和 B dl 均有贡献
L
B : 与空间所有电流有关
不穿过 L 的电流:对 L 上各点 B有贡献; 对 LB dl 无贡献

磁场中的高斯定理及安培环路定理

磁场中的高斯定理及安培环路定理

0
l
l
μI
Ñl 2π0R dl
R
l
v B
r
μI 0
2πR=μ
I
2πR
0
若l 绕行方向与图示方向相反,则
B 0I 2R
dl
v
Ñ B
v dl
Ñ Bdl
cos
π=μ 0
(
I
)
Ñ l
l
赋予电流代数含义,则
v B
dlv=μ
I
0
l
2. 无限长直电流通过垂直平面内的任一回路
r
Ñ B
r dl
Ñ B
cosθdl
若 R1、R2 R2 R1
n N N
2 R1 2 r

B
μ 0
nI
B 0 NI 2 r
I
R2
R1
例题3 :
设在无限大导体薄板中有均匀电流沿平面流动, 在垂直于电流方向的单位长度上流过的电流为i (电流密度)。求此电流产生的磁场。
a
b
B
eeeeeeeeeeeee
d
c
讨论
关于安培环路定理的应用
BdS
0 I
adx
d x
2 x
通过矩形线圈的磁通量为:
dx
d
d b
0I adx
0Ia ln d b
d 2 x
2 d
15.4 安培环路定理
rv
一. 引言:稳恒磁场的环流 Ñl B dl ?
二. 定理推导
1. 无限长直电流通过圆形回路圆心且垂直于该回路
I
v
Ñ B
v dl
Ñ Bdl
cos
当电流分布以至于磁场分布具有高度对称性时, 可以应用安培环路定理计算磁感应强度的分布。

磁场高斯定理 安培环路定理

磁场高斯定理 安培环路定理
l
Amperian loop
µ0 NI ∴B = 2πr
磁场不均匀
B
µ0 NI B= 2π r
o
R1
R2
r
o
R1
R2
r
若 R1、R2 >> R2 − R1 N n= 2π R1
则:
B = µ0nI
当 2R >> d 时,螺绕环内可视为均匀场 。
已知: 例题 已知:I 、R,电流沿轴向在截面上均匀分 , 无限长”载流圆柱导体内外磁场的分布。 布,求“无限长”载流圆柱导体内外磁场的分布。 解: 首先分析对称性 电流分布——轴对称 电流分布 轴对称 磁场分布——轴对称 磁场分布 轴对称
r<R r>R
I
R
r<R 0 B = µ0 I r>R 2π r
µ0I B 2πR
r
O
R
无限大平板电流的磁场分布。 例题 无限大平板电流的磁场分布。设一无限大导体 薄平板垂直于纸面放置, 薄平板垂直于纸面放置,其上有方向垂直于纸面朝外 的电流通过,面电流密度( 的电流通过,面电流密度(即指通过与电流方向垂直 的单位长度的电流)到处均匀。 的单位长度的电流)到处均匀。大小为 j 。 解:视为无限多平行长 直电流的场。 直电流的场。 分析求场点p的对称性 垂线, 做 po 垂线,取对称的 长直电流元, 长直电流元,其合磁场 方向平行于电流平面。 方向平行于电流平面。
r r (3)要求环路上各点 B大小相等,B的方向与环路方向 要求环路上各点 r大小相等, r 一致,目的是将: B ⋅ dl = µ0 ∑ I 写成 B = µ0 ∑ I 一致,目的是将 ∫L r ∫ dl 的方向与环路方向垂直, 或 B 的方向与环路方向垂直, r r r r B ⊥ dl , cosθ = 0 ∫ B ⋅ dl = 0

磁场的高斯定理和安培环路定理

磁场的高斯定理和安培环路定理
§2-4 磁场的高斯定理和安培环路定理
一、磁场的高斯定理(Gauss’ theorem of magnetic field) 垂直于电流元平面内的磁感线是头尾相接的闭合同心 圆,穿入或穿出闭合曲面的磁感应线的净条数必等于 零。即,通过任意闭合曲面的通量都等于零。
由叠加原理,在整个电流回路形成的
磁场中,通过任意闭合曲面的磁通量
L Bn dl 0In ,
L Bnk dl 0
任意回路
¸¸
n
B dl L
0
Ii
i1
穿过回路 的电流
闭合路径包围的电流为电
流 密度沿所包围的曲面的
¸
Ii
j dS
S
i
积分 安培环路定理说明磁场不是保守场,不存在标
量势函数。这是恒磁场不同于静电场的一个十分
重要的性质。
安培环路定理可以用来处理电流分布具有一定 对称性的恒磁场问题。
设 I1 , I 2 , … , I n电流过回路L,In 1 , I n 2 , … , I n k
电流不穿过回路L。令 B1 , B2 , … , Bn k 分别为单根
导线
I1
,
I
2
,
L

¸ B1
,
In
dl
பைடு நூலகம்
k产生的磁场,则有
¸
0I1 ,
L Bn1
dl
0
¸ #¸
# 所有电流的总¸ 场 ¸
小结
应用环路定理求解磁感应强度的步骤:
(1)根据通电电流产生的磁场的对称性,选 择合适的闭合曲线L,并规定计算方向;
(2)计算磁感应强度的环流以及通过曲线L 所包围的平面的电流的代数和;

13-3 磁场中的高斯定理和安培环路定理(南京信息工程大学 大学物理)

13-3 磁场中的高斯定理和安培环路定理(南京信息工程大学 大学物理)

=
m0I 2p r
19
例2 无限长载流圆柱面的磁场
教练习:求同轴Bv的的两分筒布状。导线通有等值反向的电流I,
L1
r
IR
L2 r
m0I B
理 2π R 物o R r
(1) r > R2 , B = 0
R2
(2)
R1
<
r
<
R2 ,
B
=
m0I 2pr
I
R1
rI
学 ò 解
0<r <R,
Bv
×
d
v l
=
0
l
R
oR r
电场、磁场中典型结论的比较
长直线
长 直


柱外

长 直


电荷均匀分布
飞 E
=
l 2pe 0 r
徐 E = 0
电流均匀分布
B
=
m0I 2p r
B=0
byE
=
l 2pe 0 r
E
=
lr 2pe 0 R 2
B
=
m0I 2p r
B
=
m 0 Ir 2p R 2
17
案柱 外

E
=
l 2pe 0 r
B
dj
I1
多电流情况
I2
I3
byL
Bv = Bv1 + Bv2 + Bv3
飞 Ñò L Bv ×d lv = m0(I2 - I3 ) 徐以上结果对任意形状
的闭合电流(伸向无限远 的电流)均成立.
L
L 与 I 成右螺旋
Ñò L Bv × dlv = m0 I
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.环路定理只适用于闭合电流或无限电流,
16
例2:利用安培环路定律计算载流无限长直导线外一点 的磁感应强度。 解:以电流为轴,做半径为 r 的环路
Hale Waihona Puke B dl B dl 0 I B 2r 0 I 0 I B 2r
r
L
将上式用于有限长直导线则得出错误结果,算出B与无 限长直电流磁感应强度相同 ,矛盾,故安培环路定律 对有限电流不适用。 17
三、环路定理的应用 例2:圆柱形载流导体 半径为 R ,通过的电 流为 I ,电流在导体 横截面上均匀分布, 求圆柱体内、外的磁 感应强度的分布。
I
R
解:1.圆柱体内部
r < R 区域
18
B dl
选取半径为 r 的环路,
Bdl cos
2
I
由于环路上各点 B 大小相等,方向 B // dl 0
0

2
,
m 0
为正通量。 为负通量。
6

2
, m 0
例1、如图 矩形线圈与载流无限长直导线共面,直导 线电流为I,求线圈的磁通量。 解:选宽度为dr ,平行于直导线的面积元 ds=ldr
0 I dm Bldr ldr 2r a b 0 I m ldr 2r a 0 Il a b ln( ) 2 a
2
r
dl B
L
B d l 0
L
I
d
b
a
L
14
B d l ( B ) d l j
L L j
由此当空间有多个无限长直电流时,利用磁场的叠加 原理:
B j dl 0
j L
交换积分与求和符号
I
i
i
i是环路内的电流。
由此可得:

L
B d l 0 I
15
1. I 为环路内的电流代数和。 2.环流 B d l 只与环路内的电流有关,
而与环路外电流无关。
3. B为环路上一点的磁感应强度,它与环路内外电流 都有关。


B d l 0 并不一定说明环路上各点的 B 都为 0。 B d l 0 环路内并不一定无电流。
L L
r R r
0 I 1 B 2r r
20
分布曲线
B
0 I 2R B r
o
1 B r
R
r
21
四、选取环路原则
利用安培环路定理计算磁场 B ,要求磁场 具有高度的对称性 ; 目的是将: 写成
L B dl 0 I
L Bdl cos B dl 0 I 0 I B dl 要求环路上各点 B 大小相等,B 的方向 与环路方向一致, B // dl, cos 1
0 ( I1 2I 2 )
I2
I3
L
12
二、定理说明
特例:以无限长载流直导线为例。 长直导线周围的B 线为 一系列的同心圆,选取路 径方向与 B 线相同;
B
左边: B d l
L
I
r
L
L Bdl cos
由于环路上各点的 B 大小相等; 且 B // dl ;θ=0
0 I B dl 2r 0 I 2r L
...............B a b
d
c
B dl
L
0 I
c d a
r

24
选择如图所示的环路
B d l ( )B d l
b a b c d

其中
a B d l B d l 0,
c
...............
a
B d l , cos 0
b
d
b
B
Bd l 0
d c
B外 0
d
c
作闭合环路 abcda,环路 内的电流代数和为:

螺线管外B =0;
b B dl B dl
a
I nabI
Bab 0 I 0nabI
22
或 Bdl , cos 0
环路要经过所研究的场点。
五、解题方法 1.场对称性分析; 2.选取环路; 3.确定环路内电流的代数和 I ; 4.应用环路定理列方程求解。 应用环路定理求 B 要比毕萨定律简 单,但只适用于具有高度对称的场。
23
例3:密绕载流螺线管通 有电流为 I,线圈密度为 n,求管内一点的 B 。 (用无限长螺线管近似。) 解:理想密绕螺线管,管 内的磁场是均匀的,管外 的磁场为 0 ;由安培环路 定律:
I
a
b

B
l
r
7
3.穿过闭合曲面的磁通量 m dm B dS
规定闭合面的外法线方向为正
磁感线穿出闭合面时
/2 n

B n
0

2
,
通量为正。
磁感线穿入闭合面

B 0 /2
8

2
,
通量为负。
五、磁场中的高斯定理
28
B 0nI
25
例3:一环形载流 螺线管,匝数为 N ,内径为 R1 , 外径为 R2 ,通有 电流 I ,求管内磁 感应强度。
解:在管内作环路 半径为 r , 环路内电流代数和为
I NI
26
o R1 rR
2
L B dl 0 I
B2r 0 NI
0 NI B 2r
环路内电流代数和为:
2
0r B dl B2r 2 I R
R
I r 2 r 2 I I 2 R R
r
L
0 I B r r 2 2R
19
2.圆柱体外一点 r > R 区域
I
在圆柱体外作一环路,
B dl
Bdl cos
B dl B2r 0 I

L
B d l 0 I
注意:I是有符号的,四指沿环路 的方向弯曲,电流与拇指方向相同 的 I 取正值,电流与拇指方向相反 的 I 取负值。
I1 I 2
L
11
如图所示,求环路L的环流 解:由环路定理
B d l 。
I1

L
B d l 0 I 0 I1

dm BdS cos BdS
dS
dS
n

B
与磁感线的式子比较,磁 通量的数值就等于磁感线 的条数
5
2.穿过某一曲面的磁通量 m dm B dS
BdS cos
dS
单位:韦伯,Wb
dm
B
S
m
为标量,只有大小正负之分。其数值等 于通过该曲面的磁感线的条数。
当 r >> ( R2 – R1) 时
o R1 rR
2
N n 2r
为沿轴向线圈密度;
B 0nI 与直螺管的结论类似。
27
磁介质的安培环路定律。
B 0 r H H
H称为磁场强度,其安培环路定律。
H d l Ic
H与B的关系:
H
B

0 I B 2r
I
r
B
3
三、磁感线性质
1、磁感线不相交。
2、磁感线为闭合曲线,没有起点,也没有终点。或两 头伸向无穷远。
3、磁感线密处 B 大;磁感线疏处 B 小。 在稳恒磁场中,其基本定律也是高斯定律、与环路定 律。
4
四、磁通量
1.穿过一面积元的磁通量定义为: dm B dS
I 向下时为负值。
13

当环路为任意形状时:
L
B d l 0 I 左边=右边定理成立。
I
θ
B d l Bdl cos
L L
由于 Bdl cos Brd
d
0 I rd I 0 2r 0
当电流不在环路内时 0 I a点 B dl d 2 0 I d b 点 B dl 2
1.定理表述 穿过任意闭合面的磁通量等于 0。
m B dS 0
2.定理证明: 由于磁感线为闭合曲线,穿入穿出 闭合面的磁感线根数相同,正负通 量抵消。 磁场是无源场,磁感线为闭合曲线,磁场是涡旋场。
9
安培环路定理
10
一、定理表述
磁感应强度沿闭合回路的线积分, ( B 的环 流),等于环路所包围电流的代数和乘以 0。
§8-3 磁场中的高斯 定理和安培环 路定律
1
一、磁感线
形象的描绘磁场分布的空间曲线。
二、规定
1.B的方向:磁感线上任意点的切线方向为该点磁感应 强度的方向。
2. B的大小:穿过垂直于磁感应强度B方向的单位面 积的磁感线根数。
dm B dS
dm
dS
B
2
磁感应强度大小为磁感线的面密度。
•无限长直载流导线的磁感线分布 磁感应强度始终与r垂直。 半径为r处,磁感应强度大小相 等。 载流螺线管的磁感线分布
相关文档
最新文档