江苏省2014届高考数学(文)三轮专题复习考前体系通关训练:倒数第1天
(三轮考前体系通关)2014年高考数学二轮复习简易通 倒数第10天 理 新人教A版

体系通关四 临考易忘、易混、易错知识大排查 倒数第10天 集合、逻辑用语、算法、复数[保温特训] (时间:30分钟)1.已知集合M ={a ,b ,c },集合N 满足N ⊆M ,则集合N 的个数是( ).A .6B .7C .8D .9 解析 集合M 的子集个数为:23=8(个). 答案 C2.已知全集U ={y |y =log 2x ,x >1},集合P =⎩⎨⎧⎭⎬⎫y |y =1x ,x >3,则∁U P = ( ).A.⎣⎢⎡⎭⎪⎫13,+∞B.⎝ ⎛⎭⎪⎫0,13C .(0,+∞)D .(-∞,0)∪⎣⎢⎡⎭⎪⎫13,+∞ 解析 集合U ={y |y >0},P ={y |0<y <13},∴∁U P =⎩⎨⎧⎭⎬⎫y |y ≥13. 答案 A3.设i 是虚数单位,复数1+a i2-i为纯虚数,则实数a 为( ).A .2B .-2C .-12 D.12解析 ∵1+a i2-i=+a +-+=-a +a +5,∴2-a =0且2a +1≠0,解得a =2. 答案 A4.设i 为虚数单位,复数z 1=1+i ,z 2=2i -1,则复数z 1·z 2在复平面上对应的点在( ).A .第一象限B .第二象限C .第三象限D .第四象限解析 z 1·z 2=(1-i)(2i -1)=1+3i ,其对应的点为(1,3),故在第一象限. 答案 A5.命题“存在一个无理数,它的平方是有理数”的否定是( ).A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数解析 先将“存在”改为“任意”,再否定结论即可. 答案 B6.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是( ).A .p 为真B .綈q 为假C .p ∧q 为假D .p ∨q 为真解析 依题意知命题p 为假,命题q 为假,故p ∧q 为假. 答案 C7.设a ∈R ,则“a =1”是直线l 1:ax +2y =0与直线l 2:x +(a +1)y +4=0平行的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析 a =1⇒l 1∥l 2,反之不一定成立. 答案 A8.如图是一个算法的程序框图,当输入的x 值为-9时,其输出的结果是( ).A .-9B .1C .3D .6解析 依题意得该算法输出的结果,即为函数f (x )=⎩⎪⎨⎪⎧f x +,x ≤0,log 3x ,x >0中,当x =-9时的函数值.∵f (-9)=f (-9+3)=f (-6)=f (-6+3)=f (-3)=f (-3+3)=f (0)=f (0+3)=f (3)=log 33=1.答案 B9.某程序框图如图所示,若输出的S =57,则判断框内应填入( ).A .k >4B .k >5C .k >6D .k >7解析 k =2时,S =2×1+2=4;k =3时,S =2×4+3=11;k =4时,S =2×11+4=26;k =5时,S =2×26+5=57,故判断框中应为k >4. 答案 A10.执行如图所示的程序框图,则输出结果为( ).A.49B.511C.712D.613解析 第一次循环S =11×3,k =3; 第二次循环S =11×3+13×5,k =5;第三次循环S =11×3+13×5+15×7,k =7;第四次循环S =11×3+13×5+15×7+17×9,k =9;第五次循环S =11×3+13×5+15×7+17×9+19×11,k =11;循环结束,故S =12⎝ ⎛⎭⎪⎫1-13+13-15+19-111=12⎝ ⎛⎭⎪⎫1-111=511.答案 B11.设A ={x |x 2-4x -5<0},B ={x ||x -1|>1},则A ∩B =( ).A .{x |-1<x <0,或2<x <5}B .{x |-1<x <5}C .{x |-1<x <0}D .{x |x <0,或x >2}解析 A ={x |x 2-4x -5<0}={x |-1<x <5},B ={x ||x -1|>1}={x |x <0,或x >2},∴A ∩B ={x |-1<x <0,或2<x <5}. 答案 A12.下列有关命题的说法正确的是( ).A .命题“若x 2=1,则x =1”的否命题为:“若x 2=1,则x ≠1” B .“x =-1”是“x 2-5x -6=0”的必要不充分条件C .命题“∃x ∈R ,使得:x 2+x +1<0”的否定是:“∀x ∈R ,均有x 2+x +1<0” D .命题“若x =y ,则sin x =sin y ”的逆否命题为真命题解析 对于A :命题“若x 2=1,则x =1”的否命题应为“若x 2≠1,则x ≠1”,故错误.对于B :因为x =-1⇒x 2-5x -6=0,应为充分不必要条件,故错误.对于C :命题“∃x ∈R ,使得x 2+x +1<0”的否定应为∀x ∈R ,均有x 2+x +1≥0.故错误.由排除法得到D 正确. 答案 D13.设复数z 满足i(z +1)=-3+2i ,则z =________.解析 z =-3+2i i -1=1+3i ,∴z =1-3i.答案 1-3i14.已知M ={y |y =x 2},N ={y |x 2+y 2=2},则M ∩N =________.解析 M ={y |y ≥0},N ={y |x 2=2-y 2}={y |-2≤y ≤2}.∴M ∩N =[0,2]. 答案 [0,2]15.“∃x ∈R ,使得x 2+(a -1)x +1<0”是真命题,则实数a 的取值范围是________.解析 依题意知:Δ=(a -1)2-4>0,解得a >3或a <-1. 答案 (-∞,-1)∪(3,+∞)16.若执行如图所示的程序框图,输入x 1=1,x 2=2,x 3=3,x =2,则输出的数等于________.解析 依题意知,根据方差公式得s 2=13[(1-2)2+(2-2)2+(3-2)2]=23.答案 23[知识排查]1.在集合的基本运算中,一定要抓住集合的代表元素.2.在应用条件A ∪B =B ⇔A ⊆B ;A ∩B =A ⇔A ⊆B 时,忽略A 为空集的情况,不要忘了借助数轴和Veen 图进行求解.3.命题的否定与否命题搞清楚,否定含有一个量词的命题时注意量词的改变. 4.“甲是乙的什么条件”与“甲的一个什么条件是乙”弄清楚了吗?5.弄清楚程序框图要计算的是什么,这个计算是从什么时候开始,中间按照什么规律进行,最后计算到什么位置.6.对复数的概念掌握了吗?运算法则特别是除法法则熟练掌握了吗?。
江苏省启东市2014届高三高考数学最后一卷-Word版含答案

江苏省启东市2014届高三高考数学最后一卷-Word版含答案启东市2014届高三模拟考试数学试卷(Ⅰ) 2014.5一、填空题:本大题共14小题,每小题5分,共70分。
不需写出解答过程,请把答案直接填写在答题卡相应位置上。
1.若复数z满足z·i=1-i,则z=___▲____.2.已知函数f(x)=lg(x-x2),则函数y=f(x2-1)的定义域为___▲____.3.为了了解一片经济林的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出样本的频率分布直方图(如图),那么在这100株树木中,底部周长小于110cm的株数是___▲___.4. 满足M {a1,a2,a3,a4},且M∩{a 1,a2,23a 3}={a 1,a 2}的集合M 的个数是__▲__. 5.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面得点数分别为x 、y ,则1log 2=y x的概率为___▲____.6.执行如下程序框图,如果输入N =5,那么输出的S =___▲____(用分数表示).7.已知函数()()ϕω+=x x f sin ,对任意实数x 都存在实数a ,使得)(a f ≤)(x f ≤)0(f 成立,且a 的最小值为2π,则函数()x f 的单调递减区间为___▲____. 8.设双曲线12222=-b y a x 的右焦点与抛物线xy82=的焦点相同,离心率为2,则此双曲线的方程为___▲____. 9.正方体ABCD —A 1B 1C 1D 1的棱长为1,线段B 1D 1上结束是 否开始输入NK =1,S =0,T =1S=S+T K=K+1输出SK >NKT T =14有两个动点E ,F ,且22=EF ,则下列结论中正确的序号是___▲____.(1)AC ⊥BE ; (2)EF //平面ABCD ; (3)面AEF ⊥面BEF ; (4)三棱锥A —BEF的体积为定值.10.已知△ABC 中,点G 满足=++,0=⋅GB GA ,则AB tan 1tan 1+的最小值为___▲____. 11.在平面直角坐标xoy 中,设圆M 的半径为1,圆心在直线x -y -1=0上,若圆M 上存在点N ,使NO =NA 21,其中A (0,3),则圆心M 横坐标的取值范围___▲____. 12.已知函数()()()⎪⎩⎪⎨⎧<+≥=0202x x x x e xx f x,若函数()()k x f x g +=有三个零点,则k 的取值范围是___▲____. 13.已知函数21(1),02,()(2),2,x x f x f x x --≤<=-≥⎪⎩若对于正数()n k n N *∈,直线ny k x =与函数()y f x =的图象恰有21n +个不同交点,则数列{}2nk 的前n 项和为___▲____.514.若实数a ,b ,c 满足a ≤b ≤c 且ab +bc +ca =0,abc =1,不等式|a +b |≥k |c |恒成立,则实数k 的最大值为___▲____.二、解答题:本大题共6小题,共90分。
(三轮考前体系通关)2014年高考数学二轮复习简易通 倒数第6天 理 新人教A版

倒数第6天立体几何[保温特训](时间:45分钟)1.已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为( ).解析空间几何体的正视图和侧视图“高平齐”,故正视图的高一定是2,正视图和俯视图“长相等”,故正视图的底面边长为2,根据侧视图中的直角说明这个空间几何体最前面的面垂直于底面,这个面遮住了后面的一个侧棱,综合以上可知,这个空间几何体的正视图可能是C.答案 C2.已知α,β是两个不同的平面,m,n是两条不重合的直线,下列命题中正确的是( ).A.若m∥α,α∩β=n,则m∥nB.若m⊥α,m⊥n,则n∥αC.若m⊥α,n⊥β,α⊥β,则m⊥nD.若α⊥β,α∩β=n,m⊥n,则m⊥β解析对于选项A,m,n有可能平行也有可能异面;对于选项B,n有可能在α内,所以n与α不一定平行;对于选项D,m与β的位置关系可能是m⊂β,m∥β,也可能m与β相交.由面面垂直的性质可知C正确.答案 C3.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥平面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的侧视图面积为( ).A.2 2 B. 3C.2 3 D.4解析所给三棱柱的侧视图为矩形,矩形的长为2,宽为等边三角形ABC的高3,所以三棱柱的侧视图面积为2 3.答案 C4.设a,b为两条直线,α,β为两个平面,则下列结论成立的是( ).A.若a⊂α,b⊂β,且α∩β=l,则a∥bB.若a⊂α,b⊂β,且a⊥b,则α⊥βC.若a∥α,b⊂α,则a∥bD.若a⊥α,b⊥α,则a∥b解析在两相交平面内分别与交线平行的两条直线平行,A错误;如图ABCD为矩形,设BC为a,AB为b,虽然有a⊥b,a⊂α,b⊂β,但平面α与β不一定垂直,B错误;由a∥α,b⊂α,可知a,b无交点,但a与b平行或异面,C错误;由直线与平面垂直的性质定理,垂直于同一平面的直线平行,知D正确.答案 D5.已知一个几何体的三视图如图所示,则该几何体的体积为( ).A .2B .4 C.23D.43解析 该几何体为四棱锥,如图所示,SC =2,AB =BC =CD =DA =1.∴V =13×1×1×2=23.答案 C6.一个几何体的三视图(侧视图中的弧线是半圆)如图所示,则该几何体的表面积是( ).A .20+4πB .24+4πC .20+3πD .24+3π解析 该几何体为一个正方体和一个半圆柱的组合体,且正方体的棱长为2,半圆柱的底面半径为1,母线长为2,故该几何体的表面积为:2×2×5+2×π+2×12π=20+3π.答案 C7.已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题:①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β;④l ⊥m ⇒α∥β,其中正确的命题是( ).A .①②③B .②③④C .②④D .①③解析 对于命题①:由α∥β,l ⊥α,可得l ⊥β,又m ⊂β,故l ⊥m ,正确;对于命题③:由l ∥m 可得m ⊥α,又m ⊂β,故α⊥β,正确;命题②,命题④错误. 答案 D8.一个空间几何体的三视图均是边长为2的正方形,则以该空间几何体各个面的中心为顶点的多面体的体积为( ).A.26B.23C.33D.23解析 由题意可得这个空间几何体为正方体,以正方体各个面的中心为顶点的多面体是两个全等的正四棱锥的组合体,如图,一个正四棱锥的高是正方体的高的一半,故所求的多面体的体积为2×13×⎝ ⎛⎭⎪⎫12×2×2×12×2=23.答案 B9.如图所示,则根据图中数据可知该几何体的体积为( ).A .8πB .9π C.4+3153π D.4+153π 解析 该几何体的上面部分是球,下面部分是圆锥,球的半径为1,故球的体积为4π3,圆锥的底面半径为1,高为15,故圆锥的体积为153π,所以该几何体的体积为4+153π. 答案 D10.如图,在正方体ABCD-A 1B 1C 1D 1中,当动点M 在底面ABCD 内运动时,总有D 1A =D 1M ,则动点M 在面ABCD 内的轨迹是________上的一段弧.A .圆B .椭圆C .双曲线D .抛物线解析 因为满足条件的动点在底面ABCD 内运动时,动点的轨迹是以D 1D 为轴线,以D 1A 为母线的圆锥,所以动点M 在面ABCD 内的轨迹是圆的一部分. 答案 A11.如图,在长方体ABCD-A 1B 1C 1D 1中,AB =BC =2,A 1D 与BC 1所成的角为π2,则BC 1与平面BB 1D 1D 所成角的正弦值为( ).A.63B.12C.155D.32解析 连接B 1C ,∴B 1C ∥A 1D ,又∵A 1D 与BC 1所成的角为π2.∴B 1C ⊥BC 1,又AB =BC =2,∴长方体ABCD-A 1B 1C 1D 1为正方体,取B 1D 1的中点M ,连接C 1M ,BM ,∴C 1M ⊥平面BB 1D 1D ,∴∠C 1BM 为BC 1与平面BB 1D 1D 所成的角,∵AB =BC =2,∴C 1M =2,BC 1=22, ∴sin ∠C 1BM =C 1M C 1B =12. 答案 B12.若正三棱锥的正视图与俯视图如图所示(单位:cm),则它的侧视图的面积为________cm 2.解析 由该正三棱锥的正视图和俯视图可知,其侧视图为一个三角形,它的底边长等于俯视图的高即32,高等于正视图的高即3,所以侧视图的面积为S =12×32×3=34(cm 2).答案 3413.一个正方体的各顶点均在同一球的球面上,若该球的体积为43π,则该正方体的表面积为________.解析 设正方体的棱长为a ,球的半径为R ,则依题意有4πR33=43π,解得R = 3.因为3a =2R =23,所以a =2.故该正方体的面积为6a 2=24. 答案 2414.在正方体ABCD-A 1B 1C 1D 1中,下面结论中正确的是________(把正确结论的序号都填上).①BD ∥平面CB 1D 1;②AC 1⊥平面CB 1D 1;③AC 1与底面ABCD 所成角的正切值是 2. 解析 ①∵BD ∥B 1D 1,B 1D 1⊂平面CB 1D 1,∴BD ∥平面CB 1D 1;②∵AA 1⊥平面A 1B 1C 1D 1,∴AA 1⊥B 1D 1,又∵A 1C 1⊥B 1D 1,∴B 1D 1⊥平面AA 1C 1,∴B 1D 1⊥AC 1,同理B 1C ⊥AC 1,∴AC 1⊥平面CB 1D 1;③∠C 1AC 为AC 1与平面ABCD 所成的角,tan ∠C 1AC =CC 1AC =CC 12CC 1=22.答案 ①②15.如图,四棱锥P-ABCD 的底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点.(1)证明:PA ∥平面BDE ;(2)求二面角B-DE-C 的余弦值.解 (1)连接AC 交BD 于点O ,连接OE ;在△CPA 中,E ,O 分别是边CP ,CA 的中点,∴OE ∥PA ,而OE ⊂平面BDE ,PA ⊄平面BDE ,∴PA ∥平面BDE .(2)如图建立空间直角坐标系,设PD =DC =2. 则A (2,0,0),P (0,0,2),E (0,1,1),B (2,2,0),DE →=(0,1,1),DB →=(2,2,0).设n =(x ,y ,z )是平面BDE 的一个法向量,则由⎩⎪⎨⎪⎧n ·DE ,→=0,n ·DB ,→=0,得⎩⎪⎨⎪⎧y +z =0,2x +2y =0,取y =-1,得n =(1,-1,1),又DA →=(2,0,0)是平面DEC 的一个法向量. ∴cos 〈n ,DA →〉=n ·DA ,→|n |·|DA ,→|=23×2=33.故结合图形知二面角B-DE-C 的余弦值为33. [知识排查]1.应注意根据几何体的三视图确定几何体的形状和数量特征,尤其是侧视图中的数据与几何体中的数据之间的对应.2.弄清楚球的简单组合体中几何体度量之间的关系,如棱长为a 的正方体的外接球的半径为32a . 3.搞清几何体的表面积与侧面积的区别,几何体的表面积是几何体的侧面积与所在底面面积之和,不能漏掉几何体的底面积.4.立体几何中,平行、垂直关系可以进行以下转化:线∥线⇔线∥面⇔面∥面,线⊥线⇔线⊥面⇔面⊥面,这些转化各自的依据是什么?5.如何求两条异面直线所成的角、直线与平面所成的角以及二面角?如果所求的角为90°,那么就不要忘了还有一种求角的方法即证明它们垂直.6.两条异面直线所成角的范围:0°<α≤90°;直线与平面所成角的范围:0°≤α≤90°;二面角的平面角的取值范围:0°≤α≤180°.7.空间向量求角时,易忽视向量的夹角与所求角之间的关系,如求解二面角时,不能根据几何体判断二面角的范围,忽视法向量的方向,误以为两个法向量的夹角就是所求的二面角,导致出错.。
(三轮考前体系通关)2014年高考数学二轮复习简易通 倒数第5天 理 新人教A版

倒数第5天 解析几何[保温特训] (时间:45分钟)1.抛物线y =8x 2的焦点坐标是( ).A .(2,0)B .(0,2) C.⎝ ⎛⎭⎪⎫0,132 D.⎝ ⎛⎭⎪⎫132,0 解析 抛物线y =8x 2的标准方程为:x 2=18y ,则2p =18,所以p 2=132,又抛物线的焦点在y 轴的正半轴上,所以焦点坐标为⎝⎛⎭⎪⎫0,132. 答案 C2.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ).A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析 把点(1,2)代入四个选项,排除B ,D ,又由于圆心在y 轴,排除C. 答案 A3.已知焦点在x 轴上的双曲线的渐近线方程是y =±4x ,则该双曲线的离心率是( ).A.17B.15C.174 D.154解析 依题意知b a =4,则e =ca=1+b 2a2=17.答案 A4.“a =b ”是“直线y =x +2与圆(x -a )2+(x -b )2=2相切”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 据已知直线与圆相切的充要条件为:|a -b +2|2=2⇒|a -b +2|=2⇒a =b 或a-b =-4,故a =b 是直线与圆相切的充分不必要条件. 答案 A5.椭圆x 24+y 2=1的两个焦点为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|=( ).A.72B.32 C.3 D .4 解析 F 1(-3,0),|PF 1|=1--324=12, 又|PF 1|+|PF 2|=2a =4,∴|PF 2|=4-|PF 1|=72.答案 A6.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且|PF 1|-|PF 2|=2,3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( ).A .4 2B .8 3C .24D .48解析 由|PF 1|-|PF 2|=2,3|PF 1|=4|PF 2|,得|PF 1|=8,|PF 2|=6,又|F 1F 2|=2c =10,所以△PF 1F 2为直角三角形,∴S △PF 1F 2=12×6×8=24.答案 C7.若直线过点P ⎝⎛⎭⎪⎫-3,-32且被圆x 2+y 2=25截得的弦长是8,则该直线的方程为( ).A .3x +4y +15=0B .x =-3或y =-32C .x =-3D .x =-3或3x +4y +15=0解析 若直线的斜率不存在,则该直线的方程为x =-3,代入圆的方程解得y =±4,故该直线被圆截得的弦长为8,满足条件;若直线的斜率存在,不妨设直线的方程为y +32=k (x +3),即kx -y +3k -32=0,因为该直线被圆截得的弦长为8,故半弦长为4,又圆的半径为5,则圆心(0,0)到直线的距离为52-42=,解得k =-34,此时该直线的方程为3x +4y +15=0. 答案 D8.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为( ).A .5x 2-4y25=1B.x 25-y 24=1 C.y 25-x 24=1 D . 5x 2-5y24=1解析 ∵抛物线y 2=4x 的焦点为(1,0),∴c =1,又e =5,a =15,b 2=c 2-a 2=45,所以该双曲线方程为5x 2-5y24=1.答案 D9.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( ).A. 3 B .2 C. 5 D. 6解析 设切点P (x 0,y 0),则切线的斜率为y ′|x =x 0=2x 0,依题意有y 0x 0=2x 0,又y 0=x 20+1得x 20=1, 所以b a=2,e =1+⎝ ⎛⎭⎪⎫b a2= 5.答案 C10.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( ).A .(x -3)2+⎝ ⎛⎭⎪⎫y -732=1B .(x -2)2+()y -12=1C .(x -1)2+()y -32=1D.⎝ ⎛⎭⎪⎫x -322+(y -1)2=1 解析 依题意设圆心C (a ,1)(a >0),由圆C 与直线4x -3y =0相切,得|4a -3|5=1,解得a =2,则圆C 的标准方程是(x -2)2+(y -1)2=1. 答案 B11.已知抛物线y 2=4x 的准线与双曲线x 2a2-y 2=1(a >0)交于A ,B 两点,点F 为抛物线的焦点,若△FAB 为直角三角形,则双曲线的离心率是( ).A. 3B. 6 C .2 D .3解析 y 2=4x 的准线x =-1,焦点(1,0),A 点坐标⎝⎛⎭⎪⎫-1,1-a 2a ,△FAB 为直角三角形,∠AFB =90°,由对称性可知,△FAB 为等腰直角三角形,由几何关系得1-a2a=2,解得a 2=15,c 2=a 2+b 2=65,从而求得e = 6.答案 B12.已知抛物线C 的方程为x 2=12y ,过点A (0,-1)和点B (t ,3)的直线与抛物线C 没有公共点,则实数t 的取值范围是( ).A .(-∞,-1)∪(1,+∞) B.⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞ C.()-∞,-22∪(22,+∞) D.()-∞,-2∪()2,+∞解析 直线AB 方程为y =4t x -1,与抛物线方程x 2=12y 联立得x 2-2t x +12=0,直线与抛物线没有公共点,故Δ=4t2-2<0,解得t >2或t <- 2.答案 D13.若直线l 1:ax +2y +6=0与直线l 2:x +(a -1)y +(a 2-1)=0平行,则实数a =________.解析 由a (a -1)-2×1=0得:a =-1,或a =2,验证,当a =2时两直线重合,当a =-1时两直线平行. 答案 -114.当直线l :y =k (x -1)+2被圆C :(x -2)2+(y -1)2=5截得的弦最短时,k 的值为________.解析 依题意知直线l 过定点P (1,2),圆心C (2,1),由圆的几何性质可知,当圆心C 与点P 的连线l 垂直时,直线l 被圆C 截得的弦最短,则k ·2-11-2=-1,得k =1.答案 115.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦的长为23,则a =________.解析 由⎩⎪⎨⎪⎧x 2+y 2+2ay -6=0,x 2+y 2=4,得2ay =2,即y =1a,则⎝ ⎛⎭⎪⎫1a 2+()32=22,解得a =1. 答案 116.椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________. 解析 不妨设|F 1F 2|=1.∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°,∴|MF 2|=2,|MF 1|=3,2a =|MF 1|+|MF 2|=2+3,2c =|F 1F 2|=1,∴e =ca=2- 3. 答案 2- 3[知识排查]1.用直线的点斜式、斜截式设直线的方程时,易忽略斜率不存在的情况. 2.判断两直线的位置关系时,注意系数等于零时的讨论.3.直线的斜率公式,点到直线的距离公式,两平行线间的距离公式记住了吗?4.直线和圆的位置关系利用什么方法判定(圆心到直线的距离与圆的半径的比较)?两圆的位置关系如何判定?5.截距是距离吗?“截距相等”意味着什么?6.记得圆锥曲线方程中的a ,b ,c ,p ,c a的意义吗?弦长公式记熟了吗? 7.离心率的大小与曲线的形状有何关系?等轴双曲线的离心率是多少? 8.在椭圆中,注意焦点、中心、短轴端点,三点连线所组成的直角三角形. 9.通径是抛物线的所有焦点弦中最短的弦.10.在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式Δ≥0的限制.(求交点、弦长、中点、斜率、对称,存在性问题都在Δ>0 下进行)。
江苏省2014届高考数学(文)三轮专题复习考前体系通关训练:倒数第8天

倒数第8天 三角与向量[保温特训]1.已知α∈⎝ ⎛⎭⎪⎫π,3π2,且cos α=-55,则tan α=________.解析 利用同角三角函数的基本关系求解.由条件可得sin α=-255,所以tan α=sin αcos α=-255-55=2.答案 22.sin 2π4-cos 2π4的值是________.解析 利用二倍角的余弦公式求解.sin 2π4-cos 2π4=-cos ⎝ ⎛⎭⎪⎫2×π4=0.答案 03.已知tan(α+β)=12,tan β=-13,则tan α=________. 解析 tan α=tan[(α+β)-β]=12+131-16=1.答案 14.在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,若b =1,c =3,∠C =2π3,则△ABC 的面积为________. 解析 由正弦定理得sin B =b sin Cc =12,所以B =π6=A ,所以a =b =1,故△ABC 的面积为12ab sin C =34. 答案 345.设D ,P 为△ABC 内的两点,且满足AD →=14(AB →+AC →),AP →=AD →+15BC →,则S △APD S △ABC=________.解析 取BC 的中点为P ,则AD →=14(AB →+AC →)=12AP →,则点D 是中线AP 的中点,所以S △APD S △ABC =110. 答案 1106.若函数f (x )=sin(x +φ)(0<φ<π)是偶函数,则cos ⎝ ⎛⎭⎪⎫π6-φ=________.解析 因为函数f (x )=sin(x +φ)(0<φ<π)是偶函数,所以φ=π2,故cos ⎝ ⎛⎭⎪⎫π6-φ=cos ⎝ ⎛⎭⎪⎫π6-π2=12.答案 127.若sin ⎝ ⎛⎭⎪⎫π6+α=13,则cos ⎝ ⎛⎭⎪⎫2π3-2α=________.解析 由诱导公式可得cos ⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π6+α=13,所以cos ⎝ ⎛⎭⎪⎫2π3-2α=2cos 2⎝ ⎛⎭⎪⎫π3-α-1=29-1=-79. 答案 -798.若α,β∈(0,π),cos α=-750,tan β=-13,则α+2β=________. 解析 由条件得α∈⎝ ⎛⎭⎪⎫π2,π,β∈⎝ ⎛⎭⎪⎫3π4,π,所以α+2β∈(2π,3π),且tan α=-17,tan β=-13,所以tan 2β=-231-19=-34,tan(α+2β)=-17-341-328=-1,所以α+2β=11π4. 答案 11π49.在△ABC 中,若A =30°,b =2,且2BA →·BC →-AB →2=0,则△ABC 的面积为________.解析 因为2BA →·BC→-AB →2=0,所以2ac cos B -c 2=0⇒a 2+c 2-b 2=c 2⇒a =b=2,所以∠A =∠B =30°,∠C =120°,所以△ABC 的面积为12×2×2×32=3. 答案310.已知函数f (x )=1-3sin 2x +2cos 2x ,则函数y =f (x )的单调递减区间为________.解析 因为f (x )=1-3sin 2x +2cos 2x =2+cos 2x -3sin 2x =2+2cos ⎝ ⎛⎭⎪⎫2x +π3,当2k π≤2x +π3≤π+2k π,k ∈Z 时函数递减,所以递减区间是⎣⎢⎡⎦⎥⎤-π6+k π,π3+k π(k ∈Z ). 答案 ⎣⎢⎡⎦⎥⎤-π6+k π,π3+k π(k ∈Z )11.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BDC =120°.BD =CD =10米.并在点C 测得塔顶A 的仰角为60°,则塔高AB =________.解析 在△BCD 中,由余弦定理可得BC =103,在直角△ABC 中,AB =BC tan 60°=30. 答案 3012.在△ABC 中,AB 边上的中线CO =2,若动点P 满足AP →=sin 2θ·AO →+cos 2θ·AC →(θ∈R ),则(P A →+PB →)·PC→的最小值是________. 解析 因为AP →=sin 2θ·AO →+cos 2θ·AC →(θ∈R ),又sin 2θ+cos 2θ=1,所以C 、P 、O 三点共线,且sin 2θ,cos 2θ∈[0,1],所以点P 在线段OC 上,设|PO →|=t (t ∈[0,2]),故(P A →+PB →)·PC →=2PO →·PC →=2t (2-t )·(-1)=2t 2-4t ,当t =1时,取最小值-2. 答案 -213.已知函数f (x )=sin x +cos x 的定义域为[a ,b ],值域为[-1,2],则b -a 的取值范围是________.解析 由条件可得,长度最小的定义域可能是⎣⎢⎡⎦⎥⎤-π2,π4,此时b -a =3π4,长度最大的定义域可能是⎣⎢⎡⎦⎥⎤-π2,π,此时b -a =3π2,即b -a 的取值范围是⎣⎢⎡⎦⎥⎤3π4,3π2. 答案 ⎣⎢⎡⎦⎥⎤3π4,3π214.已知△ABC 中,AB 边上的高与AB 边的长相等,则AC BC +BC AC +AB 2BC ·AC 的最大值为________.解析 由三角形的面积公式得12c 2=12ab sin C ⇒c 2ab =sin C ,由余弦定理可得c 2=a 2+b 2-2ab cos C ⇒a b +b a =c 2ab +2cos C =sin C +2cos C ,所以AC BC +BC AC +AB 2BC ·AC =2sin C +2cos C =22sin⎝ ⎛⎭⎪⎫C +π4,最大值是2 2. 答案 2 2[知识排查]1.求三角函数在定义区间上的值域(最值),一定要结合图象.2.求三角函数的单调区间要注意x 的系数的正负,最好经过变形使x 的系数为正.3.求y =sin ωx 的周期一定要注意ω的正负. 4.“五点法”作图你是否准确、熟练地掌握了? 5.由y =sin x ―→y =A sin (ωx +φ)的变换你掌握了吗?6.你还记得三角化简的通性通法吗?(降幂公式、异角化同角、异名化同名等). 7.已知三角函数值求角时,要注意角的范围的挖掘. 8.在△ABC 中,A >B ⇔sin A >sin B . 9.使用正弦定理时易忘比值还等于2R .10.在解决三角形问题时,正弦定理、余弦定理、三角形面积公式你记住了吗? 11.a =0,则a ·b =0,但由a ·b =0,不能得到a =0或b =0,因为a ⊥b ,a ·b =0.12.由a ·b =c ·b ,不能得到a =c ,即消去律不成立.13.两向量平行与垂直的充要条件是什么?坐标表示也应熟记.。
江苏省2014届高考数学(文)三轮专题复习考前体系通关训练:填空题押题练E组

填空题押题练E 组1.复数:5(1+4i )2i (1+2i )=________. 解析 5(1+4i )2i (1+2i )=5(-15+8i )-2+i =5(-15+8i )(-2-i )(-2+i )(-2-i )=5(38-i )5=38-i. 答案 38-i2.某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布图如图所示,若130~140分数段的人数为90人,则90~100分数段的人数为________.解析 高三年级总人数为:900.05=1 800人;90~100分数段人数的频率为0.45;分数段的人数为1 800×0.45=810.答案 8103.已知向量a =(3,1),b =⎝ ⎛⎭⎪⎫-1,12,若a +λb 与a 垂直,则λ等于________. 解析 根据向量线性运算、数量积运算建立方程求解.由条件可得a +λb =⎝⎛⎭⎪⎫3-λ,1+12λ,所以(a +λb )⊥a ⇒3(3-λ)+1+12λ=0⇒λ=4. 答案 44.曲线y =1x 在x =2处的切线斜率为________.解析 根据导数的几何意义,只要先求出导数以后,将x =2代入即可求解.因为y ′=-1x 2,所以y ′|x =2=-14,即为切线的斜率.45.给出四个命题:①平行于同一平面的两个不重合的平面平行;②平行于同一直线的两个不重合的平面平行;③垂直于同一平面的两个不重合的平面平行;④垂直于同一直线的两个不重合的平面平行;其中真命题的序号是________.解析 若α∥β,α∥γ,则β∥γ,即平行于同一平面的两个不重合的平面平行,故①正确;若a ∥α,a ∥β,则α与β平行或相交,故②错误;若α⊥γ,β⊥γ,则平面α与β平行或相交,故③错误;与若a ⊥α,a ⊥β,则α与β平行,故④正确.答案 ①④6.若实数x ,y 满足⎩⎨⎧ x +y ≤1,x -y +1≥0y ≥0,,则x 2+(y +1)2的最大值与最小值的差为________.解析 作出不等式组对应的平面区域,利用两点间距离公式求解.不等式组对应的平面区域如图,由图可知,当(x ,y )为(0,1)时,x 2+(y +1)2取得最大值4;当(x ,y )为(0,0)时,x 2+(y +1)2取得最小值1,故最大值与最小值的差是3.答案 37.一个质地均匀的正四面体(侧棱长与底面边长相等的正三棱锥)玩具的四个面上分别标有1,2,3,4这四个数字.若连续两次抛掷这个玩具,则两次向下的面上的数字之积为偶数的概率是________.解析 应用例举法共有16种等可能情况,(1,1)(1,2),(1,3)(1,4),(2,1)(2,2),(2,3),(2,4),(3,1)(3,2),(3,3)(3,4),(4,1),(4,2),(4,3),(4,4).两次向下的面上的数字之积为偶数共有12种情况,所以所求概率为34.48.设某程序框图如图所示,该程序运行后输出的k的值是________.解析阅读算法中流程图知:运算规则是S=S×k2故第一次进入循环体后S=1×32=9,k=3;第二次进入循环体后S=9×52=225>100,k=5.退出循环,其输出结果k=5.故答案为:5.答案 59.已知等差数列{a n}的公差不为零,a1+a2+a5>13,且a1,a2,a5成等比数列,则a1的取值范围为________.解析利用a1,a2,a5成等比数列确定公差与首项的关系,再解不等式即可.设等差数列{a n}的公差为d,则d≠0,所以a1,a2,a5成等比数列⇒a22=a1a5⇒(a1+d)2=a1(a1+4d)⇒d=2a1,代入不等式a1+a2+a5>13解得a1>1.答案(1,+∞)10.已知a>b>0,给出下列四个不等式:①a2>b2;②2a>2b-1;③a-b>a -b;④a3+b3>2a2b.其中一定成立的不等式序号为________.解析因为a>b>0⇒a2>b2,故①正确;a>b>0⇒a>b-1⇒2a>2b-1,故②正确;因为a>b>0⇒ab>b2>0⇒ab>b>0,而(a-b)2-(a-b)2=a-b-a-b+2ab=2(ab-b)>0,所以③正确;因为当a=3,b=2时,a3+b 3=35<2a 2b =36,故④不正确.答案 ①②③11.P 为直线y =b 3a x 与双曲线x 2a 2-y 2b 2=1(a >0,b >0)左支的交点,F 1是左焦点,PF 1垂直于x 轴,则双曲线的离心率e =________.解析 由⎩⎪⎨⎪⎧ y =b 3a x ,x 2a 2-y 2b 2=1,得⎩⎪⎨⎪⎧ x =-324a ,y =-24b ,又PF 1垂直于x 轴,所以324a=c ,即离心率为e =c a =324.答案 32412.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a =8,b =10,△ABC 的面积为203,则△ABC 的最大角的正切值是________.解析 由题意可以求出sin C ,得到∠C 有两解,借助余弦定理分别求出三角形中最大角的正切值.由S △ABC =12ab sin C ,代入数据解得sin C =32,又∠C为三角形的内角,所以C =60°或120°.若C =60°,则在△ABC 中,由余弦定理得c 2=a 2+b 2-2ab cos C =84,此时,最大边是b ,故最大角为∠B ,其余弦值cos B =a 2+c 2-b 22ac =3221,正弦值sin B =53221,正切值tan B =533;若C =120°,此时,C 为最大角,其正切值为tan 120°=- 3.答案 533或- 313.定义集合M 、N 的新运算如下:Mx N ={x |x ∈M 或x ∈N ,但x ∉M ∩N },若集合M ={0,2,4,6,8,10},N ={0,3,6,9,12,15},则(Mx N )xM 等于________. 解析 由定义得:Mx N ={2,3,4,8,9,10,12,15},所以(Mx N )xM =N .答案 N14.若存在区间M =[a ,b ](a <b ),使得{y |y =f (x ),x ∈M }=M ,则称区间M 为函数f (x )的一个“稳定区间”.给出下列四个函数:①y =e x ,x ∈R ;②f (x )=x 3;③f (x )=cos πx 2;④f (x )=ln x +1.其中存在稳定区间的函数有________(写出所有正确命题的序号).解析根据新定义逐一判断.因为函数y=e x,x∈R递增,且e x>x,x∈R 恒成立,函数y=e x,x∈R不存在“稳定区间”,故①不存在“稳定区间”;函数f(x)=x3存在稳定区间[-1,0]或[0,1]或[-1,1],故②存在“稳定区间”;函数f(x)=cos πx2存在稳定区间[0,1],故③存在“稳定区间”;函数f(x)=ln x+1在(0,+∞)上递增,且ln x+1≤x,x>0恒成立,函数f(x)=ln x +1在定义域上不存在“稳定区间”,故④不存在“稳定区间”.答案②③。
2019年江苏省高考数学三轮专题复习素材:倒数第1天(含答案)

高考数学精品复习资料2019.5倒数第1天高考数学应试技巧经过吃紧有序的高中数学总复习,高考即将来临,有人认为高考数学的成败已成定局,其实不然,因为高考数学成绩不仅仅取决于你现有的数学水平,还取决于你的高考临场发挥,所以我们要重视高考数学应试的策略和技巧,这样有利于我们能够“正常发挥”或者“超常发挥”.一、考前各种准备1.工具准备:签字笔、铅笔、橡皮、角尺、圆规、手表、身份证、准考证等.(注意:高考作图时要用铅笔作图,等确认之后也可以用签字笔描)2.知识准备:公式、图表强化记忆,查漏补缺3.生理准备:保持充塞的睡眠、调整自己的生物钟、进行节制的文体活动4.心理准备:有自信心,有恰当合理的目标二、临场应试策略1.科学分配考试时间试卷发下来以后,首先按要求填涂好姓名、准考证号等栏目,完成以上工作以后,估计还未到考试时间,可先把试卷快速浏览一遍,对试题的内容、难易有一个大概的了解,做到心中有数,考试开始铃声一响,马上开始答题.2.合理安排答题顺序解题的顺序对考试成绩影响很大,试想考生如果先做最难的综合题,万一做不出,白白浪费了时间,还会对后面的考试产生不良的影响,考试时最佳按照以下的顺序:(1)从前到后.高考数学试卷前易后难,前面填空题信息量少、运算量小,易于把握,不要轻松放过,解答题前三、四道也不太难,从前往后做,先把基本分拿到手,就能心里坚固,稳操胜券.(2)先易后难.先做简单题,再做综合题,遇到难题时,一时不会做,做一个记号,先跳过去,做完其它题再来解决它,但要注意认真对待每一道题,力求有用,不能走马观花,有难就退,影响情绪.(3)先熟后生.先做那些知识比较熟悉、题型结构比较熟悉、解题思路比较熟悉的题目,这样,在拿下熟题的同时,可以使思维流通、达到拿下中高档题目的目的.3.争取一个优良开端优良的开端是胜利的一半,从考试心理角度来说,这确实很有道理.拿到试题后,不要急于求成、立即下手解题,在通览一遍整套试题后,稳操一两个易题熟题,让自己产生“旗开得胜”的感觉,从而有一个优良的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高.4.控制好解题节奏考场上不能一味地图快,题意未清,条件未全,便急于解答,简易失误.应该有快有慢,审题要慢,解答要快.题目中的一些关键字可以用笔圈一下,以提醒自己注意.审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据.而思路一旦形成,则可尽量快速解答.5.确保运算确凿,立足一次胜利在规定的时间内要完成所有题,时间很吃紧,不允许做大量细密的检验工作,所以要尽量确凿运算,关键步骤,宁慢勿快,稳扎稳打,不为追求速度而丢掉确凿度,力争一次胜利.实现一次胜利的一个有用措施是做完一道题后如果觉得没有把握随即检查一下(例如可逆代检验、估算检验、赋值检验、极端检验、多法检验).做完当即检查,思路还在,对题目的条件、要求等依然很熟悉,检查起来可以省时间.6.追求规范书写,力争既对又全卷面是考试评分的唯一依据,这就要求不但会而且要对、不但对而且要全,不但全而且要规范.会而不对,令人怅惘;对而不全,得分不高;表述不规范,处处扣分.要处理好“会做”与“得分”的关系.要用心揣摩阅卷时的得分点步骤,得分点步骤不能漏掉,一定要写好,写清晰.例如立体几何论证题,很多因条件不全被扣分.7.面对个别难题,争取部分得分高考成绩是录取的重要依据,相差一分就有可能失去录取资格.解答题多呈现为“一题多问”、难度递进式的“梯度题”,这种题入口宽,入手易,看似难做,实际上也有可得分之处,所以面对“难题”不要胆小,不要简单放弃,应清静思考,争取部分得分.那么面对不能全面完成的题目如何分段得分,下面有两种常用方法.①缺步解答.对难题,啃不动时,明智的解题策略是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,能写几步就写几步,每写一步就可能得到一定分数.②跳步解答.解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途,如能得到预期结论,就再回头集中力量攻克这一过渡环节,若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;若题目有两问,第二问做不上,可将第一问作为“已知”,完成第二问,这样也可能得分.8.把握“最后10分钟”同学们大凡都有这样的感觉,前面10分钟往往是得分的黄金时间,而最后的10分钟往往很难添分加彩,究其原因有两个,一是最后10分钟往往既要复查纠错,又想攻克难题,结果顾此失彼,两头落空;二是考试的最后时刻就象长跑的最后时刻,体力消耗大,思维有所愚钝.那么“最后10分钟”应该做什么呢?可以用来检查前面有疑问没把握的试题或者用来做前面未能解答的试题,但是一定要先解决把握性大一点、相对简易一点、得分可能性大的试题.总之,我们的应试策略是:(1)难易分明,决不耗时;(2)慎于审题,决不懊悔;(3)必求规范,决不失分;(4)细心运算,决不犯错;(5)提防陷阱,决不上当;(6)愿慢求对,决不出错;(7)思路遇阻,决不焦急;(8)奋力拼杀,决不落伍.。
江苏省2014届高考数学(文)三轮专题复习考前体系通关训练:倒数第5天

倒数第5天 解析几何[保温特训]1.若直线l 1:ax +2y +6=0与直线l 2:x +(a -1)y +(a 2-1)=0平行,则实数a=________.解析 由a (a -1)-2×1=0得:a =-1,或a =2,验证,当a =2时两直线重合,当a =-1时两直线平行.答案 -12.当直线l :y =k (x -1)+2被圆C :(x -2)2+(y -1)2=5截得的弦最短时,k 的值为________.解析 依题意知直线l 过定点P (1,2),圆心C (2,1),由圆的几何性质可知,当圆心C 与点P 的连线l 垂直时,直线l 被圆C 截得的弦最短,则k ·2-11-2=-1,得k =1.答案 13.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦的长为23,则a =________.解析 由⎩⎨⎧x 2+y 2+2ay -6=0,x 2+y 2=4,得2ay =2,即y =1a ,则⎝ ⎛⎭⎪⎫1a 2+()32=22,解得a =1.答案 14.椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为________.解析 椭圆的焦距为4,所以2c =4,c =2因为准线为x =-4,所以椭圆的焦点在x 轴上,且-a 2c =-4,所以a 2=4c =8,b 2=a 2-c 2=8-4=4,所以椭圆的方程为x 28+y 24=1.答案 x 28+y 24=15.直线x -2y +2=0经过椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点和一个顶点,则该椭圆的离心率为________.解析 直线x -2y +2=0与坐标轴的交点为(-2,0),(0,1),依题意得,c =2,b =1⇒a =5⇒e =255.答案 255 6.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________. 解析 不妨设|F 1F 2|=1.∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°,∴|MF 2|=2,|MF 1|=3,2a =|MF 1|+|MF 2|=2+3,2c =|F 1F 2|=1,∴e =c a =2- 3.答案 2- 37.已知点P (a ,b )关于直线l 的对称点为P ′(b +1,a -1),则圆C :x 2+y 2-6x -2y =0关于直线l 对称的圆C ′的方程为________.解析 由圆C :x 2+y 2-6x -2y =0得,圆心坐标为(3,1),半径r =10,所以对称圆C ′的圆心为(1+1,3-1)即(2,2),所以(x -2)2+(y -2)2=10.答案 (x -2)2+(y -2)2=108.在△ABC 中,∠ACB =60°,sin A ∶sin B =8∶5,则以A ,B 为焦点且过点C的椭圆的离心率为________.解析 设BC =m ,AC =n ,则 m n =85,m +n =2a ,(2c )2=m 2+n 2-2mn cos 60°, 先求得m =1613a ,n =1013a ,代入得4c 2=196169a 2,e =713.答案 7139.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-4,0),C (4,0),顶点B 在椭圆x 225+y 29=1上,则sin A +sin C sin B等于________. 解析 由正弦定理得sin A +sin C sin B=a +c b =108=54. 答案 5410.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(1,2)在“上”区域内,则双曲线离心率e 的取值范围是________.解析 双曲线x 2a 2-y 2b 2=1的一条渐近线为y =b a x ,点(1,2)在该直线的上方,由线性规划知识,知:2>b a ,所以e 2=1+⎝ ⎛⎭⎪⎫b a 2<5,故e ∈(1,5). 答案 (1,5)11.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点、右焦点分别为A 、F ,它的左准线与x 轴的交点为B ,若A 是线段BF 的中点,则双曲线C 的离心率为________.解析 由题意知:B ⎝ ⎛⎭⎪⎫-a 2c ,0,A (a,0),F (c,0),则2a =c -a c , 即e 2-2e -1=0,解得e =2+1.答案 2+112.过直线l :y =2x 上一点P 作圆C :(x -8)2+(y -1)2=2的切线l 1,l 2,若l 1,l 2关于直线l 对称,则点P 到圆心C 的距离为________.解析 根据平面几何知识可知,因为直线l 1,l 2关于直线l 对称,所以直线l 1,l 2关于直线PC 对称并且直线PC 垂直于直线l ,于是点P 到点C 的距离即为圆心C 到直线l 的距离,d =|2×8-1|12+22=3 5. 答案 3 513.已知椭圆的中心为坐标原点,短轴长为2,一条准线方程为l :x =2.(1)求椭圆的标准方程;(2)设O 为坐标原点,F 是椭圆的右焦点,点M 是直线l 上的动点,过点F 作OM 的垂线与以OM 为直径的圆交于点N ,求证:线段ON 的长为定值. 解 (1)∵椭圆C 的短轴长为2,椭圆C 的一条准线为l :x =2,∴不妨设椭圆C 的方程为x 2a 2+y 2=1.∴a 2c =1+c 2c =2,即c =1.∴椭圆C 的方程为x 22+y 2=1.(2)F (1,0),右准线为l :x =2,设N (x 0,y 0),则直线FN 的斜率为k FN =y 0x 0-1,直线ON 的斜率为k ON =y 0x 0, ∵FN ⊥OM ,∴直线OM 的斜率为k OM =-x 0-1y 0, ∴直线OM 的方程为:y =-x 0-1y 0x ,点M 的坐标为M ⎝ ⎛⎭⎪⎫2,-2(x 0-1)y 0. ∴直线MN 的斜率为k MN =y 0+2(x 0-1)y 0x 0-2. ∵MN ⊥ON ,∴k MN ·k ON =-1,∴y 0+2(x 0-1)y 0x 0-2·y 0x 0=-1, ∴y 20+2(x 0-1)+x 0(x 0-2)=0,即x 20+y 20=2.∴ON =2为定值.[知识排查]1.用直线的点斜式、斜截式设直线的方程时,易忽略斜率不存在的情况.2.判断两直线的位置关系时,注意系数等于零时的讨论.3.直线的斜率公式,点到直线的距离公式,两平行线间的距离公式记住了吗?4.直线和圆的位置关系利用什么方法判定(圆心到直线的距离与圆的半径的比较)?两圆的位置关系如何判定?5.截距是距离吗?“截距相等”意味着什么?6.记得圆锥曲线方程中的a ,b ,c ,p ,c a 的意义吗?弦长公式记熟了吗?7.离心率的大小与曲线的形状有何关系?等轴双曲线的离心率是多少?8.在椭圆中,注意焦点、中心、短轴端点,三点连线所组成的直角三角形.9.在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式Δ≥0的限制.(求交点、弦长、中点、斜率、对称,存在性问题都在Δ>0 下进行)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
倒数第1天高考数学应试技巧
经过紧张有序的高中数学总复习,高考即将来临,有人认为高考数学的成败已成定局,其实不然,因为高考数学成绩不仅仅取决于你现有的数学水平,还取决于你的高考临场发挥,所以我们要重视高考数学应试的策略和技巧,这样有利于我们能够“正常发挥”或者“超常发挥”.
一、考前各种准备
1.工具准备:签字笔、铅笔、橡皮、角尺、圆规、手表、身份证、准考证等.(注意:高考作图时要用铅笔作图,等确认之后也可以用签字笔描)
2.知识准备:公式、图表强化记忆,查漏补缺
3.生理准备:保持充足的睡眠、调整自己的生物钟、进行适度的文体活动4.心理准备:有自信心,有恰当合理的目标
二、临场应试策略
1.科学分配考试时间
试卷发下来以后,首先按要求填涂好姓名、准考证号等栏目,完成以上工作以后,估计还未到考试时间,可先把试卷快速浏览一遍,对试题的内容、难易有一个大概的了解,做到心中有数,考试开始铃声一响,马上开始答题.2.合理安排答题顺序
解题的顺序对考试成绩影响很大,试想考生如果先做最难的综合题,万一做不出,白白浪费了时间,还会对后面的考试产生不良的影响,考试时最好按照以下的顺序:
(1)从前到后.高考数学试卷前易后难,前面填空题信息量少、运算量小,易
于把握,不要轻易放过,解答题前三、四道也不太难,从前往后做,先把基本分拿到手,就能心里踏实,稳操胜券.
(2)先易后难.先做简单题,再做综合题,遇到难题时,一时不会做,做一个
记号,先跳过去,做完其它题再来解决它,但要注意认真对待每一道题,力求有效,不能走马观花,有难就退,影响情绪.
(3)先熟后生.先做那些知识比较熟悉、题型结构比较熟悉、解题思路比较熟
悉的题目,这样,在拿下熟题的同时,可以使思维流畅、达到拿下中高档题目的目的.
3.争取一个良好开端
良好的开端是成功的一半,从考试心理角度来说,这确实很有道理.拿到试题后,不要急于求成、立即下手解题,在通览一遍整套试题后,稳操一两个易题熟题,让自己产生“旗开得胜”的感觉,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高.
4.控制好解题节奏
考场上不能一味地图快,题意未清,条件未全,便急于解答,容易失误.应该有快有慢,审题要慢,解答要快.题目中的一些关键字可以用笔圈一下,以提醒自己注意.审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据.而思路一旦形成,则可尽量快速解答.
5.确保运算准确,立足一次成功
在规定的时间内要完成所有题,时间很紧张,不允许做大量细致的检验工作,所以要尽量准确运算,关键步骤,宁慢勿快,稳扎稳打,不为追求速度而丢掉准确度,力争一次成功.
实现一次成功的一个有效措施是做完一道题后如果觉得没有把握随即检查一下(例如可逆代检验、估算检验、赋值检验、极端检验、多法检验).做完当即检查,思路还在,对题目的条件、要求等依然很熟悉,检查起来可以省时间.
6.追求规范书写,力争既对又全
卷面是考试评分的唯一依据,这就要求不但会而且要对、不但对而且要全,不但全而且要规范.会而不对,令人惋惜;对而不全,得分不高;表述不规范,处处扣分.要处理好“会做”与“得分”的关系.要用心揣摩阅卷时的得分点步骤,得分点步骤不能漏掉,一定要写好,写清楚.例如立体几何论证题,很多因条件不全被扣分.
7.面对个别难题,争取部分得分
高考成绩是录取的重要依据,相差一分就有可能失去录取资格.解答题多呈现为“一题多问”、难度递进式的“梯度题”,这种题入口宽,入手易,看
似难做,实际上也有可得分之处,所以面对“难题”不要胆怯,不要简单放弃,应冷静思考,争取部分得分.那么面对不能全面完成的题目如何分段得分,下面有两种常用方法.
①缺步解答.对难题,啃不动时,明智的解题策略是:将它划分为一个个子
问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,能写几步就写几步,每写一步就可能得到一定分数.
②跳步解答.解题过程卡在一中间环节上时,可以承认中间结论,往下推,
看能否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途,如能得到预期结论,就再回头集中力量攻克这一过渡环节,若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;若题目有两问,第二问做不上,可将第一问作为“已知”,完成第二问,这样也可能得分.
8.把握“最后10分钟”
同学们一般都有这样的感觉,前面10分钟往往是得分的黄金时间,而最后的10分钟往往很难添分加彩,究其原因有两个,一是最后10分钟往往既要复查纠错,又想攻克难题,结果顾此失彼,两头落空;二是考试的最后时刻就象长跑的最后时刻,体力消耗大,思维有所迟钝.那么“最后10分钟”应该做什么呢?可以用来检查前面有疑问没把握的试题或者用来做前面未能解答的试题,但是一定要先解决把握性大一点、相对容易一点、得分可能性大的试题.
总之,我们的应试策略是:
(1)难易分明,决不耗时;
(2)慎于审题,决不懊悔;
(3)必求规范,决不失分;
(4)细心运算,决不犯错;
(5)提防陷阱,决不上当;
(6)愿慢求对,决不出错;
(7)思路遇阻,决不急躁;
(8)奋力拼杀,决不落伍.。